最小二乘法原理和曲线拟合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法的基本原理和多项式拟合
一最小二乘法的基本原理
从整体上考虑近似函数同所给数据点
(i=0,1,…,m)误差
(i=0,1,…,m)的大小,常用的方法有以
下三种:一是误差 (i=0,1,…,m)绝对值的最大值,即误差向量
的∞—范数;二是误差绝对值的和
,即误差向量r的1—范数;三是误差平方
和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和
来度量误差
(i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据
(i=0,1,…,m),在取定的函数类中,求
,使误差
(i=0,1,…,m)的平方和最小,即=
从几何意义上讲,就是寻求与给定点
(i=0,1,…,m)的距离平方和为最小的曲线
(图6-1)。函数
称
为拟合函数或最小二乘解,求拟合函数
的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类可有不同的选
取方法.
6—1
二多项式拟合
假设给定数据点 (i=0,1,…,m),
为所有次数不超过
的多项式构成的函数类,现求一
,使得
(1)
当拟合函数为多项式时,称为多项式拟合,满足式(1)的
称为最小二乘拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。
显然
为的多元函数,因此上述问题即为求
的极值问题。由多元函数求极值的必要条件,得
(2)
即
(3)
(3)是关于的线性方程组,用矩阵表示为
(4)
式(3)或式(4)称为正规方程组或法方程组。
可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式
(4)中解出 (k=0,1,…,n),从而可得多项式
(5)
可以证明,式(5)中的满足式(1),即
为所求的拟合多项式。我们把
称为最小二乘拟合多项式
的平方误差,记作
由式(2)可得
(6)
多项式拟合的一般方法可归纳为以下几步:
(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;
(2) 列表计算和
;
(3) 写出正规方程组,求出;
(4) 写出拟合多项式。
在实际应用中,或
;当
时所得的拟合多项式就是拉格朗日或牛顿插值多项式。
例1 测得铜导线在温度(℃)时的电阻
如表6-1,求电阻R与温度 T的近似函数关系。
i 0 1 2 3 4 5 6
19.1 25.0 30.1 36.0 40.0 45.1 50.0
(℃)
76.30 77.8 79.25 80.8 82.35 83.9 85.1
,拟合函数为列表如下
i
0 19.1 76.30 364.81 1457.330
1 25.0 77.80 625.00 1945.000
2 30.1 79.25 906.01 2385.425
3 36.0 80.80 1296.00 2908.800
4 40.0 82.3
5 1600.00 3294.000
5 45.1 83.90 2034.01 3783.890
6 50.0 85.10 2500.00 4255.000
245.3 565.5 9325.83 20029.445
解方程组得
故得R与T的拟合直线为
利用上述关系式,可以预测不同温度时铜导线的电阻值。例如,由R=0得T=-242.5,即预测温度T=-242.5℃时,铜导线无电阻。
6-2
例2已知实验数据如下表
i 0 1 2 3 4 5 6 7 8
1 3 4 5 6 7 8 9 10
10 5 4 2 1 1 2 3 4 解设拟合曲线方程为
I
0 1 10 1 1 1 10 10
1 3 5 9 27 81 15 45
2 4 4 16 64 256 16 64
3 5 2 25 125 625 10 50
4 6 1 36 216 1296 6 36
5 7 1 49 343 2401 7 49
6 8 2 64 512 4096 16 128
7 9 3 81 729 6561 27 243
8 10 4 100 1000 10000 40 400
53 32 381 3017 25317 147 1025 解得
故拟合多项式为