现代信号处理大作业题目 答案.

合集下载

姚天任-现代数字信号处理1-6章习题答案

姚天任-现代数字信号处理1-6章习题答案

第二章2.1已知x 是一平稳随机信号,取1、0、-1三个值的概率相等。

用x 对载波)(n c 进行调制后在噪声信道中传输。

接受信号为M n n v n xc n y ,,1,0 ),()()( =+=式中)(n v 是方差为σ2v的零均值白色高斯噪声,与x 相互独立。

上式用矢量表示为v c x y +=(1) 求条件概率函数)/()/(x y f y x f和。

(2) 由y求x 的四种估计:最大后验概率估计x MAP ˆ,最大似然估计x ML ˆ,最小均方误差估计x MS ˆ,最小线性均方误差估计xLMSˆ。

并用图形对它们进行比较。

解:(1)先求)/(x y f ,显然在这种情况下,y是一个1+M 的正态随机矢量,,][/c x v c x E mxy =+=I m m M v T T Txy x y xy v v E c x v c x c x v c x E y y E 12///][ ]))([( ]))([(+==-+-+=--=∑σ)]()(1exp[)2( )](1)(21exp[][)2(1)/(222/)1(21221)1(221c x y c x y c x y c x y vx y f T vM v M vT M M I---=---=+-+++σσσσππ求)/(y x f。

)/(y x P =)()()/()(),(y f x P x y f y f y x f= 已知)1(31)(31)1(31)(-+++=x x x x P δδδ简记)/()/(a y f a x y f ==根据全概率公式,得:)]1/()0/()1/([31 )1()1/( )0()0/()1()1/()()(=≤+=≤+-=≤===≤+==≤+-=-=≤=≤=∴x y Y P x y Y P x y Y P x P x y Y P x P x y Y P x P x y Y P y Y P y F)]1/()0/()1/([31)()(-++==y f y f y f y d y dF y f记)1/()0/()1/(ˆ-++=y f y f y f A,则 Ay f y x P A y f y x P Ay f A y f y x P )1/()/1(,)0/()/0()1/(31)1/(31)/1(====-=-=-=同理: 由)/(y x P 的分布律,我们可以容易得到)/(y x fA x y f x y f x y f y x f /)]1()1/()()0/()1()1/([)/(-+++-=δδδ(2) 求最大似然估计xMLˆ已知:0ˆ)/(ln(=∂∂=x x x y f M Lxy cc yc c c x y c c c x y c x y c xc x y c x y xc x y c x y T T ML T T vT T v T vT vM vx ===-=-----=∂---∂=∂---∂∴+-ˆ0)(1])()([21)]()(21[)]}()(21exp[)2ln{(ˆ2222212解得:σσσσσπ求最小均方误差估计xMSˆ)2(2)2(2]2exp[]2exp[]exp[]2exp[]2exp[2,2, ]exp[]exp[]exp[]exp[]exp[ ]21exp[ )]2(21exp[)]2(21exp[)]2(21exp[)]2(21exp[ )]2(21exp[1 )]2(21exp[1)]1/()1/([1 )]1()1/()()0/()1()1/([)/(22222222222222y a ch y a sh y a y a a y a y a y a yc c c a c c y c y c c y c y c y c y c y y y c c c y y y c c c y y y c c c y y y c c c y y A y c c c y y A y c c c y y A y f y f A A x y f x y f x y f x dx y x xf exav T vT T T vT vT vT vT vT T v TT T v T T T v T T T vTT T v T T T vT T T vML +=-++--====++-=-+++-+-+-++---+-++---+-=--=-+++-==⎰⎰∞∞=∞∞=则原式则令代入将σσσσσσσσσσσσσσδδδ求线性均方误差最小估计xLMSˆ已知)]([)])[var(,cov()(1ˆy E y y y x x E xLMS-+=-① 0)(=x E , ②Tx T T T T T cv x c x x E y E x E y x E y E y x E x E y x σ2)]([ )()()(]))())(([(),cov(=+=-=--= ③I M v T x T T T T c c v c x v c x E y y E y E y y E y E y 122)])([( )(]))())(([()var(++=++==--=σσ 将I IM =+ˆ1σσσσσσσσσσσ212221121][ ])1[()][var(vT x x vT x x vvT x x vI c I c I c c IIc I c I y----+-=+=利用矩阵反演公式④ y y E y=-)(∴yc c cc c c y c c c c y c c c c c c y c c c c c c y c c cc c y E y y y x x E xvT T TvTxv vxTvTxvTxvTx xTTvTxvvxvTxvT x vTvx vT x LMSxσσσσσσσσσσσσσσσσσσσσσσσσσσσσ22222222224222222222222242221 )( )(][ ][ ]1[ )]([)])[var(,cov()(ˆ+=+=+-+=+-=+-=-+=-题2。

现代信号处理大作业王成志1

现代信号处理大作业王成志1

《现代信号处理》大作业姓名:王成志学号:1140349078一. L D 迭代算法的matlab 实现1.1 Levinson-Durbin 算法介绍功率谱估计大致可以分为经典谱估计和现代功率谱估计,经典谱估计方法存在着以下三点缺陷:(1)数据加窗或自相关加窗,都隐含着假定在窗外未观测到的数据或自相关系数为零,该假设不切实际。

(2)要性能好往往需要较长的数据,但实际数据长度有限(3)窗函数容易造成谱的模糊。

采用AR 模型的现代谱估计方法可以克服这些不足。

其中LD 递推算法可以在计算机上方便实现。

LD 递推算法具体计算步骤如下:(1) Yule-Walker 方程的矩阵形式(1)所示:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+-----001)0()2()1()()1()1()0()1()()2()1()0(2,1,σk k k xx xx xx xx x xx xx xx xx xx xx xx a a r k r k r k r k r r r r k r r r r 系数矩阵xx Hxx R R =,为Hermitian 矩阵,对角线上元素相同,即为Topliez 矩阵。

(2) P-1阶Yule-Walker 方程为:21111(0)(1)(1),1(1)(0)(2)0,1(1)(2)(0)0x x x p p x x x p x x x R R R p a R R R p a p R p R p R σ-----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦⎣⎦⎣⎦ 其中,2211{()}p p E e l σ--=为误差功率。

写成联立方程:2111,0,0()0,1,,1p pp k xk m a R m k m p σ---=⎧=-=⎨=-⎩∑ 取共轭得:21**11,0,0()0,1,,1p pp kxk m aR m k m p σ---=⎧=-=⎨=-⎩∑变量替换,并利用*()()x x R l R l =得:21*11,10,1()0,0,,2p pp p kx k m p aR m k m p σ-----=⎧=--=⎨=-⎩∑ 表示成矩阵:*1*1210(0)(1)(1),10(1)(0)(2),2(1)(2)(0)1x x x p x x x p p x x x R R R p a p R R R p a p R p R p R σ-----⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦ 求解得:*.1,1,,0,,p k p k p p p k a a K a k p ---=+=22*1p p p p K σσ-=+∆ 2210p p p K σ-=∆+,p p p K a =222*22111[][1]p p p p p p p K K K σσσσ---=+-=-(3) 当k=1时,即一阶递推为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01)0()1()1()0(211,1σa R R R R x x x x求解可得:)1()0()0()1( ,11,1211,10,1x x x x R a R R R a a +=-==σ(4) 对于2≥p 时,递推为:10,≡p a , *,1,1,k p p p k p k p aK a a ---+=, ]1[2212p p p K -=-σσ 21,-∆-==p pp p p a K σ∑-=--+=∆11,1)()(p k x kp x p k p R ap R矩阵R x 已知,可得到各阶AR 模型系数为:)0())1(1( ,)0()1()1(2111xx xx xx r a r r a -=-=ρ11111)()()()(--=--∑-+-=∆-=k k l xx k xx k kk l k r l a k r k a ρρ1,,2,1)()()()(*11-=-+=--k i i k a k a i a i a k k k k12))(1(--=k k k k a ρρ1.2实验结果(1) 输入p=3,rr = [70,60,50,40] 时,求得AR 模型估计参数为:a =1.0000 -0.8571 0 0 1.0000 -0.5275 -0.3846 0 1.0000 -0.7572 -0.6996 0.5972 各阶求得的方差为:sigma = 18.5714 15.8242 10.18013阶时,a 3 (1)= -0.7572 a 3 (2)= -0.6996 a 3 (3)= -0.5972(2) 输入p=5,rr = [30,45,26,33,47,43]时,AR 模型估计参数为:a =1.0000 -1.5000 0 0 0 0 1.0000 0.2800 -1.1867 0 0 0 1.0000 0.8227 -1.3147 -0.4573 0 0 1.0000 1.9708 1.9858 -2.5226 -2.5105 0 1.0000 1.0869 1.0977 -1.8235 -1.8166 0.3521 各阶求得的方差为: sigma =37.5000 15.3067 12.1054 64.1881 56.23165阶时, a 5 (1)= 1.0869 a 5(2)= 1.0977 a 5(3)= -1.8235 a 5(4)= -1.8166 a 5(5)= 0.3521二. 一维平稳信号由两个高斯信号叠加而成12241122()()[exp(())exp(())]22z t t t j t t t j t αααωωπ=--++--+,其中12,t t >12ωω>,分别求出()z t 的WV 分布及其模糊函数,画出二者的波形图,指出并分析其信号项和交叉项。

现代信号处理思考题(含答案)

现代信号处理思考题(含答案)

第一章 绪论1、 试举例说明信号与信息这两个概念的区别与联系。

信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。

信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。

如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。

2、 什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。

从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。

傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。

正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。

3、 为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法?在信号处理各种运算中内积变换发挥了重要作用。

内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。

对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数x (t )与基函数i t e ω 通过内积运算。

匹配出信号x (t )中圆频率为w 的正弦波.而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x (t )中包含与小波基函数最相关或最相似的分量。

“特征波形基函数信号分解”旨在灵活运用小波基函数 去更好地处理信号、提取故障特征。

用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。

不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。

现代数字信号处理课后习题解答

现代数字信号处理课后习题解答
其中
解答:
已知
(式4.1)
(式4.2)
因为{x(n)}为实序列,所以由式4.1可得
当m>0时
其中k=m+n
当m<0时
其中l=-m

结合式4.2,利用褶积定理可得
5设有零均值平稳序列 ,将其分为K段,每段有 点数据,各段的周期图为 。平均周期图为 。试证明:如果当 时 很小,因而各周期图可认为是彼此独立的,则 。其中 ,这一结果说明了什么?
图4-10 习题15用图
解:由题条件: 是一平稳白噪声, , ,
经过线性非移变系统得到的输出 也是一个广义平稳信号。
17、设有二阶自回归模型 ,X(n)是方差为 的白噪声,并且 。
(1)证明Y(n)的功率谱密度为

(2)求Y(n)的自相关函数。
(3)写出Yule-Walker方程。
解:(1)
由欧拉公式知
求解即可
9设N=5的数据记录为 ,AR模型的阶数p=3,试用莱文森递推法求AR模型参量及 的预测值 。
解:
利用已知数据求得:
一阶时:
二阶时:
三阶时:
故 AR模型得参数为:
因为

10利用题9所给N=5的数据记录 ,试用伯格算法求 参数。
解:(1)
前、后向预测误差分别为
(2)
(3)
(4)
模型为:
11推出随机初相(在0至 区间上均匀分布)的复(实)正弦加白噪声的自相关序列值公式。
得证。
(2)
(3)写出Yule-Walker方程:
18、设零均值平稳高斯过程的谱密度为 ,求出此过程的自相关函数。解:
习题五
1.证明白噪声的周期图功率谱估计是无偏的。

现代信号处理大作业题目+答案

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业(以下四个题目任选三题做)1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。

其中,非线性函数采用S 型Logistic 函数。

2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。

滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。

3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:1) Levinson 算法2) Burg 算法3) ARMA 模型法4) MUSIC 算法4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应:12(2)[1cos()]1,2,3()20 n n h n W π-⎧+=⎪=⎨⎪⎩其它式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均值为零、方差001.02=v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。

试比较基于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线):1) 横向/格-梯型结构LMS 算法2) 横向/格-梯型结构RLS 算法并分析其结果。

图1 横向或格-梯型自适应均衡器参考文献[1] 姚天任, 孙洪. 现代数字信号处理[M]. 武汉: 华中理工大学出版社, 2001[2] 杨绿溪. 现代数字信号处理[M]. 北京: 科学出版社, 2007[3] S. K. Mitra. 孙洪等译. 数字信号处理——基于计算机的方法(第三版)[M]. 北京: 电子工业出版社, 2006[4] S.Haykin, 郑宝玉等译. 自适应滤波器原理(第四版)[M].北京: 电子工业出版社, 2003[5] J. G. Proakis, C. M. Rader, F. Y. Ling, etc. Algorithms for Statistical Signal Processing [M].Beijing: Tsinghua University Press, 2003一、请用多层感知器(MLP)神经网络误差反向传播(BP)算法实现异或问题(输入为[00;01;10;11],要求可以判别输出为0或1),并画出学习曲线。

信号处理原理与应用答案

信号处理原理与应用答案

信号处理原理与应用答案【篇一:《现代信号处理理论与应用》作业题】txt>(2)纸质版(手写),认真,不得抄袭。

《现代信号处理理论与应用》作业题(1)推导《现代信号处理》(张贤达版)p37页公式(2-5-8)。

(2)推导矢量参数估计的cramer-rao不等式,并讨论等号成立条件。

(3)令观测样本为xi?s??i,(i?1,?,n)其中{?i}是一高斯白噪声,其均值为零,方差为1。

证明:s的极大似然估计是无偏的和一致的。

(4)若信号满足:s1(t)?a1co?st?a2co2s?t???apcosp?ts2(t)?b1sin?t?b2sin2?t???bpsinp?t观测信号为x(t)?s1(t)?s2(t)?n(t),n(t)是均值为0,均方差为1的高斯白噪声。

计算a1,a2,?,ap,b1,b2,?,bp的最小二乘估计。

(5) 输入信号x(t)为高斯-马尔可夫信号s(t)和噪声n(t)的叠加,信号和噪声假定不相关,其功率谱分别为ss(?)?3和sn(?)?1。

计算?分别取0,+1和-1时,物理不可实现21??维纳滤波器的冲激响应和最小均方误差。

(6) 设信号满足的状态方程及观测方程分别为:?11?xk?1???xk?uk 01 ??yk?1?[1,0]xk?1?nk?1{uk,k?0}和{nk?1,k?0}是均值为零的高斯白噪且与初始状态x0独立,并有?50??10?,var{n}?r?2?(?1)k?1,初始状态的方程矩阵。

vx0??var{uk}?q??k?1k?1???010??01?计算卡尔曼滤波增益m(k)。

(7)接收信号为x(t)?s(t)?n(t),其中n(t)是功率谱密度为n0的高斯白噪。

信号为 2t???2s(t)??2e,t?0。

??0,t?0求匹配滤波器传输函数及其脉冲响应,该匹配滤波器是物理可实现吗?有无可能将它变为物理可实现?若可能,求出滤波器的传递函数及其输出信噪比最大时刻,若不可能,说明理由。

东南大学 考博 信号与信息处理 《现代数字信号处理》第5章习题答案

东南大学 考博 信号与信息处理 《现代数字信号处理》第5章习题答案
(c) 若用周期图平滑法,为获得与(b)中的 Bartlett 法差不多的分辨率,要用多少时滞的自相 关值?若要求估计的方差与四分段的 Bartlett 估计的方差不相上下,需要多长的数据?
《现代数字信号处理》习题参考答案
解:(a)
级联的系统函数是:
H
(
Z
)
=
1
+
aZ
−1
1 +
0.99Z
−2
×
1

法的品质因子是 QB
=
1 VB
=
K

因此,若要 QB Qper ≥ 5 ,必须要求 K ≥ 5 。由于 M = 178 (对 Δf = 0.005 ),因此必须使 数点数满足: N = KM ≥ 5×178 = 890 点。
5.4 设随机过程 x(n) 是单位方差白噪声 w(n) 激励如下的系统而产生的。
《现代数字信号处理》习题参考答案
第五章习题参考答案
5.1 给定随机过程 x(n)的 N=10000 个样本点,要计算其周期图,但由于存储单元有限,你最 多只能计算 1024 点的 DFT,试说明如何利用这 10000 个样本值计算其周期图,并使其 分辨率为:
Δω = 0.89 2π 10000
解:(提示:试分析时间抽取 FFT 算法是如何工作的)
( ) [ ] 因此在 0,π 区间内,功率谱 Px e jω 每针对 Px ( z) 的一对共轭复极点及其镜像共轭对都有
一个峰值,位置对应于极点的相角。共有两个峰值,其频率满足:
2 cosω1 =
a 0.98
; 2 cosω2
=
−a 0.99
因此:
ω1 = cos−1 2

现代信号处理大型作业汇总

现代信号处理大型作业汇总
fclose(f);
accumulate_error=zeros(1,3001);
alpha = 0.5;%学习率
threshold = 0.005;%收敛条件∑e^2 < threshold
wd1=0; wd2=0;
bd1=0; bd2=0;
circle_time =0;
hidden_unitnum = 4;%隐藏层的单元数
for i=1:train_num
%前向传播
a0 = double ( p(i,:)' );%第i行数据
n1 = w1*a0+b1;
a1 = Logistic(n1);%第一个的输出
n2 = w2*a1+b2;
a2 = Logistic(n2);%第二个的输出
a = a2;
%后向传播敏感性
e = t(i,:)-a;
wd2 = alpha .* s2*a1';
w1 = w1 + wd1;
w2 = w2 + wd2;
bd1 = alpha .* s1;
bd2 = alpha .* s2;
b1 = b1 + bd1;
b2 = பைடு நூலகம்2 + bd2;
end;%end of for
if accumulate_error(circle_time) <= threshold| circle_time>3001 %then break;
accumulate_error(circle_time) = temp + abs(e)^2;
temp=accumulate_error(circle_time);
s2 = F(a2)*e;%输出层delta值

现代数字信号处理课后习题解答

现代数字信号处理课后习题解答

习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。

证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。

证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。

现代信号处理大作业

现代信号处理大作业

姓名:潘晓丹 学号:班级:A1403492作业1LD 算法实现AR 过程估计1.1 AR 模型p 阶AR 模型的差分方程为:)()()(1n w i n x a n x pii =-+∑=,其中)(n w 是均值为0的白噪声。

AR 过程的线性预测方法为:先求得观测数据的自相关函数,然后利用Yule -Walker 方程递推求得模型参数,再根据公式求得功率谱的估计。

Yule -Walker 方程可写成矩阵形式:1.2 LD 算法介绍Levinson-Durbin算法可求解上述问题,其一般步骤为:1) 计算观测值各自相关系数pjjrxx,,1,0),(K=;)0(0xxr=ρ;i=1;2) 利用以下递推公式运算:3) i=i+1,若i>p,则算法结束;否则,返回(2)。

1.3 matlab编程实现以AR模型:x(n)=12x(n−1)−12x(n−2)+w(n)为例,Matlab 程序代码如下:clear; clc;var = 1;noise = var*randn(1,10000);p = 2;coefficient = [1 -0.5 0.5];x = filter(1,coefficient,noise);divide = linspace(-pi,pi,200);for ii = 1:200w = divide(ii);S1(ii) = var/(abs(1+coefficient(2:3)*exp(-j*w*(1:2))'))^2; end[a_p var_p]=Levinson_Durbin(x,p);for ii = 1:200w = divide(ii);Sxx(ii) = var_p/(abs(1+a_p(2:p+1)*exp(-j*w*(1:p))'))^2; endfigure;subplot(2,2,1);plot(divide,S1,'b');grid onxlabel('w');ylabel('功率');title('AR 功率谱');subplot(2,2,2);plot(divide,Sxx,'r-');grid onxlabel('w');ylabel('功率');title('L-D算法估计'); subplot(2,2,3);plot(divide,S1,'b');hold onplot(divide,Sxx,'r--');hold offgrid onxlabel('w');ylabel('功率');title('AR功率谱和算法比较');子函数:Levinson_Durbin.mfunction [a_p var_p] = Levinson_Durbin(x,p)N = length(x);for ii=1:NRxx(ii) = x(1:N-ii+1)*(x(ii:N))'/N;enda(1)=1;a(2)=-Rxx(2)/Rxx(1);for k=1:p-1 % Levinson-Durbin algorithmvar(k+1) = Rxx(0+1)+a(1+1:k+1)*Rxx(1+1:k+1)';reflect_coefficient(k+1+1) = -a(0+1:k+1)*(fliplr(Rxx(2:k+1+1)))'/var(k+1);var(k+1+1) = (1-(reflect_coefficient(k+1+1))^2)*var(k+1);a_temp(1) = 1;for kk=1:ka_temp(kk+1) = a(kk+1)+reflect_coefficient(k+1+1)*a(k+1-kk+1);enda_temp(k+1+1) = reflect_coefficient(k+1+1);a = a_temp;enda_p = a; % prediction coeffecientsvar_p = var(p+1); % prediction error power1.4 仿真结果1)p=2时,仿真结果图如下预测系数:[a2(0),a2(1),a2(2)]=[1,−0.5068,0.5031]误差功率:var_p=1.01942)p=20时,仿真结果图如下预测系数:[a2(0),a2(1),a2(2),a2(3),a2(4),……]=[1,−0.5098,0.4999,−0.0066,0.0060,−0.0179,0.0193,……]误差功率:var_p=0.99983)p=50时,仿真结果图如下预测系数:[a2(0),a2(1),a2(2),a2(3),a2(4),……]=[1,−0.4951,0.5178,−0.0145,0.0117,−0.0169,0.0141,……]误差功率:var_p=0.99551.5 结果分析由不同阶数(P值)得到的仿真结果可得:当P的阶数较低时,L-D算法估计AR模型对功率谱估计的分辨率较低,有平滑的效果,从P=2的仿真结果可以看出估计得到的功率谱与原始功率谱基本吻合,且曲线平滑没有毛刺;随着阶数增大,采用L-D算法进行估计后,得到的功率谱会产生振荡,从仿真可以看到,当阶数P较高为50时,估计得到的功率谱与原始功率谱基本吻合,但估计得到的功率谱曲线不平滑,有急剧的振荡。

现代信号处理大作业

现代信号处理大作业

现代信号处理大型作业一.试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。

滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。

(一)、分析与通常的滤波器相比,互补滤波器具有优良的结构特性和结构特性,具有较低的噪声能量和系数敏感性,其定义如下:一组滤波器H 12(),(),.......()Z H Z H Z n 如果满足下式:He Kjw k n(),==∑110<w<2π 则称这组滤波器为幅度互补滤波器;如果满足下式:He kjw k n()=∑=121, 0<w<2π则称这组滤波器为功率互补滤波器,同时互补滤波器还应该满足:Hz A z kk n()()=∑=1其中A(z)为全通函数,适当的选择全通函数,可以使两带函数具有所需要的低通和高通特性。

(二)、设计步骤(1) 对Fp 、Fr 进行预畸);();(''FsFrtg FsFptg r p ∏=Ω∏=Ω(2) 计算'''*r p c ΩΩ=Ω,判断'c Ω是否等于1,即该互补滤波器是否为互补镜像滤波器(3) 计算相关系数⎪⎩⎪⎨⎧-==+++=+-=-=ΩΩ=--=偶数)N 为(;21奇数)N 为 (;;lg /)16/1lg(;150152;1121;1;;])110)(110[(1213090500''02'''211-min1.0min1.0i i u q k N q q q q q k k q k k k k rp Ar Ap;)2cos()1(21))12(sin()1(21)1(21'2∑∑∞=∞=+-++-=Ωm mm m m m m i u Nm q u Nm q q ππ;42⎥⎦⎤⎢⎣⎡=N N;221N N N -⎥⎦⎤⎢⎣⎡=;)/1)(1(2'2'k k v i i i Ω-Ω-=12'1212,1;12N i v i i i =Ω+=--α 22'22,1;12N i v iii =Ω+=β (4) 互补镜像滤波器的数字实现;22i ii A αα+-=;22iii B ββ+-=1221,1;1)(N i ZA Z A Z H i i i =++=∏--22212,1;1)(N i ZB Z B Z Z H i i i =++=∏--- )];()([21)(21Z H Z H Z H L +=(三)、程序与结果 1. 二带滤波器组 (1) 源程序: clear; clf;Fp=1700;Fr=2300;Fs=8000; Wp=tan(pi*Fp/Fs); Wr=tan(pi*Fr/Fs); Wc=sqrt(Wp*Wr); k=Wp/Wr;k1=sqrt(sqrt(1-k^2)); q0=0.5*(1-k1)/(1+k1);q=q0+2*q0^5+15*q0^9+150*q0^13; N=11;N2=fix(N/4); M=fix(N/2); N1=M-N2; for jj=1:M a=0;for m=0:5a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N);%N is odd, u=j end ab=0;for m=1:5b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N); end bW(jj)=2*q^0.25*a/(1+2*b);V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k)); endfor i=1:N1alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2); endfor i=1:N2beta(i)=2*V(2*i)/(1+W(2*i)^2); endfor i=1:N1a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2); endfor i=1:N2b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2); endw=0:0.0001:0.5;LP=zeros(size(w));HP=zeros(size(w));for n=1:length(w)z=exp(j*w(n)*2*pi);H1=1;for i=1:N1H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;endH2=1/z;for i=1:N2H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));endLP(n)=abs((H1+H2)/2);HP(n)=abs((H1-H2)/2);endplot(w,LP,'b',w,HP,'r');hold on;xlabel('digital frequency');ylabel('amptitude');(2)运行结果:见图1图1 二带数字滤波器组2.四带滤波器组(1)源程序:clf;Fp=1700;Fr=2300;Fs=8000;Wp=tan(pi*Fp/Fs);Wr=tan(pi*Fr/Fs);Wc=sqrt(Wp*Wr);k=Wp/Wr;k1=sqrt(sqrt(1-k^2));q0=0.5*(1-k1)/(1+k1);q=q0+2*q0^5+15*q0^9+150*q0^13;N=11;N2=fix(N/4);M=fix(N/2);N1=M-N2;for jj=1:Ma=0;for m=0:5a=a+(-1)^m*q^(m*(m+1))*sin((2*m+1)*pi*jj/N); % N is odd, u=jendb=0;for m=1:5b=b+(-1)^m*q^(m^2)*cos(2*m*pi*jj/N);endW(jj)=2*q^0.25*a/(1+2*b);V(jj)=sqrt((1-k*W(jj)^2)*(1-W(jj)^2/k));Endfor i=1:N1alpha(i)=2*V(2*i-1)/(1+W(2*i-1)^2);endfor i=1:N2beta(i)=2*V(2*i)/(1+W(2*i)^2);endfor i=1:N1a(i)=(1-alpha(i)*Wc+Wc^2)/(1+alpha(i)*Wc+Wc^2);endfor i=1:N2b(i)=(1-beta(i)*Wc+Wc^2)/(1+beta(i)*Wc+Wc^2);endw=0:0.0001:0.5;LLP=zeros(size(w));LHP=zeros(size(w));HLP=zeros(size(w));HHP=zeros(size(w));for n=1:length(w)z=exp(j*w(n)*2*pi);H1=1;for i=1:N1H1=H1*(a(i)+z^(-2))/(1+a(i)*z^(-2)) ;endH21=1;for i=1:N1H21=H21*(a(i)+z^(-4))/(1+a(i)*z^(-4)) ;H2=1/z;for i=1:N2H2=H2*(b(i)+z^(-2))/(1+b(i)*z^(-2));endH22=1/(z^2);for i=1:N2H22=H22*(b(i)+z^(-4))/(1+b(i)*z^(-4));endLP=((H1+H2)/2);HP=((H1-H2)/2);LLP(n)=abs((H21+H22)/2*LP);LHP(n)=abs((H21-H22)/2*LP);HHP(n)=abs((H21+H22)/2*HP);HLP(n)=abs((H21-H22)/2*HP);endplot(w,LLP,'b',w,LHP,'r',w,HLP,'k',w,HHP,'m')hold onxlabel('digital frequency');ylabel('amptitude');(2)运行结果:见图2图2 四带数字滤波器组二、根据《现代数字信号处理》第四章提供的数据,试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:1)Levison算法2)Burg算法3) ARMA 模型法 4) MUSIC 算法 1 Levinson 算法Levinson 算法用于求解Yule-Walker 方程,是一种按阶次进行递推的算法,即首先以AR (0)和AR (1)模型参数作为初始条件,计算AR (2)模型参数;然后根据这些参数计算AR (3)参数,等等,一直到计算出AR (p )模型参数为止,需要的运算量数量级为2p ,其中p 为AR 模型的阶数。

现代信号处理试题及答案总结汇编

现代信号处理试题及答案总结汇编

P29采样、频率混叠,画图说明将连续信号转换成离散的数字序列过程就是信号的采样。

它包含了离散和量化两个主要步骤。

若采样间隔Δt 太大,使得平移距离2π/Δt 过小。

移至各采样脉冲函数对应频域序列点上的频谱X(ω)就会有一部分相互重叠,由此造成离散信号的频谱与原信号频谱不一致,这种现象称为混叠。

P33列举时域参数(有量纲和无量纲),说明其意义与作用。

有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种。

无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标。

偏斜度指标S 表示信号概率密度函数的中心偏离正态分布的程度,反映信号幅值分布相对其均值的不对称性。

峭度指标K 表示信号概率密度函数峰顶的陡峭程度,反映信号波形中的冲击分量的大小。

P37~自相关互相关及作用(举例说明)相关,就是指变量之间的线性联系或相互依赖关系。

信号x (t )的自相关函数:信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。

因此,自相关函数可从被噪声干扰的信号中找出周期成分。

在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。

当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。

依靠自相关函数就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在。

(如:自相关分析识别车床变速箱运行状态,确定存在缺陷轴的位置;确定信号周期。

)互相关函数:互相关函数的周期与信号x(t)和y(t)的周期相同,同时保留了两个信号的相位差信息φ。

可在噪音背景下提取有用信息;速度测量;板墙对声音的反射和衰减测量等。

(如:利用互相关分析测定船舶的航速;探测地下水管的破损地点。

P42)P51~蝶形算法FFT 的基本思想是把长度为2的正整数次幂的数据序列{x k }分隔成若干较短的序列作DFT 计算,用以代替原始序列的DFT 计算。

西南交大现代信号处理部分答案

西南交大现代信号处理部分答案

题1:(1) 错误!未找到引用源。

是随错误!未找到引用源。

变化的随机信号,因此错误!未找到引用源。

=错误!未找到引用源。

.所以谐波信号)(tx的均值为错误!未找到引用源。

=错误!未找到引用源。

由于谐波信号)(tx的均值等于零,故其方差等于二阶矩,既有错误!未找到引用源。

错误!未找到引用源。

所以x(t)的方差为错误!未找到引用源。

谐波信号)(tx的自相关函数错误!未找到引用源。

又错误!未找到引用源。

所以错误!未找到引用源。

由于x(t)的均值为0,故所以错误!未找到引用源。

(2) y(t)是随B变化的随机信号,因此错误!未找到引用源。

B是标准高斯随机变量,所以错误!未找到引用源。

,所以错误!未找到引用源。

. 由于错误!未找到引用源。

统计独立,故有错误!未找到引用源。

而x(t)和y(t)的均值均为0,所以错误!未找到引用源。

题2:令错误!未找到引用源。

,由于错误!未找到引用源。

是零均值、方差为错误!未找到引用源。

的高斯随机过程,错误!未找到引用源。

和错误!未找到引用源。

是确定的过程,所以x(n)也是一高斯随机过程,其均值错误!未找到引用源。

是时间的函数.所以x(n)的概率密度函数是∏=---=NnBnAnxxf1222}])([21ex p{21);(σπσθ=}])([21ex p{)2(12122/2BnAnxNnN---∑=σπσ在多个未知参数的情况下,Cramer-Rao不等式变为矩阵不等式:∑-≥)(1θJ其中错误!未找到引用源。

无偏估计子错误!未找到引用源。

的协方差矩阵,而错误!未找到引用源。

是Fisher信息矩阵J的逆矩阵,而信息矩阵错误!未找到引用源。

的构成元素为错误!未找到引用源。

本题中,计算得错误!未找到引用源。

错误!未找到引用源。

=错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

现代信号处理硕士试题及答案

现代信号处理硕士试题及答案

现代信号处理Assignment题目1:如何设计维纳滤波器,并使得估计误差)(n e 在均方意义下最小。

即设计自适应滤波器使得估计误差)(n e 在最小均方误差(MMSE )意义下最小,即是求自适应系统满足MMSE 条件下的最佳权值和最小均方误差min ξ。

题目2:考虑如下图权值线性组合器,输入端引入随机信号k r ,其平均功率为20.01k E r ⎡⎤=⎣⎦;假设信号随机抽样相互独立,取16N =。

编程实现:(1) 画出LMS 算法性能曲面等值线,要求等值线权值间隔不超过1,标明坐标值、均方误差值和性能最小点位置及最小均方误差值,分别对应初始权值010,0.100w w μ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦和014,0.0510w w μ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦绘出加权值收敛轨迹,迭代次数不小于100次;(2) 计算0.05μ=和0.10μ=时学习曲线的时间常数,绘出学习曲线并在学习曲线中观测时间常数,与理论计算值比较;(3) 计算0.05μ=和0.10μ=时的失调并比较;(4) 分析比较μ的大小对自适应滤波的影响。

要求:写出实验报告:包括原理、方法和结果,并附源代码(加必要的注释)和仿真数据结果。

题目1解:1)根据题图所给的滤波器模型可得误差kNπk 2sin)(ˆ)()(n d n d n e -=其中01ˆ()()(1)d n w u n w u n =⨯+⨯- 令权值01[]T W w w = ,输出1[,]T n n U u u -= 可得U W n d n e T ⨯-=)()(两边同时平方可得:W U n d W UU W n d n e T T T )(2)()(22-+=两边同时取数学期望可以得到均方误差:W U n d E W UU E W n d E n e E T T T ])([2][)]([)]([22-+=令[]T u E UU R = ,[()]T du E d n U R =,可得均方误差W R W R W n d E n e E MSE du T u T 2)]([)]([22-+===ξ可以看出2{()}E e n 是一个二次函数,在定义域内有唯一最小值,所以找到使2{()}E e n 最小值的点,就可以得到由上式可得最小的均方误差。

现代信号处理考试题答案a

现代信号处理考试题答案a

1
T
T
2、
解:
试证明,两个最小相位序列的卷积依然是最小相位序列
设x(n)、y(n) 为最小相位序列,则其 Z变换X(z)、Y(z)对应的所有的零点
i i Zx ,Z y 都在单位圆内,其中 i 1 , 2, N,k 1 , 2, M。
令z(n) x(n) * y(n),有Z(z) X(z)Y(z),其零点的集合
率。小波母函数在频域具有带通特性,其伸缩和平移系列就可 以看做是一组带通滤波器。带宽与中心频率的比值称为带通滤 波器的品质因数 Q。恒 Q,是因为平移和伸缩后的小波函数的 Δω/ω 恒为一个值。
三、 计算题(30 分)
1、
已知随机矢量 x 的均值为 mx ,协方差为
x
ˆ ,估计误差 ,估计值为 x
稳态使用小的学习步长。
3、什么是有色噪声?产生的原因是什么? 答:有色噪声是功率谱密度Pn(w)≠ 常数的噪声。
产生的原因主要有:实际的噪声源与接收机的检测器之间可能 存在一个或者几个具有某种形状通带的部件,如天线和射频滤 波器等,使白噪声通过以后,产生频谱的再分布,形成有色噪 声。在有用信号以外,接收信号中可能还还有一个具有高斯特 征的干扰信号,如在雷达和声纳系统中往往就是一个干扰目标。
现代数字处理试卷答案
一、 填空题(20 分) 1、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称 为
FIR
滤波器.
2、 若滤波器的输出到达 最大信噪比 成为匹配滤波器;若使输出滤波器 的为 均方估计误差 最小,称为维纳滤波器。
+∞ +∞
3、 在小波分析中,小波函数应满足 −∞ ������ ������ ������������ = 0和 −∞ |������ ������ |������������ =

现代信号处理试题

现代信号处理试题

1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采样,得到采样信号ˆ()a xt 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω; (2)写出()a x t 和()x n 的表达式;(3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。

解:(1)000()()2cos()()j tj ta a j t j t j t X j x t edt t edte e e dt∞∞-Ω-Ω-∞-∞∞Ω-Ω-Ω-∞Ω==Ω=+⎰⎰⎰上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成:00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω(2)0ˆ()()()2cos()()()2cos(),a an n xt x t t nT nT t nT x n nT n δδ∞∞=-∞=-∞=-=Ω-=Ω-∞<<∞∑∑2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数:(1)最小记录时间min p T (2)最大取样时间max T (3)最少采样点数min N(4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。

解:(1)已知50F Hz ≤min 110.0250p T s F === (2) max 3min max 1110.52210s T ms f f ====⨯ (3) min 30.02400.510p T s N T s-===⨯ (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为0.04s 实频率分辩率提高1倍(F 变成原来的12)min 30.04800.510p T s N T s-===⨯ 3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。

清华大学研究生 现代信号处理大作业__1up

清华大学研究生 现代信号处理大作业__1up

现代信号处理 大作业-1大作业-1描述:求下列假设的最佳判决方式,并求解每种错误的概率。

(提示,可以假设K 非常大,并利用中心极限定理将大量同分布随机变量之和近似为高斯。

)200211222:[](0,):[](0,)=1:[](0,)H r k N H r k N k K H r k N σσσ::L : ,,解:根据题意2022210011(|)exp [](2)2KK k p r H r k πσσ=⎡⎤=-⎢⎥⎣⎦∑ 2122211111(|)exp [](2)2K K k p r H r k πσσ=⎡⎤=-⎢⎥⎣⎦∑2222212211(|)exp [](2)2K K k p r H r k πσσ=⎡⎤=-⎢⎥⎣⎦∑ 假设判决为0H ,则应满足以下条件:00110011(|)()(|)()(|)()(|)()p r H p H p r H p H p r H p H p r H p H ≥⎧⎨≥⎩假设先验概率为0121()=()=()=3p H p H p H ,并假设0120σσσ≥≥>,代入上式得:212210012222100211exp []2211exp []22K K k KK k r k r k σσσσσσσσ==⎧⎡⎤⎛⎫⎛⎫⎪≥-⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎣⎦⎨⎡⎤⎛⎫⎛⎫⎪≥-⎢⎥⎪ ⎪⎪⎝⎭⎝⎭⎣⎦⎩∑∑ 进一步化简可得到:2101220122012202(ln ln )[]1122(ln ln )[]1122K k Kk K r k K r k σσσσσσσσ==-⎧≥⎪-⎪⎪⎨-⎪≥⎪-⎪⎩∑∑即 21020122220102(ln ln )(ln ln )[]max ,11112222Kk K K r k σσσσσσσσ=⎛⎫ ⎪-- ⎪≥ ⎪-- ⎪⎝⎭∑。

根据上述同样的思路,可以得到判决为1H ,需要满足:21021122221201(ln ln )(ln ln )[]11112222K k K K r k σσσσσσσσ=--≤≤--∑判决为2H ,需要满足:22021122220212(ln ln )(ln ln )[]min ,11112222Kk K K r k σσσσσσσσ=⎛⎫⎪-- ⎪≥ ⎪-- ⎪⎝⎭∑ 下面为了易于表述,记211[]()Kk r k f r K==∑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12(2[1cos(]1,2,3(20 n n h n W π-⎧+=⎪=⎨⎪⎩其它
式中W用来控制信道的幅度失真(W = 2~4,如取W = 2.9,3.1,3.3,3.5等,且信道受到均
值为零、方差001.02=v σ(相当于信噪比为30dB的高斯白噪声(n v的干扰。试比较基
于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线:
b2 = b2 + bd2;
end;%end of for
if accumulate_error(circle_time <= threshold| circle_time>3001 %then break;
end;%end of if
end;%end of while
plot(accumulate_error,'m';
s1 = F(a1*w2'*s2;%隐层delta值
%修改权值
wd1 = alpha .* s1*a0';
wd2 = alpha .* s2*a1';
w1 = w1 + wd1;
w2 = w2 + wd2;
bd1 = alpha .* s1;
bd2 = alpha .* s2;
b1 = b1 + bd1;
grid;
xlabel('学习次数'
ylabel('误差'
disp(['计算误差= ',num2str(accumulate_error(circle_time] ;
disp(['迭代次数= ',num2str(circle_time];
[train_num , input_scale]= size(p ;%规模
fclose(f;
accumulate_error=zeros(1,3001;
alpha = 0.5;%学习率
threshold = 0.005;%收敛条件∑e^2 < threshold
wd1=0; wd2=0;
bd1=0; bd2=0;
3.根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001第四章附录提供的数据(pp.352-353,试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线:
1 Levinson算法
2 Burg算法
3 ARMA模型法
4 MUSIC算法
4.图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR系统长M =11,系统输入是取值为±1的随机序列(n x ,其均值为零;参考信号7((-=n x n d ;信道具有脉冲响应:
(1、多层感知器的中间隐层不直接与外界连接,其误差无法估计。
(2、反向传播算法:从后向前(反向逐层“传播”输出层的误差,以间接算
出隐层误差。分两个阶段:
正向过程:从输入层经隐层逐层正向计算各单元的输出
反向过程:由输出层误差逐层反向计算隐层各单元的误差,并用此误差修正前层的权值。
2、流程图:
开始
选择初始值
业出版社, 2006
[4] S.Haykin,郑宝玉等译.自适应滤波器原理(第四版[M].北京:电子工业出版社, 2003
[5] J. G. Proakis, C. M. Rader, F. Y. Ling, etc. Algorithms for Statistical Signal Processing [M].
j
3、程序:
%使用了3层结构,第二层隐藏层4个单元。2,3层都使用Logisitic函数。%训练xor数据。
function mlp(
f= fopen('XOR.txt';
A = fscanf(f, '%g',[3 inf];
A = A;
p = A(1:2, :';%训练输入数据
t = A(3, :';%desire out
circle_time =0;
hidden_unitnum = 4; %隐藏层的单元数
w1 = rand(hidden_unitnum,2;%4个神经元,每个神经元接受2个输入w2 = rand(1,hidden_unitnum;%一个神经元,每个神经元接受4个输入b1 = rand(hidden_unitnum,1;
研究生“现代信号处理”课程大型作业
(以下四个题目任选三题做
1.请用多层感知器(MLP神经网络误差反向传播(BP算法实现异或问题(输入为
[00;01;10;11]X T =,要求可以判别输出为0或1
,并画出学习曲线。其中,非线性函数采用S型Logistic函数。
2.试用奇阶互补法设计两带滤波器组(高、低通互补,进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB。
1横向/格-梯型结构LMS算法
2横向/格-梯型结构RLS算法
并分析其结果。
图1横向或格-梯型自适应均衡器
参考文献
[1]姚天任,孙洪.现代数字信号处理[M].武汉:华中理工大学出版社, 2001
[2]杨绿溪.现代数字信号处理[M].北京:科学出版社, 2007
[3] S. K. Mitra.孙洪等译.数字信号处理——基于计算机的方法(第三版[M].北京:电子工
Beijing: Tsinghua University Press, 2003
一、请用多层感知器(MLP神经网络误差反向传播(BP算法实现异或问题(输入为[00;01;10;11]
,要求可以判别输出为0或1,并画出学习曲线。其X T
中,非线性函数采用S型Logistic函ቤተ መጻሕፍቲ ባይዱ。
1、原理:
反向传播(BP算法:
b2 = rand(1,1;
while 1
temp=0;
circle_time = circle_time +1;
for i=1:train_num
%前向传播
a0 = double ( p(i,:' ;%第i行数据
n1 = w1*a0+b1;
a1 = Logistic(n1;%第一个的输出
n2 = w2*a1+b2;
a2 = Logistic(n2;%第二个的输出
a = a2;
%后向传播敏感性
e = t(i,:-a;
accumulate_error(circle_time = temp + abs(e^2;
temp=accumulate_error(circle_time;
s2 = F(a2*e; %输出层delta值
相关文档
最新文档