重庆市巴川中学校八年级 2018—2019 学年度春期期末考试

合集下载

重庆市巴川中学校2018-2019学年八年级下半期测试(无答案)

重庆市巴川中学校2018-2019学年八年级下半期测试(无答案)

重庆市巴川中学校2018~2019学年度春期半期考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..签字笔完成. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.二次根式2-x 中,x 的取值范围是( )A .x >2B .x <2C .2x ≥D .2x ≤ 2.以下各组数为三角形的三边长,能构成直角三角形的是( )A .1,2,3B .4,5,6C .1,1,2D .5,12,73.下列各点在函数23+-=x y 图象上的是( )A .(0,-2)B .(1,-1)C .D .(-1,-1)4.下列各式计算正确的是( )A .B .3212=C .3232=+D .5)5(2-=-5.已知正比例函数)0(≠=k kx y 的图象过二、四象限,则一次函数k x y +=3的图象大致是( )A .B .C .D .6.下列命题是真命题的是( )A .菱形的对角线相等B .对角线互相垂直的平行四边形是正方形C .三个角都相等的四边形是矩形D .对角线相等的平行四边形是矩形7.对于函数42--=x y ,下列结论不正确的是( )A .它的图象必经过点(-1,-2)B .图象与 轴的交点是(-2,0)C .当02>-<y x 时,D .它的图象不经过第一象限8.下列各图按一定的规律排列而成,则第9个图形中“”的个数是( )A .37B .50C .65D .829.如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家,其中x 表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是( )A .食堂离小明家2.4kmB .小明在图书馆呆了20minC .小明从图书馆回家的平均速度是0.04km /minD .图书馆在小明家和食堂之间.10.如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF =( )A .45°B .30°C .60°D .55°12题图10题图11.如图,△ACE 是以 ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(10, ),则D 点的坐标是( )A .(6,0)B .( ,0)C .(8,0)D .( ,0)12.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则 ;(4)DP :DQ=2:.A .4个B .3个C .2个D .1个二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上. 13.两直角边 , 满足 ,则斜边长为__________.14.菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(12,0),点A 的纵坐标是2,则点B 的坐标是____________.15.如图,在矩形ABCD 中,AD =6,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN14题图 15题图平分∠MAB ,则折痕AM 的长为___________.16.如图,函数y =kx+3与 的图象交于点M (﹣2,1),那么不等式kx+3> 的解集是___________.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行.小宁先出发 5 分钟后,小强骑自行车匀速回家.小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35 分钟.两人之间的距离 y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示.则当弟弟到家时,小宁离图书馆的距离为___________米.18.如图,E ,F 是正方形ABCD 的边CD 上两个动点,满足DE =CF .连接AE 交BD 于点I ,连接BF 交CI 于点H ,G 为BC 边上的中点.若正方形的边长为4,则线段DH 长度的最小值是__________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 19.计算 (1))(4274812--+ (2)()()2525186250-++⨯-÷ 20. 如图,∠C =90°,AC =3,BC =4,AD =12,BD =13, 求四边形ABCD 的面积.17题图 16题图 18题图四、解答题(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上....21.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.22.先化简,再求值:,其中.23.在矩形ABCD中,AB=2cm,BC=3cm,点P沿B→A→D运动,运动到点D时停止运动,点P运动的同时,另一点Q从B→C运动,速度是点P的一半,当点P停止运动时,点Q也停止运动.设点P运动的路程为,其中 .设,.可可根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究,下面是可可的探究过程,请补充完整.(1)如图是画出的函数与的函数图象,观察图象.当 =1时,=_____;并写出函数的一条性质:________________________________________.(2)请帮助可可写出与的函数关系式(不用写出取值范围)__________________.(3)请按照列表、描点、连线的步骤在同一直角坐标系中,画出函数的图象.(4)结合画出函数图象,解决问题:当时,点P运动的路程=__________.24.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A 型25 45 B 型 40 70(1)若商场进货款为3100元,则这两种台灯各购进多少盏?(2)若商场在3200元的限额内购进这两种台灯,且A 型台灯的进货数量不超过B 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?25.如图,四边形ABCD 是平行四边形,点E 、F 在BC 上,且CF=BE ,连接DE ,过点F 作FG ⊥AB 于点G .(1)如图1,若∠B =60°,DE 平分∠ADC ,且 , 求平行四边形ABCD 的面积.(2)如图2,点H 在GF 上,且HE=HF ,延长EH 交AC ,CD 于点O ,Q ,连接AQ ,若AC=BC=EQ ,∠EQC =45°,求证:五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...中对应的位置上. 26.如图,直线l 1:y =k x +b 与x 轴、y 轴分别交于A ,B 两点,其中点B 的坐标为(0,6),∠BAO=30°将直线l 1沿着y 轴正方向平移一段距离得到直线l 2交y 轴于点M ,且l 1与l 2之间的距离为3,点C (x ,y )是直线11上的一个动点,过点C 作AB 的垂线CD 交y 轴于点D .图1图2(1)求点M的坐标和直线l1的解析式;(2)当C运动到什么位置时,△AOD的面积为21,求出此时点C的坐标;(3)连接AM,将△ABM绕着点M旋转得到△A'B'M',在平面内是否存在一点N.使四边形AMA'N为矩形?若存在,求出点N的坐标:若不存在,请说明理由.。

2018-2019学年重庆八中八年级(下)期末数学试卷(含解析)

2018-2019学年重庆八中八年级(下)期末数学试卷(含解析)

2018-2019学年重庆八中八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题10个小题,每小题4分,共40分)1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3 B.C.﹣3 D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0 B.x≠2C.x≠0且x≠2 D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3 B.x=﹣3 C.x=0 D.x=3或x=06.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4 B.k>4 C.k<0 D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2 B.4 C.6 D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.B卷(50分)一、填空题:(本大题共5个小题,每小题4分,共20分)21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B 地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC =2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.二、解答题(本大题共3个小题,每题10分,共30分)26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A 的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案与试题解析一、选择题1.【解答】解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.【解答】解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.【解答】解:六边形的内角和是(6﹣2)×180°=720°.故选:D.5.【解答】解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.【解答】解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.【解答】解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.【解答】解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.【解答】解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.【解答】解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题11.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.【解答】解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.【解答】解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.【解答】解:根据比例的合比性质,原式=;15.【解答】解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.【解答】解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题17.【解答】解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.【解答】解:原式=,=,=.当a=3时,原式=.19.【解答】解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.【解答】解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.B卷一、填空题21.【解答】解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.【解答】解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.【解答】解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验y=﹣为方程的解,得到a≠﹣2,∵1﹣有整数解,则符合条件的所有整数a为﹣3,﹣4(舍去).故答案为:﹣3.24.【解答】解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.【解答】解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.二、解答题26.【解答】解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∴∠ABJ=∠AEF,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∵∠AGE=∠CGH,∴△AGE≌△HGC(SAS),∴EA=CH,∵EM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.【解答】解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,EH=EH,∴△EHD0≌△EHB(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D0G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D0G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4。

重庆市巴川中学校2018-2019学年度八年级下期末数学抽考模拟试题(3套合集)

重庆市巴川中学校2018-2019学年度八年级下期末数学抽考模拟试题(3套合集)

重庆市巴川中学校2018~2019学年度八下抽考模拟考试(1)八年级数学试卷(全卷共五个大题;满分150分;考试时间:120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)1.函数13xyx-=-中,自变量x的取值范围是()A. 3x≥ B. 3x≠ C. 3x> D.1x≠2.下列长度的各组线段中,能构成直角三角形的是()A. 2,3,4B.111,,345C. 2223,4,5 D. 1,3,23.下面哪个点不在函数23y x=-+的图象上()A.(-5,13) B.(0.5,2) C.(3,0) D.(1,1)4.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB∥DC,AD∥BCB. AB=DC,AD=BCC. AO=CO,BO=DOD. AB∥DC,AD=BC5.如图,矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm26.下列计算正确的是()A. 822=± B.431-= C.632÷= D.1212⨯=7.如图,在□ABCD中,O是对角线的交点,AB⊥A C, AE⊥BC于E,若AB=6,OE=4,则□ABCD的周长是()A.22B. 28C.32D. 368.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20、20B.30、20C.30、30D.20、309.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣3第5题图第7题图第8题图10. 如图,在平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则平行四边形ABCD 的面积是 ( ) A.54 B. 64 C.72 D.8411.如图,表示一艘轮船和一艘快艇沿相同路线从甲港岀发到乙港行驶路程随时间变化的图象.则下列结论错误的是( )A .轮船的速度为20千米/时B .快艇的速度为40千米/时C .轮船比快艇先出发2小时D .快艇到达乙港用了6小时 12.如图,在矩形ABCD 中,AD =AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ; ②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF .其中正确的有( ) A .①②③④⑤B .①②③④C .①③④⑤D .①②③⑤二、填空题(本大题共6小题,每小题4分,共24分) 13.化简:3125m=___________.14. 若关于x 的一元二次方程mx 2﹣2x ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____________. 15. 如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB 为直角,若AB =8,BC =10,则EF 的长为________.16.在一次函数2y kx =+中,若y 随x 的增大而增大,则它的图象不经过第_______象限.17.近期,小明和小李报名参加了越野跑比赛,已知两人同时出发,以各自的速度匀速跑步前进,出发一段时间后,小明身体不适,停下来休息了1分钟,再以原速继续跑步前进,当小明到达终点后,立即原路返回去接小李;两人相遇后,小明立即以原来的速度跑步前往终点,1分钟后到达终点.已知两人间的距离y (m )随两人运动时间x (s )变化如图.问:当小明第一次到达终点时,小李距终点的距离为 ____m . 18.重庆某水库每天不断流入定量的水,按原来的放水量,水库中的水可供使用80天,但因为天气干旱,现在水库的流入量减少20%,如果在放水量不变的情况下,只能供用60天,若仍计划供使用80天,则每第12题图第15题图第17题图第11题图 第9题图 第10题图天的放水量要减少 %. 三、解答题:(本大题2个小题,每小题8分,共16分) 19. (1)计算:1132722|32|()23--⨯--+ (2)解方程:2420x x +-=20.水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调査后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.若水果店要保证每天销售这种水果的毛利润为6000元,同时又要使顾客觉得价不太贵,则每斤水果应涨价多少元?四、解答题:(本大题5个小题,每小题10分,共50分)21.已知:如图,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF . 求证:(1)∠DAE=∠BCF ;(2)四边形AECF 是平行四边形.22.“六一”儿童节前夕,某教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有________个班级,并补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.23.已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C点.(1)求出A点坐标及直线12的解析式;(2)点E是线段AD上一点,且线段CE将△ACD的面积分为2:3两部分,求直线CE解析式.24.已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG ⊥CF于G.DH平分∠ADE交CF于点H,连接BH.(1)若DG=2,求DH的长;(2)求证:BH+DH=CH.25.学校准备从商场购买甲、乙两种规格的书柜20个,若购买甲种书柜2个,乙种书柜1个共需资金600元;若购买甲种书柜4个,乙种书柜3个,共需金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)学校计划购买的乙种书柜的数量不少于甲种书柜的数量,且购买的总金额不超过4380元,学校有几种购买方案?(3)在(2)的条件下,已知商店出售一个甲种书柜可获利a元(a>0),出售一个乙种书柜可获利30元,学校哪种购买方案商店可获利最多?五、解答题:(本大题1个小题,每小题12分,共12分)26.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PH⊥OA,垂足为H,连接NP.设点P 的运动时间为t秒.①若△NPH的面积为1,求t的值;②点Q是直线AB上的点,并且AQ=AB(点Q不与点B重合),问BP+PH+HQ是否有最小值?如果有,直接写出相应的点P的坐标和BP+PH+HQ的最小值;如果没有,请说明理由.重庆市巴川中学校2020级八下数学抽考模拟试题(1)答案一、选择题:(本大题12个小题,每小题4分,共48分)二、填空题:(本大题6个小题,每小题4分,共24分)13 14.10m m >-≠且; 15. 1; 16. 四; 17. 270 ; 18. 25. 三、解答题 (每小题各8分,共16分)19.解:(1)原式=3)32(233+---=435-(2)2x =-20.解:设每斤水果涨价x 元,则每天可卖出(1000﹣40×)斤水果,依题意,得:(x +5)(1000﹣40×)=6000, 解得:x 1=2.5,x 2=5. 又∵要使顾客觉得价不太贵, ∴x =2.5.答:每斤水果应涨价2.5元.四、解答题 (每小题各8分,共40分) 21.略22.(1)16,补图略 (2)平均数:9;众数:10;中位数:9 (3)540 23. 解:(1)∵A 点在直线l 1上,且横坐标为﹣1, ∴y 1=2×(﹣1)+3=1,即A 点的坐标为(﹣1,1)又直线l 2过A 点,将(﹣1,1)代入直线l 2解析式得:1=﹣k ﹣1,k =﹣2, 则直线l 2的解析式为:y 2=﹣2x ﹣1;(2)设E (m ,2m +3),∵S △ACD =×4×1=2,S △CDE =×4(﹣m )=﹣2m , ∵线段CE 将△ACD 的面积分为2:3两部分, ∴S △CDE :S △ACD =2:5或S △CDE :S △ACD =3:5, ∴(﹣2m ):2=2:5或(﹣2m ):2=3:5, 解得:m =﹣或m =﹣.∴E (﹣,)或E (﹣,),设直线CE 的解析式为y =kx +b ,∴或,解得:或,∴直线CE 解析式为:y =﹣8x ﹣1或y =﹣7x ﹣1.24.(1)解:∵如图,DF =DC ,DG ⊥CF ,∴∠FDG =∠FDC . ∵DH 平分∠ADE ,∴∠FDH =∠ADF ,∴∠HDG =∠FDG ﹣∠FDH =(∠FDC ﹣∠ADF )=∠ADC =45°.∴△DGH是等腰直角三角形,∵DG=2,∴DH=2;(2)证明:如图,过点C作CM⊥CH,交HD延长线于点M.∵∠DCB=90°,∴∠1=∠2(同角的余角相等).又∵△DGH是等腰直角三角形,∴△MCH是等腰直角三角形,∴MC=CH.∴MH=CH.∵在△MCD与△HCB中,,∴△MCD≌△HCB)SAS),∴DM=BH.∴BH+DH=DM+DH=MH=CH.即BH+DH=CH.25.解:(1)设甲种书柜价格为x元,乙种书柜价格为y元,根据题意得解得答:甲、乙两种书柜每个的价格分别是180元、240元.(2)设甲种书柜数量为b个,则乙种书柜有(20﹣b)个由题意得:解得:7≤b≤10∵b为整数∴b=7,8,9,10∴共有四种方案分别为:甲种7个,乙种13个;甲种8个,乙种12个;甲种9个,乙种11个;甲种10个,乙种10个;(3)设商店获利为W,则由题意得W=ab=30(20﹣b)=(a﹣30)b+600当a>30时,W随b增大而增大,则当b=10时,W最大=10a+300当a=30时,W与b无关,W的值恒为600当0<a<30时,W随b的增大而减小,则当b=7时,W最大=7a+39026.【解答】解:(1)∵A是直线y=x+4与x轴的交点,∴令y=0得x=﹣3∴A(﹣3,0)又∵B是直线y=x+4与y轴的交点,∴令x=0,解得y=4∴B(0,4)由题意知,点C为OB的中点,且四边形AOCD为矩形∴直线CD的方程为y=2∵直线AB与CD交点为E,∴联立,解得∴E(﹣1.5,2)(2)①分两种情况讨论:第一种情况当0≤t<1.5 时,如图1,根据题意可知:经过t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,∴NH=3﹣2t,∵S NPH=PH•NH,且△NPH的面积为1,∴×2×(3﹣2t)=1,解得:t=1;第二种情况:当1.5≤t≤3时,如图2,根据题意可知:经过t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,∴AH=3﹣t,∴HN=AN﹣AH=t﹣(3﹣t)=2t﹣3,∵S NPH=PH•NH,且△NPH的面积为1,∴×2×(2t﹣3)=1解得:t=2;∴当t=1或2时,存在△NPH的面积为1;②BP+PH+HQ有最小值,最小值为如图3,连接PB、CH,则四边形PBCH是平行四边形,∴BP=CH∴BP+PH+HQ=CH+HQ+2要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4)又∵点C(0,2)∴直线CQ的解析式为:y=x+2令y=0,得x=﹣2,∴H(﹣2,0),∴所求点P的坐标为P(﹣2,2)根据勾股定理可得CQ=此时,BP+PH+HQ=CH+HQ+PH=CQ+2=重庆巴川中学2018~2019学年度八下数学抽考模拟试卷(2)(本卷共26个大题,满分150分,考试时间120分钟)班级姓名一、选择题(本大题12个小题,每小题4分,共48分.)1.使有意义的x的取值范围是()A.x>5 B.x≥5 C.x≠5 D.全体实数2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A .B .6、8、10C .5、12、13D .3.下列性质中,菱形具有而平行四边形不具有的性质是( )A .对边平行且相等B .对角线互相平分C .对角线互相垂直D .对角互补4.关于函数y=2x ,下列结论中正确的是( )A .函数图象都经过点(2,1)B .函数图象都经过第二、四象限C .y 随x 的增大而增大D .不论x 取何值,总有y >05.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是( )A .众数是90分B .中位数是90分C .平均数是90分D .极差是15分6.如图是一次函数y=kx+b 的图象,当y <﹣2时,x 的取值范围是( )A .x <3B .x >3C .x <﹣1D .x >﹣17.如图,在平行四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=6,DH ⊥AB 于H ,则DH 等于( )A .B .C .D .8. 如图,A ,B 两个村庄分别在两条公路MN 和EF 的边上,且MN ∥EF ,某施工队在A ,B ,C 三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km ,BC=120km ,则A ,C 两村之间的距离为( )A .250kmB .240kmC .200kmD .180km9.直线b kx y +=(0≠k )向右平移2个单位,再向下平移3个单位所得解析式为42-=x y ,则原解析式为( )A .112-=x yB .32+=x yC .32-=x yD .112+=x y第6题图 第5题图 第7题图第10题图 第11题图第8题图 第10题图10.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC=6,BD=8,则OE 长为( )A. 3B. 5C. 2.5D. 411.甲、乙两车在同一直线公路上,匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设乙车行驶的时间为x 秒,两车间的距离为y 千米,图中折线表示y 关于x 的函数图象,下列四种说法正确的有( )个(1)开始时,两车的距离为500米.(2)转货用了100秒.(3)甲的速度为25米/秒,乙的速度为30米/秒.(4)当乙车返回到出发地时,甲车离乙车900米.A .1B .2C .3D .412.正方形ABCD 、正方形CEFG 如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA=PF ,且∠APF=90°,连结AF 交CD 于H ,有下列结论:①BP=CE ;②AP=AH ;③∠BAP=∠GFP ;④BC+CE=AF 2;⑤S 正方形ABCD +S 正方形CEFG =2S △APF .以上结论正确的个数有( )A .5个B .4个C .3个D .2个二、填空题 (本大题6个小题,每小题4分,共24分,请将每小题的答案直接填在答题卡...中对应的横线上。

2018-2019学年度第二学期 八年级语文期末测试题(word版 有答案)

2018-2019学年度第二学期 八年级语文期末测试题(word版  有答案)

2018-2019学年度第二学期八年级语文期末测试题(考试时间120分钟,总分100分)一、积累和运用(17分)1.下列加点字的注音全部正确的一项是( )(2分)A.雾霭(ǎi) 褶皱(zhě) 眼眶(kuānɡ) 销声匿迹(nì)B.冗杂(rōng) 狩猎(shòu) 蛮横(mán) 出类拔萃(cuì)C.争讼(sònɡ) 龟裂(jūn) 彷徨(páng) 接踵而至(zhǒng)D.撺掇(duò) 堕落(duò) 萦绕(yíng) 络绎不绝(zé)2.下列词语书写全部正确的一项是( )(2分)A.束缚翡翠川流不息怒不可恶B.扶植赋予分崩离析纷至踏来C.帷幕模糊世外桃园人情世故D.骨骼严峻大彻大悟天衣无缝3.下列语句中加点成语使用有误的一项是()(2分)A.冬天来了,各种虫儿销声匿迹,大地开始进入冬眠期。

B.山外有山,人外有人。

我们不能目空一切,自恃强大。

C.在老师讲解完这道数学题后,我有一种大彻大悟的感觉。

D.班长很好强,他不希望自己比别人慢,所以做事情总是一马当先。

4.阅读语段,按要求完成下面的题目。

(3分)①世界需要爱。

②没有了爱,谁也无法阻挡人生的风雨。

③爱如漆黑长夜里的明灯,为孤寂失路的人指引方向;爱如茫茫沙漠中的绿洲,为唇焦口燥的人呈上琼浆。

④________在爱的怀抱中,______能幸福快乐地成长。

(1)仿照第③句,再续写一个句子。

(2分)(2)给第④句补上恰当的关联词语。

(1分)5.名句默写。

(6分)(1)关关雎鸠,在河之洲。

____________,______________。

(《关雎》)(2)________________,落日故人情。

(李白《送友人》)(3)拣尽寒枝不肯栖,_________________。

(苏轼《卜算子•黄州定慧院寓居作》)(4)《题破山寺后禅院》中以声写静的名句是:_______________,____________。

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级(下)第二学期期末数学试卷及答案 含解析

2018-2019学年重庆八中八年级第二学期期末数学试卷一、选择题1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.六边形的内角和等于()A.180°B.360°C.540°D.720°5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(共6个小题)11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.一组数据10,9,10,12,9的中位数是.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.若=3,则=.15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.先化简,再求值:(﹣a+1+)÷,其中a=3.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=.22.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.参考答案一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣【分析】把点(﹣1,3)代入解析式即可求出k的值.解:把(﹣1,3)代入反比例函数y=(k≠0),得3=,解得:k=﹣3.故选:C.2.若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的对应角相等可得∠D=∠A.解:∵△ABC∽△DEF,∠A=50°,∴∠D=∠A=50°.故选:A.3.分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数【分析】直接利用分式有意义则分母不等于零进而得出答案.解:分式有意义,则x﹣2≠0,解得:x≠2.故选:B.4.六边形的内角和等于()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和可以表示成(n﹣2)•180°,即可求得六边形的内角和.解:六边形的内角和是(6﹣2)×180°=720度.故选:D.5.方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0【分析】先移项得x2﹣3x=0,然后利用因式分解法解方程.解:x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,所以x1=0,x2=3.6.下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.解:A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形,故选:A.7.如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>0【分析】利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:方程有两个不相等的两个实数根,△>0,进而求出即可.解:∵关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴b2﹣4ac=16﹣4k>0,解得:k<4.故选:A.8.菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.8【分析】首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.解:如图,∵菱形ABCD的周长为20,对角线AC=6,∴AB=5,AC⊥BD,OA=AC=3,∴OB==4,∴BD=2OB=8,即菱形的另一条对角线长为8.故选:D.9.某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=90【分析】设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,可列方程求解.解:设月平均增长率的百分数为x,20+20(1+x)+20(1+x)2=90.故选:D.10.函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.解:在函数y=kx+b(k≠0)与y=(k≠0)中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限.故选:D.二、填空题(6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为1:2.【分析】根据相似三角形的周长的比等于相似比得出.解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长比为1:2.故答案为:1:2.12.一组数据10,9,10,12,9的中位数是10.【分析】根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.解:将数据按从小到大排列为:9,9,10,10 12,处于中间位置也就是第3位的是10,因此中位数是10,故答案为:10.13.关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=4.【分析】利用根与系数的关系可得出方程的两根之积为﹣4,结合方程的一个根为﹣1,可求出方程的另一个根,此题得解.解:∵a=1,b=m,c=﹣4,∴x1•x2==﹣4.∵关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,∴另一个根为﹣4÷(﹣1)=4.故答案为:4.14.若=3,则=4.【分析】根据比例的合比性质即可直接完成题目.解:根据比例的合比性质,原式=;15.已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为15.【分析】用因式分解法可以求出方程的两个根分别是3和6,根据等腰三角形的三边关系,腰应该是6,底是3,然后可以求出三角形的周长.解:x2﹣9x+18=0(x﹣3)(x﹣6)=0解得x1=3,x2=6.由三角形的三边关系可得:腰长是6,底边是3,所故周长是:6+6+3=15.故答案为:15.16.双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为3.【分析】根据S△AOC﹣S△BOC=S△AOB,列出方程,求出k的值.解:由题意得:S△AOC﹣S△BOC=S△AOB,﹣=1,解得,k=3,故答案为:3.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=20【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,x=,x1=,x2=;(2)(x+2)(x+3)=20,整理得:x2+5x﹣14=0,(x+7)(x﹣2)=0,x+7=0,x﹣2=0,x1=﹣7,x2=2.18.先化简,再求值:(﹣a+1+)÷,其中a=3.【分析】先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把a的值代入进行计算即可.解:原式=,=,=.当a=3时,原式=.19.近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为50人;(2)在扇形统计图中,B所对应扇形的圆心角是144度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.【分析】(1)根据“优”的人数和所占的百分比即可求出总人数;(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.解:(1)本次调查的学生总数为:15÷30%=50(人);故答案为:50;(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;“中”等级的人数是:50﹣15﹣20﹣5=10(人),补图如下:故答案为:10;(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,则所选的两位同学测试成绩恰好都为“良”的概率是=.20.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b ≥的解集.【分析】(1)根据在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象;(3)根据图象可以直接写出所求不等式的解集.解:(1)∵在函数y=|kx﹣1|+b中,当x=1时,y=3;当x=0时,y=4,∴,得,∴这个函数的表达式是y=|x﹣1|+3;(2)∵y=|x﹣1|+3,∴y=,∴函数y=x+2过点(1,3)和点(4,6);函数y=﹣x+4过点(0,4)和点(﹣2,6);该函数的图象如图所示:(3)由函数图象可得,不等式|kx﹣1|+b≥的解集是x≥2或x<0.四、填空题:(共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.因式分解:x3﹣2x2y+xy2=x(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.解:原式=x(x2﹣2xy+y2)=x(x﹣y)2,故答案为:x(x﹣y)222.如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.【分析】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(﹣1,1)可得直线EF的解析式,求出点G的坐标后即可求解.解:过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:∴EM∥GO∥FN∵2EG=FG∴根据平行线分线段成比例定理得:NO=2MO∵E(﹣1,1)∴MO=1∴NO=2∴点F的横坐标为2∵F在y=(x>0)的图象上∴F(2,2)又∵E(﹣1,1)∴由待定系数法可得:直线EF的解析式为:y=当x=0时,y=∴G(0,)∴OG=故答案为:23.若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为﹣3.【分析】不等式组整理后,根据所有整数解的和为﹣9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.解:,不等式组整理得:﹣4≤x<a,由不等式组所有整数解的和为﹣9,得到﹣2<a≤﹣1,或1<a≤2,即﹣6<a≤﹣3,或3<a≤6,分式方程1﹣=,去分母得:y2﹣4+2a=y2+(a+2)y+2a,解得:y=﹣,经检验a=﹣3,2,﹣1,﹣6,则符合条件的所有整数a为﹣3.故答案为:﹣3.24.2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为360千米.【分析】由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为360千米,由于V=2V普快,因此BC距离为360千米的三分之二,即240千米,普快离开C占的距离为高铁360千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=360千米,此时距A站的距离为720﹣360=360千米.解:∵图象过(4.5,0)∴高铁列车和普快列车在C站相遇∵AC=2BC,∴V高铁=2V普快,BC之间的距离为:360×=240千米,全程为AB=240+240×2=720千米,此时普快离开C站360×=120千米,当高铁列车到达B站时,普快列车距A站的距离为:720﹣120﹣240=360千米,故答案为:360.25.为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.五、解答题(共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.【分析】(1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;(2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.解:(1)设该同学购买x件B种原材料,则购买x件A种原材料,根据题意得:6×x+3×x≤480,解得:x≤80,∴x最大值为80,答:该同学最多可购买80件B两种原材料.(2)设y=a%,根据题意得:(520+480)×(1+2y)(1﹣y)=(520+480)×(1+y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.答:a的值为25.27.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.【分析】(1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.(2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE ≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.【解答】(1)解:作BJ⊥AE于J.∵BF⊥AB,∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,∵四边形ABCD是平行四边形,∴∠D=∠ABC,∵∠D=2∠AEF,∴∠ABE=2∠AEF=2∠ABJ,∴∠ABJ=∠EBJ,∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,∴∠BAJ=∠BEJ,∵∠BAE=70°,∴∠BEA=70°.(2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.∵AD∥BC,∴∠DAE=∠BEA,∵∠BAE=∠BEA,∴∠BAE=∠DAE,∵EF⊥AB,EM⊥AD,∴EF=EM,∵EA=EA,∠AFE=∠AME=90°,∴Rt△AEF≌Rt△AEM(HL),∴AF=AM,∵EG⊥CG,∴∠EGC=90°,∵∠ECG=45°,∠GCE=45°,∴GE=CG,∵AD∥BC,∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,∴∠GAH=∠GHA,∴GA=GH,∴△AGE≌△HGC(SAS),∴EA=CH,∵CM=CN,∠AME=∠CNH=90°,∴Rt△EMA≌Rt△CNH(HL),∴AM=NH,∴AN=HM,∵△ACN是等腰直角三角形,∴AC=AN,即AN=AC,∴AH=AM+HM=AF+AC.28.如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D 作DE∥AB交BC于E.(1)点C的坐标为(3,3);(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.【分析】(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD0H有8种情形,分别画出图形一一求解即可.解:(1)如图1中,在Rt△AOD中,∵∠AOD=90°,∠OAD=30°,OD=2,∴OA=OD=6,∠ADO=60°,∴∠ODC=120°,∵BD平分∠ODC,∴∠ODB=∠ODC=60°,∴∠DBO=∠DAO=30°,∴DA=DB=4,OA=OB=6,∴A(﹣6,0),D(0,2),B(6,0),∴直线AC的解析式为y=x+2,∵AC⊥BC,∴直线BC的解析式为y=﹣x+6,由,解得,∴C(3,3).(2)如图2中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.∵∠FD′G=∠D′GF=60°,∴△D′FG是等边三角形,∵S△D′FG=•D′G2=,∴D′G=,∴DD′=GD′=2,∴D′(2,2),∵C(3,3),∴CD′==2,在Rt△PHB中,∵∠PHB=90°,∠PBH=30°,∴PH=PB,∴CD'+D'P+PB=2+D′P+PH≤2+D′O′=2+2,∴CD'+D'P+PB的最小值为2+2.(3)如图3﹣1中,当D0H⊥GH时,连接ED0.∵ED=ED0,EG=EG.DG=D0G,∴△EDG≌△ED0G(SSS),∴∠EDG=∠ED0G=30°,∠DEG=∠D0EG,∵∠DEB=120°,∠A′EO′=60°,∴∠DEG+∠BEO′=60°,∵∠D0EG+∠D0EO′=60°,∴∠D0EO′=∠BEO′,∵ED0=EB,E=EH,∴△EO′D0≌△EO′B(SAS),∴∠ED0H=∠EBH=30°,HD0=HB,∴∠CD0H=60°,∵∠D0HG=90°,∴∠D0GH=30°,设HD0=BH=x,则DG=GD0=2x,GH=x,∵DB=4,∴2x+x+x=4,∴x=2﹣2.如图3﹣2中,当∠D0GH=90°时,同法可证∠D0HG=30°,易证四边形DED0H是等腰梯形,∵DE=ED0=DH=4,可得D0H=4+2×4×cos30°=4+4.如图3﹣3中,当D0H⊥GH时,同法可证:∠D0GH=30°,在△EHD0中,由∠D0HE=45°,∠HD0E=30°,ED0=4,可得D0H=4×+4×=2+2,如图3﹣4中,当D G⊥GH时,同法可得∠D0HG=30°,设DG=GD0=x,则HD0=BH=2x,GH=x,∴3x+x=4,∴x=2﹣2,∴D0H=2x=4﹣4.如图3﹣5中,当D0H⊥GH时,同法可得D0H=2﹣2.如图3﹣6中,当D G G⊥GH时,同法可得D0H=4+4.如图3﹣7中,如图当D0H⊥HG时,同法可得D0H=2+2.如图3﹣8中,当D0G⊥GH时,同法可得HD0=4﹣4.综上所述,满足条件的D0H的值为2﹣2或2+2或4﹣4或4+4.。

2018-2019学年重庆八中八年级(下)期末数学试卷

2018-2019学年重庆八中八年级(下)期末数学试卷

2018-2019学年重庆八中八年级(下)期末数学试卷一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卡中对应的表格内.1.(4分)反比例函数y=(k≠0)的图象过点(﹣1,3),则k的值为()A.3B.C.﹣3D.﹣2.(4分)若△ABC∽△DEF,若∠A=50°,则∠D的度数是()A.50°B.60°C.70°D.80°3.(4分)分式有意义,则x的取值范围为()A.x≠0B.x≠2C.x≠0且x≠2D.x为一切实数4.(4分)六边形的内角和等于()A.180°B.360°C.540°D.720°5.(4分)方程x2=3x的解是()A.x=3B.x=﹣3C.x=0D.x=3或x=0 6.(4分)下列命题是真命题的是()A.方程3x2﹣2x﹣4=0的二次项系数为3,一次项系数为﹣2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形7.(4分)如果关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,那么k的取值范围是()A.k<4B.k>4C.k<0D.k>08.(4分)菱形周长为20,它的一条对角线长6,则菱形的另一条对角线长为()A.2B.4C.6D.89.(4分)某企业今年一月工业产值达20亿元,第一季度总产值达90亿元,问二、三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程()A.20(1+x)2=90B.20+20(1+x)2=90C.20(1+x)+20+(1+x)2=90D.20+20(1+x)+20(1+x)2=9010.(4分)函数y=kx+b与y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.11.(4分)若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为.12.(4分)一组数据10,9,10,12,9的中位数是.13.(4分)关于x一元二次方程x2+mx﹣4=0的一个根为x=﹣1,则另一个根为x=.14.(4分)若=3,则=.15.(4分)已知一元二次方程x2﹣9x+18=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为.16.(4分)双曲线y1=,y2=在第一象限的图象如图,过y1上的任意一点A,作y轴的平行线交y2于点B,交x轴于点C,若S△AOB=1,则k的值为.三、解答题(17题8分,18题8分,19题10分,20题10分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上,17.(8分)解方程(1)x2+x﹣1=0;(2)(x+2)(x+3)=2018.(8分)先化简,再求值:(﹣a+1+)÷,其中a=3.19.(10分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作A、B、C、D;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,B所对应扇形的圆心角是度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.20.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=1时,y=3,当x=0时,y=4.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;(3)已知函数y=的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣1|+b≥的解集.四、填空题:(本大题共5个小题,每小题4分,共20分)请将每小題的答案直接填在答题卡中对应的横线上.21.(4分)因式分解:x3﹣2x2y+xy2=.22.(4分)如图,在反比例函数y=﹣(x<0)与y=(x>0)的图象上分别有一点E,F,连接E,F交y轴于点G,若E(﹣1,1)且2EG=FG,则OG=.23.(4分)若关于x的一元一次不等式组所有整数解的和为﹣9,且关于y的分式方程1﹣=有整数解,则符合条件的所有整数a为.24.(4分)2019年6月12日,重庆直达香港高铁的车票正式开售,据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时.该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北.重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高.在此之前技术部门做了大量测试,在一次测试中一高铁列车从A地出发,匀速驶向B地,到达B地停止;同时一普快列车从B地出发,匀速驶向A地,到达A地停止.且A,B两地之间有一C 地,其中AC=2BC,如图①,两列车与C地的距离之和y(千米)与普快列车行驶时间x(小时)之间的关系如图②所示.则高铁列车到达B地时,普快列车离A地的距离为千米.25.(4分)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C 三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C 三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.五、解答题(本大题共3个小题,每题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.26.(10分)为了准备“欢乐颂﹣﹣创意市场”,初2020级某同学到批发市场购买了A、B 两种原材料,A的单价为每件6元,B的单价为每件3元,该同学的创意作品需要B材料的数量是A材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.(1)该同学最多购买多少件B材料;(2)在该同学购买B材料最多的前提下,用所购买的A,B两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高2a%(a>0)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了a%,求a的值.27.(10分)如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求证:AH=AF+AC.28.(10分)如图,平面直角坐标系中,点A,B在x轴上,AO=BO,点C在x轴上方,AC⊥BC,∠CAB=30°,线段AC交y轴于点D,DO=2,连接BD,BD平分∠ABC,过点D作DE∥AB交BC于E.(1)点C的坐标为;(2)将△ADO沿线段DE向右平移得△A′D'O',当点D'与E重合时停止运动,记△A'D'O′与△DEB的重叠部分面积为S,点P为线段BD上一动点,当S=时,求CD'+D'P+PB的最小值.(3)当△A'D'O'移动到点D'与E重合时,将△A'D'O'绕点E旋转一周,旋转过程中,直线BD分别与直线A'D'、直线D'O'交于点G、点H,作点D关于直线A'D'的对称点D0,连接D0、G、H.当△GD0H为直角三角形时,直接写出线段D0H的长.。

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。

重庆市巴川中学校2018~2019学年度八年级下学期数学竞赛试题

重庆市巴川中学校2018~2019学年度八年级下学期数学竞赛试题

重庆市巴川中学校2018~2019学年度春期基础知识竞赛数学试题一、选择题:(本大题8个小题,每小题4分,共32分)1.下列四个式子中,x 的取值范围是2≥x 的是 ( ) A.x -2 B. 2-x C.21-x D.22--x x 2.下列各组数中,以它们为边的三角形是直角三角形的是 ( ) A. 2,3,4 B.514131,, C. 222543,,D. 5,3,2,,3.某区上周每天最低气温(单位:C ︒)情况如下图所示,则这组表示最低气温数据的中位数是( ) A. 10C ︒ B. 11.5C ︒ C. 12C ︒ D.13C ︒4.如图,已知□ABOC 中,A(2,1),B(4,-3) ,则点C 的坐标是 ( ) A. (-2,4) B.(-3,3) C.(4,-2) D.(3,-3)5.如图,□ABCD 中,∠ABC=72°,AF ⊥BC 于F ,AF 交BD 于E ,若DE=2AB ,则∠AED 的大小是 ( )72°6.若点M (-1,n )、N ( 1,m )都是函数y =-(k 2+4k +8)x +1(k 为常数)的图象上,则m 和n 的大小关系是 ( )A .m >nB .m <nC .m =nD .不能确定7. 如图,在□ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是 ( )A.54B. 64C.72D.84 8.如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为A 第5题图 B D CE FOA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在题目的横线上.9. 若132+<<aa,则整数a的值是______________.10.若直角三角形的两直角边长为ba、,且0|3|1682=-++-baa,则该直角三角形斜边上的高为__________.11. 菱形ABCD的周长为24,︒=∠60B,则菱形CD边上的高AE的长为__________.12. 多项式x2+y2﹣6x+8y+7的最小值为.13.小王的学校举行了一次年级考试,考了若干门课程,后加试了一门,小王考得98分,这时小王的平均成绩比最初的平均成绩提高了1分.后来又加试了一门,小王考得70分,这时小王的平均成绩比最初的平均成绩下降了1分,则小王共考了(含加试的两门)门课程,最后平均成绩为分.14.如图,函数与的图象相交于点,则关于的不等式的解集是____________.15.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在A地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间x (小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为千米.16..矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为.第7题图第8题图第15题图第14题图第16题图三、解答题 (本大题2个小题,每小题8分,共16分.解答时每小题必须给出必要的演算过程或推理步骤) 17.计算:(1)|32|183125.012-----(2)解方程:01503522=+-x x18. 某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样 的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A 、B 、C 、D 、E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数; (3)估计该单位750名职工共捐书多少本?四、解答题(本大题5个小题,每小题各8分,共40分).解答时每小题必须给出必要的演算过程或推理步骤19. 如图,在矩形ABCD 中,对角线AC 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接CM ,AN .(1)求证:四边形ANCM 是菱形; (2)若AB =4,AD =8,求MD 的长.20.如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=﹣x+70,y 2=2x ﹣38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量?NMO D C B A 第19题图21. 已知□ABCD中,对角线AC、BD相交于点O,且AC⊥AD,∠ADC=45°,过点C作CE⊥BD于点E,交AB于点F,连接OF,点M为CD的中点,连接EM.(1)若BC=6,求EM的长;(2)求证:CF+OF=DO.22.(1)阅读理解:我们知道:平面内两条直线的位置关系是平行和相交,其中垂直是相交的特殊情况. 在坐标平面内有两条直线:)0(:11111≠+=k b x k y l ; )0(:22222≠+=k b x k y l ,有下列结论: 当21k k =时, 直线//1l 直线2l ; 当121-=⋅k k 时,直线⊥1l 直线2l . (2)实践应用:①直线5y +=kx 与直线23+-=x y 垂直,则________=k .②直线a 与直线32+-=x y 平行,且经过点(4,2-),则直线a 的解析式为_____________.③直线32+-=x y 向右平移_______个单位,其图象经过点(46-,). (3)深入探索:如图,直线1y +=x 与x 轴交于点B ,且经过点A ,已知A 的横坐标为2,点P 是x 轴上的一动点,求当ABP ∆为直角三角形时点P 的坐标.23.直线834+-=x y 与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图所示放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线m x y +=经过点C ,交x 轴于点E .①请直接写出点C 、点D 的坐标,并求出m 的值;②点P (0,t )是线段OB 上的一个动点(点P 不与0、B 重合),经过点P 且平行于x 轴的直线交AB 于M 、交CE 于N.设线段MN 的长度为d ,求d 与t 之间的函数关系式(不要求写自变量的取值范围); ③点P (0,t )是y 轴正半轴上的一个动点,为何值时点P 、C 、D 恰好能组成一个等腰三角形?重庆市巴川中学校初2019级八下数学竞赛试题答案及评分标准二、填空题:(本大题8个小题,每小题4分,共32分) 9.3 ; 10.512; 11.33; 12.18-; 13.10 88; 14.1-<x ; 15. 630; 16. 2.8三、解答题 (每小题各8分,共16分) 17.解:(1)原式=)23(2333222132----- …………… 2分=22533-……………………4分 (2) 10,5.721==x x ……………………4分18.解:(1)捐D 类书的人数为:30﹣4﹣6﹣9﹣3=8,补图如图所示; ……………………1分 (2)众数为:6 中位数为:6 平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;………………6分(3)750×6=4500,即该单位750名职工共捐书约4500本. ……………………8分四、解答题 (每小题各8分,共40分) 19.(1)证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠MAO=∠NCO ,∠AMO=∠CNO , ∵在△AMO 和△CNO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OC OA NCO MAO CNOAMO ∴△AMO ≌△CNO (AAS ), ∴OM=ON ,NMODCBA第19题图∵OA=OC ,∴四边形BMDN 是平行四边形, ∵MN ⊥BD ,∴平行四边形BMDN 是菱形.………………4分 (2)解:∵四边形AMCN 是菱形, ∴MA=MC ,设MA 长为x ,则MA=CM=x ,在Rt △CMD 中,CM 2=DM 2+CD 2即x 2=(8﹣x )2+42, 解得:x=5,358=-=-=∴AM AD DM ……………………8分20.解:(1)由题意得,当y 1=y 2时,即﹣x+70=2x ﹣38, ∴3x=108,x=36. 当x=36时,y 1=y 2=34.所以该药品的稳定价格为36(元/件)稳定需求量为34(万件).…………2分(2)令y 1=0,得x=70,由图象可知,当药品每件价格在大于36小于70时,该药品的需求量低于供应量. ………………4分(3)设政府对该药品每件补贴a 元,则有,解得:.∴政府部门对该药品每件应补贴9元.……………………8分21.解:(1)∵AC ⊥AD ,∠ADC=45°, ∴△DAC 是等腰直角三角形, ∴AD=AC=BC=6, ∴CD=2266+=6,∵CE ⊥BD ,点M 为CD 的中点,N MODCBA第19题图∴EM=CD=3; ………………4分(2)延长DA 、CF 交于P 点,如图所示: ∵CE ⊥BD , ∴∠DEP=90°, ∴∠P+∠ADE=90°, ∵∠DAC=90°, ∴∠PAC=90°, ∴∠P+∠ACP=90°, ∴∠ADO=∠ACP ,=90°, 在△ADO 和△ACP 中,,∴△ADO ≌△ACP (ASA ), ∴DO=CP ,AO=AP ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴∠PAF=∠ADC=45°, ∴∠OAF=90°﹣45°=45°, 在△AOF 和△APF 中,,∴△AOF ≌△APF (SAS ), ∴PF=OF ,∴OF+CF=PF+CF=PC=DO , ∴OF+CF=DO . ………………8分22.解:(2)①31; ②62+-=x y ; ③25.………………各1分,共3分(2)当︒=∠90APB 时,P(2,0) ………………5分当︒=∠90PAB 时,P(5,0) ………………7分当︒=∠90ABP 时,此时APB Rt ∆不存在. ……………………8分23. 解:(1)C (﹣10,8),D (﹣4,0),∵直线y=x+m 经过点C ,∴m=18 ………………各1分,共3分(2)∵MN 经过点P (0,t )且平行于x 轴,∴可设点M 的坐标为(x M ,t ),点N 的坐标为(x N ,t ),∵点M 在直线AB 上,直线AB 的解析式为834+-=x y , ∴834+-=M x t ,得643+-=t x M , 同理点N 在直线CE 上,直线CE 的解析式为y=x+18,∴t=x N +18,得x N =t ﹣18,∵MN ∥x 轴且线段MN 的长度为d ,∴d=x M ﹣x N =643+-t ﹣(t ﹣18)=2447+-t ……………………5分 (3)∵直线AB 的解析式为834+-=x y , ∴点A 的坐标为(6,0),点B 的坐标为(0,8),AB=10,∵四边形ABCD 是菱形,∴AB=BC=CD=10,∵C (﹣10,8),D (﹣4,0),P (0,t )∴22210)8(+-=t PC ,2224+=t PD ,1001022==CD①当CP=CD 时,22CD PC =,2221010)8(=+-t , 8=t ②当DP=DC 时,22DC DP =,222104=+t ,212±=∴t (负根舍去) ③当PC=PD 时,22PD PC =,2222410)8(+=+-t t ,437=∴t 综上所述8=t ,212=t ,437=t 时,△PCD 为等腰三角形.……8分(每种情况1分。

重庆市巴川中学校2018-2019学年八年级下期末数学抽考模拟试题共3套( 答案不全)

重庆市巴川中学校2018-2019学年八年级下期末数学抽考模拟试题共3套( 答案不全)

重庆市巴川中学校2018~2019学年度八下抽考模拟考试(1)八年级数学试卷(全卷共五个大题;满分150分;考试时间:120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)1.函数13xyx-=-中,自变量x的取值范围是()A. 3x≥ B. 3x≠ C. 3x> D.1x≠2.下列长度的各组线段中,能构成直角三角形的是()A. 2,3,4B.111,,345C. 2223,4,5 D. 1,3,2 3.下面哪个点不在函数23y x=-+的图象上()A.(-5,13) B.(0.5,2) C.(3,0) D.(1,1)4.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB∥DC,AD∥BCB. AB=DC,AD=BCC. AO=CO,BO=DOD. AB∥DC,AD=BC5.如图,矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm26.下列计算正确的是()A. 822=± B.431-= C.632÷= D.1212⨯=7.如图,在□ABCD中,O是对角线的交点,AB⊥A C, AE⊥BC于E,若AB=6,OE=4,则□ABCD的周长是()A.22B. 28C.32D. 368.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()第5题图第7题图第8题图A.20、20B.30、20C.30、30D.20、309.如图,直线y =﹣x +m 与y =nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +4n >0的整数解为( ) A .﹣1B .﹣5C .﹣4D .﹣310. 如图,在平行四边形ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则平行四边形ABCD 的面积是 ( )A.54B. 64C.72D.8411.如图,表示一艘轮船和一艘快艇沿相同路线从甲港岀发到乙港行驶路程随时间变化的图象.则下列结论错误的是( )A .轮船的速度为20千米/时B .快艇的速度为40千米/时C .轮船比快艇先出发2小时D .快艇到达乙港用了6小时 12.如图,在矩形ABCD 中,AD =AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ; ②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF .其中正确的有( ) A .①②③④⑤B .①②③④C .①③④⑤D .①②③⑤二、填空题(本大题共6小题,每小题4分,共24分) 13.化简:3125m=___________.14. 若关于x 的一元二次方程mx 2﹣2x ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____________. 15. 如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB 为直角,若AB =8,BC =10,则EF 的长为________.第12题图第11题图第9题图第10题图16.在一次函数2y kx =+中,若y 随x 的增大而增大,则它的图象不经过第_______象限. 17.近期,小明和小李报名参加了越野跑比赛,已知两人同时出发,以各自的速度匀速跑步前进,出发一段时间后,小明身体不适,停下来休息了1分钟,再以原速继续跑步前进,当小明到达终点后,立即原路返回去接小李;两人相遇后,小明立即以原来的速度跑步前往终点,1分钟后到达终点.已知两人间的距离y (m )随两人运动时间x (s )变化如图.问:当小明第一次到达终点时,小李距终点的距离为 ____m .18.重庆某水库每天不断流入定量的水,按原来的放水量,水库中的水可供使用80天,但因为天气干旱,现在水库的流入量减少20%,如果在放水量不变的情况下,只能供用60天,若仍计划供使用80天,则每天的放水量要减少 %. 三、解答题:(本大题2个小题,每小题8分,共16分) 19. (1)计算:1132722|32|2--+ (2)解方程:2420x x +-=20.水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调査后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤. 若水果店要保证每天销售这种水果的毛利润为6000元,同时又要使顾客觉得价不太贵,则每斤水果应涨价多少元?四、解答题:(本大题5个小题,每小题10分,共50分)第15题图 第17题图21.已知:如图,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)∠DAE=∠BCF;(2)四边形AECF是平行四边形.22.“六一”儿童节前夕,某教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有________个班级,并补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.23.已知直线l1:y1=2x+3与直线l2:y2=kx﹣1交于A点,A点横坐标为﹣1,且直线l1与x轴交于B点,与y轴交于D点,直线l2与y轴交于C点.(1)求出A点坐标及直线12的解析式;(2)点E是线段AD上一点,且线段CE将△ACD的面积分为2:3两部分,求直线CE 解析式.24.已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G.DH平分∠ADE交CF于点H,连接BH.(1)若DG=2,求DH的长;(2)求证:BH+DH=CH.25.学校准备从商场购买甲、乙两种规格的书柜20个,若购买甲种书柜2个,乙种书柜1个共需资金600元;若购买甲种书柜4个,乙种书柜3个,共需金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)学校计划购买的乙种书柜的数量不少于甲种书柜的数量,且购买的总金额不超过4380元,学校有几种购买方案?(3)在(2)的条件下,已知商店出售一个甲种书柜可获利a元(a>0),出售一个乙种书柜可获利30元,学校哪种购买方案商店可获利最多?五、解答题:(本大题1个小题,每小题12分,共12分)26.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作PH ⊥OA,垂足为H,连接NP.设点P的运动时间为t秒.①若△NPH的面积为1,求t的值;②点Q是直线AB上的点,并且AQ=AB(点Q不与点B重合),问BP+PH+HQ是否有最小值?如果有,直接写出相应的点P的坐标和BP+PH+HQ的最小值;如果没有,请说明理由.重庆市巴川中学校2020级八下数学抽考模拟试题(1)答案一、选择题:(本大题12个小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D C D A D C A D C D B二、填空题:(本大题6个小题,每小题4分,共24分) 13.25mm ; 14.10m m >-≠且; 15. 1; 16. 四; 17. 270 ; 18. 25. 三、解答题 (每小题各8分,共16分)19.解:(1)原式=3)32(233+---=435-(2)26x =-±20.解:设每斤水果涨价x 元,则每天可卖出(1000﹣40×)斤水果,依题意,得:(x +5)(1000﹣40×)=6000, 解得:x 1=2.5,x 2=5.又∵要使顾客觉得价不太贵, ∴x =2.5.答:每斤水果应涨价2.5元.四、解答题 (每小题各8分,共40分) 21.略22.(1)16,补图略 (2)平均数:9;众数:10;中位数:9 (3)540 23. 解:(1)∵A 点在直线l 1上,且横坐标为﹣1, ∴y 1=2×(﹣1)+3=1,即A 点的坐标为(﹣1,1)又直线l 2过A 点,将(﹣1,1)代入直线l 2解析式得:1=﹣k ﹣1,k =﹣2, 则直线l 2的解析式为:y 2=﹣2x ﹣1;(2)设E (m ,2m +3),∵S △ACD =×4×1=2,S △CDE =×4(﹣m )=﹣2m , ∵线段CE 将△ACD 的面积分为2:3两部分, ∴S △CDE :S △ACD =2:5或S △CDE :S △ACD =3:5, ∴(﹣2m ):2=2:5或(﹣2m ):2=3:5, 解得:m =﹣或m =﹣.∴E (﹣,)或E (﹣,),设直线CE 的解析式为y =kx +b ,∴或,解得:或,∴直线CE解析式为:y=﹣8x﹣1或y=﹣7x﹣1.24.(1)解:∵如图,DF=DC,DG⊥CF,∴∠FDG=∠FDC.∵DH平分∠ADE,∴∠FDH=∠ADF,∴∠HDG=∠FDG﹣∠FDH=(∠FDC﹣∠ADF)=∠ADC=45°.∴△DGH是等腰直角三角形,∵DG=2,∴DH=2;(2)证明:如图,过点C作CM⊥CH,交HD延长线于点M.∵∠DCB=90°,∴∠1=∠2(同角的余角相等).又∵△DGH是等腰直角三角形,∴△MCH是等腰直角三角形,∴MC=CH.∴MH=CH.∵在△MCD与△HCB中,,∴△MCD≌△HCB)SAS),∴DM=BH.∴BH+DH=DM+DH=MH=CH.即BH+DH=CH.25.解:(1)设甲种书柜价格为x元,乙种书柜价格为y元,根据题意得解得答:甲、乙两种书柜每个的价格分别是180元、240元.(2)设甲种书柜数量为b个,则乙种书柜有(20﹣b)个由题意得:解得:7≤b≤10∵b为整数∴b=7,8,9,10∴共有四种方案分别为:甲种7个,乙种13个;甲种8个,乙种12个;甲种9个,乙种11个;甲种10个,乙种10个;(3)设商店获利为W,则由题意得W=ab=30(20﹣b)=(a﹣30)b+600当a>30时,W随b增大而增大,则当b=10时,W最大=10a+300当a=30时,W与b无关,W的值恒为600当0<a<30时,W随b的增大而减小,则当b=7时,W最大=7a+39026.【解答】解:(1)∵A是直线y=x+4与x轴的交点,∴令y=0得x=﹣3∴A(﹣3,0)又∵B是直线y=x+4与y轴的交点,∴令x=0,解得y=4∴B(0,4)由题意知,点C为OB的中点,且四边形AOCD为矩形∴直线CD的方程为y=2∵直线AB与CD交点为E,∴联立,解得∴E(﹣1.5,2)(2)①分两种情况讨论:第一种情况当0≤t<1.5 时,如图1,根据题意可知:经过t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,∴NH=3﹣2t,∵S NPH=PH•NH,且△NPH的面积为1,∴×2×(3﹣2t)=1,解得:t=1;第二种情况:当1.5≤t≤3时,如图2,根据题意可知:经过t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,∴AH=3﹣t,∴HN=AN﹣AH=t﹣(3﹣t)=2t﹣3,∵S NPH=PH•NH,且△NPH的面积为1,∴×2×(2t﹣3)=1解得:t=2;∴当t=1或2时,存在△NPH的面积为1;②BP+PH+HQ有最小值,最小值为如图3,连接PB、CH,则四边形PBCH是平行四边形,∴BP=CH∴BP+PH+HQ=CH+HQ+2要使CH+HQ的值最小,只须C、H、Q三点共线即可,∵点Q是点B关于点A的对称点,∴Q(﹣6,﹣4)又∵点C(0,2)∴直线CQ的解析式为:y=x+2令y=0,得x=﹣2,∴H(﹣2,0),∴所求点P的坐标为P(﹣2,2)根据勾股定理可得CQ=此时,BP+PH+HQ=CH+HQ+PH=CQ+2=重庆巴川中学2018~2019学年度八下数学抽考模拟试卷(2)(本卷共26个大题,满分150分,考试时间120分钟)班级姓名一、选择题(本大题12个小题,每小题4分,共48分.)1.使有意义的x的取值范围是()A.x>5 B.x≥5 C.x≠5 D.全体实数2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是() A. B.6、8、10 C.5、12、13D.3.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补4.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1) B.函数图象都经过第二、四象限C.y随x的增大而增大 D.不论x取何值,总有y>0 5.在一次演讲比赛中,参赛的10名学生成绩统计如图所示,下列说法中错误的是()A .众数是90分B .中位数是90分C .平均数是90分D .极差是15分6.如图是一次函数y=kx+b 的图象,当y <﹣2时,x 的取值范围是( )A .x <3B .x >3C .x <﹣1D .x >﹣17. 如图,在平行四边形ABCD 中,对角线AC ⊥BD ,且AC=8,BD=6,DH ⊥AB 于H ,则DH 等于( ) A .B .C .D .8. 如图,A ,B 两个村庄分别在两条公路MN 和EF 的边上,且MN ∥EF ,某施工队在A ,B ,C 三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km ,BC=120km ,则A ,C 两村之间的距离为( ) A .250km B .240km C .200kmD .180km9.直线b kx y +=(0≠k )向右平移2个单位,再向下平移3个单位所得解析式为42-=x y ,则原解析式为( )A .112-=x yB .32+=x yC .32-=x yD .112+=x y第6题图第5题图第7题图10.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC=6,BD=8,则OE 长为( )A. 3B. 5C. 2.5D. 411.甲、乙两车在同一直线公路上,匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设乙车行驶的时间为x 秒,两车间的距离为y 千米,图中折线表示y 关于x 的函数图象,下列四种说法正确的有( )个(1)开始时,两车的距离为500米.(2)转货用了100秒.(3)甲的速度为25米/秒,乙的速度为30米/秒.(4)当乙车返回到出发地时,甲车离乙车900米. A .1 B .2 C .3D .412.正方形ABCD 、正方形CEFG 如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA=PF ,且∠APF=90°,连结AF 交CD 于H ,有下列结论:①BP=CE ;②AP=AH ;③∠BAP=∠GFP ; ④BC+CE=AF 2;⑤S 正方形ABCD +S 正方形CEFG =2S △APF .以上结论正确的个数有( ) A .5个 B .4个 C .3个 D .2个二、填空题 (本大题6个小题,每小题4分,共24分,请将每小题的答案直接填在答.题卡..中对应的横线上。

重庆市巴川中学校2022-2023学年八年级下学期期末语文试题(含答案)

重庆市巴川中学校2022-2023学年八年级下学期期末语文试题(含答案)

重庆市巴川中学2022—2023学年度春期期末试题初2024届语文试题(全卷共四个大题,满分150分,考试时间:120分钟)一、语文知识及运用(30分)1.下面词语中加点字注音完全正确的一项是()(3分)A.恬静(tián)狩猎(shǒu)矗立(cù)接踵而至(zhǒng)B.襁褓(qiáng)漩涡(xuán)追溯(sù)销声匿迹(lì)C.冗杂(róng)推搡(sǎng)缄默(jiān)挑拨离间(jiān)D.迁徙(xǐ)萦绕(yíng)行辈(háng)强词夺理(qiǎng)2.下列词语书写完全正确的一项是()(3分)A.勇跃喧腾思慕格物致知B.陨石维幕告诫人情事故C.诬蔑彗星次第轻歌曼舞D.决择浮躁斡旋纷至踏来3.下列句子中加点词语使用正确的一项是()(3分)A.时间川流不息....,匆匆而逝,转眼间,我们即将进入初三的学习,大家都准备好了吗?B.音乐会上,音乐家们精彩的演出震撼了同学们的内心,大家对此都倍感美不胜收....。

C.我很渺小,也许只是万花从中的一朵,就算无人问津....,我仍旧会努力绽放自己的美丽。

D.不法分子利用微信等平台实施网络诈骗,手段不断翻新,令人叹为观止....,防不胜防。

4.下列句子组成语段,顺序排列正确的一项是()(3分)①经典作品往往记录着优秀的思想,它们总是超越时代,历久弥新。

②一个不读经典的人,不仅词汇有限,同时智力和想象力也会有限,从而导致知识和思想极度贫乏。

③读书之法,贵在选择经典作品。

④可见,一个常读经典作品的人,更容易成为一个高尚的人。

⑤一个读经典的人,将从先贤的精神世界中吸收养分,在与高贵的心灵对话中得到陶冶。

A.⑤③②①④B.⑤①②④③C.③②④①⑤D.③①⑤②④5.请仿照示例,从备选事物中选取其一,另写一组富有哲理的句子。

(4分)示例:眼睛很宽容,装得下整个世界;它又很苛刻,容不得一粒尘沙。

重庆市2018-2019学年第一学期期末考试八年级数学试题(解析版)

重庆市2018-2019学年第一学期期末考试八年级数学试题(解析版)

重庆市2018-2019学年第一学期期末考试八年级数学试题一、选择题(本大题共10小题,共40.0分)1.下列汽车标志的图形是中心对称图形的是()A. B.C. D.【答案】C【解析】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知a>b,则下列不等式中,不成立的是()A. a+3>b+3B. 23a>23b C. −3a>−3b D. 5a>5b【答案】C【解析】解:A、由a>b,可得a+3>b+3,成立;B、由a>b,可得23a>23b,成立;C、由a>b,可得−3a<−3b,此选项不成立;D、由a>b,可得5a>5b,成立;故选:C.由不等式的性质进行计算并作出正确的判断.考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3. 下列各式从左边到右边的变形,是因式分解的是( )A. ab +ac +d =a(b +c)+dB. a 2−1=(a +1)(a −1)C. (a +b)2=a 2+2ab +b 2D. a 2b =ab ⋅a【答案】B【解析】解:A 、ab +ac +d =a(b +c)+d ,不符合因式分解的定义,故此选项错误;B 、a 2−1=(a +1)(a −1),正确;C 、(a +b)2=a 2+2ab +b 2,是多项式乘法,故此选项错误;D 、a 2b =ab ⋅a ,不符合因式分解的定义,故此选项错误; 故选:B .直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.4. 把不等式组{−x >0x+1≤0的解集表示在数轴上,正确的是() A.B.C.D.【答案】A【解析】解:{−x >0 ②x+1≤0 ①,由①解得:x ≤−1, 由②解得:x <0,∴不等式组的解集为x ≤−1, 表示在数轴上,如图所示:.故选:A .求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.此题考查了在数轴表示不等式的解集,以及解一元一次不等式组,求出不等式组的解集是解本题的关键.5. 甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示: 选手 甲乙丙丁方差1.752.930.500.40则在这四个选手中,成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.先比较四个选手的方差的大小,根据方差的性质解答即可.本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A. x<3B. x>32C. x<32D. x>3【答案】C【解析】解:把x=m,y=3代入y=2x,解得:m=1.5,当x<1.5时,2x<ax+4,即不等式2x<ax+4的解集为x<1.5.故选:C.观察图象,写出直线y=2x在直线y=ax+4的下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.等腰三角形一底角平分线与另一腰所成锐角为75∘,则等腰三角形的顶角大小为()A. 70∘B. 40∘C. 70∘或50∘D. 40∘或80∘【答案】D【解析】解:如图1,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDC=75∘,∴∠BDC+∠C+75∘=32∠C+75∘=180∘,∴∠C=70∘,∴∠A=40∘,如图2,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDA=75∘,∴∠BDC=105∘,∴∠BDC+∠C+105∘=32∠C+105∘=180∘,∴∠C=50∘,∴∠A=180∘−50∘−50∘=80∘,∴等腰三角形的顶角大小为40∘或80∘,故选:D.根据等腰三角形的性质得到∠ABC=∠C,根据角平分线的定义得到∠CBD=1 2∠ABC=12∠C,根据三角形的内角和列方程即可得到结论.本题考查了三角形的内角和,等腰三角形的性质,正确的画出图形是解题的关键.8.已知正比例函数y=kx(k≠0)的图象如图所示,则一次函数y=k(1−x)的图象为()A. B.C. D.【答案】D【解析】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=k(1−x)的一次项系数大于0,常数项小于0,∴一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.故选:D.根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,函数y=2x和y=−x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标是()A. (21008,21009)B. (−21008,−21009)C. (21009,21010)D. (−21009,−21010)【答案】A【解析】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=−x=2时,x=−2,∴点A2的坐标为(−2,2);同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).∵2017=504×4+1,∴点A2017的坐标为(2504×2,2504×2+1),即(21008,21009).故选:A.写根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=504×4+1即可找出点A2017的坐标.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(−22n+1,22n+1),A 4n+3(−22n+1,−22n+2),A 4n+4(22n+2,−22n+2)(n 为自然数)”是解题的关键.10. 若关于x 的不等式组{x −2≤03x−k>0有且只有四个整数解,且一次函数y =(k +1)x +k +5的图象不经过第三象限,则符合题意的整数k 的和为()A. −15B. −11C. −9D. −5【答案】C【解析】解:解不等式组{x −2≤0 ②3x−k>0 ①得,k3<x ≤2,∵不等式组有且只有四个整数解, ∴其整数解为:−1,0,1,2, ∴−2≤k3<−1,即−6≤k <−3.∵一次函数y =(k +1)x +k +5的图象不经过第三象限, ∴{k +5>0k+1<0,解得−5<k <−1, ∴−5<k <−1,∴k 的整数解有−4,−3,−2. 符合题意的整数k 的和为−9, 故选:C .根据关于x 不等式组{x −2≤03x−k>0有且只有四个整数解得出k 的取值范围,再由一次函数y =(k +1)x +k +5的图象不经过第三象限得出k 取值范围,再找出其公共解集即可.本题考查的是一次函数与一元一次不等式,熟知“同,大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共10小题,共40.0分)11. 函数y =√x +1中,自变量x 的取值范围是______. 【答案】x ≥−1【解析】解:由题意得,x +1≥0, 解得x ≥−1. 故答案为:x ≥−1.根据被开方数大于等于0列式计算即可得解. 本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.12.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为______.【答案】13cm【解析】解:∵ED是BC边上的中垂线∴EC=EB∵△ABE的周长=AB+AE+EC=AB+AC=5+8=13cm,故答案为:13cm.中垂线上的点到线段两端点的距离相等,所以CE=BE,△ABE的周长=AB+AE+ EC=AB+AC解答即可.本题考查三角形的周长以及中垂线定理,关键知道中垂线上的点到两端点的距离相等.13.已知一次函数y=−x+m,点A(1,y1),B(3,y2)在图象上,则y1______y2(填“>”或“<”).【答案】>【解析】解:∵一次函数y=−x+m,∴y随x的增大而减小,∵点A(1,y1),B(3,y2)在图象上,∴y1>y2.故答案为:>.直接利用一次函数的增减性进而分析得出答案.此题主要考查了一次函数的性质,正确掌握一次函数的增减性是解题关键.14.将直线y=kx−2向下平移1个单位后,正好经过点(2,3),则k=______.【答案】3【解析】解:将直线y=kx−2向下平移1个单位后所得直接解析式为y=kx−3,将点(2,3)代入y=kx−3,得:2k−3=3,解得:k=3,故答案为:3.根据平移规律可得,直线y=kx−2向下平移1个单位后得y=kx−3,然后把(2,3)代入即可求出k的值.此题主要考查了坐标与图形的变化−平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.15.如图,在四边形ABCD中,∠A+∠B=90∘,CD//AB,将AD、BC分别平移到EF和EG的位置.若AD=8cm,CD=2cm,CB=6cm,则AB的长是______cm.【答案】12【解析】解:∵AD//EF ,CB//EG ,∠A +∠B =90∘, ∴∠FEG =90∘, ∴△FEG 是直角三角形,∵AD =EF =8cm ,CB =EG =6cm , ∴FG 2=EF 2+EG 2, ∴FG =√64+36=10cm ,∵在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置, ∴CD =AF +BG ,∴AB =FG +AF +BG =10+2=12cm .因为在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置,所以有CD =AF +BG ,求证△FEG 是直角三角形,就可求得FG 的值,则AB =FG +AF +BG 可求. 此题把平移的性质和勾股定理结合求解.考查学生综合运用数学的能力.16. 关于x 、y 的二元一次方程组{x +2y =32x+y=2m+1的解满足不等式x −y >4,则m 的取值范围是______. 【答案】m >3【解析】解:{x +2y =3 ②2x+y=2m+1 ①,①−②得,x −y =2m −2, ∵x −y >4, ∴2m −2>4, 解得m >3. 故答案为m >3.先把两式相减求出x −y 的值,再代入x −y >4中得到关于m 的不等式,求出m 的取值范围即可.本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是把m 当作已知条件表示出x 、y 的值,再得到关于m 的不等式.17. 如图,在Rt △ABC 中,∠ACB =90∘,∠B =60∘,BC =2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为______.【答案】6【解析】解:∵在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,∴∠CAB=30∘,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30∘,∴∠ACB′=∠B′AC=30∘,∴AB′=B′C=2,∴AA′=2+4=6,故答案为6.利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=1是解题关键,此题难度不大.18.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为______.【答案】(53,0)【解析】解:∵矩形纸片ABCD中,AB=5,BC=3,∴AD=3,,中,,,设BO=x,则,中,,∴x2+12=(3−x)2,解得x=43,∴CO=3−43=53,又∵点C在x轴上,∴点C的坐标为(53,0),,0).故答案为:(53依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,,列方程求解即可得到BO=4,进而3得出点C的坐标.本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长.解题时注意方程思想的运用.19.丫头和爸爸从家出发到大剧院观看“巴交有声”巴蜀中学新年演奏会,爸爸先出发,2分钟后丫头沿同一路线出发去追爸爸,当丫头追上爸爸时发现背包落在途中了,爸爸立即返回找背包,丫头继续前往大剧院,当丫头到达大剧院时,爸爸刚好找到背包并立即前往大剧院(爸爸找背包的时间不计),丫头在大剧院等了一会,没有等到爸爸,就沿同一路线返回接爸爸,最终与爸爸会合,丫头和爸爸的速度始终不变,如图是丫头和爸爸两人之间的距离y(米)与丫头出发的时间x(分钟)的函数图象,则丫头在大剧院等了爸爸______分钟.【答案】5.5【解析】解:设丫头和爸爸的行走速度分别为:v1、v2,=50(米/分钟),根据函数图象在x=0时,由题意,爸爸的行走速度v2=1002根据x=10时,丫头追上爸爸可得:10v1=(10+2)v2,丫头行走的速度v1=12×50=60(米/分钟),相10遇时行走的路程S1=12×50=600(米)观察图象在x=16时,丫头和爸爸相距最大,可知是丫头到大剧院所经历的时间,所以家到大剧院的总路程S=16×60=960(米),由(16−10=6分钟)可知爸爸返回找到背包行走路程,S2=6×50=300(米),此时设丫头在大剧院等爸爸的时间为t分钟,由图象知丫头与爸爸会合所用时间为25−16=9分钟可建立方程如下:60×(9−t)+50×9=S−(S1−S2)═960−(600−300)=660,解得t=5.5(分钟),故答案为:5.5.本题从函数图象着手,根据题意,可计算出丫头和爸爸行走的速度,然后图示一下丫头与爸爸第二次会合的情况,设未知数建立方程求解可得.本题主要考查一个相对的距离和时间的一次函数图象中所包含的意义,并从中找到有用数字来解决题意中要求的能力,属路程中常见题型.20. 春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A 礼盒,10个B 礼盒,10个C 礼盒;乙套餐每袋装有5个A 礼盒,7个B 礼盒,6个C 礼盒;丙套餐每袋装有7个A 礼盒,8个B 礼盒,9个C 礼盒;丁套餐每袋装有3个A 礼盒,4个B 礼盒,4个C 礼盒,若一个甲套餐售价1800元,利润率为20%,一个乙和一个丙套餐一共成本和为1830元,且一个A 礼盒的利润率为25%,问一个丁套餐的利润率为______.(利润率=利润成本×100%)【答案】18.75%【解析】解:设甲套餐的成本之和m 元,则由题意得1800−m =20%m ,解得m =1500(元).设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,由题意得{12x +15y +15z =183015x+10y+10z=1500, 同时消去字母y 和z ,可得x =40 所以y +z =90A 礼盒的利润率为25%,可得其利润=40×25%=10元,因此一个A 礼盒的售价=40+10=50元.设一个B 礼盒的售价为a 元,一个C 礼盒的售价为b 元,则可得15×50+10a +10b =1800,整理得a +b =105(元)所以一个丁套餐的售价=3×50+4(a +b)=150+420=570(元) 一个丁套餐的成本=3×40+4(y +z)=120+360=480(元) 因此一个丁套餐的利润率=570−480480×100%=18.75%故答案为18.75%先由甲套餐售价1800元,利润率为20%,可求出甲套餐的成本之和为1500元.设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,则由题意得{12x +15y +15z =183015x+10y+10z=1500,可同时消去y 和z ,得到x =40,再根据一个A 礼盒的利润率为25%,可求出一个A 礼盒的售价为50元,进而可得出一个B 礼盒与一个C 礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.本题考查了一元一次不等式组的应用以及有理数的混合运算,根据运算规律,找出关于x 的一元一次不等式组是解题的关键.三、解答题(本大题共7小题,共70.0分)21. 计算:(1)分解因式:m 3n −mn 3(2)解不等式组{x−24+2≥x1−3(x −2)<9−x【答案】解(1)m 3n −mn 3=mn(m 2−n 2)=mn(m +n)(m −n);(2){x−24+2≥x①1−3(x −2)<9−x②,解不等式①得,x ≤2, 解不等式②得,x >−1,∴不等式组的解集为:−1<x ≤2.【解析】(1)先提取公因式mn ,再用平方差公式分解即可得出结论; (2)先求出每个不等式的解集,找出公共部分,即可得出不等式组的解集. 此题主要考查了分解因式的方法,提公因式法,公式法,以及一元一次不等式组的解法,掌握分解因式的方法是解本题的关键.22. 如图,直线l 1:y =−2x +b 过点A(4,0),交y 轴于点B ,直线l 2:y =12x +3与x 轴交于点C ,两直线l 1,l 2相交于点D ,连接BC .(1)求直线l 1的解析式和点D 的坐标; (2)求△BCD 的面积.【答案】解:(1)∵直线l 1:y =−2x +b 过点A(4,0), ∴0=−8+b , ∴b =8,∴直线l 1的解析式为y =−2x +8, 解{y =−2x +8y =12x +3得{y =4x=2, ∴点D 的坐标(2,4);(2)由直线l 1:y =−2x +8可知B 的坐标为(0,8),由直线l 2:y =12x +3可知点C 的坐标为(−6,0), ∵点A(4,0), ∴AC =10,∵△BCD 的面积=△ACB 的面积−△ACD 的面积, ∴△BCD 的面积=12×10×8−12×10×4=20.【解析】(1)用待定系数法确定出直线l1解析式,进而联立方程得出点D坐标;(2)由直线的解析式得出B的坐标为(0,8),点C的坐标为(−6,0),然后根据△BCD的面积=△ACB的面积−△ACD的面积求得即可.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.23.鲁能巴蜀中学2018年校艺术节“巴蜀好声音”独唱预选赛中,初二年级25名同学的成绩(满分为10分)统计如下:9.1,7.4,8.8,6.5,9.8,7.5,8.1,4.2,8.5,7.2,5.5,8.0,9.5,8.8,7.2,8.7,6.0,5.6,7.6,6.6,7.8,7.2,8.2,6.3,10(1)9.0分及以上为A级,7.5~8.9分为B级(包括7.5分和8.9分),6.0~7.4分为C级(包括6.0分和7.4分),6.0分以下为D级.请把下面表格补充完整;(3)若成绩为A级的同学将参加学校的汇演,请求出初二年级A级同学的平均成绩?【答案】10 3 6.97.2【解析】解:(1)根据给出的数据可得:B等级的人数有10人,D等级的人数有3人;故答案为:10,3;(2)把C级8位同学的成绩按从小到大排列为:6.0,6.3,6.5,6.6,7.2,7.2,7.2,7.4,=6.9;则C级8位同学成绩的中位数是6.6+7.22∵7.2出现了3次,出现的次数最多,∴C级8位同学成绩的众数是7.2;故答案为:6.9,7.2;(3)初二年级A级同学的平均成绩是:(9.1+9.8+9.5+10)÷4=9.6(分).(1)根据给出的数据直接找出B等级和D等级的人数即可;(2)根据中位数和众数的定义分别进行解答即可;(3)根据平均数的计算公式进行计算即可.本题考查的是平均数、众数和中位数的定义,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据种出现次数最多的数;解题的关键是正确理解各概念的含义.24.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)餐桌a270餐椅b70若购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元.(1)求表中a,b的值;(2)今年年初由于原材料价格上涨,每张餐桌的进价上涨了10元,每张餐椅的进价上涨了m%,商场决定购进餐桌30张,餐椅170张进行销售,全部售出后,要求利润不低于7380元,求m的最大值.4a+19b=1360,【答案】解:(1){6a+26b=1940a=150,解得:{b=40∴a的值为150,b的值为40.(2)根据题意,[270−(150+10)]×30+[70−40(1+m%)]×170≥7380,解得:x≤15.∴m的值为15.【解析】(1)根据购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元,可以列出二元一次方程组,解出a和b;(2)根据30张桌子的利润和170张椅子的利润之和不低于7380,可以列出不等式,即可解除m的取值范围.本题考查了一次函数的应用、解一元一次不等式、二元一次方程,解题的关键是:(1)根据题目,等量关系,列出二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式.25.如图,△ABC为等边三角形,CF⊥AB于点F,AH⊥BC于点,点D在AH的延长线上,连接CD,以CD为边作等边△CDE,连接AE交CF于点G.(1)若AC=4,CE=√5,求△ACD的面积.(2)证明:AG=GE.【答案】(1)解:∵△ABC,△CDE都是等边三角形,∴AC=BC=4,CE=CD=√5,∵AD⊥BC,∴BH=HC=2,AH=√AC2−CH2=2√3,在Rt△CDH中,∵∠DHC=90∘,CH=2,CD=√5,∴DH=√CD2−CH2=1,AD=1+2√3,∴S△ACD=12⋅AD⋅CH=1+2√3.(2)证明:作AN//EC交CF于N.连接BN,BD.∴∠ANC=∠ECN,∵CF⊥AB,∴FA=FB,∠BCF=12∠ACB=30∘,∵∠DCE=60∘,∴∠BCD+∠DCE+∠BCF=90∘+∠BCD=∠AFN+∠BAN=90∘+∠BAN,∴∠BAN=∠BCD,∵NF⊥AB,AF=FB,∴NA=NB,∴∠ABN=∠BAN,同法可证:∠DCB=∠DBC,∵AB=BC,∴△BAN≌△BCD(ASA),∴AN=CD=CE,∵AN//EC,∴∠NAG=∠CEG,∵∠AGN=∠EGC,∴△AGN≌△EGC(AAS),∴AG=GE.【解析】(1)利用勾股定理求出DH,AH即可解决问题.(2)作AN//EC交CF于N.连接BN,BD.先证明△BAN≌△BCD(ASA),再证明△AGN≌△EGC(AAS)即可解决问题.本题考查等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.阅读材料,解决下列问题:材料一:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−12≤x<n+12,则<x>=n;反之,当n为非负整数时,如果<x>=n;则n−12≤x<n+12,例如:<0.51>=<1.49>=1,<2>=2,<3.5>=<4.15>=4,…材料二:平面直角坐标系中任意两点P1(x1,y1),P2(x2,y2),我们把|x1−x2|+ |y1−y2|叫做P1、P2两点间的折线距离,并规定D(P1,P2)=|x1−x2|+|y1−y2|.若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,我们把D(P0,Q)的最小值叫做P0到直线y=k+b的折线距离,例如:若P1(−1,2),P2(1,3)则D(P1,P2)=|−1−1|+|2−3|=3.(1)如果<2x>=5,则实数x的取值范围为______②已知点E(a,2),点F(3,3),且D(E,F)=2,则a的值为______.(2)若m为满足<m>=32m的最大值,求点M(3m,1)到直线y=x+1的折线距离.【答案】94≤x<1144或2【解析】解:(1)①∵<2x>=5,∴5−12≤2x<5+12,∴实数x的取值范围为:94≤x<114;②∵点E(a,2),点F(3,3),且D(E,F)=2,∴|a−3|+|2−3|=2,∴a的值为4或2;故答案为:94≤x<114;4或2;(2)∵<m>=32m,∴3m2−12≤m<3m2+12,∴−1<m≤1,∴m的最大值为1,∴点M(3,1),设Q(x,y)是直线y=x+1上的一动点,点M(3,1)到Q(x,y)的折线距离为:D(M,Q)=|x−3|+|x+1−1|=|x−3|+|x|,它的最小值为3,∴点M(3m,1)到直线y=x+1的折线距离为3.(1)①由<2x>=5可得5−12≤2x<5+12,解不等式组即可得出x的取值范围;②由点E(a,2),点F(3,3),且D(E,F)=2,可得|a−3|+|2−3|=2,解方程即可得出a的值;(2)先根据<m>=32m,求出m的取值范围,从而得出最大m的值,再根据点M(3m,1)到直线y=x+1的折线距离的定义求解即可.本题考查的是一次函数与不等式的知识,涉及到点到直线的距离、绝对值的几何意义等相关知识,属新定义型题目,正确理解折线距离的概念是解题的关键.27. 如图1,在平面直角坐标系中,直线AB 与y 轴交于点A(0,2√3),与x 轴交于点B ,∠ABO =30∘,直线CD 与y 轴交于点D ,与x 轴交于点C(−1,0),∠DCO =60∘,直线AB 与直线CD 交于点Q ,E 为直线CD 上一动点,过点E 作x 轴的垂线,交直线AB 于点M ,交x 轴于点N ,连接AE 、BE . (1)求直线AB 、CD 的解析式及点Q 的坐标;(2)当E 点运动到Q 点的右侧,且△AEB 的面积为9√3时,在y 轴上有一动点P ,直线AB 上有一动点R ,当△PNR 的周长最小时,求点P 的坐标及△PNR 周长的最小值.(3)在(2)问的条件下,如图2将△MNB 绕着点B 逆时针旋转60∘得到△GHB ,使点M 与点G 重合,点N 与点H 重合,再将△GHB 沿着直线AB 平移,记平移中的△GHB 为,在平移过程中,设直线与x 轴交于点F ,是否存在这样的点F ,使得为等腰三角形?若存在,求出此时点F 的坐标;若不存在,说明理由【答案】解:(1)点C(−1,0),∠DCO =60∘,OD =OCtan60∘=√3,直线CD 表达式的k 值为√3,则直线CD 的表达式为:y =√3x +b ,将点C 坐标代入上式并解得:b =√3, 故:直线CD 的表达式为:y =√3x +√3…①,同理可得直线AB 的表达式为:y =−√33x +2√3…②,∴∠ABO =30∘, 联立①②并解得:x =34,即点Q 坐标为(34,7√34); (2)如下图所示,设点E 的坐标为(x,√3x +√3),则点M(x,−√33x +2√3),S△ABE=12EM×OB=12×(√3x+√3+√33x−2√3)=9√3,解得:x=3,即点N坐标为(3,0),点M(3,√3),作点N关于直线AB和y轴的对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,最小值为:N′N″的长度,∵BN=OB−ON=6−3=3,N″N关于直线AB对称,∠ABO=30∘,△N″NB为边长为3的等边三角形,三角形高为:32√3,则点N″的坐标为(92,3√32),点N′(−3,0),则直线N′N″的表达式为:y=√35x+3√35,即点P坐标(0,3√35),△PNR周长的最小值,最小值为N′N″=√(92+3)2+(3√32)2=3√7;(3)如图2,将△MNB绕着点B逆时针旋转60∘得到△GHB,此时∠NBG=30∘,即点GM关于x轴对称,则点G(3,−√3),BH=BN=3,图形平移为时,∠B′BF=∠B′FB=30∘,即△B′BF是底角为30∘的等腰三角形,而为等腰三角形,只能B′H′=B′F,∴B′F=B′H′=BH=BN=3,BF=2B′Fcos30∘=2×3×√32=3√3,故点F的坐标为(6+3√3,0).【解析】(1)OD=OCtan60∘=√3,直线CD表达式的k值为√3,即可求解直线CD 的表达式;同理可得直线AB的表达式,联立两个表达式,即可求解点Q的坐标;(2)S△ABE=12EM×OB=9√3,求出点N坐标;作N点的两个对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,求解即可;(3)△B′BF是底角为30∘的当腰三角形,为等腰三角形,即可求解.本题为一次函数综合题,涉及到图形平移、点的对称性、解直角三角形等知识,其中(3)通过角关系,确定△B′BF是底角为30∘的等腰三角形,是本题的突破点.。

重庆市巴川中学校八年级—学年春期期末考试

重庆市巴川中学校八年级—学年春期期末考试

重庆市巴川中学校八年级 2021—2021学年春期期末考试重庆市巴川中学校 2021—2021学年度春期期末考试初2021届地理试题〔全卷共两个大题,总分值100分,考试时间60分钟〕本卷须知:请各位同学将答案做在“答题卡〞上,在稿本纸、试卷上答题无效。

一、单项选择题〔30个小题,每题 2分,共60分,请将正确答案填涂在答题卡的相应地址。

〕“一带一路〞国际合作巅峰论坛于2021年5月14 日至15日在北京举行。

联系图一,完成 1~3题。

1.“一带一路〞将中国与以下〔 〕洲进行了联系。

①北美②南美③非④大洋⑤欧⑥南极 A.①⑤ B.③⑤ C.④⑤ D.①③ 世纪海上丝绸之路经过了〔 〕洋。

①太平洋②大西洋③印度洋④北冰洋 A.①② B.③④ C.②④ D.①③ 3.图中A 处的陆上分界线是〔 〕。

A.土耳其海峡 B.白令海峡 C.苏伊士运河 D.巴拿马运河 读图二,完成 4~6题。

图中中心点为极点,大圆表示纬线,直线表示经线。

图中点B 的经纬度是〔 〕A.30°N,90°EB. 60°N,90°E C.30°N,90°W D.60°N,90°W 5.点A 位于〔 〕半球。

A.东半球,北半球B.东半球,南半球C.西半球,北半球D.西半球,南半球确的是〔〕6.沿图中点A 向点B 行进的过程中,方向的变化正.. A.先西北,后东北 B.先西北,后西南C.先东北,后西北D.先东北,后西南右图三为我国某地某时段天气周报截图,据图信息完成7~8题。

7.依照天气周报,人们在以下日期出行最有可能使用雨具的是()A.星期一B.星期二C.星期三D.星期四8.截图中的天气情况,最有可能出现在()月月月1/8重庆市巴川中学校八年级2021—2021学年春期期末考试月2/8读世界四地的天气资料图〔图四〕,完成9~10题。

热同期的地址是〔〕地。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

重庆市年八年级(下)期末数学试卷

重庆市年八年级(下)期末数学试卷

重庆市2018-2019学年度八年级(下)期末数学试卷(满分:150分.120分钟完卷)一、选择题(本大题12个小题,每小题4发,共48分。

)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列根式中,不能与合并的是()A.B.C.D.3.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个4.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员2B.队员1C.队员4D.队员35.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5C.5,12,13D.2,2,37.实数k、b满足kb﹥0,不等式kx<b的解集是那么函数y=kx+b的图象可能是()A. B. C. D.8.下列条件中,能判定四边形为平行四边形的是()A.∥,B.,C.,D.,9.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6B.5C.4D.310.2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是411.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20L B.25L C.27L D.30L12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC 于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB ⊥OC ,OM=CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB :OE=3:2.其中正确结论的个数是()A .1B .2C .3D .4二、填空题(本大题6个小题,每小题4分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市巴川中学校2018—2019 学年度春期期末考试初2020 届地理试题(全卷共两个大题,满分100 分,考试时间60 分钟)注意事项:请各位同学将答案做在“答题卡”上,在草稿纸、试卷上答题无效。

一、单选题(30 个小题,每题2 分,共60 分,请将正确答案填涂在答题卡的相应位置。

)“一带一路”国际合作高峰论坛于2017 年5 月14 日至15 日在北京举行。

联系图一,完成1~3 题。

1.“一带一路”将中国与下列()洲进行了联系。

①北美②南美③非④大洋⑤欧⑥南极A.①⑤B.③⑤C.④⑤D.①③2.21 世纪海上丝绸之路经过了()洋。

①太平洋②大西洋③印度洋④北冰洋A.①②B.③④C.②④D.①③3.图中A 处的陆上分界线是()。

A.土耳其海峡B.白令海峡C.苏伊士运河D.巴拿马运河读图二,完成4~6 题。

4.图中中心点为极点,大圆表示纬线,直线表示经线。

图中点B 的经纬度是()A. 30°N,90°EB.60°N,90°EC. 30°N,90°WD. 60°N,90°W5.点A 位于()半球。

A.东半球,北半球B.东半球,南半球C.西半球,北半球D.西半球,南半球6.沿图中点A 向点B 行进的过程中,方向的变化正.确.的是()A.先西北,后东北B.先西北,后西南C.先东北,后西北D.先东北,后西南右图三为我国某地某时段天气周报手机截图,据图信息完成7~8 题。

7.根据天气周报,人们在下列日期出行最有可能使用雨具的是()A.星期一B.星期二C.星期三D.星期四8.截图中的天气状况,最有可能出现在()A.1 月B.4 月C.7 月D.10 月读世界四地的气候资料图(图四),完成9~10 题。

9.能明显体现雨.热.同.期.的地点是()地。

A. ①②B. ③④C. ①③D. ②④10.四地中气温年较差最.大.的是()地。

A. ①B. ②C. ③D. ④2019 年6 月4 日17 时46 分,在台湾台东县海域(北纬22.82 度,东经121.75 度)发生5.8 级地震,震源深度9 公里。

受台湾地震影响,厦门、福州有震感。

联系图五,完成11~12 题。

11.下列关于台湾多地震的原因表述正.确.的是()A.亚欧板块与印度洋板块碰撞挤压B.亚欧板块与太平洋板块碰撞挤压C.亚欧板块与印度洋板块张裂拉伸D.亚欧板块与太平洋板块张裂拉伸12.据图可知,澳大利亚大陆位于()板块。

A.太平洋B.美洲C.印度洋D.非洲2018 年2 月,中国在南方内陆卫星发射中心——西昌用长征三号乙运载火箭,成功发射了北斗系统第二十八颗和第二十九颗导航卫星。

至此,距中国北斗系统组网的35 颗卫星目标,仅差六颗就即将完成。

读图六,回答13~14 题。

13.西昌卫星发射中心位于我国C 省区,该省的行政中心位于()A.兰州B.太原C.成都D.海口14.以下哪项不.是.A卫星发射中心的优势()A.降雨少,晴天多B.地形开阔平坦C.人口城市密集,经济水平高D.交通便利,便于仪器和设备的运输“人民币上学地理”,依据下列两种人民币的背面景观图,完成15~16 题。

15.20 元和50 元人民币背面所示景观分别位于(、)两省区。

A.四川、西藏B.广西、西藏C.广西、青海D.四川、青海16.50 元人民币背面景观所在省区的少数民族的传统节日是()A.那达慕节B.雪顿节C.苗年D.丰收节“要想富,先修路。

”交通运输是经济发展的先行官。

读图八,并联系生活实际,完成17~18 题。

17.可以实现“门对门运输”的最灵活的运输方式应该对应图八中的()运输方式。

A.①B.②C.③D.④18.要将河北秦皇岛的十.万.吨.煤运往上海,最好选择()运输方式。

A.①B.②C.③D.④读“我国四大地理区域图”(图九),完成19~22 题。

19.有关四大地理区域划分的说法,错.误.的是()。

A.甲乙两区域划分的主导因素是降水B.乙丙大致以地势一、二级阶梯为界C.丙丁的差异主要是海陆位置造成的D.界线两侧较明显反映出地理差异性20.我国众多大江大河发源于()地区。

A.甲B.乙C.丙D.丁21.农业以牧业为主的地区是()地区。

A.甲、乙B.乙、丙C.丙、丁D.甲、丁22.发展农业种植的水热条件最优越的地区是()地区。

A.甲B.乙C.丙D.丁2017 年,我国“两会”政府工作报告中提出,研究制定粤港澳大湾区城市群发展规划。

联系图十,完成23-25题:23.香港和澳门相同的地理特征是()A.位于珠江口东侧,与广东省相邻B.土地和矿产资源贫乏,人多地狭C.均为世界重要的金融中心D.经济支柱都是博彩旅游业24.改革开放初期,珠江三角洲与港澳经济联系紧密,形成了“前店后厂”的合作模式。

在这种合作模式中,珠江三角洲担任的角色是()图十A.“前店”——产品销售B.“前店”——产品制造C.“后厂”——产品销售D.“后厂”——产品制造25.建立粤港澳大湾区具备的优势有()①全免费全覆盖的W ifi②海陆空交通便捷③创新能力、制造能力强大④有香港、澳门发展经验可借鉴A.①②③B.①②④C.①③④D.②③④“我家住在黄土高坡,大风从坡上刮过。

不管是西北风,还是东南风。

都是我的歌,我的歌。

……” 联系所学知识,回答第26~28 题。

26.该地区的传统民居是()A. 竹楼B. 窑洞C.蒙古包D. 平顶屋27.该地区是世界最大的黄土堆积区,这些黄土是()来的?A. 水冲B. 风吹C.冰蚀D. 浪打28.根据季风气候形成原因判断该地的东南风属于()季风。

A.春B.夏C.秋D.冬读图十一,回答29~30 题。

29.甲处的地形类型属于()A.平原B.高原C.盆地D.丘陵30.该地区沿北纬40 度自东向西的景观呈现出草原—荒漠草原—荒漠的差异,形成这种差异的主要因素是()A.纬度位置B.海陆位置C.人类活动D. 地形图十一甲40ºN二、综合题(4 个小题,共40 分,请将正确答案填写在答题卡的相应位置。

)31.读地球公转示意图(图十二),完成下列各题。

(每空1 分,共5 分)图十二(1)今天,地球运行到乙(甲、乙、丙、丁)附近。

澳大利亚(南半球)的昼夜长短情况是昼短夜长。

南极附近有极夜(极昼或极夜)现象。

(2)地球由甲位置围绕太阳运行一周回到甲位置的时间大约是365 天。

地球运行到丁位置时,太阳直射南回归线(或23.5°S)(纬线)。

32.下图是我校初二×班的李明同学的家(李庄)附近的等高线地形图(图十三),根据所学地理知识回答下列各题。

(共6 分)图十三(1)观察该等高线地形图,你会发现图中缺少的一种地图要素是图例。

(2)该等高线地形图的等高距是100 米。

(3)请用箭头在图中标出本区小河主干河段的河流流向。

(4)地形图中甲区域的地形类型是盆地。

李明家乡附近有较丰富的水(森林、煤、土地)等资源。

(5)李庄和周庄准备在当地修建一个水库,你认为水库大坝最好建在D(图中字母)处。

33.“千年难见黄河清”,但黄河真的变清了!读黄河流域图(图十四)和资料,完成下列各题。

(13分)图十四资料:2017 年11 月有媒体报道称:黄河变清已成为现实。

调查人员从呼和浩特河口镇到郑州桃花峪一路下来,发现1200 多千米的黄河中游,近期变成了一河的清水;直到河南开封,黄河才呈浅黄色。

(1)“黄河之水天山来,奔流到海不复回。

”由图可知,这“天上”之处位于巴颜喀拉山脉。

黄河水最终流入渤海。

(2)由图可知,我们对于黄河的水能开发主要集中在上、中游河段。

简要说明原因。

(2 分)上、中游有阶梯分界处,河流落差大,水能资源丰富。

(或分别描述上、中游在哪两级阶梯分界处)(3)黄河中游由于流经土质疏松的黄土高原(地形区),水土流失严重,导致黄河成为世界上含沙量最大的河流。

据此推断,黄河主干河段含沙量最大的河段主要位于陕(或秦)、晋两省(简称)。

(4)专家指出,近期黄河变清是生态治理、气候变化、水利工程和经济社会发展共同作用的结果。

其中,气候条件可能是上游降水减少(增加/减少),导致河流水量减少(增加/减少),使河流挟带泥沙的能力减弱。

(5)目前,人们对黄河变清的影响有着不同的争论。

你认为黄河变清的影响是利是弊?请简单说明理由。

(2 分)有利(黄河变清说明黄河中游黄土高原的水土保护颇有成效,黄土高原的水土流失得到了有效治理,入河泥沙减少,黄河下游“地上河”的水患威胁得以缓解);有弊(黄河变清说明其挟带泥沙能力减弱,也意味着河流水量减少,这会影响黄河流域内人民的生产生活用水。

)(只需答有利或有弊,合理给分。

)34.读我国新疆和台湾略图(图十五),并联系相关知识,完成下列各题。

(16 分)图十五(1)新疆位于我国最西(东、南、西、北)端。

台湾主要的少数民族是高山族。

(2)新疆南部的地形区A 是塔里木盆地(地形区),其中油气资源丰富,但水资源不足。

(3)由图可知,台湾的人口城市主要分布在台湾岛的西(东、南、西、北)部,主要的影响因素是地形。

(4)新疆联系东部地区的铁路③是兰新线铁路。

(5)台湾省在近几十年经济发展中,随着产业结构的调整,出口的主导主品不断变化。

目前,出口的主导产品是(D)A.水果、优质大米等农产品B.经过深加工的农副产品C.纺织服饰、高档家具、化工产品等D.软件、电脑等高新技术产品(6)台湾发展经济的最大贸易伙伴是祖国大陆。

简要说明这样发展贸易的优势有哪些?(2 分)离大陆较近,运输成本相对较低;大陆人口众多,消费市场大。

(要点各1 分)(7)联系图和所学知识对比分析新疆和台湾发展经济的有利和不利条件。

(4 分)新疆:(有利:西北边疆,方便边境贸易;资源丰富,工业原料多;地域辽阔,交通发达等等)(不利:气候干旱,水资源不足,农业种植范围受限,工业用水不足等等。

)台湾:(有利:四面临海,海岛多港口,可以发展海上贸易;物产丰富,气候湿热,工农业发展条件好;劳动力素质高;出口加工区多等等)(不利:岛屿面积相对较小,发展空间有限;主体在海上,陆上交通受限于岛内。

等等)(有利和不利各1 分,只要答案合理即可给分。

)。

相关文档
最新文档