2013年内蒙古包头市中考数学试卷及答案(Word解析版)
【VIP专享】2013年内蒙古包头市中考数学试卷2
C.5 C.
C. x≠﹣1
C.原点右侧
C. 两根之积为﹣1
C.9
C.
C.
﹣
D . ﹣5
D .
D x≠0 .
★2014 届初三辅导资料
D 原点或原点右侧 .
D . 有一根为﹣1+
D 10
.
D
.
D
.
★师之航教育
A S1>S2 .
11.(3 分)已知下列命题:
B.S1=S2
①若 a>b,则 c﹣a<c﹣b;②若 a>0,则 =a;③对角机抛掷一枚质地均匀的硬币,落地后正面一定朝上
.
B.8
8.(3 分)用一个圆心角为 120°,半径为 2 的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( )
A
.
9.(3 分)化简
A
. ﹣2
B.
÷ • ,其结果是( )
B.2
10.(3 分)如图,四边形 ABCD 和四边形 AEFC 是两个矩形,点 B 在 EF 边上,若矩形 ABCD 和矩形 AEFC 的面积 分别是 S1、S2 的大小关系是( )
④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是( )
A 4 个
.
B.3 个
12.(3 分)已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是( )
A ①②
B.3
3.(3 分)函数 y= 中,自变量 x 的取值范围是( )
A . x>﹣1
B. x<﹣1
2013年内蒙古呼伦贝尔市中考数学试题及参考答案(word解析版)
2013年内蒙古呼伦贝尔市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.-5的相反数是()A.5 B.-5 C.15-D.152.下列各式计算正确的是()A.(a-b)2=a2-b2B.(-a4)3=a7C.2a•(-3b)=6ab D.a5÷a4=a(a≠0)3.下列几何体中,俯视图为矩形的是()A.B.C.D.4.据报道,今年“五•一”期间某市旅游总收入达到5630000元,用科学记数法表示为()A.5.63×104元B.5.63×105元C.5.63×106元D.5.63×107元5.下列图形中是中心对称图形的是()A.B.C.D.6.下列调查工作适合采用全面调查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.环保部门对某段水域的水污染情况的调查7.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个8.已知代数式-3x m-1y3与52x n y m+n是同类项,那么m、n的值分别是()A.21mn=⎧⎨=-⎩B.21mn=-⎧⎨=-⎩C.21mn=⎧⎨=⎩D.21mn=-⎧⎨=⎩9.用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=910.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为( ) A .1000只 B .10000只 C .5000只 D .50000只11.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=2,将△ABC 绕点C 顺时针方向旋转60°后得到△EDC ,此时点D 在斜边AB 上,斜边DE 交AC 于点F .则图中阴影部分的面积为( )A .2B .CD 12.若一个圆锥的侧面积是10,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)13.在函数y =x 的取值范围是 . 14.分解因式:12m 2-3n 2= .15.在平面直角坐标系中,点A (2,-3)关于y 轴对称的点的坐标为 . 16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是 cm .17.观察下面的一列单项式:x ,-2x 2,4x 3,-8x 4,…根据你发现的规律,第n 个单项式为 . 三、解答题(本大题共9小题,共69分)18.(6分)计算:()1201316cos3013-⎛⎫︒+- ⎪⎝⎭.19.(6分)解不等式组213315x x +⎧⎨-+-⎩>≤.20.(6分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)分别求出小明和小刚获胜的概率(用列表法或树形图); (2)这个游戏规则是否公平?说明理由.21.(6分)如图,线段AB、DC分别表示甲乙两座建筑物的高,AB⊥BC,DC⊥BC,两建筑物的水平距离BC为30米,若甲建筑物的高AB=28米,在点A处观察乙建筑物顶部D的仰角为60°,求乙建筑物的高度(结果保留1 1.73).22.(7分)某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛成绩.经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:(1)甲乙两班的优秀率分别为、;(2)甲乙两班比赛数据的中位数分别为、;(3)计算两班比赛数据的方差;(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.23.(7分)如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)平移△AOB,使得点A移动到点D,画出平移后的三角形(不写画法,保留画图痕迹);(2)在第(1)题画好的图形中,除了菱形ABCD外,还有哪种特殊的平行四边形?请给予证明.24.(8分)如图,AB是⊙O的直径,AC是弦,DE和⊙O相切于点D,DE⊥AC,交AC的延长线于点E.(1)求证:∠CAD=∠BAD ;(2)若AE=8,⊙O 的半径为5,求DE 的长.25.(10分)某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.26.(13分)已知:在平面直角坐标系中,抛物线2134y x bx =-++交x 轴于A 、B 两点,交y 轴于点C ,且对称轴为x=-2,点P (0,t )是y 轴上的一个动点. (1)求抛物线的解析式及顶点D 的坐标.(2)如图1,当0≤t ≤4时,设△PAD 的面积为S ,求出S 与t 之间的函数关系式;S 是否有最小值?如果有,求出S 的最小值和此时t 的值.(3)如图2,当点P 运动到使∠PDA=90°时,Rt △ADP 与Rt △AOC 是否相似?若相似,求出点P 的坐标;若不相似,说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分) 1.-5的相反数是( ) A .5 B .-5 C .15- D .15【知识考点】相反数.【思路分析】根据只有符号不同两个数互为相反数,可得-5的相反数.【解答过程】解:-5的相反数是5,故选:A.【总结归纳】本题考查了相反数,理解只有符号不同的数是相反数是解题关键.2.下列各式计算正确的是()A.(a-b)2=a2-b2B.(-a4)3=a7C.2a•(-3b)=6ab D.a5÷a4=a(a≠0)【知识考点】完全平方公式;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.【思路分析】根据完全平方公式、积的乘方、单项式乘单项式的计算法则和同底数幂的除法法则计算即可求解.【解答过程】解:A、(a-b)2=a2-2ab+b2,故选项错误;B、(-a4)3=-a12,故选项错误;C、2a•(-3b)=-6ab,故选项错误;D、a5÷a4=a(a≠0),故选项正确.故选:D.【总结归纳】考查了完全平方公式、积的乘方、单项式乘单项式和同底数幂的除法,熟练掌握计算法则是解题的关键.3.下列几何体中,俯视图为矩形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】分别找出几何体从上面看所得到的视图即可.【解答过程】解:A、圆柱的俯视图是矩形,故此选项正确;B、三棱柱的俯视图是三角形,故此选项错误;C、圆锥的俯视图是圆,故此选项错误;D、球的俯视图是圆,故此选项错误;故选:A.【总结归纳】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.据报道,今年“五•一”期间某市旅游总收入达到5630000元,用科学记数法表示为()A.5.63×104元B.5.63×105元C.5.63×106元D.5.63×107元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:5 630 000=5.63×106,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.。
内蒙古包头市2013年中考数学试题(含答案解析)
内蒙古包头市2013年中考数学试题(含答案解析)一、 选择题:本大题共有12小题,每小题3分,共36分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
1.计算(+2)+(-3)所得结果是( ) A.1 B .-1 C.5 D .-5 2.3tan30°的值等于( ) A.3 B. 33 C.33 D.23 3.函数11+=x y 中,自变量x 的取值范围是( ) A.x >-1 B. x <-1 C . x ≠-1 D. x ≠04.若a a -=,则实数a 在数轴上的对应点一定在( )A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧 5.已知方程0122=--x x ,则此方程( )A.无实数根B.两根之和为-2C.两根之积为-1D.有一根为-1+2 6.一组数据按从小到大排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据的众数为( )A.6B.8C.9D.10 7.下列事件中必然事件的是( )A.在一个等式两边同时除以同一个数,结果仍是等式B.两个相似图形一定是位似图形C.平移后的图形与原来对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上8.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )A.34 B.43 C.23 D.329.化简4242444a a 1622++⋅+-÷++-a a a a a ,其结果是( )A .-2 B.2 C.()22a 2+-D.()222+a10.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别为1S 、2S ,则1S 与2S 的大小关系是( ) A. 1S >2S B. 1S =2S C. 1S <2S D.31S =22SFEDCBA 10题图11.已知下列命题:①若a >b ,则c -a <c -b ②若a >0,则2a =a ③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等. 其中原命题与逆命题均为真命题的个数是( ) A.4个 B.3个 C.2个 D.1个12.已知二次函数()0ax y 2≠++=a c bx 的图像如图所示,下列结论: ①b <0;②4a +2b +c >0;③a -b +c >0;④()22c a b +,其中正确的结论是( )A. ①②B. ①③C. ①③④D. ①②③④ 二、填空题(本大题共有8小题,每小题3分) 13.计算:22138+-= .14.某次射击训练中,一小组的成绩如右图所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是15.如图,点A 、B 、C 、D 在⊙O 上,O B ⊥AC ,若∠BOC=56°, 则∠ADB= 度.16.不等式()m -3m -x 31的解集为x >1,则m 的值为 .17.设有反比例函数()()2211,,,,x2k y y x y x +=,为其图像上两点,若2121,0y y x x ,则k 的取值范围 .18.如图,在三角形纸片ABC 中,∠C=90°,AC=6,折叠该纸片,使点C 落在AB 边上的D 点处,折痕BE 与AC 交于点E ,若AD=BD ,则折痕BE 的长为 .19.如图,已知一条直线经过点A(0,2)点B (1,0),将这条直线向左平移与x 轴、轴分别交于点C 、点D ,若DB=DC ,则直线CD 的函数解析式为. 20.如图,点E 是正方形ABCD内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△/CBE的位置,若AE=1,BE=2,CE=3/.12题图B 15题图EDCBAE /EDC BA二、 解答题:本大题共有6小题,共60分) 21.(本小题满分8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区内标上数字(如图所示),指针的位置固定,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数时,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜,如果指针落在分割线上,则需重新转动转盘. (1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.22.(本小题满分8分)如图,一根长63的木棒(AB ),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO )为60°.当木棒A 端沿墙下滑至/A 时,B 端沿地面向右滑行至点/B .(1) 求OB 的长;(2) 当A A ′=1时,求BB ′的长。
内蒙古包头市2013年中考数学模拟试卷(解析版)
某某某某市2013年中考数学模拟试卷一、选择题(每题3分,共36分)1.(3分)(2013•某某市模拟)下列各组数中,互为相反数的一组是()A.2与﹣B.(﹣1)2与1 C.﹣12与1 D.2与|﹣2|考点:实数的性质.专题:计算题.分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A、两数数值不同,不能互为相反数,故选项错误;B、(﹣1)2=1,两数相等;不能互为相反数,故选项错误;C、﹣12=﹣1,1与﹣1互为相反数,故选项正确;D、|﹣2|=2,两数相等,不能互为相反数,故选项错误.故选C.点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.2.(4分)(2013•某某市模拟)中国航空母舰“某某号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法与有效数字.专题:应用题.分析:绝对值>10或<1时科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:436.81亿≈4.37×1010元.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•某某市模拟)下列计算结果正确的是()A.﹣2x2y2•2xy=﹣2x3y4B.28x4y2÷7x3y=4xyC.3x2y﹣5xy2=﹣2x2y D.(﹣3a﹣2)(3a﹣2)=9a2﹣4考点:整式的混合运算.分析:根据单项式乘单项式的法则,单项式乘单项式的法则,平方差公式对各选项分析判断后利用排除法求解.解答:解:A、应为﹣2x2y2•2xy=﹣2x3y3,故本选项错误;B、28x4y2÷7x3y=4xy,正确;C、3x2y和5xy2不是同类项,不能合并,故本选项错误;D、应为(﹣3a﹣2)(3a﹣2)=﹣9a2+4,故本选项错误.故选B.点评:主要考查单项式的乘法法则,单项式的除法法则,平方差公式以及合并同类项的法则,不是同类项的一定不能合并.4.(3分)(2013•某某市模拟)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元考点:一元一次方程的应用.专题:销售问题.分析:根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.解答:解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选C.点评:本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.5.(3分)(2013•某某市模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m)跳高人数 1 3 2 3 5 1这些运动员跳高成绩的中位数和众数分别是()A.B.C.D.3,5考点:众数;中位数.专题:压轴题;图表型.分根据中位数和众数的定义,第8个数就是中位数,出现次数最多的数为众数.析:解答:解:在这一组数据中1.70是出现次数最多的,故众数是1.70.在这15个数中,处于中间位置的第8个数是1.65,所以中位数是1.65.所以这些运动员跳高成绩的中位数和众数分别是1.65,1.70.故选A.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6.(3分)(2013•某某市模拟)若关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的取值X围是()A.m≥0B.m>﹣1 C.m≥﹣1 D.m<1考点:根的判别式.分析:在与一元二次方程有关的求值问题中,若方程有两个不相等的实数根,必须满足△=b2﹣4ac>0,由此可以得到关于m的不等式,解不等式就可以求出m的取值X围.解答:解:∵关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣m)>0,解得m>﹣1.故选B.点评:本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2013•某某市模拟)如图,将非等腰△ABC的纸片沿DE折叠后,使点A落在BC 边上的点F处.若点D为AB边的中点,则下列结论:①△BDF是等腰三角形;②∠DFE=∠CFE;③DE是△ABC的中位线,成立的有()A.①②B.①③C.②③D.①②③考点:三角形中位线定理;等腰三角形的判定;翻折变换(折叠问题).专题:压轴题.分析:根据图形可知△DFE是△ADE对折而成,所以两三角形全等,可得AD=DF,而D是AB 中点,故有BD=DF,那么①可证;再利用∠ADF是△BDF的外角,可证∠DFB=∠EDF,那么DE∥BC,即DE是△ABC的中位线,②得证;利用DE∥BC,以及△DFE和△ADE 的对折,可得∠EFC=∠ECF,即△EFC也是等腰三角形,而∠B≠∠C,即∠DFB,∠DFE,∠EFC,不会同时为60°,那么∠DFE≠∠CFE,故②不成立.解答:解:由于△DFE是△ADE对折而成,故△DFE≌△ADE,∴AD=FD,又∵点D为AB边的中点,∴AD=BD,∴BD=DF,即△BDF是等腰三角形,故(1)正确;由于△DFE是△ADE对折而成,故△DFE≌△ADE,∴∠ADE=∠FDE,∵∠ADF=2∠FDE=∠B+∠DFB=2∠DFB,∴∠FDE=∠DFB,∴DE∥BC,点E也是AC的中点,故(3)正确;同理可得△EFC也为等腰三角形,∠C=∠EFC,由于△ABC 是非等腰的,∴∠C≠∠B,也即∠EFC≠∠DFB,∴∠EFC 与∠DFB,∠DFE不都等于60°,∴②∠DFE=∠CFE就不成立.故选B.点评:本题利用了:1、全等的概念,对折后能重合的图形是全等的图形,2、全等三角形的性质,对应角相等,3、内错角相等,两直线平行.8.(3分)(2013•某某市模拟)如图是一个由相同小正方体搭成的几何体俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.分析:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图右3列,从左到右分别是3,2,1个正方形.解答:解:由俯视图中的数字可得:主视图右3列,从左到右分别是3,2,1个正方形.故选A.点本题考查了学生的思考能力和对几何体三种视图的空间想象能力.评:9.(3分)(2013•某某市模拟)如图,将一块边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为()A.12 B.13 C.14 D.15考点:翻折变换(折叠问题).专题:压轴题.分析:先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE==13.解答:解:过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD ∴△PQM≌△ADE∴PQ=AE==13故选B.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10.(3分)(2013•某某市模拟)如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A.x>2 B.x<2 C.x>1 D.x<1考点:一次函数与一元一次不等式.专题:压轴题;数形结合.分析:直线y1=与y2=﹣x+3相交于点A(2,1),根据图象可知当x<2时,y1的函数值小.解答:解:从图象上得出,当y1<y2时,x<2.故选B.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.11.(3分)(2013•某某市模拟)如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A.B.C.D.考点:解直角三角形.分析:根据勾股定理可求AC的长度;由三边长度判断△ABC为直角三角形.根据三角函数定义求解.解答:解:由勾股定理知,AC2=CD2+AD2=25,∴AC=5.∵AC2+BC2=169=AB2,∴△CBA 是直角三角形.∴sinB==.故选A.点评:本题利用了勾股定理和勾股定理的逆定理,考查三角函数的定义.12.(3分)(2013•某某市模拟)下列命题:①4的平方根是2;②所有的矩形都相似;③“在一个标准大气压下,将水加热到100℃就会沸腾”是必然事件;④在同一盏路灯的灯光下,若甲的身高比乙高,则甲的影子比乙的影子长.其中正确的命题共有()A.1个B.2个C.3个D.4个考随机事件;平方根;相似多边形的性质;中心投影.点:专题:压轴题.分析:①利用平方根算术平方根的定义可知.②利用相似的知识可知错误.③利用物理知识可知正确.④错误.解答:解:在①中,由于正数的平方根有两个,所以4的平方根是±2,故①错误;在②中,四边形要相似,则需对应角相等,对应边的比相等,故②错误;在③中,根据常识,是必然发生的,故正确;在④中,由于离灯的远近不一样,故结论错误.∴有一个正确.故选A.点评:本题考查的知识面较大,与其它学科的联系也较紧密,所以学生平时学生要注意知识点要掌握全面.二、填空题(每题3分,共24分)13.(3分)(2013•某某市模拟)函数中,自变量x的取值X围是x≠0.考点:函数自变量的取值X围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值X围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得函数中分母不为0,即x≠0.故答案为x≠0.点评:本题主要考查自变量得取值X围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.14.(3分)(2013•某某市模拟)不等式组的解集是5≤x<8 .考点:解一元一次不等式组.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x≥5,解②得:x<8,则不等式的解集是:5≤x<8.故答案是:5≤x<8.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.15.(3分)(2013•某某市模拟)圆锥底面周长为2π米,母线长为4米,则它的侧面展开图的面积为4π平方米.(结果保留π)考点:圆锥的计算.专题:压轴题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:圆锥的侧面展开图是扇形,扇形的面积=×2π×4=4πm2.点评:本题利用了扇形面积公式求解.16.(3分)(2013•某某市模拟)分解因式:(2a﹣b)2+8ab= (2a+b)2.考点:因式分解-运用公式法.分析:先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.解答:解:(2a﹣b)2+8ab,=4a2﹣4ab+b2+8ab,=4a2+4ab+b2,=(2a+b)2.点评:本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.17.(3分)(2013•某某市模拟)化简的结果是.考点:分式的混合运算.专题:计算题.分析:根据分式混合运算的法则先算除法,再算加法即可.解答:解:原式=+x×=+1==.故答案为:.点评:本题考查的是分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.18.(3分)(2013•某某市模拟)如图,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是AC=BD .考点:三角形中位线定理;菱形的判定.专题:开放型.分析:易得新四边形为平行四边形,那么只需让一组邻边相等即可,而邻边都等于对角线的一半,那么对角线需相等.解答:解:∵顺次连接四边形ABCD各边中点得到四边形EFGH即为平行四边形,根据菱形的性质,只要再有一组对边相等就为菱形,只要添加的条件能使四边形EFGH一组对边相等即可,例如AC=BD.点评:综合考查了三角形中位线定理及菱形的判定定理.19.(3分)(2013•某某市模拟)下列函数:①y=x﹣2②y=③y=﹣④y=x2.当x<﹣1时,函数值y随自变量x的增大而减小的有②④(填序号,答案格式如:“1234”).考二次函数的性质;一次函数的性质;反比例函数的性质.点:专题:压轴题.分析:根据二次函数的性质解题.解答:解:①y=x﹣2,一次函数,k>0,故y随着x增大而增大;②y=(x<﹣1),反比例函数,k>0,故在第三象限内y随x的增大而减小;③y=﹣(x<﹣1),反比例函数,k<0,故在第二象限内y随x的增大而增大;④y=x2,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小.故正确的是②④.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.20.(3分)(2013•某某市模拟)如图,Rt△A′BC′是由Rt△ABC绕B点顺时针旋转而得,且点A、B、C′在同一条直线上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,则斜边AB旋转到A′B所扫过的扇形面积为.考点:扇形面积的计算.专题:压轴题.分根据题意可知斜边AB旋转到A'B所扫过的扇形面积为扇形ABA′的面积,根据扇形面析:积公式计算即可.解答:解:AB=4,∠ABA′=120°,所以s==π.点评:主要考查了扇形面积的求算方法.面积公式有两种:(1)、利用圆心角和半径:s=;(2)、利用弧长和半径:s=lr.针对具体的题型选择合适的方法.三、解答题21.(8分)(2013•某某市模拟)阅读对人成长的影响是很大的、希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:种类频数频率科普艺术78文学其它81(1)这次随机调查了300 名学生;(2)把统计表和条形统计图补充完整;(3)随机调查一名学生,恰好是最喜欢文学类图书的概率是多少?考点:条形统计图;频数(率)分布表;概率公式.专题:阅读型.分析:(1)根据统计表中,科普的人数是45人,占0.15;根据频数与频率的关系,可知共有45÷0.15=300(人);(2)根据统计表中的数据:易知其他数值;据此可补全条形图;(3)由条形图可知:喜欢文学类图书有96人,占总人数的32%;故随机调查一名学生,估计恰好是最喜欢文学类图书的概率是32%.解答:解:(1)这次随机调查的人数:45÷0.15=300(人);(3分)(2)根据统计表中的数据:艺术的有78人,占26%,即频率为26%;文学的有300﹣78﹣45﹣81=96人,其频率0.26(6分)据此可补全条形图:种类频数频率科普45艺术78文学96其它81(8分)(3)故随机调查一名学生,估计恰好是最喜欢文学类图书的概率是96÷300=32%.(9分)点评:本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.概率=所求情况数与总情况数之比.22.(8分)(2013•某某市模拟)如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC 分别交于点D、E,过点D作DF⊥AC于点F,(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC于点H,若等边△ABC的边长为8,求AF,FH的长.考点:切线的判定与性质;等边三角形的性质;勾股定理;圆周角定理.分析:(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FH长.解答:解:(1)DF与⊙O相切.理由如下:连接OD.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OD=OB,∴△ODB是等边三角形,∴∠DOB=60°,∴∠DOB=∠C=60°,∴OD∥AC.∵DF⊥AC,∴DO⊥DF,∴DF与⊙O 相切;(2)连接CD.∵CB是⊙O直径,∴DC⊥AB.又∵AC=CB=AB,∴D是AB中点,∴AD=.在直角三角形ADF中,∠A=60°,∠ADF=30°,∠AFD=90°,∴,∴FC=AC﹣AF=8﹣2=6.∵FH⊥BC,∴∠FHC=90°.∵∠C=60°,∴∠HFC=30°,∴,∴FH==3.点评:本题主要考查了切线的判定与性质,等边三角形的性质,勾股定理和圆周角定理等知识.判断直线和圆的位置关系,一般要猜想是相切,再证直线和半径的夹角为90°即可.注意利用特殊的三角形和三角函数来求得相应的线段长.23.(10分)(2013•某某市模拟)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为千米,且位于临海市(记作点B)正西方向千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?考点:解直角三角形的应用-方向角问题.专题:应用题.分析:(1)过A作AH⊥MN于H,故AMH是等腰直角三角形,可求出AM,则可以判断滨海市是否会受到此次台风的侵袭.同理,过B作BH1⊥MN于H1,求出BH1,可以判断临海市是否会受到此次台风的侵袭.(2)求该城市受到台风侵袭的持续时间,以B为圆心60为半径作圆与MN交于T1、T2,则T1T2就是台风影响时经过的路径,求出后除以台风的速度就是时间.解解:(1)设台风中心运行的路线为射线MN,于是∠AMN=60°﹣15°=45°.答:过A作AH⊥MN于H,故AMH是等腰直角三角形.∵AM=,∠AMH=60°﹣15°=45°,∴AH=AM•sin45°=61>60.∴滨海市不会受到台风的影响;过B 作BH1⊥MN于H1.∵MB=,∠BMN=90°﹣60°=30°,∴BH1=×<60,因此临海市会受到台风的影响.(2)以B为圆心60千米为半径作圆与MN交于T1、T2,则BT1=BT2=60.在Rt△BT1H1中,sin∠BT1H1=,∴∠BT1H1=60°.∴△BT 1T2是等边三角形.∴T 1T2=60.∴台风中心经过线段T1T2上所用的时间=小时.因此临海市受到台风侵袭的时间为小时.点评:解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(10分)(2013•某某市33,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用;(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.考点:一元一次不等式组的应用.专题:压轴题;方案型.分析:(1)设生产A型桌椅x套,则生产B型桌椅(500﹣x)套可得有几种生产方案.(2)依题意,A套费用102元,B套费用124元,得出x与y的等式关系.(3)根据2的答案可计算出有几名同学.解答:解:(1)设生产A型桌椅x套,则生产B型桌椅(500﹣x)套,由题意得,解得240≤x≤250.(3分)因为x是整数,所以有11种生产方案.(2)y=(100+2)x+(120+4)×(500﹣x)=﹣22x+62000(240≤x≤250),∵﹣22<0,y随x的增大而减少,∴当x=250时,y有最小值.(7分)∴当生产A型桌椅250套、B型桌椅250套时,总费用最少.此时y=﹣22×250+62000=56500(元).(3)有剩余木料,[302﹣(0.5+0.7)×250]÷0.5×2=8,或302﹣(0.5+0.7)×250=2<3,①全部做A型可做4套,②全部做B型可做2套,③一部分做A型一部分做B型最多3套,比较可知:一部分做A型一部分做B型的方案少,不合题意;全部做B型,最大值6,套数最少,不合题意;所以取最大值为8,∴最多还可以解决8名同学的桌椅问题.点评:本题考查一元一次不等式组的应用,将现实生活中热点问题的事件与数学思想联系起来,读懂题意,根据“做桌椅的木料体积≤库存木料体积”和“桌椅套数≥学生数”列出不等式求解.25.(10分)(2013•某某市模拟)如图,在平面直角坐标系中,四边形OABC是矩形,点B 的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是,点C的坐标是;(2)当t=秒或秒时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式;(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据B点的坐标即可求出A、C的坐标.(2)当MN=AC时,有两种情况,①MN是△OAC的中位线,此时OM=OA=2,因此t=2;②当MN是△ABC的中位线时,OM=OA=6,因此t=6;(3)本题要分类进行讨论:①当直线m在AC下方或与AC重合时,即当0<t≤4时,可根据△OMN∽△OAC,用两三角形的相似比求出面积比,即可得出S与t的函数关系式.②当直线m在AC上方时,即当4<t<8时,可用矩形OABC的面积﹣三角形BMN的面积﹣三角形O的面积﹣三角形OAM的面积来求得.(也可过O作直线m的垂线设垂足为F,那么在直角三角形OMF中,可根据OD的长和∠ODE的正弦值求出OF的长,求MN的方法一样).(4)根据(3)得出的函数的性质和自变量的取值X围即可求出面积S的最大值及对应的t的值.解答:解:(1)(4,0),(0,3);(2)当MN=AC 时,有两种情况,①MN是△OAC的中位线,此时OM=OA=2,因此t=2;②当MN是△ABC的中位线时,∴AM=AB=,OA=4,∴AD===2∴OD=OA+AD=4+2=6,因此t=6;(3)当0<t≤4时,OM=t∵由△OMN∽△OAC,得=,∴ON=,S=t2当4<t<8时,如图,∵OD=t,∴AD=t﹣4方法一:由△DAM∽△AOC,可得AM=(t﹣4)∴BM=6﹣由△BMN∽△BAC,可得BN=BM=8﹣t∴=t﹣4S=矩形OABC的面积﹣Rt△OAM的面积﹣Rt△MBN的面积﹣Rt△NCO的面积=12﹣(t﹣4)﹣(8﹣t)(6﹣)﹣=t2+3t方法二:易知四边形ADNC是平行四边形,∴=AD=t﹣4,BN=8﹣t.由△BMN∽△BAC,可得BM=BN=6﹣,∴AM=(t﹣4)以下同方法一.(4)有最大值.方法一:当0<t≤4时,∵抛物线S=t2的开口向上,在对称轴t=0的右边,S随t的增大而增大∴当t=4时,S可取到最大值×42=6;(11分)当4<t<8时,∵抛物线S=t2+3t的开口向下,它的顶点是(4,6),∴S<6.综上,当t=4时,S 有最大值6.方法二:∵S=∴当0<t<8时,画出S与t的函数关系图象如图所示.显然,当t=4时,S有最大值6.点评:本题考查了矩形的性质,二次函数的应用、图形的面积求法等知识及综合应用知识、解决问题的能力.26.(14分)(2013•某某市模拟)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)已知顶点坐标,设抛物线解析式的顶点式y=a(x﹣2)2+1,把O(0,0)代入即可;(2)∵△MOB与△AOB公共底边OB,最高点A的纵坐标为1,只需要点M的纵坐标为﹣3即可,将y=﹣3,代入解析式可求M点坐标;(3)由已知△OAB为等腰三角形,点N在抛物线上,只可能OB=BN,即要求∠AOB=∠BON,A、A'要关于x轴对称,通过计算,不存在.解答:解:(1)由题意,可设抛物线的解析式为y=a(x﹣2)2+1,∵抛物线过原点,∴a(0﹣2)2+1=0,a=﹣.∴抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+x.(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,∴△MOB的高是△AOB高的3倍,即M点的纵坐标是﹣3.∴﹣3=﹣x2+x,即x2﹣4x﹣12=0.解之,得x1=6,x2=﹣2.∴满足条件的点有两个:M1(6,﹣3),M2(﹣2,﹣3)(3)不存在.由抛物线的对称性,知AO=AB,∠AOB=∠ABO.若△OBN与△OAB相似,必有∠BON=∠BOA=∠BNO,即OB平分∠AON,设ON交抛物线的对称轴于A'点,则A、A′关于x轴对称,∴A'(2,﹣1).∴直线ON的解析式为y=﹣x.由﹣x=﹣x2+x,得x1=0,x2=6.∴N(6,﹣3).过N作NE⊥x轴,垂足为E.在Rt△BEN中,BE=2,NE=3,∴NB==.又∵OB=4,∴NB≠OB,∠BON≠∠BNO,△OBN与△OAB不相似.同理,在对称轴左边的抛物线上也不存在符合条件的N点.所以在该抛物线上不存在点N,使△OBN与△OAB相似.点评:本题考查了抛物线解析式的求法,坐标系里的面积问题,探求相似三角形的存在性问题,具有一定的综合性.。
【精校】2013年内蒙古呼和浩特市中考真题数学
2013年内蒙古呼和浩特市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣解析:根据相反数的概念答案即可.答案:A.2.(3分)下列运算正确的是()A.x2+x3=x5B.x8÷x2=x4C.3x﹣2x=1D.(x2)3=x6解析:A、x2与x3不是同类项不能合并,故选项错误;B、应为x8÷x2=x6,故选项错误;C、应为3x﹣2x=x,故选项错误;D、(x2)3=x6,正确.答案:D.3.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个解析:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.答案:C.4.(3分)下列说法正确的是()A.“打开电视剧,正在播足球赛”是必然事件B.甲组数据的方差=0.24,乙组数据的方差=0.03,则乙组数据比甲组数据稳定C.一组数据2,4,5,5,3,6的众数和中位数都是5D.“掷一枚硬币正面朝上的概率是”表示每抛硬币2次就有1次正面朝上解析:A、“打开电视剧,正在播足球赛”是随机事件,故本选项错误;B、因为=0.24,=0.03,乙组数据比甲组数据稳定,故本选项正确;C、一组数据2,4,5,5,3,6的众数是5,中位数是4.5,故本选项错误;D、“掷一枚硬币正面朝上的概率是”表示每抛硬币2次可能有1次正面朝上,故本选项错误;答案:B.5.(3分)用激光测距仪测得两地之间的距离为14 000 000米,将14 000 000用科学记数法表示为()A.14×107B.14×106C.1.4×107D.0.14×108将诶西:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.答案:C.6.(3分)只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形解析:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;答案:C.7.(3分)从1到9这九个自然数中任取一个,是偶数的概率是()A.B.C.D.解析:解:1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是偶数的概率是:.答案:B.8.(3分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.解析:解:解法一:逐项解析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统解析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.答案:D.9.(3分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是()A.3或﹣1B.3C.1D.﹣3或1解析:根据条件知:α+β=﹣(2m+3),αβ=m2,∴=﹣1,即m2﹣2m﹣3=0,所以,得,解得m=3.答案:B.10.(3分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159解析:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);答案:B.二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要答案过程)11.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=度.解析:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.答案:3012.(3分)大于且小于的整数是.解析:根据=2和<<即可得出答案.答案:解:∵=2,<<,∴大于且小于的整数有2,答案:2.13.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是. 解析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.答案:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=πR=2πr,∴n=180°.答案:180.14.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.解析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.答案:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.答案:200.15.(3分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.解析:有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式答案即可.答案:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.答案:12.16.(3分)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.解析:设线段BA的中点为E,∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).综上所述,点C坐标为(0,12)或(0,﹣12).答案:(0,12)或(0,﹣12).三、答案题(本大题共9小题,共72分,答案应写出必要的演算步骤、证明过程或文字说明)17.(10分)(1)计算:(2)化简:.解析:(1)本题涉及到负整数指数幂,绝对值,特殊角的三角函数值,零指数幂四个考点的计算,根据实数的运算顺序和法则计算即可求解;(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简. 答案:(1)=3﹣|﹣2+|+1=3﹣2++1=2+;(2)=•=.18.(6分)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.解析:根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC,继而可得出结论.答案:∵∠1=∠2,∴∠1+ECA=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,∵∴△ABC≌△DEC(SAS).∴DE=AB.19.(6分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?解析:根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x道,则根据不等关系就可以列出不等式求解.答案:设应答对x道,则:10x﹣5(20﹣x)>90,解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.20.(6分)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B 行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)解析:过C作CD⊥AB于D,在Rt△ACD中,根据AC=10,∠A=30°,解直角三角形求出AD、CD的长度,然后在Rt△BCD中,求出BD、BC的长度,用AC+BC﹣(AD+BD)即可求解.答案:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC﹣(AD+BD)=10+5﹣(5+5)=5+5﹣5(千米).答:汽车从A地到B地比原来少走(5+5﹣5)千米.21.(6分)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.解析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.答案:由题意 OC=2AO,由直线与x轴交于点A的坐标为(﹣1,0),∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.22.(8分)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:成绩x(分)频数频率50≤x<60 1060≤x<70 16 0.0870≤x<80 0.280≤x<90 6290≤x<100 72 0.36(1)补全频数分布直方图;(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x <90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.解析:(1)由60≤x<70分数段的人数除以所占的百分比,求出总人数,进而求出70≤x<80分数段的频数,以及80≤x<90分数段的频率,补全表格即可;(2)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.答案:(1)根据题意得:16÷0.08=200(人),则70≤x<80分数段的频数为200﹣(10+16+62+72)=40(人),50≤x<60分数段频率为0.05,80≤x<90分数段的频率为0.31,补全条形统计图,如图所示:;答案:0.05;40;0.31;(2)由表格可知:评为“D”的频率是=,由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,∴P(B)>P(A)>P(C)>P(D),∴随机调查一名参数学生的成绩等级“B”的可能性较大.23.(9分)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.解析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可答案;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.答案:(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.24.(9分)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.解析:(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,DF=3k,然后由勾股定理求得ED的长,继而求得DM与ME 的长,由余弦的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.答案:(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2,∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA,∵ED为⊙C直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点;(2)解:连接DM,设EF=4k,DF=3k,则ED==5k,∵AD•EF=AE•DM,∴DM===k,∴ME==k,∴cos∠AED==;(3)解:∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA,∴AE:BE=CE:AE,∴AE2=CE•BE,∴(5k)2=k•(10+5k),∵k>0,∴k=2,∴CD=k=5.25.(12分)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8). (1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A 的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.解析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x轴的交点坐标即可;(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t.②本题要分三种情况进行讨论:当Q在OC上,P在OA上,即当0≤t≤1时,此时S=OP•OQ,由此可得出关于S,t的函数关系式;当Q在CA上,P在OA上,即当1<t≤2时,此时S=OP×Q点的纵坐标.由此可得出关于S,t的函数关系式;当Q,P都在CA上时,即当2<t<相遇时用的时间,此时S=S△AOQ﹣S△AOP,由此可得出S,t的函数关系式;综上所述,可得出不同的t的取值范围内,函数的不同表达式.③根据②的函数即可得出S的最大值.答案:解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)(a≠0),∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24﹣11t)×=﹣+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013年内蒙古包头市中考数学试卷-答案
【考点】反比例函数图象上点的坐标特征
18.【答案】4
【解析】解:∵△BDE由△BCE反折而成,∴ , ,∵ ,∴ , ,∴ ,在 中,∵ ,∴ ,设 ,
则 ,在 中,∵ , , ,
∴ ,即 ,解得 ,故答案为:4.
【提示】先根据图形翻折变换的性质得出 , ,再根据 可知 , ,故 ,由锐角三角函数的定义可求出BC的长,设 ,则 ,在 中根据勾股定理即可得出BE的长
B.设该方程的两根分别是α、β,则 .即两根之和为2,故本选项错误;
C.设该方程的两根分别是α、β,则 .即两根之积为 ,故本选项正确;
D.根据求根公式 知,原方程的两根是 和 .故本选项错误;
故选C.
【提示】根据已知方程的根的判别式符号确定该方程的根的情况.由根与系数的关系确定两根之积、两根之和的值;通过求根公式即可求得方程的根.
C.平移后的图形与原来图形对应线段相等,是必然事件;
D.随机抛出一枚质地均匀的硬币,落地后正面可能朝上,是随机事件.
【提示】必然事件就是一定发生的事件,即发生的概率是1的事件.
【考点】随机事件
8.【答案】D
【解析】解:设圆锥底面的半径为r,根据题意得 ,解得 .
【提示】设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则 ,然后解方程即可.
【考点】矩形的性质
11.【答案】D
【解析】解:①若 ,则 ;原命题与逆命题都是真命题;
②若 ,则 ;逆命题:若 ,则 ,是假命题,故此选项错误;
③对角线互相平分且相等的四边形是矩形;原命题是假命题,故此选项错误;
④如果两条弧相等,那么它们所对的圆心角相等,逆命题:相等的圆心角所对的弧相等,是假命题,故此选项错误,故原命题与逆命题均为真命题的个数是1个.故选:D.
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
2013年内蒙古呼和浩特市中考真题数学
2013年内蒙古呼和浩特市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣解析:根据相反数的概念答案即可.答案:A.2.(3分)下列运算正确的是()A.x2+x3=x5B.x8÷x2=x4C.3x﹣2x=1D.(x2)3=x6解析:A、x2与x3不是同类项不能合并,故选项错误;B、应为x8÷x2=x6,故选项错误;C、应为3x﹣2x=x,故选项错误;D、(x2)3=x6,正确.答案:D.3.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个解析:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.答案:C.4.(3分)下列说法正确的是()A.“打开电视剧,正在播足球赛”是必然事件B.甲组数据的方差=0.24,乙组数据的方差=0.03,则乙组数据比甲组数据稳定C.一组数据2,4,5,5,3,6的众数和中位数都是5D.“掷一枚硬币正面朝上的概率是”表示每抛硬币2次就有1次正面朝上解析:A、“打开电视剧,正在播足球赛”是随机事件,故本选项错误;B、因为=0.24,=0.03,乙组数据比甲组数据稳定,故本选项正确;C、一组数据2,4,5,5,3,6的众数是5,中位数是4.5,故本选项错误;D、“掷一枚硬币正面朝上的概率是”表示每抛硬币2次可能有1次正面朝上,故本选项错误;答案:B.5.(3分)用激光测距仪测得两地之间的距离为14 000 000米,将14 000 000用科学记数法表示为()A.14×107B.14×106C.1.4×107D.0.14×108将诶西:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.答案:C.6.(3分)只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形解析:A、正十边形每个内角是180°﹣360°÷10=144°,不能整除360°,不能单独进行镶嵌,不符合题意;B、正八边形每个内角是180°﹣360°÷8=135°,不能整除360°,不能单独进行镶嵌,不符合题意;C、正六边形的每个内角是120°,能整除360°,能整除360°,可以单独进行镶嵌,符合题意;D、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能单独进行镶嵌,不符合题意;答案:C.7.(3分)从1到9这九个自然数中任取一个,是偶数的概率是()A.B.C.D.解析:解:1~9这九个自然数中,是偶数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是偶数的概率是:.答案:B.8.(3分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.解析:解:解法一:逐项解析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y 轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统解析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.答案:D.9.(3分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是()A.3或﹣1B.3C.1D.﹣3或1解析:根据条件知:α+β=﹣(2m+3),αβ=m2,∴=﹣1,即m2﹣2m﹣3=0,所以,得,解得m=3.答案:B.10.(3分)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159解析:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);答案:B.二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要答案过程)11.(3分)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=度.解析:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.答案:3012.(3分)大于且小于的整数是.解析:根据=2和<<即可得出答案.答案:解:∵=2,<<,∴大于且小于的整数有2,答案:2.13.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是. 解析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.答案:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=πR=2πr,∴n=180°.答案:180.14.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.解析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.答案:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.答案:200.15.(3分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.解析:有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式答案即可.答案:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.答案:12.16.(3分)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.解析:设线段BA的中点为E,∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C 坐标为(0,﹣12).综上所述,点C坐标为(0,12)或(0,﹣12).答案:(0,12)或(0,﹣12).三、答案题(本大题共9小题,共72分,答案应写出必要的演算步骤、证明过程或文字说明)17.(10分)(1)计算:(2)化简:.解析:(1)本题涉及到负整数指数幂,绝对值,特殊角的三角函数值,零指数幂四个考点的计算,根据实数的运算顺序和法则计算即可求解;(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.答案:(1)=3﹣|﹣2+|+1=3﹣2++1=2+;(2)=•=.18.(6分)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.解析:根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC,继而可得出结论.答案:∵∠1=∠2,∴∠1+ECA=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,∵∴△ABC≌△DEC(SAS).∴DE=AB.19.(6分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?解析:根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x道,则根据不等关系就可以列出不等式求解.答案:设应答对x道,则:10x﹣5(20﹣x)>90,解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.20.(6分)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B 行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)解析:过C作CD⊥AB于D,在Rt△ACD中,根据AC=10,∠A=30°,解直角三角形求出AD、CD的长度,然后在Rt△BCD中,求出BD、BC的长度,用AC+BC﹣(AD+BD)即可求解. 答案:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC﹣(AD+BD)=10+5﹣(5+5)=5+5﹣5(千米).答:汽车从A地到B地比原来少走(5+5﹣5)千米.21.(6分)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.解析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.答案:由题意 OC=2AO,由直线与x轴交于点A的坐标为(﹣1,0),∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.22.(8分)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.(1(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.解析:(1)由60≤x<70分数段的人数除以所占的百分比,求出总人数,进而求出70≤x <80分数段的频数,以及80≤x<90分数段的频率,补全表格即可;(2)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.答案:(1)根据题意得:16÷0.08=200(人),则70≤x<80分数段的频数为200﹣(10+16+62+72)=40(人),50≤x<60分数段频率为0.05,80≤x<90分数段的频率为0.31,补全条形统计图,如图所示:;答案:0.05;40;0.31;(2)由表格可知:评为“D”的频率是=,由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,∴P(B)>P(A)>P(C)>P(D),∴随机调查一名参数学生的成绩等级“B”的可能性较大.23.(9分)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.解析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可答案;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.答案:(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△A BE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠C EP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.24.(9分)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.解析:(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,DF=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.答案:(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2,∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA,∵ED为⊙C直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点;(2)解:连接DM,设EF=4k,DF=3k,则ED==5k,∵AD•EF=AE•DM,∴DM===k,∴ME==k,∴cos∠AED==;(3)解:∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA,∴AE:BE=CE:AE,∴AE2=CE•BE,∴(5k)2=k•(10+5k),∵k>0,∴k=2,∴CD=k=5.25.(12分)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8). (1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K 的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.解析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x轴的交点坐标即可;(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t 的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t.②本题要分三种情况进行讨论:当Q在OC上,P在OA上,即当0≤t≤1时,此时S=OP•OQ,由此可得出关于S,t的函数关系式;当Q在CA上,P在OA上,即当1<t≤2时,此时S=OP×Q点的纵坐标.由此可得出关于S,t的函数关系式;当Q,P都在CA上时,即当2<t<相遇时用的时间,此时S=S△AOQ﹣S△AOP,由此可得出S,t的函数关系式;综上所述,可得出不同的t的取值范围内,函数的不同表达式.③根据②的函数即可得出S的最大值.答案:解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)(a≠0),∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24﹣11t)×=﹣+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.。
2013年呼和浩特中考数学试卷及答案解析.doc
内蒙古呼和浩特市2013年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)呼和浩特)﹣3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()是必然事件=0.24,乙组数据的方差=0.03”、甲组数据的方差=0.24,乙组数据的方差”次正5.(3分)(2013•呼和浩特)用激光测距仪测得两地之间的距离为14 000 000米,将14 000的形式,其中360B这九个自然数中任取一个,是偶数的概率是:8.(3分)(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是..x=x=要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,9.(3分)(2013•呼和浩特)(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是()+=1所以,得ax,=10.(3分)(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.(3分)(2013•呼和浩特)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30度.2=12.(3分)(2013•呼和浩特)大于且小于的整数是2.=2<<=2,<且小于13.(3分)(2013•呼和浩特)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.,有14.(3分)(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产200台机器.依题意得:=15.(3分)(2013•呼和浩特)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.EF=BD=3BD16.(3分)(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C 是y轴上的一个动点,当∠BCA=45°时,点C的坐标为(0,12)或(0,﹣12).EP=PA=PB=BCA=∠PC==7三、解答题(本大题共9小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(10分)(2013•呼和浩特)(1)计算:(2)化简:.)2++1;.18.(6分)(2013•呼和浩特)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.19.(6分)(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?,20.(6分)(2013•呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号),,﹣(5=5+55+5)千米.21.(6分)(2013•呼和浩特)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.O解:由直线代入直线y=)×.22.(8分)(2013•呼和浩特)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.(1)补全频率分布直方图;(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.的频率是=,由此估计全区八年级参加竞赛的学生×23.(9分)(2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.正方形,AE==BAE=,=MD24.(9分)(2013•呼和浩特)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.=5kAD EF=DM==k ME=kAED==k=525.(12分)(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为(,0);(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A 的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ 的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点CS=OD<∵图象过点(y=﹣y=x((﹣)﹣x+8=0x=,t=t=OP×OP××﹣QP×=++,函数的最大值是,S=﹣,函数的最大值为的值为.。
内蒙古呼和浩特市2013年中考数学真题试题(解析版)
内蒙古呼和浩特市2013年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)呼和浩特)﹣3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()打开电视剧,正在播足球赛”是必然事件甲组数据的方差=0.24,乙组数据的方差=0.03”表示每抛硬币=0.24=0.03、“掷一枚硬币正面朝上的概率是次正面朝上,故5.(3分)(2013•呼和浩特)用激光测距仪测得两地之间的距离为14 000 000米,将14 000其中360°的正多边形即可.这九个自然数中任取一个,是偶数的概率是:8.(3分)(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,x=x=要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,9.(3分)(2013•呼和浩特)(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是()+=1所以,得ax﹣=10.(3分)(2013•呼和浩特)如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.二、填空题(本大题共6个小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.(3分)(2013•呼和浩特)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30 度.∠EFD=30°.12.(3分)(2013•呼和浩特)大于且小于的整数是 2 .=2<<=2<<且小于13.(3分)(2013•呼和浩特)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.,有14.(3分)(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.依题意得:=15.(3分)(2013•呼和浩特)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12 .EF=BD16.(3分)(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C 是y轴上的一个动点,当∠BCA=45°时,点C的坐标为(0,12)或(0,﹣12).AB=5PA=PB=∴∠BCA=PC==7三、解答题(本大题共9小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(10分)(2013•呼和浩特)(1)计算:(2)化简:.)2++1;18.(6分)(2013•呼和浩特)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.19.(6分)(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?,20.(6分)(2013•呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号),BC=5=10+5+5=5+55)千米.21.(6分)(2013•呼和浩特)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.C=2AO解:由直线代入直线y=,∴k=xy=2×=3.22.(8分)(2013•呼和浩特)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.评为“D”的频率是=,由此估计全区八年级参加竞赛的学生×3000=150(人)被评为“D”;23.(9分)(2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.是AE===sin∠FEC=,=EP24.(9分)(2013•呼和浩特)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.k•=5kAD•EF=AE•DM,==k=k=;=k=525.(12分)(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K 的坐标为(,0);(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点COE•OD,由此可得出关于OD相遇时用的时间,此时∵图象过点(y=﹣)∵y=﹣(8=﹣)x+8x+8=0x=的坐标为(>OP•OQ=×3t×8t=12tOP•EQ=×3t×﹣QP•OF=×()×=++,函数的最大值是;<QP•OF=﹣,函数的最大值为的值为。
2013年内蒙古包头市中考试题理综合
2013年内蒙古包头市中考试题理综合化学部分可能用到的相对分子质量:H-l C-12 Na-23 S-32 C1-35.5 K-39 Ca-40 Fe-56 Cu-64 Zn-65 Ba-137一、选择题(广7题为单项选择题,每题2分;『10题为多项选择题,每题至少有两个正确选项,全部选对得3分,选对但不全得1分,共23分。
请将答题卡上对应题目的答案标号涂黑)1.下列食物中富含维生素的是A.牛奶B.苹果C.鸡蛋D.大豆2.下列各种物质按单质、氧化物、混合物的顺序排列的是A.冰、干冰、盐酸B.红磷、纯碱、石油C.水银、生石灰、天然气D.金刚石、熟石灰、空气3.下列说法中不正确的是A.原子、分子、离子都可以直接构成物质B.爆炸一定是化学变化C.在复分解反应中,反应前后各•元素的化合价都不发生变化D.生活垃圾分类处理后,可变废为宝,同时也减少了对环境的污染4.下列有关溶液的说法中,正确的是A.已达到饱和的氯化钠溶液中不能再溶解其他物质B.20C时,50克水中溶解了18克氯化钠,则20°C时氯化钠的溶解度为18克C.任何饱和溶液,在温度升髙时,一能会变成不饱和溶液D.相同温度时,同种溶质的饱和溶液一迫比它的不饱和溶液浓5.6.下列说法中不正确的是A.含彼根离子的氮肥与碱性物质混合,能产生有刺激性气味的气体B.将燃着的木条伸入集气瓶中,木条火焰熄火,证明集气瓶中的气体一定是二氧化碳C.检査氢氧化钠溶液中含有氯化钠的实验步骤是:先加入过量的稀硝酸,再加入硝酸银溶液D.可用水来鉴别无水硫酸铜、碳酸钙、硝酸彼、氯化钠四种白色固体7.下列各组物质加入水中,搅拌后能得到无色溶液的是A. Na:S0, H:S0: KC1B. NaCl Cu (N05): Mg(N03)5C. CaCOs Ba (OH): ZnCl;D. K:C03 NaCl Ca(OH):&将等质量、等质量分数的氢氧化钠溶液和硫酸溶液混合,混合后的溶液能与下列物质发生反应的是A. Ba(0H):B. FeC. HC1D. FeCh9.下列四个图像分别对应四种实验操作过程,其中正确的是A. 甲表示向一圧质量的盐酸和氯化钙的混合溶液中逐滴加入碳酸钠溶液至过量B. 乙表示向等质量的镁和锌中分别滴加稀盐酸至过量C. 丙表示向一立质量的稀硫酸中逐滴加入氢氧化领溶液至过量D. 丁表示加热一定质量的高锈酸钾10. 将盛有等质量、等质量分数且足量的稀盐酸的两只烧杯,放在托盘天平的左右两盘,天平平衡。
呼和浩特2013年中考数学试卷(带答案和解释)
呼和浩特2013年中考数学试卷(带答案和解释)11.(3分)(2013•呼和浩特)如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=30度.考点:平行线的性质;角平分线的定义.分析:根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.解答:解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.点评:本题主要考查了两直线平行,同位角相等.12.(3分)(2013•呼和浩特)大于且小于的整数是2.考点:估算无理数的大小.分析:根据=2和<<即可得出答案.解答:解:∵=2,<<,∴大于且小于的整数有2,故答案为:2.点评:本题考查了估算无理数的大小的应用,主要考查学生的北京两个无理数大小的能力.13.(3分)(2013•呼和浩特)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.考点:圆锥的计算.分析:根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.解答:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=πR,∴n=180°.故答案为:180.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.14.(3分)(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产200台机器.考点:分式方程的应用.分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.解答:解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.答:现在平均每天生产200台机器.故答案为:200.点评:此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.15.(3分)(2013•呼和浩特)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.考点:中点四边形.分析:有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.解答:解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=BD,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故答案是:12.点评:本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.16.(3分)(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为(0,12)或(0,﹣12).考点:圆周角定理;坐标与图形性质;勾股定理.分析:如解答图所示,构造含有90°圆心角的⊙P,则⊙P与y轴的交点即为所求的点C.注意点C有两个.解答:解:设线段BA的中点为E,∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).综上所述,点C坐标为(0,12)或(0,﹣12).故答案为:(0,12)或(0,﹣12).点评:本题难度较大.由45°的圆周角联想到90°的圆心角是解题的突破口,也是本题的难点所在.三、解答题(本大题共9小题,共72分,解答应写出必要的演算步骤、证明过程或文字说明)17.(10分)(2013•呼和浩特)(1)计算:(2)化简:.考点:分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)本题涉及到负整数指数幂,绝对值,特殊角的三角函数值,零指数幂四个考点的计算,根据实数的运算顺序和法则计算即可求解;(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.解答:解:(1)=3﹣|﹣2+|+1=3﹣2++1=2+;(2)=•=.点评:本题主要考查实数的运算和分式的混合运算,通分、因式分解和约分是解答的关键.18.(6分)(2013•呼和浩特)如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS 可证△ABC≌△DEC,继而可得出结论.解答:证明:∵∠1=∠2,∴∠1+ECA=∠2+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,∵∴△ABC≌△DEC(SAS).∴DE=AB.点评:本题考查了三角形全等的判定方法和性质,由∠1=∠2得∠ACB=∠DCE是解决本题的关键,要求我们熟练掌握全等三角形的几种判定定理.19.(6分)(2013•呼和浩特)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?考点:一元一次不等式的应用.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则:10x﹣5(20﹣x)>90解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.点评:此题主要考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.20.(6分)(2013•呼和浩特)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)考点:解直角三角形的应用.分析:过C作CD⊥AB于D,在Rt△ACD中,根据AC=10,∠A=30°,解直角三角形求出AD、CD的长度,然后在Rt△BCD中,求出BD、BC 的长度,用AC+BC﹣(AD+BD)即可求解.解答:解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC﹣(AD+BD)=10+5﹣(5+5)=5+5﹣5(千米).答:汽车从A地到B地比原来少走(5+5﹣5)千米.点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是作三角形的高建立直角三角形幷解直角三角形.21.(6分)(2013•呼和浩特)如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.考点:反比例函数综合题.专题:综合题.分析:先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.解答:解:由直线与x轴交于点A的坐标为(﹣1,0),∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.点评:本题考查了反比例函数的综合知识,解题的关键是根据一次函数求出反比例函数与直线的交点坐标.22.(8分)(2013•呼和浩特)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:成绩x(分)频数频率50≤x<60100.0560≤x<70160.0870≤x<80100.0280≤x<90620.4790≤x<100720.36(1)补全频率分布直方图;(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级哪一个等级的可能性大?请说明理由.考点:频数(率)分布直方图;频数(率)分布表;可能性的大小.专题:计算题.分析:(1)由60≤x<70分数段的人数除以所占的百分比,求出总人数,进而求出70≤x<80分数段的频数,以及80≤x<90分数段的频率,补全表格即可;(2)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.解答:解:(1)根据题意得:16÷0.08=200(人),则70≤x<80分数段的频数为200﹣(10+16+62+72)=10(人),50≤x <60分数段频率为0.05,80≤x<90分数段的频率为0.47,补全条形统计图,如图所示:;故答案为:0.05;10;0.47;(2)由表格可知:评为“D”的频率是=,由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;∵P(A)=0.36;P(B)=0.51;P(C)=0.08;P(D)=0.05,∴P(B)>P(A)>P(C)>P(D),∴随机调查一名参数学生的成绩等级“B”的可能性较大.点评:此题考查了频数(率)分布直方图,频数(率)分布表,以及可能性大小,弄清题意是解本题的关键.23.(9分)(2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定.分析:(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.解答:(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,(2)证明:在BA边上截取BK=NE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,易得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE于AB交于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(AAS),∴MD=AE,∵AE=EP,∴MD=EP,∴MDEP,∴四边形DMEP为平行四边形.点评:此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.24.(9分)(2013•呼和浩特)如图,AD是△ABC的角平分线,以点C 为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.考点:相似三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.分析:(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,df=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.解答:(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2,∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA,∵ED为⊙O直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点;(2)解:连接DM,设EF=4k,df=3k,则ED==5k,∵AD•EF=AE•DM,∴DM===k,∴ME==k,∴cos∠AED==;(3)解:∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA,∴AE:BE=CE:AE,∴A E2=CE•BE,∴(5k)2=k•(10+5k),∵k>0,∴k=2,∴CD=k=5.点评:此题考查了相似三角形的判定与性质、圆周角定理、等腰三角形的判定与性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.25.(12分)(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM 的周长最小时,点K的坐标为(,0);(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.考点:二次函数综合题.分析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C 关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x 轴的交点坐标即可;(3)(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情况下t的取值范围.如果符合则这个t的值就是所求的值,如果不符合,那么就说明不存在这样的t.②本题要分三种情况进行讨论:当E在OC上,D在OA上,即当0≤t≤1时,此时S=OE•OD,由此可得出关于S,t的函数关系式;当E在CA上,D在OA上,即当1<t≤2时,此时S=OD×E点的纵坐标.由此可得出关于S,t的函数关系式;当E,D都在CA上时,即当2<t<相遇时用的时间,此时S=S△AOE ﹣S△AOD,由此可得出S,t的函数关系式;综上所述,可得出不同的t的取值范围内,函数的不同表达式.③根据②的函数即可得出S的最大值.解答:解:(1)设二次函数的解析式为y=a(x+2)(x﹣6)∵图象过点(0,﹣8)∴a=∴二次函数的解析式为y=x2﹣x﹣8;(2)∵y=x2﹣x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2﹣∴点M的坐标为(2,﹣)∵点C的坐标为(0,﹣8),∴点C关于x轴对称的点C′的坐标为(0,8)∴直线C′M的解析式为:y=﹣x+8令y=0得﹣x+8=0解得:x=∴点K的坐标为(,0);(3)①不存在PQ∥OC,若PQ∥OC,则点P,Q分别在线段OA,CA上,此时,1<t<2∵PQ∥OC,∴△APQ∽△AOC∴∵AP=6﹣3tAQ=18﹣8t,∴∴t=∵t=>2不满足1<t<2;∴不存在PQ∥OC;②分情况讨论如下,情况1:0≤t≤1S=OP•OQ=×3t×8t=12t2;情况2:1<t≤2作QE⊥OA,垂足为E,S=OP•EQ=×3t×=﹣+情况3:2<t<作OF⊥AC,垂足为F,则OF=S=QP•OF=×(24﹣11t)×=﹣+;③当0≤t≤1时,S=12t2,函数的最大值是12;当1<t≤2时,S=﹣+,函数的最大值是;当2<t<,S=QP•OF=﹣+,函数的最大值为;∴S0的值为.点评:本题着重考查了待定系数法求二次函数解析式以及二次函数的应用等知识点,综合性较强,考查学生分类讨论,数形结合的数学思想方法.。
2013年内蒙古呼市卷中考数学试卷+答案
2013年呼和浩特市中考试卷数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.D.-2.下列运算正确的是()A.x2+x3=x5B.x8÷x2=x4C.3x-2x=1D.(x2)3=x63.观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.“打开电视机,正在播足球赛”是必然事件B.甲组数据的方差甲=0.24,乙组数据的方差乙=0.03,则乙组数据比甲组数据稳定C.一组数据2,4,5,5,3,6的众数和中位数都是5D.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上5.用激光测距仪测得两物体之间的距离为14000000米,将14000000用科学记数法表示为()A.14×107B.1.4×106C.1.4×107D.0.14×1086.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形7.从1到9这九个自然数中任取一个,是偶数的概率是()A. B. C. D.8.在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是()9.已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是()A.3B.1C.3或-1D.-3或110.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需要火柴的根数为()A.156B.157C.158D.159第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2=°.12.大于且小于的整数是.13.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是°.14.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为.16.在平面直角坐标系中,已知点A(4,0),B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.三、解答题(本大题共9小题,共72分.解答应写出必要的演算步骤、证明过程或文字说明)17.(5分)(1)计算:--|-2+tan45°|+(-1.41)0;(5分)(2)化简:-÷-.18.(6分)如图,CD=CA,∠1=∠2,EC=BC.求证:DE=AB.19.(6分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过90分,他至少要答对多少道题?20.(6分)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)21.(6分)如图,在平面直角坐标系中,直线y=x+与x轴交于点A,与双曲线y=在第一象限内交于点B,BC⊥x轴于点C,OC=2AO,求双曲线的解析式.22.(8分)某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.90≤x<100720.36请你根据不完整的表格,解答下列问题:(1)补全频数分布直方图;(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级为哪一个等级的可能性大?请说明理由.23.(9分)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP 交正方形外角的平分线CP于点P,交边CD于点F.(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.24.(9分)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF∶FD=4∶3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.25.(12分)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连结AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动.设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.答案全解全析:1.A 根据相反数的定义知,-3的相反数为-(-3)=3.故选A.2.D A项:x2和x3不是同类项不能合并,故本选项错误;B项:x8÷x2=x8-2=x6,故本选项错误;C项:3x-2x=x,故本选项错误;D项:(x2)3=x6,故本选项正确.故选D.3.C 第一个图形不是轴对称图形;第二个图形既是轴对称图形,又是中心对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形既是轴对称图形,又是中心对称图形.故选C.评析本题主要考查了中心对称图形与轴对称图形的定义.如果一个图形沿着一条直线对折后两部分完全重合,那么这个图形就叫做轴对称图形;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.B A项:打开电视机,不一定会播足球赛,该事件是随机事件,故本选项错误;B项:甲>乙,则乙组数据稳定,故本选项正确;C项:把这组数据从小到大排序为2,3,4,5,5,6,众数是5,中位数为=4.5,故本选项错误;D项:“掷一枚硬币正面朝上的概率是”表示掷一枚硬币正面向上的可能是,故本选项错误.故选B.5.C 14 000 000=1.4×107,故选C.6.C A项:正十边形的每个内角为180°-360°÷10=144°,不能整除360°,故不能进行镶嵌,本选项错误;B项:正八边形的每个内角为180°-360°÷8=135°,不能整除360°,故不能进行镶嵌,本选项错误;C项:正六边形的每个内角是120°,能整除360°,故能进行镶嵌,本选项正确;D项:正五边形的每个内角是108°,不能整除360°,故不能进行镶嵌,本选项错误.故选C.7.B 1到9这九个自然数中,有4个是偶数,故P(抽到偶数)=.故选B.8.D 在选项A中,二次函数中的-m<0,即m>0,而一次函数中的m<0,故排除A;y=-mx2+2x +2=-m-++2,根据B、C、D选项中二次函数图象开口向上,知-m>0,m<0,得<0,抛物线对称轴在y轴左侧.故选D.9.A由α、β是方程的两个不相等的实数根,得α+β=-(2m+3),α·β=m2,所以+==-=-1,解得m1=3,m2=-1.因为原方程有两个不相等的实数根,所以b2-4ac=(2m+3)2-4m2=12m+9>0,所以m=-1不符合题意,舍去.故选A.10.B 观察题中图案不难发现,第1个图案共需7根火柴,7=1× 1+3 +3;第2个图案共需13根火柴,13=2× 2+3 +3;第3个图案共需21根火柴,21=3× 3+3 +3;…;第n个图案共需n(n+3)+3根火柴,所以,第11个图案共需11×14+3=157根火柴.故选B.评析本题考查了图形的变化规律,较难.探索规律性问题是近几年中考的一个“热门”题型.解决这类问题的基本思路是:通过观察、分析若干特殊情形,归纳总结出一般性结论,然后验证其结论的正确性.11.答案30解析∵AB∥CD,∠1=60°,∴∠EFD=∠1=60°.∵FG平分∠EFD,∴∠2=30°.12.答案 2解析∵<<,即<2<,∴大于且小于的整数为2.13.答案180解析设母线长为l,底面半径为r,则底面周长=2πr,底面积=πr2,侧面积=πrl,因为侧面积是底面积的2倍,所以πrl=2πr2,解得l=2r,设圆心角为n,则n=°=180°.14.答案200解析设现在平均每天生产x台机器,则原计划平均每天生产(x-50)台.,解得x=200.经检验x=200是原方程的解.依题意得=-15.答案12解析∵点E、F分别是四边形ABCD中AD、AB边上的中点,∴EF是△ABD的中位线,∴EF=BD,且EF∥BD.同理,HG=BD,且HG∥BD,∴EF=HG,且EF∥HG,同理EH∥FG,EH=FG=AC.∴四边形EFGH是平行四边形,∵AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积S=EF·EH=BD·AC.∵AC=8,BD=6,∴四边形EFGH的面积为12.16.答案(0,12)或(0,-12)解析当点C在y轴的正半轴上时,如图,作△ABC的外接圆☉M.连结AM并延长交☉M于点D,连结BD、CM,过点M作ME⊥OC于点E,MF⊥OB于点F.根据圆周角定理得∠ADB=∠ACB=45°,所以△ADB为等腰直角三角形.因为A(4,0)、B(-6,0),所以AB=BD=10,☉M的直径为10,所以CM=5.易知MF为△ADB的中位线,所以MF=OE=BD=5,AF=AB=5,所以ME=OF=1.在直角三角形CME中,CE=-=-=7,所以OC=CE+OE=7+5=12,即点C的坐标为(0,12).当点C在y轴的负半轴上时,同理可得点C的坐标为(0,-12).17.解析(1)原式=3-|-2+|+1(2分)=3-(2-)+1(3分)=3-2++1(4分)=2+.(5分)(2)原式=-×(3分)-.(5分)=-18.证明∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠BCA=∠ECD, 2分)在△ECD与△BCA中,,,,∴△ECD≌△BCA SAS , 5分)∴DE=AB. 6分)19.解析设小明答对x道题,(1分)依题意得10x-5(20-x)>90,(3分)解得x>12,(4分)∵x取整数,∴x最小为13.(5分)答:他至少要答对13道题.(6分)20.解析过点C作CD⊥AB,垂足为D.在Rt△ACD中,∵∠A=30°,∴CD=AC=5千米.∴AD===5(千米).(3分)°∵∠B=45°,∴BD=CD=5千米,BC=5千米.(5分)∴AC+BC-AB=10+5-(5+5)=(5+5-5)千米.答:汽车从A地到B地比原来少走(5+5-5)千米.(6分)21.解析∵直线y=x+与x轴交于点A,∴A -1,0),∴AO=1, 2分)∵OC=2AO,∴OC=2. 3分)令x=2,得y=,∴B,,∴k=3, 5分)∴双曲线的解析式为y=.(6分)22.解析(1)如图.(2分)(2)由题表知:评为D的频率是=,由此估计全区八年级参加竞赛的学生被评为“D”的约有×3 000=150 人).(5分)∵P A =0.36,P B =0.51,P C =0.08,P D =0.05,∴P B >P A >P C >P D .∴随机抽查一名参赛学生的成绩等级,“B”的可能性大.(8分)23.解析(1).(2分)(2)证明:在BA边上截取BK=BE,连结KE.∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°.易知∠DCP=45°.∴∠ECP=135°.∴∠AKE=∠ECP.∵AB=BC,BK=BE,∴AB-BK=BC-BE,即AK=EC.易证∠KAE=∠CEP,在△AKE和△ECP中,, ,,∴△AKE≌△ECP ASA ,∴AE=EP. 5分)(3)存在.(6分)过点D作DM⊥AE与AB相交于点M, 则DM∥EP.连结ME,DP.易证△ADM≌△BAE.∴MD=AE.∵AE=EP,∴MD=EP,∴MD平行且等于EP,∴四边形DMEP是平行四边形.(9分)评析本题考查了正方形的性质、平行四边形的判定及全等三角形的判定与性质.24.解析(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA.∵ED为☉C的直径,∴∠DFE=90°.∴EF⊥AD.∴点F是AD的中点.(3分)(2)连结DM,则DM⊥AE.设EF=4k,DF=3k,则ED==5k.∵AD·EF=AE·DM,∴DM=·=·=k.∴ME=-=k.∴cos∠AED===.(6分)3 ∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA.∴AE2=CE·BE.∴ 5k 2=k· 10+5k .∵k>0,∴k=2.∴CD=k=5.(9分)25.解析(1)设二次函数的解析式为y=a(x+2)(x-6 a≠0 .∵图象过点(0,-8),∴a=,∴二次函数的解析式为y=x2-x-8.(3分)(2),.(5分)3 ①不存在PQ∥OC.若PQ∥OC,则点P、Q分别在线段OA、CA上.此时,1<t<2.∵PQ∥OC,∴△APQ∽△AOC.∴=.∵AP=6-3t,AQ=18-8t,∴-=-.∴t=.∵t=>2,不满足1<t<2,∴不存在PQ∥OC. 8分)②分情况讨论如下:情况1:0≤t≤1,S=OP·OQ=×3t×8t=12t2.情况2:1<t≤2,过点Q作QE⊥OA,垂足为E.S=OP·EQ=×3t×-=-t2+t. 情况3:2<t≤,过点O作OF⊥AC,垂足为F.则OF=,S=QP·OF=× 24-11t ×=-t+.综上所述,S=,- ,-.(11分)③.(12分)评析作为中考压轴题,本题以二次函数为背景,综合性较强.考查的知识点包括二次函数的图象与性质、待定系数法求二次函数解析式、相似三角形的判定和性质等.还考查了数形结合思想、分类讨论思想等常见的初中数学思想.难度较大.。
2013年呼和浩特市中考数学试卷及答案(word解析版)-推荐下载
4.(3 分)(2013•呼和浩特)下列说法正确的是( ) A “打开电视剧,正在播足球赛”是必然事件 . B.甲组数据的方差 =0.24,乙组数据的方差 =0.03,则乙组数据比甲组数据稳定
内蒙古呼和浩特市 2013 年中考数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只 有一项是符合题目要求的)
1.(3 分)(2013•呼和浩特)﹣3 的相反数是( )
A 3
.
考点:相反数. 3718684
分析:根据相反数的概念解答即可.
解答: 解:﹣3 的相反数是 3,
C.一组数据 2,4,5,5,3,6 的众数和中位数都是 5 D “掷一枚硬币正面朝上的概率是 ”表示每抛硬币 2 次就有 1 次正面朝上 .
考点:方差;中位数;众数;随机事件;概率的意义. 3718684
分析:根据方差、中位数、众数、随机事件和概率的意义分别对每一项进行分析即可.
解答:解:A、“打开电视剧,正在播足球赛”是随机事件,故本选项错误; B、甲组数据的方差 =0.24,乙组数据的方差 =0.03,则乙组数据比甲组数据
D﹣ .
D (x2)3=x6 .
A 1 个 .
考点:中心对称图形;轴对称图形. 3718684
B.2 个
分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误; 第二个图形既是轴对称图形又是中心对称图形; 第三个图形既是轴对称图形又是中心对称图形; 第四个图形既是轴对称图形又是中心对称图形; 所以,既是轴对称图形又是中心对称图形共有 3 个. 故选 C.
2013年初中毕业统一考试数学试卷(内蒙古包头市)(Word解析版)
2013年初中毕业统一考试数学试卷(内蒙古包头市)(Word解析版) 一、选择题(本大题共12小题,每小题3分,满分36分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑)1.(3分)(2013?包头)计算(+2)+(﹣3)所得的结果是()A.1B.﹣1 C.5D.﹣5考点:有理数的加法.分析:运用有理数的加法法则直接计算.解答:解:原式=﹣(3﹣2)=﹣1.故选B.点评:解此题关键是记住加法法则进行计算.2.(3分)(2013?包头)3tan30°的值等于()A.B.3C.D.考点:特殊角的三角函数值.分析:直接把tan30°=代入进行计算即可.解答:解:原式=3×=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.3.(3分)(2013?包头)函数y=中,自变量x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:根据题意得,x+1≠0,解得x≠﹣1.故选C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)(2013?包头)若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧考点:实数与数轴;绝对值分析:根据|a|=﹣a,求出a的取值范围,再根据数轴的特点进行解答即可求出答案.解答:解:∵|a|=﹣a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧;故选B.点评:此题考查了绝对值与数轴,根据|a|≥0,然后利用熟知数轴的知识即可解答,是一道基础题.5.(3分)(2013?包头)已知方程x 2﹣2x﹣1=0,则此方程()A.无实数根B.两根之和为﹣ 2 C.两根之积为﹣ 1 D.有一根为﹣1+考点:根与系数的关系;根的判别式.分析:根据已知方程的根的判别式符号确定该方程的根的情况.由根与系数的关系确定两根之积、两根之和的值;通过求根公式即可求得方程的根.解答:解:A、△=(﹣2)2﹣4×1×(﹣1)=8>0,则该方程有两个不相等的实数根.故本选项错误;B、设该方程的两根分别是α、β,则α+β=2.即两根之和为2,故本选项错误;C、设该方程的两根分别是α、β,则αβ=﹣1.即两根之积为﹣1,故本选项正确;D、根据求根公式x==1±知,原方程的两根是(1+)和(1﹣).故本选项错误;故选C.点评:本题综合考查了根与系数的关系、根的判别式以及求根公式的应用.利用根与系数的关系、求根公式解题时,务必清楚公式中的字母所表示的含义.6.(3分)(2013?包头)一组数据按从大到小排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为()A.6B.8C.9D.10考点:众数;中位数.分析:根据中位数为9,可求出x的值,继而可判断出众数.解答:解:由题意得,(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故选D.点评:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.7.(3分)(2013?包头)下列事件中是必然事件的是()A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形一定是位似图形C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上考点:随机事件.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.解答:解:A、当除数为0时,结论不成立,是随机事件;B、两个相似图形不一定是位似图形,是随机事件;C、平移后的图形与原来图形对应线段相等,是必然事件;D、随机抛出一枚质地均匀的硬币,落地后正面可能朝上,是随机事件.故选C.点评:本题考查了必然事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.(3分)(2013?包头)用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为()A.B.C.D.考点:圆锥的计算.分析:设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.解答:解:设圆锥底面的半径为r,根据题意得2πr=,解得:r=.故选D.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.9.(3分)(2013?包头)化简÷?,其结果是()A.﹣2 B.2C.D.﹣考点:分式的乘除法.专题:计算题.分析:原式先利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=﹣??=﹣2.故选 A点评:此题考查了分式的乘除法,分式的乘除法运算的关键是约分,约分的关键是找公因式.10.(3分)(2013?包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2考点:矩形的性质.分析:由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC 的一半,所以可得两个矩形的面积关系.解答:解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.点评:本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题.11.(3分)(2013?包头)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平行且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个考点:命题与定理.分析:根据矩形的判定以及圆周角定理、不等式的性质和二次根式的性质分别判断得出即可.解答:解:①若a>b,则c﹣a<c﹣b;原命题与逆命题都是真命题;②若a>0,则=a;逆命题:若=a,则a>0,是假命题,故此选项错误;③对角线互相平分且相等的四边形是矩形;原命题是假命题,故此选项错误;④如果两条弧相等,那么它们所对的圆心角相等,逆命题:相等的圆心角所对的弧相等,是假命题,故此选项错误,故原命题与逆命题均为真命题的个数是1个.故选:D.点评:此题主要考查了矩形、圆周角定理、二次根式、不等式的性质,熟练掌握相关性质是解题关键.12.(3分)(2013?包头)已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A.①②B.①③C.①③④D.①②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由对称轴及抛物线与x轴交点情况进行推理,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断.解答:解:①图象开口向上,对称轴在y轴右侧,能得到:a>0,﹣>0,则b<0,正确;②∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,∴当x=2时,y=4a+2b+c>0,错误;③当x=﹣1时,y=a﹣b+c>0,正确;④∵a﹣b+c>0,∴a+c>b;∵当x=1时,y=a+b+c<0,∴a+c<﹣b;∴b<a+c<﹣b,∴|a+c|<|b|,∴(a+c)2<b2,正确.所以正确的结论是①③④.故选C.点评:本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,将x=1,﹣1,2代入函数解析式判断y的值是解题关键,得出b<a+c<﹣b是本题的难点.二、填空题(共8小题,每小题3分,满分24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年内蒙古包头市中考数学试卷及答案(Word解析版)
一、选择题(本大题共12小题,每小题3分,满分36分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑)
D
代入进行计算即可.
解:原式=3×.
3.(3分)(2013•包头)函数y=中,自变量x的取值范围是()
2
知,原方程的两根是(
6.(3分)(2013•包头)一组数据按从大到小排列为2,4,8,x,10,14.若这
8.(3分)(2013•包头)用一个圆心角为120°,半径为2的扇形作一个圆锥的
,然后解方程即可.
,解得:
9.(3分)(2013•包头)化简÷•,其结果是()
﹣
•=
10.(3分)(2013•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B
在EF边上,若矩形ABCD和矩形AEFC的面积分别是S
1、S
2
的大小关系是()
11.(3分)(2013•包头)已知下列命题:①若a>b,则c﹣a<c﹣b;
②若a>0,则=a;
③对角线互相平行且相等的四边形是菱形;
④如果两条弧相等,那么它们所对的圆心角相等.
=a
12.(3分)(2013•包头)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()
>
二、填空题(共8小题,每小题3分,满分24分。
请把答案填在各题对应的横线上)
14.(3分)(2013•包头)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是 3 .
15.(3分)(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=28 度.
,
16.(3分)(2013•包头)不等式(x﹣m)>3﹣m的解集为x>1,则m的值为 4 .
17.(3分)(2013•包头)设有反比例函数y=,(x
1,y
1
),(x
2
,y
2
)为其图
象上两点,若x
1<0<x
2
,y
1
>y
2
,则k的取值范围k<2 .
图象上两点,若
18.(3分)(2013•包头)如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为 4 .
,
19.(3分)(2013•包头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2 .
,
20.(3分)(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则
∠BE′C=135 度.
三、解答题(本大题共6小题,共60分。
请将必要的文字说明、计算过程或推理过程写在对应位置)
21.(8分)(2013•包头)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.
(1)试用列表或画树形图的方法,求甲获胜的概率;
(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.
=
22.(8分)(2013•包头)如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.
(1)求OB的长;
(2)当AA′=1米时,求BB′的长.
米,
米,
Rt△A′OB′中,OB′=2米,
)米.
23.(10分)(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
24.(10分)(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC 的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE 的值.
,
=,
,
25.(12分)(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图①,当时,求的值;
(2)如图②当DE平分∠CDB时,求证:AF=OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
)解:∵
,
=
=
=
=
=
=
26.(12分)(2013•包头)已知抛物线y=x2﹣3x﹣的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.
(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC 相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(﹣,0)和点F(0,﹣),直线l经过E、F两点,点G是线段BD 的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.
==
,,
=
,。