考研管理类联考数学真题解析与答案完美
考研管理类联考数学真题解析与答案完美版
22021考研管理类联考数学真题解析与答案下载〔完美版〕1.某车间方案10天完成一项任务,工作3天后因故停工2天。
假设要按原计划完成任务,那么工作效率需要提高〔〕.A.20%B.30%C.40%D.50%E.60%解析:利用工作量相等建立等量关系,设工作效率需要提高x,那么丄17 — (1 x) 5,解得x 40%,应选Co10102.设1函数f (x) 2x鸟(a 0)在x0,内的最小值为f(x°)12,那么x。
( )A.5B.4C.3D.2E.1解析: :利用均值不等式,f 〔x〕x a 3ax 2 33 x x —2x x33 a12,那么a64 , 当且仅当x x —2时成立,因此x 4 , 应选B。
x3.某影城统计了一季度的观众人数,如图,那么一季度的男女观众人数之比为〔〕A.3:4B.5:6C.12:13D.13:12E.4:3解析:由图可以看出,男女人数之比为乞丄5 12,应选Co3 4 6 134.设实数a,b满足ab 6, a b a b 6,那么a2 b2( )A.10B.11C.12D.13E.14解析:由题意,很谷易能看出 a 2,b 3或 a 2,b 3,所以a2 b213,应选Do5.设圆C与圆〔x5)2y2 2关于y2x对称,那么圆C的方程为〔)A. (x 3)2 (y 4)22B.(x4)2 (y 3)22C. (x 3)2 (y 4)22D.(x3)2 (y 4)2222•〔X 3〕 〔y 4〕2解析:根据对称,找出对称圆心的坐标为 3,4,半径不变,应选E 。
6.在分别标记1,2,3,4,5 ,6的6张卡片,甲抽取1张,乙从余下的卡片中 再抽取2张,乙的卡片数字之和大于甲的卡片数字的概率为〔 〕11A.B. 60 邑C. 43D.兰E.弓60 60 60 60解析:属于古典概型’用对立事件求解’p 1 甘 60,应选°7.将一批树苗种在一个正方形花园边上,四角都种,如果每隔 3米种一棵, 那么剩下10棵树苗,如果每隔2米种一棵,那么恰好种满正方形的3条边, 那么这批树苗有〔 〕棵 A.54B.60C.70D.82E.94解析:植树问题,设树苗总数为x ,正方形花园的边长为a , 那么2〔X ;0〕'解方程组得x 82,应选D8.10名同学的语文和数学成绩如表:语文和数学成绩的均值分别为E 1和E 2,标准差分别为1和 2,那么〔〕 解析:根据均值,方差和标准差的计算公式,可得 E 1 E 2, 1 2,应选B 9. 如图,正方体位于半径为3的球内,且一面位于球的大圆上,那么正方体表 面积最大为〔〕EA. E 1E2,1B.E 1C.E 1D. E 1 E 2 , 1 2E.E 1E2,1 2解析:根据勾股定理计算,设正方体边长为 a , a 2 〔^a 〕2 32,得a -、石, 2面积为6a 2 36,应选E 。
2022年管理类联考199数学真题和答案
2022年管理类联考199数学真题和解析一.问题求解:1. 一项工程施工3天后,因故停工2天,之后工程队的工作效率提高20%,仍能按原计划完成工作,则原计划工期为( )A.9 天B.10天C.12天D. 15天E.18天答案:D考点:工程问题2. 某商品的成本利润率为12%,若其成本降低20%而售价不变,则利润率为( )A. 32%B.35%C. 40%D. 45%E.48%答案:C考点:价格类应用题223.(,)452213.1..2..322f x y x xy y y A B C D E =++-+设x,y 为实数,则的最小值为()答案:A考点:完全平方式,配方法,非负3. 如图,ABC ∆为等腰直角三角形,以A 为圆心作原话交AC 于D,交BC 于E,交AB 的延长线于F,若曲边三角形CDE 与曲边三角形BEF 的面积相等,则()AD AC =A.答案:E考点:三角形面积,扇形面积4.如图,长方形里面有6个圆,已知相邻的圆都相切,从这6个圆中随机取两个,则这两个圆不相切的概率为( ) A. 815 B. 715 C. 35 D. 25 E. 23答案:A考点:古典概率6.如图,在棱长为2 的正方体中,A,B 是顶点,C,D 是所在棱的中点,则四边形ABCD 的面积为( )A.92B. 72C. 2D. 答案:A考点:正方体,等腰梯形面积7.桌子上放有8只杯子,将其中的3只杯子翻转(杯口朝上与朝下互换)作为一次操作,8只杯口朝上的杯子经n 次操作后,杯口全部朝下,则n 的最小值为( )A.3B.4C.5D.6E.8答案:B考点:最值问题解析:将8只杯子分别标记为1,2,3,4,5,6,7,8.第1次翻1,2,3;第2次翻4,5,6;第3次翻1,2,7第4次翻1,2,8选B8.某公司有甲,乙,丙三个部门,若从甲部门调26人到丙部门,则丙部门人数是甲部门的6倍,若从乙部门调5人到丙部门,则丙部门与乙部门人数相等,则甲,乙两部门的人数之差除以5的余数为( )A.0B.1C.2D.3E.4答案:C考点:三元一次方程组应用题,余数9.在直角ABC ∆中,D 为斜边AC 的中点,以AD 为直径的圆交AB 于E,若ABC ∆的面积为8,则AED ∆的面积为( )A. 1B.2C. 3D. 4E.6答案:B考点:三角形相似10.一个自然数的各位数字都是105的质因数,且每个质因数最多出现一次,这样的自然数有( )A.6个B. 9个C. 12个D. 15个E.27个答案:D考点:质因数分解,排列组合11.购买A 玩具和B 玩具各1件需花费1.4元,购买200件A 玩具和150件B 玩具需花费250元,则A 玩具的单价为( )A.0.5元B.0.6 元C.0.7元D.0.8 元E.0.9元答案:D考点:二元一次方程组应用题12.甲,乙两支球队进行比赛,比分为4:2且在比赛过程中乙队没有领先过,则不同的进球顺序有( )A.6种B. 8种C. 9种D. 10种E.12种答案:C考点:排列组合,分类法解析:因为乙没有领先过,所以第1个球是甲进的分类:1)第2个球为甲,后面4个球中任选2球是乙队进的。
2024年管理类专业联考综合能力数学试题及解析
2024年管理类专业联考综合能力数学试题及解析2024年管理类专业联考综合能力数学试题及解析一、试题回顾在2024年的管理类专业联考综合能力考试中,数学部分保持了以往的风格和难度。
整体题型设计注重基础,涵盖了各类数学知识点,主要涉及初等数学、微积分、线性代数和概率论与数理统计。
试题数量为30道,每道题目分值相同,均为2分,总分为60分。
二、考察重点今年的数学试题主要考察了考生的基本数学素养,包括运算能力、推理能力、应用能力和逻辑思维能力。
其中,重点考察了以下知识点:1、初等数学:主要涉及代数、几何、三角函数等知识点,注重对基本概念的理解和运用。
2、微积分:考察考生对微积分基本概念的理解和计算能力,包括导数、微分、积分等。
3、线性代数:主要测试考生对线性方程组、矩阵、向量等基本概念的理解和运算能力。
4、概率论与数理统计:考察考生对概率、统计方法的掌握,如概率分布、参数估计、假设检验等。
三、解题技巧针对不同的知识点,考生需要运用相应的解题技巧。
例如:1、对于初等数学问题,考生应熟练掌握各种代数和几何方法的运用,如因式分解、三角函数变换等。
2、对于微积分问题,考生需要理解微积分的核心概念,掌握导数和积分的计算方法。
3、在线性代数部分,考生需要理解矩阵的性质和运算规则,能够熟练解决线性方程组的问题。
4、在概率论与数理统计部分,考生需要理解各种概率分布的性质和计算方法,能够熟练运用统计方法进行数据分析。
四、备考建议针对未来的备考,我们提出以下建议:1、夯实基础:考生应注重对基本概念的理解和掌握,确保对数学基础知识的掌握扎实。
2、强化训练:通过大量的练习题和模拟试题,强化对知识点的理解和运用能力。
3、提高效率:在备考过程中,要注重提高解题速度和准确率,为考试做好准备。
4、关注真题:通过研究历年真题,了解考试出题风格和难度,为考试提供参考。
五、总结总体来说,2024年管理类专业联考综合能力数学试题保持了较高的难度水平,注重基础知识和应用能力的考察。
考研管理类联考综合能力数学真题答案以及解析
2021考研管理类联考综合能力数学真题答案以及解析2021考研管理类联考数学真题答案如下:1—5 BABAE 6—10 BCCEC11—15 ECADD 16—20 BDAAD21—25ADCED2021考研管理类联考数学真题答案以及解析一、问题求解:第1~15小题,每题3分,共45分,以下每题给出的A 、C 、C 、D 、E 五个选项中,只有一项为哪一项符合试题要求的。
1.学科竞赛设一、二、三等奖,比例1:3:8获奖率30%,10人已获一等奖,那么参赛人数〔〕.A.300B.400C.500D.550E.600 解析:比例问题应用题。
由总量=分量÷分量百分比可得参赛总人数为:10÷〔30%÷12〕=400人,选B 。
2.为了解某公司员工年龄构造,按男女人数比例进展随机抽样,结果如下:男员工年龄〔岁〕 23 26 28 30 32 34 36 38 41女员工年龄〔岁〕 23 25 27 27 29 31据表中数据统计,该公司男员工的平均年龄与全体员工平均年龄分别是〔〕.A.32,30B.32,29.5C.32,27D.30,27E.29.5,27解析:平均值问题。
由表可知,男员工的平均年龄=32,女员工的平均年龄=27,男女员工人数之比=9:6=3:2,总平均年龄为305227332=⨯+⨯,选A 。
3.某单位分段收费收流量〔单位:GB 〕费:每日20〔含〕GB 以免,20到30〔含〕每GB 收1元,30到40〔含〕每GB 3元,40以上每GB 5元,小本月用45GB 该交费〔〕元.A.45B.65C.75D.85E.解析:分段计费,可知应该缴费"10+10×3+5×5=65〞,选B 。
4.圆O 是△ABC 切圆△ABC 面积与长比1:2,那么图O 面积〔〕.A.πB.2πC.3πD.4πE.5π解析:平面几求面积问题。
设切圆的半径为r ,△的三边为c b a ,,,那么2:1)(:2)(=++⨯++c b a r c b a ,化简可得,1=r 圆的面积为π,选A 。
考研199管理类联考综合数学真题以及答案
考研199管理类联考综合数学真题以及答案(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2012年1月真题一、问题求解:第1~15小题,每小题3分,共45分。
下列每题给出的,,,,A B C D E五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选项的字母涂黑。
1、某商品定价200元,受金融危机影响,连续2次降价20%后的售价为()A.114 B.120 C.128 D.144 E.1602、如图2,三个边长为1的正方形所组成区域(实线区域)的面积()32333A. 32B.3C.3 3D.3E.3-----4243、在一次捐赠活动中,某人将捐赠的物品打包成件,其中帐篷和食品共320件,帐篷比食品多80件,则帐篷的件数是()A.180B.200C.220D.240E.260a b c分别是为,,的边长,则:()4、如图,三角形ABC是直角三角形,,,为正方形,已知,,2222222333333=+=+=+=+=+...22.22A a b cB a b cC a b cD a b cE a b c5、如图,一个储物罐的下半部分是底面直径与高均是20m的圆柱体,上半部分(顶部)是半球形的,已知底面与项部的造价是400元/,侧面的造价是300元/,该储物罐的造价是()万元A.56.52B.62.8C.75.36D.87.92E.100.486、在一次商品促销活动中,主持人出示了一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右面相邻的3个数字组成的3位数,若主持人出示的是的513535319,则一顾客猜中价格的概率是()11121.....A B C D E965727、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列()次A.3000 B.3003 C.4000 D.4003 E.43008、甲、乙、丙三个地区公务员参加一次测评,其人数和如下表:三个地区按平均分从高到低的排列顺序为()A.乙、丙、甲B. 乙、甲、丙C. 甲、丙、乙D.丙、甲、乙E. 丙、乙、甲34地区/分数6 7 8 9 甲 10 10 10 10 乙 15 15 10 20 丙101015159、经统计,某机构的一个安检口每天中午办理安检手续的乘客人数及对应的概率如下表: 安检口2天中至少有1天中午办理安检手续的乘客人数大于15人的概率是( ) 顾客人数 0--5 6--10 11--15 16--20 21--25 26以上 概率0.10.20.20.250.20.05.0.2.0.25.0.4.0.5E. 0.75A B C D10、某人在保险柜中存放了M 元现金,第一天取出它的,以后每天取出的前一天所取的,共取了7天,保险柜中剩余的现金为( )77766222.....[1()]33333M M M M A B C D E M- 11、在直角坐标系中,若平面区域D 中虽有的点的坐标(),x y 均满足:,,,则面积是( )999.(14).9(4).9(3).(2).(1)44444A B C D E πππππ+--++12、某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组共用3天完成,已知甲组每天比乙组多植树4棵,则甲组每天植树()棵A.11B.12C.13D.15E.1713、有两队打羽毛球,每队派出3男2女参加5局单打比赛,第二局和第四局为女生,那么每队派队员出场的方式有几种()A. 12B.10C.8D.6E.414、若32x x-+整除,则()+++能被232x x ax b===-=-==-=-==-=.4,4.4,4.10,8.10,8.2,0A a bB a bC a bD a bE a b15、某公司计划运送180台电视机和110台洗衣机下乡,现有两种货车,甲种货车每辆最多可载40台电视机和10台洗衣机,乙种货车每辆最多可载20台电视机和20台洗衣机,已知甲、乙两种货车的租金分别是每辆400元和360元,则最少的运费是()元A. 2560B.2600C.2640D.2680E.2720二、充分性条件判断:第16~25小题小题,每小题3分,共30分。
2020年管理类联考数学真题解析(众凯MBA辅导)
200 元减 m 元.如果每单减 m 元后实际售价均不低于原价的 8 折,那么 m 的最大
值为( )。
A.40
B.41
C.43
D.44
E.48
【答案】B 【解析】满 200 元的最低组合为:55+75+75=205 元,则打八折之后为 164 元, 所以 205 m 164 m 41,所以最大值为 41 元。
2
0
,则
x3
1 x3
(
)
A.12
B.15
C.18
D.24
E.27
【答案】C
【解析】
x2
1 x2
3x
3 x
2
0
(x
1 )2 x
3(x
1) x
0
x
1 x
3
,进而可得
x2
1 x2
7 ,所以 x3
1 x3
(x
1 )(x2 x
1
1 x2
)
18 。
8.某网店对单价 55 元、75 元、80 元的三种商品进行促销,促销策略是每单满
分子: C41 C62
60
,所以其概率为
C41 C62 C130
1。 2
5.若等差数列 an 满足 a1 8 ,且 a2 a4 a1 ,则 an 的前 n 项和的最大值为
( )。
A.16
B.17
C.18
D.19
E.20
【答案】E
【解析】由
管理类联考MBA综合数学真题及解析
一、问题求解(本大题共15题,每小题3分,共45分。
在下列每题给出的五个选项中,只有一项是符合试题要求的。
请在答题卡上将所选的字母涂黑。
)1、某部门在一次联欢活动中设了26个奖,奖品均价为280元,其中一等奖单价为400元,其他奖品价格为270元.一等奖的个数为( ) (A )6个(B )5个(C )4个(D )3个(E )2个 分析:126213x ⇒=⨯=, 答案:E2、某单位进行办公装修,若甲、乙两个装修公司合做需10周完成,工时费为100万元.甲单独做6周后由乙公司接着做18周完成,工时费为96万元.甲公司每周的工时费为( )(A )万元(B )7万元(C )万元(D )6万元(E )万元 分析:设甲、乙每周的工时费分别为,x y ;()1010061896x y x y ⎧+=⎪⎨+=⎪⎩73x y =⎧⇒⎨=⎩,答案:B. 3、如图示,已知3AE AB =,2BF BC =,若ABC ∆的面积为2,则AEF ∆的面积为( ) (A )14(B )12(C )10(D )8(E )6分析:根据三角形面积的性质:两三角形同底,面积比即为高的比.24ABC ABF S S =⇒=V V (两个三角形同底AB,高比为:2:1BF BC =),8BFE S ⇒=V (同三角形ABF ,同底BF ,高的比为:2:1BE AB =)故12S =,答案:B.4、某容器中装满了浓度为90%的酒精,倒出1升后用水将容器充满,搅拌均匀后再倒出升,再用水将容器充满.已知此时的酒精浓度为40%,则该容器的容积是( ) (A )升 (B )3升 (C )升 (D )4升(E )升分析:设该容器的容积是x ,22211290%140%133x x x ⎛⎫⎛⎫⎛⎫⨯-=⇒-=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答案:B. 5、如图,图A 与图B 的半径为1,则阴影部分的面积为( )(A )23π (B )(C )3π(D )23π-E )23π-分析:阴影部分所对的圆心角为120o ,阴影面积的一半为一个圆心角为120o 减去一个等腰三角形,即有2120112223602232S S rππ⎛⎫==-=-⎪⎝⎭小.答案:E6、某公司投资一个项目,已知上半年完成了预算的13,下半年完成剩余部分的23,此时还有8千万投资未完成,则该项目的预算为()(A)3亿(B)亿(C)亿(D)亿(E)亿分析:设该项目的预算为x,2220.8 3.6333x x⎛⎫-⨯=⇒=⎪⎝⎭.答案:B.7、甲乙两人上午8:00分别自A、B出发相向而行,9:00第一次相遇之后速度均提高了公里/小时,甲到B、乙到A后立即原路返回.若两人在10:30第二次相遇,则A、B两地相距()公里(A)(B)7(C)8(D)9(E)分析:设两人的速度分别为12,v v,两地距离为S,1212()19(3) 1.52v v SSv v S+⨯=⎧⇒=⎨++⨯=⎩,答案:D.8、已知{}na为等差数列,且2589a a a-+=,则129a a a+++=L()(A)27 (B)45(C)54(D)81(E)162分析:法一,285529a a a a+=∴=Q,1295981a a a a+++==L;法二,特值法,令等差数列公差为0,则有9n a =,1299981a a a +++=⨯=L ;答案:D.9、在某项活动中,将3男3女6名志愿者都随机地分成甲、乙、丙三组,每组2人,则每组都是异性的概率为( ) (A )190(B )115(C )110(D )15(E )25分析:事件发生的可能总数为:22264233C C C P ,满足所求事件的可能数为:11111133221133C C C C C C P , 因此概率62155p ==.答案:E 10、已知直线l 是圆225x y +=在点(1,2)处的切线,则l 在y 轴上的截距为( ) (A )25(B )23(C )32(D )52(E )5分析:在圆222x y r +=上某一点()00,x y 的切线方程为:200x x y y r +=; 因此有该切线为:25x y +=1522y x ⇒=-+,在y 轴上的截距为52,答案:D.11、某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮流到4个部门中的其他部门任职,则不同方案有( )种 (A )3 (B )6(C )8(D )9(E )10分析:这是4人错排法,方案有339⨯=种,答案:D.经验公式:错排法的递推公式()()211n n n D n D D --=-+,明显又有10D =,21D =,故32D =,49D =.当求别的数的错排法方案数时,依次类推.12、如图,正方体''''ABCD A B C D -的棱长为2,F 是棱''C D 的中点,则AF 的长为( )(A )3 (B )5(CD )E )分析:'AA F ∆为直角三角形,又'A F =3AF =.答案:A.13、某工厂在半径为5cm 的球形工艺品上镀一层装饰金属厚度为0.01cm ,已知装饰金属的原材料为棱长为20cm 的正方体锭子,则加工10000个该工艺品需要的锭子数最少为( )( 3.14π=,忽略装饰损耗)(A )2 (B )3(C )4(D )5(E )20分析:每个工艺品需要的材料体积为:()()332244450.0150.01 5.01+5.015+5333ππππ+-=⨯⨯⨯≈.故需要的个数为:310000 3.93420π≈<,则最少需要4个.答案:C 14、若几个质数的乘积为770,则它们的和为( ) (A )85 (B )84(C )28(D )26(E )25分析:77011752=⨯⨯⨯,和为1175225+++=.答案:E15、掷一枚均匀的硬币若干次,当正面向上次数大于反面次数时停止,则4次内停止的概率为( )(A )18(B )38(C )58(D )316(E )516分析:一次停止的概率为:12,两次停止没有可能,三次停止的概率为:11112228⨯⨯=,四次没有可能.故58p =.二、条件充分性判断(本大题共10小题,每小题3分,共30分) 解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论。
[VIP专享]105-2015考研专硕管理类联考综合能力数学真题及答案解析
所以该公司总人数为 x y 90 150 240 ,故选 D.
150
y
y
4 5
y 5
x
.
,求解得
x 90
y 10 2(x 10)
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM
2020考研管理类联考数学真题及答案解析
2020考研管理类联考数学真题及答案解析来源:文都教育1. 某产品去年涨价10%,今天涨价20%,则该产品这两年涨价( )A.15%B.16%C.30%D.32E.33%【答案】D.32%【解析】()()110%120%132%++-=2. 设{}||1,A x x a x R =-<∈,{}||2,B x x b x R =-<∈,则A B ⊂的充分必要条件是( )A.||1a b -≤B.||1a b -≥C.||1a b -<D.||1a b ->E.||1a b -=【答案】A.1a b -≤【解析】11x a -<-<⇒11a x a -<<+2222x b b x b -<-<⇒-<<+2112A B b a a b ⊂⇒-≤-<+≤+ 所以1a b -≤3.总成绩=甲成绩×30%+乙成绩×20%+丙成绩×50%,考试通过的标准是每部分≥50分,且总成绩≥60分,已知甲成绩70分,乙成绩75分,且通过这项考试,则以下两成绩的分数至少是( )A.48B.50C.55D.60E.62【答案】B.50【解析】7030%7520%50%6050x x ⨯+⨯+≥⎧⎨≥⎩4850x x ≥⎧⇒⎨≥⎩故丙的成绩至少是50分4.从1至10这10个整数中任何取3个数,恰有1个质数的概率是( ) A.23 B.12 C.512 D.25 E.1120【答案】B.1/2【解析】216431012C C p C ==5.若等差数例[]n a 满足8a =,且24a a a +=,则[]n a 前n 项和的最大值为( )A.16B.17C.18D.19E.20【答案】E.20【解析】243128a a a a +===34a ⇒=31231a a d -⇒==-- 532440a a d ⇒=+=-=所以n 项和的最大值为53520S a ==6.已知实数x 满足2213320x x x x +--+=,则331x x +=( ) A.12 B.15 C.18 D.24 E.27【答案】C.18 【解析】原式可化简为21130x x x x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭ 即1130x x x x ⎛⎫⎛⎫++-= ⎪⎪⎝⎭⎝⎭ 1130x x x x ⎛⎫⇒+= += ⎪⎝⎭舍掉 2323211111333618x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⇒+=+-+=⨯+-=⨯= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 7.设实数,x y 满足()()22222x y -+-≤,则22x y +的取值范围是( )A.[2、18]B.[2、20]C.[2、36]D.[4、18]E.[4、20]【答案】B.[2,20]【解析】如图,直接得到:22221142x y +≤+≤+,即22220x y ≤+≤8.某网店对单价为55、75、80商品促销,每满200减M,每单减M 后不低于原价8折,M 最大多少? ( )A 40 B41 C43 D44 E48【答案】B41【解析】55元,75元,80元组合大于200的最低组合为75255205⨯+=2052050.841m m -≥⨯⇒≤9.某人在同一观众群体中调查了五部电影的看法,得到数据如下:好 0.25,0.5,0.3,0.8,0.4差 0.75,0.5,0.7,0.2,0.6A.一三B.二三C.二五D.四一E.四二【答案】C.二、五10.如图,在△ABC 中,∠ABC=30°,将线段AB 绕点B 旋转至A ’B ,使∠A ’BC=60°,则△A ’BC 有△ABC 的面积之比的( ) A.1 B.2 C.2 D.2 E.3【答案】E.3【解析】如图 3'''sin 60'A H A B A B =⨯=⨯ 1sin 302AH AB AB =⨯=⨯ '3'2312A BC ABC AB S S AB ∆∆⨯==⨯ 11.已知数列{an}满足121,2a a ==,且21(,1,2,3,)n n n a a a n ++=-,则100a =( )A.1B.-1C.2D.-2E.0【答案】B.-1【解析】123456781,2,1,1,2,1,1,2,a a a a a a a a ====-=-=-==即周期为6, 1006164=⨯+,所以10041a a ==-12.如图,圆O 的内接三角形△ABC 是等腰三角形,底边BC=6,顶角为45°,则圆O 的面积为( )A.12πB.16πC.18πD.32πE.36π【答案】C.18π 【解析】三角形外接圆半径2sin sin sin a b c R A B C===,所以半径2sin BC R A ===∠R =218S R ππ==13.甲乙两人在相距1800m 的AB 两地,相向运动,甲的速度100m/分钟,乙的速度80m/分钟,甲乙两人到达对面后立即按原速度返回,则两人第三次相遇时,甲距其出发点( )A.600B.900C.1000D.1400E.1600【答案】D.1400【解析】第三次相遇共走了5个全程 时间180055010080t ⨯==+ 甲走过的路程501005000S =⨯=5000180021400-⨯=14.节点A.B.C.D 两两相连,从个节点沿线皮到另一个节点当体涉,若机器人从节点A 出发,随机走了3步,则机器人未到达节点C 的概率为( ). A.49 B.1121 C.1027 D.1927 E.827【答案】E.827【解析】总的方法数为33,不经过C 点的方法数为32,所以3328327P == 15.某科室有4台男职员,2名职员,若将这6名职员分为3组,每组2人,且女职员不同?A .4B .6C .9D .12E .15【答案】D .12【解析】方法数为114312C C =16.在△ABC 中,∠B=60°.则2c a >. (1)∠C 〈90°(2)∠C 〉90°【答案】B【解析】若90C ∠=,则2c a = 若要2c a>,需要90C ∠>17.2222x y x y +=+上的点到0ax by ++=的距离最小值大于1.(1)221a b +=(2)0,0a b >>【答案】C【解析】圆的方程为22(1)(1)2x y -+-=,到直线的距离为d =根据条件(1),则d a b =+,举例,当1,0a b =-=时不成立,故单独不成立,联合条件(2),如下图,虚线位置为最小值,即此时11d =>18.若a 、b 、c 是实数,则能确定abc 的最大值.(1)己知a 、b 、c 的平均值(2)已知a 、b 、c 的最小值.【答案】C 【解析】很明显单独不成立,考虑联合,a b c ++的值已知,假设最小值为c ,即已知a b +的值,同时,a b c ≥,能得出结论19.某高有20部手机,从中任选2部,则恰有1部甲的概率为p >1/2(1)甲手机不少于8部(2)乙手机大于7部.【答案】C【解析】设甲手机为x 部,则其他手机为20x -,由概率公式得11220220(20)2012019190221x x C C x x x x P C ---+===>⨯⨯,即2209501010x x x -+<⇒-<<+,x 取整数,即813x ≤<,与条件(1)和(2)的联合相同,故联合充分20.共有n 辆车,则能确定人数.(1)若每辆20座,1车来满.(2)若每辆12座,则少10个座.【答案】E【解析】两个条件均为提到几辆车,所以均不充分,联合亦不充分21.则能确定长方体的体积对角线(1)己知长方体,一个顶点的三个面的面积.(2)己知长方体,一个顶点的三个面的面对角线.【答案】D【解析】体对角线公式为L =条件(1)中,已知,,ab bc ca 的值,即可求出,,a b c 的值,因此可求出L ,充分;条件(2)中,亦可求出,,a b c 的值,因此可求出L ,充分22.已知甲、乙、丙三人共捐款3500元,能确定每人的捐款余额.(1)三人的捐款金额各不相同.(2)三人的捐款金额都是500的倍数.【答案】E【解析】如果知道各自的捐款比例,即可得出结论,条件(1)和(2)中,只是说不相同或者是500的倍数,没有捐款比例,故均不充分,不需要联合,故选E23.设函数()(1)(4)f x ax x =--,则在4x =左侧附近有()0.f x <(1)1.4a > (2) 4.a <【答案】A【解析】抛物线与x 轴有4x =位置的交点条件(1)中,开口朝上的抛物线,通过画图可得出结论成立,充分;条件(2)中,开口可能朝上,也可能朝下,也可能是斜率为负数的一次函数,通过画图不充分24.设,a b 是正实数,则11a b +存在最小值. (1)已知,a b 的值.(2)已知,a b 是方程2()20x a b x -++=的不同实根.【答案】D【解析】根据均值不等式,由结论中11a ba b ab ++=≥= 条件(1)中,已知ab 的值,即可知道结论的最小值,充分;条件(2)中,根据韦达定理,知道2ab =,亦可以得出结论中的最小值,充分,故选D 。
2023年MBA管理类联考数学真题与解析
一、问题求解:第1~15小题,每小题3分,共45分。
下列每题给出的A.B.C.D.E五个选项中,只有一项是符合试题要求的,请在答题卡上将所选项的字母涂黑。
1、品牌的电冰箱连续两次降价10%后的售价是降价前的()A.80%B.81%C.82%D.83%E.85%2、甲、乙、丙三种货车的载重量成等差数列,2辆甲种车和1辆乙种车满载量为95吨,1辆甲种车和3辆丙种车满载量为150吨。
则用甲、乙、丙各1辆车一次最多运送货物()吨A.125B.120C.115D.110E.105B.90C.115D.1264、其中一种机器人可到的区域是半径为1米的圆,若该机器人沿直线行走10米。
其过的区域的面积(单位:平方米)为()A.10?2C.20?2D.20?E.10?5、不等式某?1?某?2的解集为()A.??,1?B.??,?2?3?C.?1,?2?3??D.?1,??E.?,???3?26、在1与100之间,能被9整除的整数的平均值为()A.27E.63B.36C.45D.547、试卷由15道选择题组成,每道题有4个选项,只有一项是符合试题要求的,甲有6道题能确定正确选项,有5道题能排除2个错误选项,有4道题能排除1个错误选项。
若从每题排除后剩余的选项中选1个作为答案,则甲能得满分的概率为()11A.4?52311B.5?42311C.5?4231?3?D.4??2?4?51?3?E.4??2?4?58、公司用1万元购买了价格分别是1750元和950元的甲、乙两种办公设备,则购买的甲、乙办公设备的件数分别为()A.3,5C.4,4D.2,6E.6,2A.?1?84?1?44B.?1?88?1?48C.?1?42D.E.10、老师问班上50名同学周末复习的情况,结果有20人复习过数学,30人复习过语文,6人复习过英语,且同时复习了数学和语文的有10人,语文和英语的有2人,英语和数学的有3人。
若同时复习过这三门课的人数为0,则没有复习过这三门课程的学生的人数是()A.7B.8C.9D.10E.1111、甲从1,2,3中抽取一数,记为a,乙从1,2,3,4中抽取一数,记为b。
2022年MBA考研管综数学真题答案和解析(完整版)
2022年MBA考研管综数学真题答案和解析(完整版)第1题:可以用变效率法宝公式做,参考2019年。
第2题:结论是百分数,可以用特值法做。
第3题:非负性求最值。
第4题:看到与圆相关的题目一定要和圆心挂钩+夹角公式+反面求解+结论是比值:特值法。
第5题:概率列举法。
第6题:梯形求面积。
第7题:至少至多,这个需要整体思想来做,不太好想!第8题:不定方程,需要试数,但是可以用特值法来解。
第9题:说过今年全等和相似一定会考了。
第10题:质因数分解,古典概率要分类。
第11题:简单方程组。
第12题:比赛问题,条件推理。
第13题:基本不相邻问题。
第14题:冲刺密训3个人运动的原模型。
第15题:简单涂色问题。
第16题:81绝切割线定理,利用相似求。
第17题:绝对值几何意义。
第18题:加权平均值。
第19题:利用相似求+射影定理。
第20题:条充蒙猜之暗示型。
第21题:去年21年的最后一道题,求比值问题。
第22题:与2011年利用单调性求值问题一样。
第23题:求比值,1个方程+2个未知数+平方。
第24题:冲刺密训中等差数列为一次函数第25题:绝对值公式法。
数学部分答案:1.B2.A3.C4.B5.C6.D7.B8.E9.C10.A11.D 12.C 13.A 14.E 15.A 16.A 17.B 18.C 19.B 20.D 21.D 22.C 23.E 24.C 25.E。
2024年考研管综真题及参考答案解析
2024年考研管综真题及参考答案解析(一)数学部分1. 简答题(共5题,每题15分,共计75分)(1)已知函数f(x) = 3x^3 - 4x^2 + 2,求f(x)的单调递增区间。
(2)某公司计划进行一项新项目的投资,该项目的预期收益率为12%,投资成本为100万元,项目寿命为4年,每年可带来30万元的净收益。
假设折现率为8%,求该项目的净现值。
(3)某班有30名学生,其中男生18人,女生12人。
现从男生和女生中各抽取3人,求抽取到的男生和女生人数之和为6的概率。
(4)甲、乙、丙三人进行比赛,每场比赛胜者得2分,负者得0分,平局各得1分。
已知甲、乙、丙三人的胜率分别为0.6、0.5、0.4,求甲、乙、丙三人最终得分排名相同的概率。
(5)某商店进购一批商品,每件成本为200元,售价为300元,每卖出一件可获利100元。
假设商店每卖出10件商品,可以获得一次额外的500元奖励。
求商店卖出多少件商品时,总利润最大。
(二)逻辑部分(共30题,每题2分,共计60分)1. 加强论证题(共5题)(1)为了提高学生的综合素质,学校决定加强学生的体育锻炼。
以下哪项事实加强了这个论证?A. 学校的体育设施得到了改善。
B. 学生参加体育锻炼的人数增加。
C. 学生的身体素质得到了明显提高。
D. 学校的体育课时增加。
2. 分析推理题(共10题)(1)甲、乙、丙、丁四个人站成一排拍毕业照,其中甲必须站正中间,乙和丙两位同学站在一起,则不同的站法一共有()种。
A. 12B. 18C. 24D. 36(三)写作部分(共2题,每题35分,共计70分)1. 论证有效性分析题目:近年来,我国高校纷纷开展“双一流”建设,很多高校将大量资金投入到学科建设和科研工作中。
然而,有人认为,高校在追求“双一流”建设的过程中,忽视了人才培养这一根本任务。
请针对这一观点,进行论证有效性分析。
2. 论说文题目:随着科技的发展,人工智能逐渐走进了人们的生活。
管理类联考综合数学真题解析及答案
2021管理类联考综合数学真题解析及答案〔新东方在线版〕新东方在线2021考研管理类综合考试已结束。
新东方在线全国研究生入学考试研究中心专业硕士教研室对各科真题进行了深度全面逐一解析,帮助大家对自己的作答情况有一个整体、客观的认识,并希望能对广阔2021考的备考有所帮助。
以下是管理类综合数学局部真题及参考答案。
新东方在线名师提醒:由于试题为一题多卷,因此现场试卷中的选择题局部,不同考生有不同顺序。
请在 核对答案时注意题目和选项的具体内容。
一、问题求解:第1~15小题,每题3分,共45分。
以下每题给出的A 、B 、C 、D E 五个选项中,只有一项为哪一项符合试题要求的。
请在答题卡..上将所选项的字母涂黑。
1. 某部门在一次联欢活动中共设了 26个奖,奖品均价为280元,其中一等奖单价为400元, 其他奖品均价为270元,一等奖的个数为〔A 〕 6〔B 〕 5 〔C 〕 4 〔D 〕 3 〔E 〕 2 【答案】E【解析】设一等奖的个数为,那么其他奖品个数为,由题可得:,解得,所以答案选 E 。
【知识点】应用题-平均值问题【难易度】 ★☆☆☆☆2. 某单位进行办公室装修,假设甲、乙两个装修公司合作,需 10周完成,工时费为100万元, 甲公司单独做6周后由乙公司接着做18周完成,工时费为96万元。
甲公司每周的工时费为 〔A 〕 万元〔B 〕 7万元 〔C 〕 万元 〔D 〕 6万元 〔E 〕 万元 【答案】B【解析】设甲公司每周工时费为万元,乙公司每周工时费为万元,根据题意可得方程组 解得。
【知识点】应用题-工程问题3. 如图1,AE=3AB BF=2BC 假设厶ABC 的面积是2,那么厶AEF 的面积为【解析】利用等高三角形面积比等于底边比的性 应选B 。
【知识点】平面几何 4.某公司投资一个工程。
上半年完成了预算的,下半年完成了剩余局部的,此时还有8 千万元投资未完成,那么该工程的预算为〔A 〕 3亿元〔B 〕 亿元 〔C 〕 亿元 〔D 〕 亿元 〔E 〕 亿元【答案】B【解析】设某公司的投资预算为亿元,那么由题可知 (A ) 14(B ) 12 (C ) 10(D ) 8 (E ) 6 【答案】BB图1,即,解得所以答案选B。
管综历年考题
管综历年考题2024年管综数学真题解析1、甲股票上涨20%后价格与乙股票下跌20%后的价格相等,则甲、乙股票的原价格之比为:A.1:1B.1:2C.2:1D.3:2E.2:3解析:设甲股票原价为x,乙股票原价为y。
根据题意,1.2x=0.8y,解得x/y=2/3,故选E。
2、将3张写有不同数字的卡片随机地排成一排,数字面朝下。
翻开左边和中间的2张卡片,如果中间卡片上的数字大,那么取中间的卡片,否则取右边的卡片。
则取出的卡片上的数字的最大的概率为:A.5/6B.2/3C.1/2解析:题目涉及概率计算,具体解析较为复杂,但可以通过列举法或条件概率公式求解。
2023年管综真题解析1、简述市场经济及其优缺点:解析:市场经济:市场经济是一种资源配置方式,其核心特征是资源的配置由市场供需关系决定。
优点:自由度高,能够提供广泛的自主决策空间,激发创新和竞争;资源向效益最大化方向流动。
缺点:可能导致资源分配不均,带来经济危机和金融风险。
2、分析某公司因市场竞争激烈,面临沉重的市场销售压力,提出相应的解决办法:解析:解决办法:加大市场营销力度,提高品牌知名度和产品竞争力;优化产品,拓宽销售渠道。
2022年管综真题解析1、解释绩效管理的概念,并说明其对企业的作用:解析:绩效管理:绩效管理是通过对员工绩效的管理,以提高员工工作表现和组织整体绩效的管理过程。
作用:促进员工目标和组织目标的一致性;激发员工积极性和工作动力;提供有效的反馈和改进机制,帮助员工成长和发展;为组织决策提供数据支持,优化资源配置。
2021年管综真题解析1、某企业希望推出一款新产品,设计了一份问卷调查,内容包括产品需求、价格敏感度等方面,请说明该问卷的编制步骤和调查结果分析:解析:编制步骤:明确调查目的和研究问题;设计合理的问题和选项,确保可操作性。
调查结果分析:定量分析,通过统计和计算问卷结果的频次、平均数等指标,得出定量结论;定性分析,通过归纳和总结问卷结果,得出定性结论。
2023年管理类联考数学真题及详解
2023年管理类联考数学真题及详解一、问题求解:第1-15小题,每小题3分,共45分。
下列每题给出的A 、B ,C ,D 、E 五个选项中,只有一个选项是最符合试题要求的。
1.油价上涨5%后,加一箱油比原来多花20元,一个月后油价下降了4%,则加一箱油需要花()钱?A.384元 B.401元C.402.8元D.403.2元E.404元2.已知甲、乙两公司的利润之比为3:4,甲丙两公司的利润之比为1:2.若乙公司的利润为3000万元,则丙公司的利润为().A.5000元B.4500元C.4000元D.3500元E.2500万元3.一个分数的分子与分母之和为38,其分子分母都减去15,约分后得到31,则这个分数的分母与分子之差为().A.1B.2C.3D.4E.54.=-+3625A.2 B.3 C.6 D.22 E.325.某公司财务部有2名男员工,3名女员工,销售部有4名男员工,1名女员工,现要从中选2名男员工,1名女员工组成工作小组,并要求每部分至少有1名员工入选,则工作小组的构成方式有()种。
A.24B.36C.50D.51E.686.甲、乙两人从同一地点出发,甲先出发10分钟,若乙跑步追赶甲,则10分钟可追上;若乙骑车追赶甲,每分钟比跑步多行100米,则5分钟可追上,那么甲每分钟走的距离为()。
A.50mB.75mC.100mD.125mE.150m7.如图1,已知点),2,1(-A 点)4,3(B .若点)0,(m P 使得PA PB -最大,则()。
A.m=-5B.m=-3C.m=-1D.m=1E.m=38.由于疫情防控,电影院要求不同家庭之间至少间隔一个座位,同一家庭的成员座位要相连,两个家庭去看电影,一家3人,一家2人,现有一排7个相邻的座位,符合要求的坐法有()。
A.36种B.48种C.72种D.144种E.216种9.方程04232=---x x 的所有实根之和为()。
A.-4B.-3C.-2D.-1E.010.如图2,从一个棱长为6的正方体中截去两个相同的正三棱锥,若正三棱锥的底面边长24=AB ,则剩余几何体的表面积为()。
2024年考研199管理类综合能力数学真题及答案解析
2024 管综数学真题及解析一、问题求解: 第 1-15 小题,每小题 3 分,共 45 分。
下列每题给出的(A) 、(B) 、(C) 、(D) 、(E)五个选项 中, 只有一项是符合要求的。
请在答题卡上将所选项的字母涂黑。
1. 甲股票上涨 20%后价格与乙股票下跌 20%后的价格相等,则甲乙股票的原价格之比为 () A1:1 B. 1:2 C.2:1 D.3:2 E.2:32.将 3 张写有不同数字的卡片随机地排成一排,数字面朝下。
翻开左边和中间的 2 张卡片如果中间卡片 上的数字大,那么取中间的卡片,否则取右边的卡片。
则取出的卡片上的数字最大的概率为 () A 5/6 B 2/2 C 1/2 D 1/3 E 1/43. 甲、乙两人参加健步运动。
第一天两人走的步数相同,此后甲每天都比前一天多走 700 步,乙每天走的步数保持不变。
若乙前 7 天走的总步数与甲前 6 天走的总步数相同,则甲第 7 天走了( )步。
A.10500 B.13300 C.14000 D.14700 E.15400正确答案:D【考点】应用题&等差数列【解析】设甲、乙第 1 天步数均为 x ,则 甲第 7 天步数为10500 700 6 147004. 函数 f (x)的最小值为 ( )A. 12B.13C. 14D.15E.16正确答案:B 【考点】均值不等式正确答案:C【考点】古典概型:穷举法【解析】设 3 张卡片数字为 1 ,2 ,3 ,排列顺序有1, 2, 31, 3, 2 , 2, 1, 3, 2, 3, 1, 3,1, 2 , 3,2,1,符合条件的顺序有: 1,3,2 , 2,1,3 , 2,3,1 三种,P 正确答案:E【考点】 比和比例:等量方程式【解析】设甲股票价格 x ,乙股票价格y ,则1 20%x 1 20% y 700 7xx 10500 , ,6x【解析】5.已知点O(0,0),A(a,1),B(2,b),C(1,2),若四边形OABC 为平行四边形,则a+b=A.3B.4C.5D.6E.76.已知等差数列{a,}满足a ₂a ₃=a,a ₄+50, 且 a ₂+a ₃<a ₁+a ₅, 则 公 差 为 ( ) A.2 B.-2 C.5 D.-5 E.107.已知m,n,k 都是正整数,若m+n+k=10,则m,n,k 的取值方法有( )A.21种B.28种C.36种D.45 种E.55种8.如图1,正三角形ABC 边 长 为 3 , 以A 为圆心,以2为半径作圆弧,再分别以 B 、C 为圆心,以1为半径作圆弧,则阴影面积为()正确答案:B【考点】解析几何中点&画图【解析】根据四边形OABC 为平行四边形,则线段OB 的中点为一个点,则 a=1,b=3..a+b=4。
最新考研专硕管理类联考综合能力数学真题及答案解析
2015考研专硕管理类联考综合能力数学真题及答案解析一、问题求解:第1~15小题,每小题3分,共45分,下列每题给出的A 、B 、C 、D 、E 五个故选项中,只有一项是符合试题要求的,请在答题卡上将所故选项的字母涂黑.1. 若实数,,a b c 满足::1:2:5a b c =,且24a b c ++=,则222a b c ++=( ). A. 30 B. 90 C. 120 D. 240 E. 270 答案:E【解】 因为::1:2:5a b c =,所以12438a =⨯=,22468b =⨯=,524158c =⨯=.因此2222223615270a b c ++=++=,故选E.2. 设,m n 是小于20的质数,满足条件||2m n -=的{},m n 共有( ). A. 2组 B. 3组 C. 4组 D. 5组 E. 6组 答案:C【解】 小于20的质数为2,3,5,7,11,13,17,19满足题意要求的{},m n 的取值为{}3,5,{}5,7,{}11,13,{}17,19,故选C.3. 某公司共有甲、乙两个部门,如果从甲部门调10人到乙部门,那么乙部门人数是甲部门的2倍,如果把乙部门员工的15调到甲部门,那么两个部门的人数相等,该公司的总人数为( ).A. 150B. 180C. 200D. 240E. 250 答案:D【解】 设甲部门有x 人,乙部门有y 人,根据题意有102(10)455y x y x y +=-⎧⎪⎨+=⎪⎩,求解得90150x y =⎧⎨=⎩. 所以该公司总人数为90150240x y ==+=,故选D.4. 如图1所示,BC 是半圆直径,且4BC =,30ABC ∠=,则图中阴影部分的面积为( ).A. 433π-B. 4233π-C. 433π+D. 4233π+E. 223π-图1 答案:A【解】 设BC 的中点为O ,连接AO . 显然有120AOB ∠=,于是阴影部分的面积AOB S S S ∆=-扇形211422313323ππ=⨯⨯-⨯⨯=-,故选A.5. 有一根圆柱形铁管,管壁厚度为0.1米,内径1.8米,长度2,若该铁管熔化后浇铸成长方形,则该长方形体体积为( )(单位3m , 3.14π≈).A. 0.38B. 0.59C. 1.19D. 5.09E. 6.28 答案:C【解】 显然长方体的体积等于铁管的体积,且外圆半径1R =,内圆半径0.9r =.所以222()(10.9)2 3.140.192 1.1932V R r h πππ=-=-⨯=⨯⨯=,故选C.注:可以近似计算10.920.12 1.19322V π+=⨯⨯=,故选C.6. 某人家车从A 地赶入B 地,前一半路程比计划多用时45分钟,平均速度只有计划的80%,若后一半路程的平均速度为120千米/小时,此人还能按原定时间到达B 地,则A 、B 的距离为( )千米.A. 450B. 480C. 520D. 540E. 600 答案:D【解】 设A 、B 的距离为S ,原计划的速度为v ,根据题意有320.824S S v v -=⨯,6S v⇒=,于是,实际后一半段用时为1396244t =⨯-=. 因此,A 、B 的距离为921205404S =⨯⨯=,故选D.7. 在某次考试中,甲乙丙三个班的平均成绩分别为80,81和81.5,三个班的学生得分之和为6952,三个班共有学生( ).A. 85B. 86C. 87D. 88E. 89 答案:B【解】 设甲乙丙三个班的人数分别为x ,y ,z .根据题意有:808181.56952x y z ++=.于是80() 1.56952x y z y z ++++=,80()6952x y z ⇒++<,所以86.9x y z ++<. 显然x ,y ,z 的取值为正整数. 若86x y z ++=,则 1.572y z +=;若85x y z ++=,则 1.5152y z +=,0.567z x ⇒-=,即1342134z x =+>,矛盾.故选B.8. 如图2所示,梯形ABCD 的上底与下底分别为5,7,E 为AC 和BD 的交点,MN 过点E 且平行于AD ,则MN = ( ).A. 265B. 112C. 356D. 367E. 407图2答案:C【解】 因为AD 平行于BC ,所以AED ∆和CEB ∆相似. 所以57ED AD BE BC ==. 而BEM ∆和BDA ∆相似,所以712ME BE AD BD ==,因此7351212ME AD =⨯=.同理可得7351212EN AD =⨯=.所以356MN ME EN =+=,故选C.9. 一项工作,甲乙合作需要2天,人工费2900元,乙丙需4天,人工费2600元,甲丙合作2天完成了56,人工费2400元,甲单独做该工作需要的时间和人工费分别为( ).A. 3天,3000元B. 3天,2850元C. 3天,2700元D. 4天,3000元E. 4天,2900元 答案:A【解】 设甲,乙,丙三人单独完成工作的时间分别为x ,y ,z ,根据题意有:1112111411512x y y z y x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,115122124x ⇒=+-,所以3x =. 设甲,乙,丙三人每天的工时费为a ,b ,c ,根据得 2()29004()26002()2400a b b c c a +=⎧⎪+=⎨⎪+=⎩,2(14501200650)a ⇒=+-,因此1000a =. 因此,甲单独完成需要3天,工时费为310003000⨯=,故选A.10. 已知1x ,2x 是210x ax --=的两个实根,则2212x x +=( ).A. 22a +B. 21a +C. 21a -D. 22a - E. 2a + 答案:A【解】 由韦达定理得12x x a +=,121x x =-.所以2222121212()22x x x x x x a +=+-=+,故选A.11. 某新兴产业在2005年末至2009年末产值的年平均增长率为q ,在2009年末至2013年的年平均增长率比前四年下降了40%,2013年的产值约为2005年产值的14.46(41.95≈)倍,则q 约为( ).A. 30%B. 35%C. 40%D. 45%E. 50% 答案:E【解】 设2005年的产值为a ,根据题意:2013年的产值为44(1)(10.6)a q q ++. 于是444(1)(10.6)14.46 1.95a q q a a ++==,所以(1)(10.6) 1.95q q ++=. 整理得26169.50q q +-=,解得0.5q =或9.53q =-(舍去),故选E.12. 若直线y ax =与圆22()1x a y -+=相切,则2a =( ).A.B.C.E. 答案:E【解】 显然圆的圆心为(,0)a ,半径为1r =.1=,()22210a a ⇒--=.解得2a =2a =舍去),故选E.13.设点(0,2)A 和(1,0)B ,在线段AB 上取一点(,)(01)M x y x <<,则以x ,y 为两边长的矩形面积最大值为( ).A. 58B. 12C. 38D. 14E. 18答案:B【解】 易得直线AB 的方程为012001y x --=--,即12yx +=. 以x ,y 为两边长的矩形面积为S xy =.根据均值不等式有:12y x =+≥12xy ⇒≤. 所以,矩形面积S 的最大值为12,故选B.14. 某次网球比赛的四强对阵为甲对乙,丙对丁,两场比赛的胜者将争夺冠军,选手之A. 0.165B. 0.245C. 0.275D. 0.315E. 0.330 答案:A【解】 甲要获得冠军必须战胜乙,并且战胜丙及丁的胜者. 甲在半决赛中获胜的概率为0.3;甲在决赛中获胜的概率为0.50.30.50.8⨯+⨯;因此,甲获胜的概率为0.3(0.50.30.50.8)0.165⨯⨯+⨯=,故选A.15. 平面上有5条平行直线,与另一组n 条平行直线垂直,若两组平行线共构成280个矩形,则n =( ).A. 5B. 6C. 7D. 8E. 9 答案:D【解】 从两组平行直线中任选两条则可构成一个矩形,于是225280n C C ⨯=,即(1)56n n -=,解得8n =,故选D.二、条件充分性判断:第16~30小题,每小题2分,共30分.要求判断每题给出的条件(1)和条件(2)能否充分支持题干所陈述的结论.A 、B 、C 、D 、E 五个故选项为判断结果,请故选择一项符合试题要求的判断,在答题卡上将所故选项的字母涂黑.A :条件(1)充分,但条件(2)不充分B :条件(2)充分,但条件(1)不充分C :条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分D :条件(1)充分,条件(2)也充分E :条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分16. 信封中装有10张奖券,只有一张有奖. 从信封中同时抽取2张,中奖概率为P ;从信封中每次抽取1张奖券后放回,如此重复抽取n 次,中奖概率为Q ,则P Q <.(1)2n = (2)3n = 答案:B【解】 根据题意:同时抽两张,中奖的概率111921015C C P C ==. 若放回再重复抽取,则为贝努利试验,显然每次成功的概率为110p =.对于条件(1),当2n =时,中奖的概率为19119(1)101010100Q p p p =+-⨯=+⨯=,Q P <,因此条件(1)不充分.对于条件(2),当3n =时,中奖的概率为2(1)(1)Q p p p p p =+-⨯+-⨯()21919127110101010101000=+⨯+⨯=, Q P >,因此条件(2)充分.综上知:条件(1)不充分,条件(2)充分,故选B.17. 已知p ,q 为非零实数,则能确定(1)pq p -的值.(1)1p q += (2)111p q+=答案:B【解】 对于条件(1),取12p q ==,则2(1)pq p =--;若取13p =,23q =,则3(1)4pq p =--;因此条件(1)不充分.对于条件(2),因为111p qp q pq++==,所以p q pq +=. 于是1(1)p p pq p pq q p q q===--+-,因此条件(2)充分. 综上知:条件(1)不充分,条件(2)充分,故选B.18. 已知,a b 为实数,则2a ≥或2b ≥.(1)4a b +≥ (2)4ab ≥ 答案:A【解】 对于条件(1),如果2a <且2b <,则4a b +<. 于是由4a b +≥可得2a ≥或2b ≥,因此条件(1)充分.对于条件(2),取3a b ==-,显然4ab ≥,但不能得到结论成立,因此条件(2)不充分.综上知:条件(1)充分,条件(2)不充分,故选A.19. 圆盘222()x y x y +≥+被直线L 分成面积相等的两部分. (1):2L x y += (2):21L x y -= 答案:D【解】 圆222()x y x y +=+的圆心为(1,1),半径为r =对于条件(1),显然圆心在直线2x y +=上,于是直线L 将圆分成面积相等的两部分,因此条件(1)充分.对于条件(2),圆心在21x y -=上,于是直线L 将圆分成面积相等的两部分,因此条件(2)充分.综上知:条件(1)和条件(2)单独都充分,故选D.20. 已知{}n a 是公差大于零的等差数列,n S 是{}n a 的前n 项和,则10n S S ≥,12n =⋯,,(1)100a =(2)1100a a <答案:A【解】 对于条件(1),因为100a =,且公差0d >,所以11090a a d =-<. 因此100a =,110a >. 所以当10n =时n S 取最小值,因此10n S S ≥,故条件(1)充分. 对于条件(2),根据1100a a <且0d >可得10a <,100a >. 并不能确定n S 在何处取最小值,因此条件(2)不充分.综上知:条件(1)充分,条件(2)不充分,故选A.21. 几个朋友外出游玩,购买了一些瓶装水,则能确定购买的瓶装水数量. (1)若每人分三瓶,则剩余30瓶 (2)若每人分10瓶,则只有1人不够 答案:C【解】 显然,根据条件(1)和(2)单独都不能确定购买的瓶装水的数量,现将两者联立. 设人数为x ,购买的水的数量为y ,则33010(1)10y x x y x=+⎧⎨-<<⎩,10(1)33010x x x ⇒-<+<,于是304077x <<.所以5x =,45y =.因此条件(1)和(2)联立起来充分,故选C.22. 已知12122()()n n M a a a a a a -=++++,12221()()n n N a a a a a a -=++++,则M N >.(1)10a > (2)10n a a > 答案:B【解】 令221n S a a a -=++,则1()()n M a S S a =++,1()n n a S a S =++.所以111()()()n n n M N a S S a a S a S a a -=++-++=. 因此,条件(1)不充分,条件(2)充分,故选B.23. 设{}n a 是等差数列,则能确定数列{}n a . (1)160a a += (2)161a a =- 答案:C【解】 显然根据条件(1)和(2)单独都不能确定数列{}n a ,现将两者联立起来. 由161601a a a a +=⎧⎨=-⎩得1611a a =⎧⎨=-⎩或1611a a =-⎧⎨=⎩. 若1611a a =⎧⎨=-⎩,则612615a a d -==--,于是2755n n a =-+;若1611a a =-⎧⎨=⎩,则612615a a d -==-,于是2755n n a =-.综上知:条件(1)和条件(2)单独都不充分,联立起来充分,故选C.24. 已知123,,x x x 都是实数,x 为123,,x x x 的平均数,则1k x x -≤,=123k ,,. (1)1k x ≤,=123k ,, (2)10x = 答案:C 【解】 1233x x x x ++=,对于条件(1),31212333xx x x x -=--,则 112321143333x x x x x -≤++≤,同理可得243x x -≤,343x x -≤,因此条件(1)不充分.对于条件(2),若10x =,则233x x x +=,但不能保证1k x x -≤. 现将两者联立,则123112333x x x x -≤+≤,22321133x x x x -≤+≤, 32312133x x x x -≤+≤,因此两条件联立起来充分,故选C.25. 底面半径为r ,高为h 的圆柱体表面积记为1S ,半径为R 的球体表面积记为2S ,则12S S ≤.(1)2r h R +≥(2)23r h R +≤答案:E【解】 2122S r rh ππ=+,224S R π=,于是22221()4(22)42r r h S S R r rh R ππππ+⎡⎤-=-+=-⎢⎥⎣⎦. 对于条件(1),若2r h R +≥,则21422r h h r S S π+--≥.当h r ≥时,则21S S ≥;当h r ≤时,不能明确1S 和2S 的关系,因此条件(1)不充分.对于条件(2),若23r h R +≤,则()221()(2)()243218r r h h r h r r hS S π⎡⎤++-+-≤-=⎢⎥⎣⎦. 当h r ≥时,不能明确1S 和2S 的关系;当h r ≤时,则12S S ≥,因此条件(2)不充分.因此条件(2)不充分.现将两条件联立,当2r h R +≥且23r h R +≤时,则223r h r h ++≤,于是h r ≤.根据条件(2)可得12S S ≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22019考研管理类联考数学真题解析与答案下载(完美版)1.某车间计划10天完成一项任务,工作3天后因故停工2天。
若要按原计划完成任务,则工作效率需要提高( ).% % % % %解析:利用工作量相等建立等量关系,设工作效率需要提高x ,则117(1)51010x ⋅=⋅+⋅,解得40%x =,故选C 。
2.设函数2()2(0)af x x a x=+>在()0,+∞内的最小值为0()12f x =,则0x =( )解析:利用均值不等式,2()12a f x x x x =++≥==,则64a =,当且仅当2ax x x ==时成立,因此4x =,故选B 。
3.某影城统计了一季度的观众人数,如图,则一季度的男女观众人数之比为( ):4 :6 :13 :12 :3 解析:由图可以看出,男女人数之比为3451234613++=++,故选C 。
4.设实数,a b 满足6,6ab a b a b =++-=,则22a b +=( )解析:由题意,很容易能看出2,3a b ==或2,3a b =-=-,所以22a b +=13,故选D 。
5.设圆C 与圆22(5)2x y -+=关于2y x =对称,则圆C 的方程为( ) A.22(3)(4)2x y -+-= B.22(4)(3)2x y ++-= C.22(3)(4)2x y -++= D.22(3)(4)2x y +++=E.22(3)(4)2x y ++-=解析:根据对称,找出对称圆心的坐标为()3,4-,半径不变,故选E 。
6.在分别标记1,2,3,4,5,6的6张卡片,甲抽取1张,乙从余下的卡片中再抽取2张,乙的卡片数字之和大于甲的卡片数字的概率为( ) A.1160 B.1360 C.4360 D.4760 E.4960解析:属于古典概型,用对立事件求解,1265124647160p C C +++=-=,故选D 。
7.将一批树苗种在一个正方形花园边上,四角都种,如果每隔3米种一棵,那么剩下10棵树苗,如果每隔2米种一棵,那么恰好种满正方形的3条边,则这批树苗有( )棵解析:植树问题,设树苗总数为x ,正方形花园的边长为a , 则3(10)42(1)3x ax a-=⎧⎨-=⎩,解方程组得82x =,故选D 。
名同学的语文和数学成绩如表:语文和数学成绩的均值分别为12E E 和,标准差分别为12σσ和,则( ) A. 1212,E E σσ>> B.1212,E E σσ>< C.1212,E E σσ>= D.1212,E E σσ<> E.1212,E E σσ<<解析:根据均值,方差和标准差的计算公式,可得1212,E E σσ><,故选B 。
9.如图,正方体位于半径为3的球内,且一面位于球的大圆上,则正方体表面积最大为( )解析:根据勾股定理计算,设正方体边长为a,222()32a a+=,得a=2636a=,故选E。
10.某单位要铺设草坪,若甲、乙两公司合作需要6天完成,工时费共万元。
若甲公司单独做4天后由乙公司接着做9天完成,工时费共万元。
若由甲公司单独完成该项目,则工时费共计()万元解析:设甲、乙的工作效率分别为1x和1y,甲、乙的每天工时费分别为a和b万元,则11()61491x yx y⎧+⋅=⎪⎪⎨⎪+=⎪⎩,()6 2.449 2.35a ba b+⋅=⎧⎨+=⎩,解得10,10 2.5x a==,故选E。
11.某中学的5个学科各推荐2名教师作为支教候选人,若从中选出来自不同学科的2人参加支教工作,则不同的选派方式有()种解析:先选出2个不同学科,同时每个学科各有2种不同的选派,因此总的方法数为252240C⋅⋅=种,故选D。
12.如图,六边形ABCDEF是平面与棱长为2的正方体所截得到的,若,,,A B D E分别为相应棱的中点,则六边形ABCDEF的面积为()解析:六边形ABCDEF是正六边形,边长为a=26=D。
13.货车行驶72km 用时1小时,速度V 与时间t 的关系如图所示,则0V =( )解析:可以利用面积来求解,0172[(0.80.2)1]2V =-+⋅,解得090V =,故选C 。
14.在三角形ABC 中,4,6,8,AB AC BC D BC ===为的中点,则AD =( )解析:利用余弦定理求解,设ABC α∠=,则22222244244cos 648248cos AD αα⎧=+-⨯⨯⨯⎪⎨=+-⨯⨯⨯⎪⎩,解得AD =,故选B 。
15.设数列{}n a 满足111000,21,n n a a a a +=-==则( )A.9921-B.992C.9921+D.10021-E.10021+解析:构造新的等比数列,1()2()n n a m a m ++=+,解得1m =,则数列{}1n a +为等比数列,其中公比为2,首项为1,可得1112n n a -+=⋅,所以121n n a -=-,所以9910021a =-,故选A 。
16.有甲、乙两袋奖券,获奖率分别为p 和q ,某人从两袋中各随机抽取1张奖券,则此人获奖的概率不小于34(1)已知1p q += (2)已知14pq =解析:随机抽一张奖券,中奖概率(1)(1)P p q p q pq p q pq =-+-+=+-, 条件(1)中,根据均值不等式,有14pq ≤,则34P ≥,充分条件(2)中,根据均值不等式,有1p q +≥,则34P ≥,充分,故选D 。
17.直线y kx =与22x y -4x 30++=有两个交点。
(1)0k << (2)0k <<解析:本题可以由结论推条件,考察直线与圆的关系,保证圆心到直线的距离小于半径即可,圆的方程为22(2)1x y -+=,则距离1d =<,解得33k -<<1)充分,故选A 。
18.能确定小明的年龄。
(1)小明年龄是完全平方数。
(2)20年后小明年龄是完全平方数。
解析:很明显条件(1)和(2)不单独成立,设小明年龄是a , 则a 和20a +均为完全平方数,符合要求的只有16和36,因此16a =,故选C 。
19.甲,乙,丙三人各自拥有不超过10本图书,甲、丙购入2本图书后,他们拥有的图书数量构成等比数列,则能确定甲拥有图书的数量( ) (1)已知乙拥有的图书数量 (2)已知丙拥有的图书数量解析:设甲,乙,丙拥有图书数量为,,x y z ,且均为整数,根据已知条件,则2(2)(2)y x z =++,因此需要联立能得出x ,故选C 。
20.关于x 的方程2x ax b 0++=有实根。
(1)a b 0+= (2)a b 0-=解析:要有实根,则240a b =-≥V ,条件(1)有a b =-,条件(2)有a b =,因为不知道,a b 的正负号,所以不能单独成立,考虑联合,则a b=0=,0=V ,充分,故选C 。
21.如图,已知正方形ABCD 的面积,O 为BC 上的一点,P 为AO 的中点,Q 为DO 上的一点,则能确定三角形PQD 的面积。
(1)O 为BC 的三等分点。
(2)Q 为DO 的三等分点。
解析:1124POD AOD ABCD S S S ==,条件(2)能确定11312PQD POD ABCD S S S ==,充分,故选B 。
22.设n 为正整数,则能确定n 除以5的余数。
(1)已知n 除以2的余数。
(2)已知n 除以3的余数。
解析:通过举例子,可以排除(1)和(2),联合的话,可以找到除以6的余数,也一样能排除,故选E 。
23.某校理学院五个系每年录取人数如下表:今年与去年相比,物理系平均分没变,则理学院录取平均分升高了。
(1)数学系录取平均分升高了3分,生物系录取平均分降低了2分。
(2)化学系录取平均分升高了1分,地学系录取平均分降低了4分。
解析:条件(1)和(2)不能单独成立, 联立有总平均分603602603040360E ⨯-⨯+-⨯==,平均分没变化,故选C 。
24.设数列{}n a 的前n 项和为n S ,则{}n a 等差。
(1)2n n 21,2,3S n n =+=, (2)2n n 211,2,3S n n =++=,解析:根据2n 1n ()22dd S a n =+-,很明显条件(1)充分,条件(2)不充分,故选A 。
25.设三角区域D 由直线8560x y +-=,6420x y -+=与860(0)kx y k k -+-=<围成,则对任意的x,y (),22lg 2x y +≤() (1)k --1]∈∞(, (2)1k [-1-)8∈,解析:22lg 2x y +≤(),可得22210x y +≤,第二和第三条直线恒过点()6,8,通过图像,发现这个点到圆心的距离为10,直线8560x y +-=和圆在第一象限的交点为()8,6,当直线860(0)kx y k k -+-=<经过点()8,6时为临界值,此时1k =-,因此只要1k ≤-即可,故选A 。