专题复习二 与圆有关的角

合集下载

第二十四章《圆》复习课件

第二十四章《圆》复习课件

.r
O
S = nπr2
360
2024/10/13

S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2024/10/13
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2024/10/13
a 侧面
底面
常见的基本图形及结论:
AC
本 第1部分 圆的基本性质
章 第2部分 与圆有关的位置关系

排 第3部分 正多边形和圆
复 习
第4部分
弧长和面积的计算
内 容
第5部分
有关作图
2024/10/13
一.圆的基本概念: 1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
∴ OA⊥ l l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
2024/10/13
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
三角形的外接圆与内切圆:
A.
A
B. O.

C
B

O C
三角形的外心就是三角形各边垂直平分线的交点.
三角形的内心就是三角形各角平分线的交点.
不在同一直线上的三点确定一个圆.
2024/10/13
特别的:
等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2.

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。

中考复习--圆专题(所有知识点和题型(大全),全)

中考复习--圆专题(所有知识点和题型(大全),全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有( )A。

1个B.2个C。

3个D。

4个2.下列命题是假命题的是( )A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形.3。

下列命题正确的是( )A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D。

一个圆只有一个外接三角形4.下列说法正确的是()A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5。

下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22。

如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C。

58°D。

32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44。

如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5。

如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。

8。

若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=。

9。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

鲁教版中考数学一轮复习 圆 专题2 与圆有关的位置关系(含答案)

鲁教版中考数学一轮复习  圆  专题2  与圆有关的位置关系(含答案)

第六单元圆专题2 与圆有关的位置关系考点1 点和圆、直线和圆的位置关系1.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切2.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9 cm,则⊙O 的半径是___________.3.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点.若以1cm为半径的⊙O与直线a相切,则OP的长为___________.考点2 切线的性质与判定1.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为( )A.35°B.45°C.55°D.65°2.如图,PA,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )A.1B.2C.√2C.√34.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD 的周长为____________.5.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为_____________.6.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=___________.7.如图,PA是以AC为直径的⊙O的切线,切点为A,过点A作AB⊥OP,交⊙O于点B. (1)求证:PB是⊙O的切线;,求PO的长.(2)若CC=6,cos∠CCC=358.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.̂上一点,连接AE并延长至点C,使9.已知:如图,AB是⊙O的直径,E为⊙O上一点,D是AE∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD²=DF· DB.考点3 三角形的外接圆与内切圆1.如图,已知点O是△ABC的外心,∠A=40°,连接BO,CO,则∠BOC的度数是( )A.60°B.70°C.80°D.90°2.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则CC=( )C.2√3C.3√3 C.3D.43.设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h,r,R,则下列结论不正确的是( )A.h=R+rB.R=2rC.C=√34C C.C=√33C4.如图,△ABC内接于⊙O,∠A=50°,点D是BC的中点,连接OD,OB,OC,则∠BOD=_______.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A,B,C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC内心的坐标为_____________.6.已知△ABC的三边a,b,c满足b+|c-3|+C2−8C=4√C−1−19,则△ABC的内切圆半径=____________.专题检测一、选择题(每小题4分,共40分)1.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断2.已知⊙O的半径为5,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )A.1个B.2个C.3个D.4个3.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于( )A.75°B.70°C.65°D.60°̂上一点,则∠EPF的4.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF度数是( )A.65°B.60°C.58°D.50°5.如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )A.30°B.35°C.45°D.55°6.如图,长方形ABCD中,AB=4,AD=3,圆B 半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外7.如图,在等腰△ABC中, AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分EF的长为半径作弧相交于点H,作射线AH;别以点E,F为圆心,大于12AB的长为半径作弧相交于点M,N,作直线②分别以点A,B为圆心,大于12MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为( )A.2√5B.10C.4D.58.如图,直线AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,若OB=6 cm,OC=8cm,则BE+CG的长等于( )A.13 cmB.12 cmC.11 cmD. 10 cm9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )A.35B.23C.34D.4510.如图,点A的坐标为(-3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为( )A.( 0,2)B.( 0,3)C.( -2,0)D.( -3,0)二、填空题(每小题4分,共24分)11.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆 (填“内”“上”或“外”).12.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为___________.13.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 .14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为 .15.如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB= .16.如图,两个圆都是以点O为圆心,大圆的弦AB是小圆的切线,点P为切点,AB=10,则图中圆环的面积为 .三、解答题(共36分)17.(12分)阅读下列材料:平面上两点P₁(x₁,y₁),P₂(x₂,y₂)之间的距离表示为|P1P2|=√(x1−x2)2+(y1−y2)2,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为√(x−a)2+(y−b)2=r,变形可得 (x-a)²+(y-b)²=r², 我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x-1)²+(y-2)²=25 可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为 ;(2)若已知⊙O的标准方程为(x-2)²+y²=2²,圆心为C,请判断点A(3,-1)与⊙O的位置关系.18.(12分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(1)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(2)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.19.(12分)如图,在△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;,AD=2,求BO的长.(2)若tanA=34参考答案考点1 点和圆、直线和圆的位置关系1.D ⊙O的半径为2 cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B 到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB 与⊙O的位置关系为相交或相切.2.6.5cm或2.5cm 分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5 cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4 cm,最大距离PA=9 cm,∴直径AB=9-4=5(cm),∴半径r=2.5cm.3.3cm或5cm ∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1 cm. 当点O在点H的左侧,⊙O与直线a相切时,OP=PH-OH=4-1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm.考点2 切线的性质与判定1.C ∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°-∠BAC=90°-35°=55°.2.B 由切线长定理,得PA=PB,∴△BPA 是等腰三角形,故A正确;由圆的对称性可知AB⊥PD,但不一定平分,故B不一定正确;如图,连接OB,OA,由切线的性质,得∠OBP=∠OAP=90°,∴点A,B,P在以OP为直径的圆上,故C正确;∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.3.D 如图,连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB,∴OA=AB=OB,∴∠AOB=60°.∵BD是⊙O的切线,∴∠DBO=90°.∵OB=1,∴BD=√3OB=√3.4.24+6√5如图,连接OE,过点C作CF⊥AD交AD于点F,∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠EOD+∠OEC =180°,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OEC=90°,∴∠EOD=90°,∵CF⊥AD,∴∠CFO=90°,∴四边形OECF为矩形,∴FC=OE,OD=3,∵AD为直径,AD=12,∴FC=OE=OD= 12在Rt△OFC中,由勾股定理得OC²=OF²+FC²=3²+6²=45.∴AB=OC=3√5,∴平行四边形ABCD的周长为12+12+3√5+3√5=24+6√5.5.2√3或2√2连接OB,∵BC是⊙O的切线,∴∠OBC=90°.∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°.当△OAC是直角三角形时,①若∠AOC=90°,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②若∠OAC=90°,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°.∵BC=OA=OB,∴△OBC是等腰直角三角形,∴OC= 2√2.6.27°∵ PA切⊙O于点A,∴∠OAP=90°.∵∠P=36°, ∴∠AOP=54°. ∴∠B=12∠AOP=27 ∘.7.(1)证明连接OB,如图,∵PA是以AC为直径的⊙O的切线,切点为A,∴∠PAO=90°, ∵OA=OB,AB⊥OP,∴∠POA=∠POB,在△PAO和△PBO中, {AO=BO,∠POA=∠POB,OP=OP,∴△PAO≌△PBO(SAS),∴∠PBO=∠PAO=90°,即OB⊥PB,又∵OB为⊙O的半径,∴PB是⊙O的切线;(2)解设OP与AB交于点D.∵AB⊥OP,AB=6,∴DA=DB=3,∠PDA =∠PDB=90°,∵cos∠PAB=35=DAPA=3PA,∴PA=5,∴PD=√PA2−AD2=√52−32=4,在Rt△APD和Rt△APO中,cos∠APD= PDPA ,cos∠APO=PAPO,8.(1)证明∵∠CAD=∠ABD,∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)解∵AF是⊙O的切线,∴∠FAB=90°.∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°. ∴∠ABD=∠FAD.∵∠ABD=∠CAD,∠CAD=∠EAD,∴∠FAD=∠EAD.∵AD=AD,∴△ADF≌△ADE(ASA).∴AF=AE,DF=DE.∵AB=4,BF=5,∴AF =√BF 2−AB 2=3,∴AE=AF=3. ∵S △ABF =12AB ⋅AF =12BF ⋅AD, ∴AD =AB⋅AF BF=4×35=125,∴DE =√AE 2−AD 2=√32−(125)2=95, ∴BE =BF −2DE =75.∵∠AED=∠BEC,∠ADE=∠BCE=90°.∴△BEC ∽△AED. ∴BEAE =BCAD , ∴BC =BE⋅AD AE=2825, ∴sin ∠BAC =BC AB =725.∵∠BDC=∠BAC,∴sin ∠BDC =725.9.证明 (1)∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°. ∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=∠EBA+∠EAB=90°,即∠ABC=90°,∴CB ⊥AB. ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. (2)∵BD 平分∠ABE,∴∠ABD=∠DBE. ∵∠DAF=∠DBE,∴∠DAF=∠DBA.∵∠ADB=∠FDA,∴△ADF ∽△BDA, ∴ADBD =DFAD ,∴AD ²=DF ·DB. 考点3 三角形的外接圆与内切圆1.C ∵点O 为△ABC 的外心,∠A=40°, ∴∠A =12∠BOC,∴∠BOC =2∠A =80 ∘. 2.C 过点O 作OE ⊥BC 于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又 ∵AB̂对应的圆周角为∠ACB 和∠ADB,∴∠ACB=∠ADB=30°, 而BD 为直径,∴∠BAD=90°,在Rt △BAD 中,∠ADB=30°,AD=3, ∴cos30 ∘=ADBD =3BD =√32,∴BD =2√3,∴OB =√3,又∵∠ABD=90°-∠ADB=90°-30°=60°,∠ABC=30°,∴∠OBE=30°. 又∵OE ⊥BC,∴△OBE 为直角三角形. ∴cos ∠OBE =cos30 ∘−BEOB =√3=√32, ∴BE =32.由垂径定理可得BC=2BE= 2×32=3.3.C 如图,∵△ABC是等边三角形.∴△ABC的内切圆和外接圆是同心圆,圆心为O. 设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=12∠BAC=12×60°=30°.在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,AB=AC=BC=a,∴AE=12AC=12a,∴(12a)2+r2=(2r)2,(12a)2+(12R)2=R².∴r=√36a,R=√33a,故C错误,D正确.4.50°∵∠A=50° ,∴∠BOC=100°.∵OB=OC,∴△OBC为等腰三角形,又∵D为BC 中点,∴OD为BC上的中线,根据等腰三角形三线合一性质可得OD为∠BOC的平分线∴∠BOD=12∠BOC=50∘.5.(2,3) 根据A,B,C三点的坐标建立如图所示的坐标系.根据题意,得AB=√62+32=3√5,AC=√42+82=4√5,BC=√102+52=5√5.∵AB²+AC²=BC².∴∠BAC=90°.设BC的函数表达式为y=kx+b,代入B( -3,3),C(7,-2).得{3=−3k+b,−2=7k+b,解得{k=−12,b=32,∴BC的函数表达式为y=−12x+32.当y=0时,x=3,即G(3,0),∴点A与点G关于BD对称,射线BD是∠ABC的平分线.设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r.∵∠BAC=90°,∴四边形MEAF为正方形, S ABC=12AB×AC=12AB×r+12AC×r+12BC×r,解得r=√5,即AE=EM=√5,∴BE=3√5−√5=2√5,∴BM=√BE2+EM2=5,∵B( -3,3),∴M(2,3).∴△ABC内心M的坐标为(2,3).6.1 ∵b+|c−3|+a2−8a=4√b−1−19,∴|c−3|+(a−4)2+(√b−1−2)2= 0,∴c=3,a=4,b=5.∵3²+4²=25=5²,∴c²+a²=b²,∴△ABC是直角三角形,∠ABC=90°.设内切圆的半径为r.根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1.(或者r=3+4−52=1)专题检测1.C2.C 如图,∵⊙O的半径为5,点O到直线l 的距离为3,∴CE=2,过点D作AB⊥ OC,垂足为D,交⊙O于A,B两点,且DE=2,∴⊙O上到直线l的距离为2的点为A,B,C,∴⊙O上到直线l的距离为2的点有3个.3.B4.B5.B 如图,连接OA.∵PA,PB是⊙O的切线,A,B是切点,∴∠PBO=∠PAO=90°,∵∠P=70°,∴∠BOA=360°—∠PBO—∠PAO-∠P=110°,∵OA=OB,∴∠ABO=∠BAO=12(180∘−∠BOA)=12(180 ∘−110 ∘)=35 ∘.6.C 两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则AB=R-1,∵AB =4,圆B半径为1,∴R=5,即圆A的半径等于5,∵AB=4,BC=AD=3,由勾股定理可知AC=5,∴AC=5=R,AD=3C在圆上,点D在圆内.7.D 如图,连接OC,设OA交BC于点T.∵AB=AC=2√5,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT=√AC2−CT2=√(2√5)2−42=2.在Rt△OCT中.有r²=(r-2)²+4²,解得r=5.8.D9.D 连接OC、OD、CD,CD交PA于点E,如图,∵PC,PD与⊙O相切,切点分别为C,D,∴OC⊥CP,PC=PD,OP平分∠CPD.∴OP⊥CD,∴CB̂=DB̂,∴∠COB=∠DOB,∵∠CAD=12∠COD,∴∠COB=∠CAD,在Rt△OCP中, OP=√OC2+PC2=√32+42=5,∴sin∠COP=PCOP =45,∴sin∠CAD=45.10.D 连接AQ、PA,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ=√AP2−AQ2=√AP2−1,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(-3,2),∴此时P点坐标为(-3,0).11.上 12.55°13.55°或125°分两种情况:(1)点A 与点O 在BC 边同侧时,如图1:∵∠BOC=110°,∴∠BAC =110 ∘×12=55 ∘. (2)点A 与点O 在BC 边两侧时,如图2:∵∠BOC=110°,即BĈ所对的圆心角为110°,∴BDC ̂所对的圆心角为:360°—110°=250°. ∴∠BAC =12×250 ∘=125 ∘. 14.4415.130° ∵PA,PB 是⊙O 的切线,A,B 是切点,∴OA ⊥PA,OB ⊥PB,∴∠OAP=∠OBP=90°,∵∠OAP+∠AOB+∠OBP +∠P=360°,∴∠AOB=360°—90°—90°-50°=130°. 16.25π 如图,连接OP 、OA,∵大圆的弦AB 是小圆的切线,∴OP ⊥AB, ∴AP=BP= 12AB =5, 由勾股定理得OA ²-OP ²=AP ²=25, ∴圆环的面积=π×OA ²-π×OP ²=π×(OA ²-OP ²)=25π.17.解 (1)圆心为C(3,4),半径为2的圆的标准方程为(x-3)²+( y-4)²=4.故答案为:(x-3)²+(y-4)²=4. (2)由题意得圆心为C(2.0),∵A (3,−1),∴AC =√(3−2)2+12= √2<2,∴点A 在⊙C 内部.18.解 (1)∵AB=AC,∴∠ABC=∠ACB= 12(180 ∘−∠BAC)=12×(180 ∘−42 ∘)=69 ∘,∵BD 为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°-∠D=90°-42°=48°; ∴∠ACD=∠ABD=∠ABC-∠DBC=69°-48°=21°; (2)如图,连接OD,∵CD ∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD 为⊙O 的内接四边形,∴∠B+∠ADC=180°, ∴∠ADC=180°-∠B=180°-69°=111°,∴∠CAD=180°-∠ACD-∠ADC=180°-42°-111°=27°,∴∠COD=2∠CAD=54°, ∵DE 为切线,∴OD ⊥DE,∴∠ODE=90°,∴∠E=90°-∠DOE=90°-54°=36°. 19.(1)证明如图,过点O 作OH ⊥AB 于点H.∵∠ACB=90°,∴OC ⊥BC.∵BO 为△ABC 的角平分线,OH ⊥AB,∴OH=OC,即OH 为⊙O 的半径. ∵OH ⊥AB,∴AB 为⊙O 的切线.(2)解设⊙O 的半径为3x,则OH=OD=OC=3x.在Rt △AOH 中,∵tanA =34, ∴OHAH =34,∴3xAH =34,∴AH=4x, ∴AO =√OH 2+AH 2=√(3x )2+(4x )2=5x,∵AD=2,∴AO=OD+AD=3x+2,∴3x+2=5x,∴x=1,∴OA=3x+2=5,OH=OD=OC=3x=3 . ∴AC=OA+OC=5+3=8.在Rt △ABC 中, ∵tanA =BCAC ,∴BC =AC ⋅tanA =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.。

中考数学二轮复习专题 与圆有关的计算及答案详解

中考数学二轮复习专题 与圆有关的计算及答案详解

中考数学二轮复习专题与圆有关的计算一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.B.C.D.2.如图,的半径为1,弦在圆心O的两侧,求上有动点于点E,当点D从点C运动到点A时,则点E所经过的路径长为()A.B.C.D.3.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A.B.C.D.4.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程中,作了一个如图所示的圆内接正十二边形.若的半径为1,则这个圆内接正十二边形的面积为()A.1B.3C.D.5.如图,菱形中,,.以A为圆心,长为半径画,点P为菱形内一点,连,,.若,且,则图中阴影部分的面积为()A.B.C.D.6.我国古代数学家刘徽利用圆内接正多边形创立了“割圆术”,现将半径为2的圆十二等分构造出2个矩形和1个正方形(如图),则阴影部分的面积是()A.1B.C.D.7.如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.8.如图,六位朋友均匀的围坐在圆桌旁聚会.圆桌的半径为80cm,每人离桌边10cm,又后来两位客人,每人向后挪动了相同距离并左右调整位置,使8个人都坐下,每相邻两人之间的距离与原来相邻两人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为xcm.则根据题意,可列方程为()A.B.C.2π(80+10)×8=2π(80+x)×10D.2π(80﹣x)×10=2π(80+x)×89.如图,在菱形中,,.以点A为圆心,为半径作,向菱形内部作,使,则图中阴影部分的面积为()A.B.C.D.10.如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧交AB于E点,若AB=4,则图中阴影部分的面积是()A.B.C.D.二、填空题11.如图,△ABC内接于半径为的半圆O中,AB为直径,点M是的中点,连结BM 交AC于点E,AD平分∠CAB交BM于点D,∠ADB=135°且D为BM的中点,则DM的长为;BC的长为.12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为.13.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是.14.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.15.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(二)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(二)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(二)一.选择题(共10小题)1.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米2.如图,⊙O的直径AB=8,弧AC=弧BC,E为OB上一点,∠AEC=60°,CE的延长线交⊙O于D,则CD的长为()A.6 B.4C.D.3.如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为()A.4 B.5 C.8 D.104.如图,⊙O的直径AB=10,E是OB上一点,弦CD过点E,且BE=2,DE=2,则弦心距OF为()A.1 B.C.D.5.如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为()A.7 B.8 C.9 D.106.在⊙O中,弦AB与CD相交于点M,AM=4,MB=3,则CM•MD=()A.28 B.21 C.12 D.77.如图,已知⊙O的弦AB,CD交于点P,且OP⊥CD,若CD=4,则AP•BP的值为()A.2 B.4 C.6 D.88.如图,AB为⊙O的直径,AB=10cm,弦CD⊥AB,垂足为E,且AE:EB=2:3,则AC=()A.3cm B.4cm C.cm D.cm 9.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A.①②③B.①③⑤C.④⑤D.①②⑤10.如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ 的值是()A.24 B.9 C.6 D.27二.填空题(共5小题)11.如图,在△ABC与△BCD中,AB=AC=4,BD交AC于E点,AE=3,且∠BAC=2∠BDC.则BE•ED=.12.如图,弦AB与CD交于点E,AE=3,BE=2,DE=,则CE=.13.如图,在⊙O中,弦AB平分弦CD于E,若CD=8,AE:EB=1:4,则弦AB=.14.如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=.15.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=.三.解答题(共5小题)16.已知:如图所示,BC为圆O的直径,A、F是半圆上异于B、C的一点,D是BC上的一点,BF交AH于点E,A是弧BF的中点,AH⊥BC.(1)求证:AE=BE;(2)如果BE•EF=32,AD=6,求DE、BD的长.17.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.18.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;(3)如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.19.如图是一个铁艺制品,一个圆形铁架里面焊接有△ABC和△DBC,其中BD与AC交于点E,若AE=DE,BC=CE.(1)求∠ACB的度数;(2)过圆心O焊接GF,并使GF⊥AC,垂足为F,GF交BE于点G,若DE=3,EG=2,求AB的长.20.已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.参考答案一.选择题1.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.2.解:连接OC、OD,过点O作OF⊥CD于点F.∵AB是⊙O的直径,C为弧AB的中点,∴∠AOC=∠BOC=90°(等弧所对的圆心角相等);又∵O是圆心,OF⊥CD,∴CF=DF=CD,(垂径定理);在Rt△OEC中,∵∠AEC=60°,∴∠OCE=30°(直角三角形的两个锐角互余);∴在Rt△OCF中,CF=OC•cos30°;又AB=8,∴OC=4;∴CF=4×=2∴CD=2CF=4.故选:D.3.解:设CE=x,则DE=3+x.根据相交弦定理,得x(x+3)=2×2,x=1或x=﹣4(不合题意,应舍去).则CD=3+1+1=5.故选:B.4.解:∵AB=10,∴⊙O的半径为5,又∵BE•AE=CE•ED,即BE•(OA+OE)=CE•ED,即2×(5+5﹣2)=2CE,∴CE=4,∴CD=CE+ED=4+2=6,EF=CD﹣ED=3﹣2=,又∵OE=OB﹣BE=5﹣2=3,在Rt△OEF中,EF=,OE=3,∴OF===.故选:C.5.解:延长AO交⊙O于点D,设⊙O的半径是x,根据相交弦定理,得=12,x=4,因此⊙O的直径是8.故选:B.6.解:由相交弦定理知,CM•MD=AM•MB=3×4=12,故选C.7.解:由于OP⊥CD,可通过垂径定理得出CP=DP=2,再根据相交弦定理,AP•BP=CP•DP=2•2=4.故选:B.8.解:∵CD⊥AB,∴CE=DE,∴CE2=AE•BE,∵AB=10cm,且AE:EB=2:3,∴AE=4cm,EB=6cm,∴CE=2cm,∴AC===2cm.故选:D.9.解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF ∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选:B.10.解:延长DC交⊙C于M,延长CD交⊙O于N.∵CD2=AD•DB,AD=9,BD=4,∴CD=6.在⊙O、⊙C中,由相交弦定理可知,PE•EQ=DE•EM=CE•EN,设CE=x,则DE=6﹣x,EN=6﹣x+6则(6﹣x)(x+6)=x(6﹣x+6),解得x=3.所以,CE=3,DE=6﹣3=3,EM=6+3=9.所以PE•EQ=3×9=27.故选:D.二.填空题(共5小题)11.解:∵AB=AC=4,AE=3,∴CE=1,∵∠BAC=2∠BDC,∴点B、C、D在以点A为圆心,AB为半径的圆上,∴根据相交弦定理,得BE•ED=CE•(AE+AB),∴BE•ED=1×(3+4)=7.故答案为:7.12.解:由相交弦定理得,AE•BE=DE•CE,∴3×2=×CE,解得,CE=4,故答案为:4.13.解:设AE=x,则EB=4x,∵弦AB平分弦CD于E,∴CE=DE=CD=×8=4,∵AE•BE=CE•DE,即x•4x=4•4,解得x=2或x=﹣2(舍去),∴AB=AE+BE=5x=10.故答案为10.14.解:作过点M、B的直径EF,交圆于点E、F,则EM=MA=MF,由相交弦定理知,AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,∵AB是圆O的直径,∴∠AMB=90°,由勾股定理得,AM2+MB2=AB2=64,∴AM=6.15.解:由相交弦定理得:PA•PB=PC•PD,∴BP===6,∴AB=8,故答案为8.三.解答题(共5小题)16.解:(1)连接AB;∵BC是直径,且BC⊥AH,∴;∵A是的中点,∴==;∴∠BAE=∠ABE;∴AE=BE;(2)易知DH=AD=6;∴AE=6﹣DE,EH=6+DE;由相交弦定理,得:AE•EH=BE•EF,即:(6﹣DE)(6+DE)=32,解得DE=2;Rt△BDE中,BE=AE=AD﹣DE=4,DE=2;由勾股定理,得:BD==2.17.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.18.解:(1)弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.(写对一个给(1分),写对两个给2分)(2)如图,AB为弦,CD为弦,且AB与CD在圆内相交于点P.结论:PA•PB=PC•PD.证明:连接AD,BC,∵∠APD=∠BPC,∠D=∠B∴△APD∽△BPC∴PA•PB=PC•PD;(3)若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称,(8分)设∠BAC=x,则∠BAD=x,∠ABC=90°﹣x,(9分)又D是的中点,所以2∠CAD=∠CAD+∠ACD=180°﹣∠ABC,即2•2x=180°﹣(90°﹣x),(10分)解得x=∠BAC=30°.(11分)(若求得AB=或AF=3•FB等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明.)19.(1)证明:∵AE•EC=DE•BE,AE=DE,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:作BM⊥AC于点M,∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.20.解:由相交弦定理,得AE•BE=DE•CE 又∵BE=2CE∴AE•2CE=6CE∴AE=3∵AB⊥PD∴∠AEP=90°又∵∠P=45°∴∠EAP=∠P=45°∴PE=AE=3在Rt△AEP中,由勾股定理,得:PA ===∵PA切⊙O于点A∴PA2=PC•PD∴PC=∴CE=PE﹣PC=3﹣2=1∵FC⊥PD∴∠FCE=90°又∵∠AED=90°∴∠AED=∠FCE∴AE∥FC∴=∴FC===∴tan∠CFE===.。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。

人教版2023年中考数学专题复习练习圆的性质

人教版2023年中考数学专题复习练习圆的性质

第26 讲圆的性质一.圆周角定理(共11小题)1.(2021•阜新)如图,A,B,C是⊙O上的三点,若∠O=70°,则∠C的度数是()A.40°B.35°C.30°D.25°2.(2022•阜新)如图,A,B,C是⊙O上的三点,若∠C=35°,则∠ABO的度数是()A.35°B.55°C.60°D.70°3.(2022•朝阳)如图,在⊙O中,点A是BĈ的中点,∠ADC=24°,则∠AOB的度数是()A.24°B.26°C.48°D.66°4.(2022•营口)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4√3B.8C.4√2D.4 5.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D̂上任意一点,则∠ADB度数为()是ABA.112°B.124°C.122°D.134°6.(2021•鞍山)如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°7.(2021•辽宁)如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD =20°,∠AED=80°,则∠COB的度数为()A.80°B.100°C.120°D.140°8.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°9.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.10.(2021•朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为7√3,则弦AB所对的圆周角的度数为.11.(2021•辽宁)如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=.二.圆内接四边形的性质(共1小题)12.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC的度数为.三.三角形的外接圆与外心(共2小题)13.(2021•沈阳)如图,△ABC是⊙O的内接三角形,AB=2√3,∠ACB=60°,连接OA,̂的长是()OB,则ABA .π3B .2π3C .πD .4π314.(2020•锦州)如图,⊙O 是△ABC 的外接圆,∠ABC =30°,AC =6,则AĈ的长为 .四.圆与解直角三角形(共1小题)15.(2022•丹东)如图,AB 是⊙O 的直径,点E 在⊙O 上,连接AE 和BE ,BC 平分∠ABE交⊙O 于点C ,过点C 作CD ⊥BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与⊙O 的位置关系,并说明理由;(2)若sin ∠ECD =35,CE =5,求⊙O 的半径.五.圆与相似三角形(共6小题)16.(2021•锦州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,D 为⊙O 上一点(位于AB下方),CD 交AB 于点E ,若∠BDC =45°,BC =6√2,CE =2DE ,则CE 的长为( )A.2√6B.4√2C.3√5D.4√3 17.(2022•朝阳)如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.(1)求证:AF是⊙O的切线;(2)若⊙O的半径为5,AD是△AEF的中线,且AD=6,求AE的长.18.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB 上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D 和点E.(1)求证:BC与⊙O相切;(2)若sin∠BAC=35,CE=6,求OF的长.19.(2022•营口)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.̂=CD̂,连接AC,20.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且AD BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.(1)求证:AF=AE;(2)若AB=8,BC=2,求AF的长.21.(2021•丹东)如图,⊙O是△ABC的外接圆,点D是BĈ的中点,过点D作EF∥BC分别交AB、AC的延长线于点E和点F,连接AD、BD,∠ABC的平分线BM交AD于点M.(1)求证:EF是⊙O的切线;(2)若AB:BE=5:2,AD=√14,求线段DM的长.第 26 讲 圆的性质参考答案一.圆周角定理(共11小题)1.B ; 2.B ; 3.C ; 4.A ; 5.B ; 6.B ; 7.C ; 8.B ; 9.(−√3,1); 10.60°或120°; 11.32; 二.圆内接四边形的性质(共1小题)12.40°;三.三角形的外接圆与外心(共2小题)13.D ; 14.2π;四.圆与解直角三角形(共1小题)15.(1)结论:CD 是⊙O 的切线,证明见解析部分;(2)256.;五.圆与相似三角形(共6小题)16.D ; 17.(1)见解析;(2)365.; 18.(1)见解析;(2)2√10.;19. ; 20.(1)证明见解答过程; (2)8√155.; 21.(1)见详解;(2)2.;。

2021年九年级中考数学复习 专题汇编:与圆有关的位置关系(含答案)

2021年九年级中考数学复习  专题汇编:与圆有关的位置关系(含答案)

2021中考数学专题汇编:与圆有关的位置关系一、选择题(本大题共10道小题)1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 如图,AB为☉O的直径,BC为☉O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是☉O的切线;②CO⊥DB;③△EDA∽△EBD;④ED·BC=BO·BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个3. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4. 如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PDC=60°,则∠OBC等于()A. 55°B. 65°C. 70°D. 75°5. 在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA长为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为()A.E,F,G B.F,G,HC.G,H,E D.H,E,F6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在网格中(每个小正方形的边长均为1个单位长度)选取9个格点(格线的交点称为格点).如果以点A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()图A.22<r≤17 B.17<r≤3 2C.17<r≤5 D.5<r≤298. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A. 12B.22C.32D.339. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4 cm B.3 cm C.2 cm D.1.5 cm10. (2019•仙桃)如图,AB为O的直径,BC为O的切线,弦AD∥OC,直线⊥;CD交的BA延长线于点E,连接BD.下列结论:①CD是O的切线;②CO DB⋅=⋅.其中正确结论的个数有③EDA EBD△∽△;④ED BC BO BEA.4个B.3个C.2个D.1个二、填空题(本大题共8道小题)11. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.12. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.13. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A 外.14. 如图,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC,垂足为E,要使DE 是⊙O的切线,则图中的线段应满足的条件是____________.15. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.16. 已知l1∥l2,l1,l2之间的距离是3 cm,圆心O到直线l1的距离是1 cm,如果圆O与直线l1,l2有三个公共点,那么圆O的半径为________cm.17. 2019·兴化期中已知等边三角形ABC的边长为2,D为BC的中点,连接AD.点O在线段AD上运动(不与端点A,D重合),以点O为圆心,33为半径作圆,当⊙O与△ABC的边有且只有两个公共点时,DO的取值范围为________.18. 如图,⊙O 是△ABC 的内切圆,若∠ABC =70°,∠ACB =40°,则∠BOC =________°.三、解答题(本大题共4道小题) 19. 2018·邵阳 如图所示,AB 是⊙O 的直径,C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为D ,连接BC ,BC 平分∠ABD . 求证:CD 为⊙O 的切线.20. 2019·天津如图,已知PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =80°,C为⊙O 上一点.(1)如图①,求∠ACB 的大小;(2)如图②,AE 为⊙O 的直径,AE 与BC 相交于点D.若AB =AD ,求∠EAC 的大小.21. 如图,AB为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).22. 2018·北京 对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (-2,6),B (-2,-2),C (6,-2). (1)求d (点O ,△ABC );(2)记函数y =kx (-1≤x ≤1,k ≠0)的图象为图形G .若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围.2021中考数学 专题汇编:与圆有关的位置关系-答案一、选择题(本大题共10道小题)1. 【答案】D [解析]∵AB 为☉O 的切线,∴∠OAB=90°. ∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD ,∴∠ADC=∠OAD ,∵∠AOB=∠ADC +∠OAD ,∴∠ADC=∠AOB=27°,故选D .2. 【答案】A[解析]连接DO ,∵AD ∥OC ,∴∠DAO=∠COB ,∠ADO=∠DOC ,∵OA=OD,∴∠OAD=∠ODA,∴∠COB=∠COD,∴△COD≌△COB,∴∠ODC=∠OBC,∵BC为☉O的切线,∴∠OBC=90°,∴∠ODC=90°,∴CD是☉O的切线,故①正确;∵OB=OD,∠COB=∠COD,∴CO⊥DB,故②正确;∵∠EDA+∠ADO=90°,∠DBA+∠DAO=90°,∴∠EDA=∠DBA,∴△EDA∽△EBD,故③正确;∵△EDA∽△EBD,∴=,易证△COB∽△BAD,∴=,∴=,∴=,即ED·BC=BO·BE,故④正确.因此本题选A.3. 【答案】A4. 【答案】B【解析】连接OP,如解图,则OP⊥AP.∵∠D=60°,∴∠COP=120°,∵∠A=20°,∠APO=90°,∴∠AOP=70°,∴∠AOC=50°,∵OB=OC,∴∠OBC=180°-50°2=65°.解图5. 【答案】A[解析] 设小正方形的边长为1个单位长度,所以OA =12+22= 5.因为OE =2<OA ,所以点E 在⊙O 内; OF =2<OA ,所以点F 在⊙O 内; OG =1<OA ,所以点G 在⊙O 内; OH =22+22=2 2>OA , 所以点H 在⊙O 外. 故选A.6. 【答案】C [解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC=12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】B[解析] 如图,∵AD =2 2,AE =AF =17,AB =3 2,∴AB >AE =AF >AD ,∴当17<r <3 2时,以点A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.8. 【答案】A【解析】如解图,连接OC ,∵EC 切⊙O 于C ,∴∠OCE =90°,∵OA =OC ,解图∴∠ACO =∠A =30°,∴∠COE =∠ACO +∠A =30°+30°=60°,∴∠E =180°-∠OCE -∠COE =180°-90°-60°=30°,∴在Rt △COE 中,sin ∠E =sin30°=12.9. 【答案】B [解析] 如图,连接OC ,并过点O 作OF ⊥CE 于点F . ∵△ABC 为等边三角形,边长为4 cm , ∴△ABC 的高为2 3 cm ,∴OC = 3 cm. 又∵⊙O 与BC 相切于点C ,∠ACB =60°,∴∠OCF =30°.在Rt △OFC 中,可得FC=32 cm , ∴CE =2FC =3 cm.10. 【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒, ∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确, ∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒, ∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△,∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A .二、填空题(本大题共8道小题)11. 【答案】219°[解析]连接AB,∵P A,PB是☉O的切线,∴P A=PB.∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°.∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°.12. 【答案】1613. 【答案】O B,D C[解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO =DO.设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO=22<1,AC=2>1,∴点O在⊙A内,点B,D在⊙A上,点C在⊙A外.14. 【答案】BD=CD或AB=AC(答案不唯一)[解析] (1)连接OD.要使DE是⊙O的切线,结合DE⊥AC,只需OD∥AC,根据O是AB的中点,只需BD=CD即可;(2)根据(1)中探求的条件,要使BD=CD,则连接AD,由于∠ADB=90°,只需AB=AC,根据等腰三角形的三线合一即可.15. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.16. 【答案】2或4[解析] 设圆O的半径为r cm如图①所示,r-1=3,得r=4;如图②所示,r+1=3,得r=2.17. 【答案】0<DO<33或2 33<DO<3[解析] ∵等边三角形ABC的边长为2,D为BC的中点,∴AD⊥BC,BD=1,AD= 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.18. 【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB、OC分别是∠ABC、∠ACB的平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(70°+40°)=55°.∴∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°.三、解答题(本大题共4道小题)19. 【答案】证明:连接OC.∵BC平分∠ABD,∴∠OBC=∠DBC.∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD.∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.20. 【答案】解:(1)如图①,连接OA,OB,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-80°=100°.由圆周角定理,得∠ACB =12∠AOB =50°.(2)如图②,连接CE .∵AE 为⊙O 的直径,∴∠ACE =90°.∵∠ACB =50°,∴∠BCE =90°-50°=40°,∴∠BAE =∠BCE =40°.∵AB =AD ,∴∠ABD =∠ADB =70°,∴∠EAC =∠ADB -∠ACB =20°.21. 【答案】(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.22. 【答案】解:(1)如图所示,点O 到△ABC 的距离的最小值为2,∴d (点O ,△ABC )=2.(2)如图,函数y =kx (k ≠0)的图象经过原点,在-1≤x ≤1范围内,函数图象为线段. 当函数y =kx (-1≤x ≤1,k ≠0)的图象经过点(1,-1)时,k =-1,此时d (G ,△ABC )=1;当函数y =kx (-1≤x ≤1,k ≠0)的图象经过点(-1,-1)时,k =1,此时d (G ,△ABC )=1.∴-1≤k≤1.又∵k≠0,∴-1≤k≤1且k≠0.(3)如图,⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时t=-4.②当⊙T在△ABC的内部时,当点T与原点重合时,d(⊙T,△ABC)=1,此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2.∵AB=BC=8,∠ABC=90°,∴∠C=∠T3DM=45°,则T3D=2 2,∴t=4-2 2.故此时0≤t≤4-2 2.③当⊙T在△ABC的右侧时,由d(⊙T,△ABC)=1知T4N=2.∵∠T4DC=∠C=45°,∴T4D=2 2,∴t=4+2 2.综上,t=-4或0≤t≤4-2 2或t=4+2 2.。

九年级数学中考一轮复习 微专题二讲义:圆的基本性质

九年级数学中考一轮复习 微专题二讲义:圆的基本性质

微专题二:圆的基本性质【知识点扫描】1. 圆上各点到圆心的距离都等于.2. 圆是轴对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量,那么它们所对应的其余各组量都分别.5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.6. 半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是.7.圆内接四边形的对角.8.圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为 .9.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .10.圆锥的侧面积公式:S=rlπ.(其中为的半径,为的长);圆锥的全面积:S全=S侧+S底=πrl+πr2.【难点突破】重难点1垂径定理及其应用一.选择题:1.如图,AB是⊙O的直径,弦CD⊙AB于点G,点F是CD上一点,且满足CF:FD =3:7,连接AF并延长交⊙O于点E,连接AD、DE,若CF=3,AF=3,给出下列结论:⊙FG=2;⊙5 tanE;⊙495DEFS=;其中正确的是( )A. ⊙⊙B. ⊙⊙C. ⊙⊙D.⊙⊙⊙二、填空题:1.在半径为1的⊙O中,两条弦AB,AC的长分别为3和2,则弧BC的长度为.三、解答题:1.已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊙CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:⊙ADG⊙⊙AFD;(3)当点G是弧AD的中点时,求⊙ADG得面积与⊙AFD的面积比.重难点2圆周角定理及其推论一、选择题1. 如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设⊙BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α2.如图,点C为⊙ABD外接圆上的一点(点C不在上,且不与点B,D重合),且⊙ACB=⊙ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5B.5C.4D.二、填空题1.如图,⊙O是⊙AB C的外接圆,AD⊙B C于D,CE⊙AB于E,AD交CE于H点,交⊙O于N,OM⊙B C于M,BF为⊙O的直径,下列结论:⊙四边形AH CF为平行四边形;⊙AH=2OM,⊙BF=2F C;⊙DN=DH;其中正确的有______(第1题) (第2题)2.如图,在平面直角坐标系中,已知点A (0,2)、B(0,2+m)、C(0,2-m)(m>0),点P 在以D(4,6)为圆心,1 为半径的圆上运动,且始终满足⊙BPC=90°,则m的最大值是3.如图,AB,BC是⊙O的弦,⊙B=60°,点O在⊙B内,点D为上的动点,点M,N,P 分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是三.解答题1.请完成以下问题:(1)如图1,=,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.2.如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是⊙ABP 的外接圆⊙O 的直径.(1)求证:⊙APE 是等腰直角三角形; (2)若⊙O 的直径为2,求PC 2+PB 2的值.3.如图1,已知四边形ABCD 内接于圆0,AD=BC ,延长AB 到E ,使BE=AB ,连接EC ,F 是EC 的中点,连接BF(1)若圆0的半径为3,⊙DAB=120°,求劣弧BD 的长; (2)如图2,连接BD ,求证:BF=21BD ; (3)如图3,G 是BD 的中点,过B 作AE 的垂线交圆0于点P ,连接PG ,PF ,求证:PG=PF图1 图2 图34.如图1,圆O的两条弦AC、BD交于点E,两条弦所成的锐角或者直角记为⊙α(1)点点同学通过画图和测量得到以下近似数据:的度数30.2°40.4°50.0°61.6°的度数55.7°60.4°80.2°100.3°⊙α的度数43.0°50.2°65.0°81.0°猜想:、、⊙α的度数之间的等量关系,并说明理由﹒(2)如图2,若⊙α=60°,AB=2,CD=1,将以圆心为中心顺时针旋转,直至点A与点D 重合,同时B落在圆O上的点,连接CG﹒⊙求弦CG的长;⊙求圆O的半径.重难点3 三角形的外接圆及圆内接四边形 一、选择题1.如图,点A 的坐标为A (8,0),点B 在y 轴正半轴上,且AB=10,点P 是⊙AOB 外接圆上一点,且⊙BOP=45°,则点P 的坐标为( )A .(7,7)B .(7,7)C .(5,5)D .(5,5)2.如图所示,四边形ABCD 中,DC⊙AB ,BC=2,AB=AC=AD=3.则BD 的长为( ) A.13 B.5 C.23 D.243.如图,⊙ABC 内接于圆O ,延长AO 交BC 于点P ,交圆O 于点D ,连结OB ,OC ,BD ,DC ( )A .若AB=AC ,则BC 平分ODB .若OCBD ,则CD :AB=:3C .若⊙ABO=30°,则OC BDD .若BC 平分OD ,则AB=AC二.填空题1.在⊙ABC 中,45AB =5AC =,11BC =,则⊙ABC 的外接圆半径为____________2、如图,⊙ABC内接于⊙O,其外角平分线AD交⊙O于D,DM⊙AC于M,下列结论中正确的是.⊙DB=DC;⊙AC+AB=2CM;⊙AC﹣AB=2AM;⊙S⊙ABD=S⊙ABC.重难点4弧长及扇形面积的有关计算一.选择题1.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.2π﹣2D.π﹣2二.填空题1、如图,一根长为a的竹竿AB斜靠在墙上,竹竿AB的倾斜角为α,当竹竿的顶端A下滑到点A'时,竹竿的另一端B向右滑到了点B',此时倾斜角为β.(1)线段AA'的长为.(2)当竹竿AB滑到A'B'位置时,AB的中点P滑到了P',位置,则点P所经过的路线长为(两小题均用含a,α,β的代数式表示)2、如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为_ __3、如图,AB为半圆O的直径,C为AO的中点,CD⊙AB交半圆与点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分面积为cm2.三、简答题1、在⊙O中,己知弦BC所对的圆周角⊙BAC与圆心角⊙BOC互补.(1)求⊙BOC的度数.(2)若⊙O的半径为4,求弦BC和劣弧BC组成的弓形面积.。

中考数学二轮复习专题 圆的基本性质及答案详解

中考数学二轮复习专题 圆的基本性质及答案详解

中考数学二轮复习专题圆的基本性质一、单选题1.如图,AB是⊙O的弦,圆心O到弦AB的距离,点C是弧AB中点,点D是优弧AB上的一点,,则弦AB的长为()A.6B.9C.10D.122.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A.πB.πC.2πD.π3.如图,菱形中,,.以A为圆心,长为半径画,点P为菱形内一点,连,,.若,且,则图中阴影部分的面积为()A.B.C.D.4.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.5.如图,上有A、B两点,点C为弧AB上一点,点P是外一点,且,,则的度数为()A.B.C.D.6.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A.2B.2.5C.3D.3.57.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A.B.C.D.8.以为中心点的量角器与直角三角板按如图方式摆放,量角器的0刻度线与斜边重合.点为斜边上一点,作射线交弧于点,如果点所对应的读数为,那么的大小为()A.B.C.D.9.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D10.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.二、填空题11.如图,点A、B、C在⊙O上,∠ACB+∠AOB=90°,则∠ACB的大小为12.如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为.13.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.14.如图5,AB是半圆O 的直径,E是BC的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.15.如图,AB是的直径,点C,D,E都在上,∠1=55°,则∠2=°16.在中,若,,则的面积的最大值为. 17.已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为.18.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点,点O为坐标原点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.三、作图题19.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm, CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径四、解答题20.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB 的长.21.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.五、综合题22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.23.以的一条边AC为直径的⊙O与BC相交于点D,点D是BC的中点,过点D作⊙O的切线交AB于点E.(1)求证:AB=AC;(2)若BE=1,,求⊙O的半径.24.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE= ,∠C=30°,求的长。

2020九年级中考数学 专题复习:圆的综合(含答案)

2020九年级中考数学 专题复习:圆的综合(含答案)

2020中考数学 专题复习:圆的综合(含答案)类型一 与基本性质有关的证明与计算1. 如图,AB 是⊙O 的直径,点D 是AE ︵上的一点,且∠BDE =∠CBE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长.第1题图(1)证明:∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠EAB +∠ABE =90°,∵∠BDE =∠EAB ,∠BDE =∠CBE , ∴∠EAB =∠CBE ,∴∠ABE +∠CBE =∠ABE +∠EAB =90°,即CB ⊥AB . 又∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线; (2)证明:∵BD 平分∠ABE , ∴∠ABD =∠DBE ,AD ︵=DE ︵, ∴∠ABD = ∠DEA , ∴∠DEA = ∠DBE , ∵∠EDB =∠BDE , ∴△DEF ∽△DBE ,∴DE DB =DF DE, ∴DE 2= DF ·DB ;(3)解:如解图,连接OD ,延长ED 交BA 的延长线于点P ,第1题解图∵OD =OB , ∴∠ODB =∠OBD , ∵BD 平分∠ABE , ∴∠OBD = ∠EBD , ∴∠EBD =∠ODB , ∴OD ∥BE , ∴△PDO ∽△PEB , ∴PD PE =POPB, ∵P A =AO , ∴P A =AO =OB , ∴PO PB =PD PE =23, ∵PD PE =PD PD +DE =23,DE =2, ∴PD =4.2. 如图,AB 是⊙O 的直径,C 是BD ︵的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若BE =4,EF = 3,求⊙O 的半径.第2题图(1)证明:连接AC ,如解图,∵点C 是BD ︵的中点,∴∠DBC =∠BAC , 在△ABC 中,∠ACB =90°,CE ⊥AB ,第2题解图∴∠BCE +∠ECA =∠BAC +∠ECA =90°, ∴∠BCE =∠BAC , 又∵C 是BD ︵的中点, ∴∠DBC =∠CDB , ∴∠BCE =∠DBC , ∴CF = BF ;(2)解:∵BE = 4,EF = 3, ∴BF =32+42= 5,∴CF = 5,∴CE = 5+3= 8, ∵AB 是⊙O 的直径, ∴∠ACB = 90°, ∴CE 2=BE ·AB , ∴AB =CE 2BE = 644= 16,∴AO = 8,∴⊙O 的半径为8.3. 如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD . (1)求证:AD =AN;(2)若AB =8,ON = 1,求⊙O 的半径.第3题图(1)证明:∵CD ⊥AB , ∴∠CEB = 90°, ∴∠C +∠B = 90°, 同理∠C +∠CNM = 90°, ∴∠CNM =∠B , ∵∠CNM = ∠AND , ∴∠AND = ∠B , ∵AC ︵=AC ︵, ∴∠ADN = ∠B , ∴∠AND = ∠ADN , ∴AN =AD ;第3题解图(2)解:设OE 的长为x ,连接OA , ∵AN =AD ,CD ⊥AB , ∴DE = NE =x +1,∴OD =OE +ED =x +x +1=2x +1, ∴OA = OD = 2x +1,∴在Rt △OAE 中,OE 2+AE 2= OA 2, ∴x 2+42=(2x +1)2,解得x =53或x =-3(不合题意,舍去),∴OA = 2x +1= 2×53+1= 133,即⊙O 的半径为133.4. 如图,A 、B 、C 为⊙O 上的点,PC 过O 点,交⊙O 于D 点,PD = OD ,若OB ⊥AC 于E 点.第4题图(1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长. 解:(1)A 是PB 的中点, 理由:连接AD ,如解图,第4题解图∵CD 是⊙O 的直径, ∴AD ⊥AC , ∵OB ⊥AC , ∴AD ∥OB , ∵PD = OD ,∴AD 是△PBO 的中位线, ∴P A =AB , ∴A 是PB 的中点; (2)∵AD ∥OB , ∴△APD ∽△BPO , ∴AD BO =PD PO = 12, ∵⊙O 半径为8, ∴OB = 8, ∴AD =4, ∴AC =CD 2-AD 2= 415,∵OB ⊥AC , ∴AE =CE = 215, ∴OE =12AD = 2,∴BE =6, ∴BC =BE 2+CE 2=4 6.5. 如图,AB 是⊙O 的直径,点C 、E 是⊙O 上的点,且AC ︵=EC ︵,连接AC 、BE ,并延长交于点D ,已知AB =2AC =6.第5题图(1)求DC 的长; (2)求EC ︵的长.解:(1)如解图,连接BC ,第5题解图∵ AB 是⊙O 的直径, ∴∠ACB =90°,CB ⊥AD , ∵AC ︵=EC ︵, ∴∠ABC =∠DBC , ∴△ABD 为等腰三角形, ∵AB =2AC =6, ∴DC =AC =3;(2)如解图,连接OC 、OE , ∵AB =2AC =6,∠ACB =90°, ∴∠ABC =30°,OC =OE =3, ∴∠DBC =∠ABC =30°∴∠COE =2∠DBC =60°,∴l EC ︵=60×π×3180=π.6. 如图,AB 为圆O 的直径,CD ⊥AB 于点E ,交圆O 于点D ,OF ⊥AC 于点F .第6题图(1)求证:OF =12BD ;(2)当∠D =30°,BC =1时,求圆中阴影部分的面积. (1)证明:如解图,连接OC ,第6题解图∵OF ⊥AC ,OA =OC , ∴AF =FC ,∵OA =OB ,∴OF 是△ABC 的中位线,∴OF =12BC ,∵AB ⊥CD ,∴BC ︵=BD ︵, ∴BC =BD , ∴OF =12BD ;(2)解:∵∠D =30°, ∴∠A =∠D =30°, ∴∠COB =2∠A =60°, ∴∠AOC =120°,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,BC=1,∴AB=2,AC=3,由(1)可知OF=12BC=1 2,∵∠COB=60°,OB=OC,∴△BOC是等边三角形,∴OA=OB=BC=1,∴S△AOC=12AC ·OF=12×3×12=34,S扇形AOC=120πOA2360=π3,∴S阴影=S扇形AOC-S△AOC=π3-34.7. 如图,△ABC内接于⊙O,AB为⊙O的直径,OD⊥AB交⊙O于点D,AC、OD的延长线交于点E,连接CD.(1)求证:∠ECD=∠BCD;(2)当AC=CD时,求证:CE=CB.第20题图证明:(1)∵AB是⊙O的直径,∴∠ACB=∠ECB=90°,∵OD⊥AB,∴∠DOB=90°,∴∠BCD=12∠DOB=45°,∴∠ECD=∠ECB-∠BCD=90°-45°=45°,∴∠ECD =∠BCD ;(2)如解图,连接OC 、BD ,第7题解图∵AC =CD ,∴∠AOC =∠DOC ,∠ABC =∠DBC , 又∵∠E +∠A =∠ABC +∠A =90°, ∴∠E =∠ABC =∠DBC , 在△ECD 和△BCD 中⎩⎨⎧∠E =∠DBC∠ECD =∠BCD CD =CD, ∴△ECD ≌△BCD (AAS), ∴CE = CB .8. 如图,四边形ABCD 内接于⊙O ,且BD 为直径,∠ACB = 45°,过A 点的AC 的垂线交BC 的延长线于点E . (1)求证:BE = DC ; (2)如果AD =2,求图中阴影的面积.第8题图解:(1)∵BD 是⊙O 的直径, ∴∠BAD =90°,∵∠ACB =45°,∴∠ADB =∠ACB = 45°, ∵AE ⊥AC ,∴△ACE 与△ABD 是等腰直角三角形,∴AE = AC ,AB = AD ,∠EAC = ∠BAD = 90°, ∴∠EAB = ∠CAD , 在△ABE 与△ADC 中,⎩⎨⎧AE =AC∠EAB = ∠CAD AB =AD, ∴△ABE ≌△ADC , ∴BE =DC ;第8题解图(2)如解图,连接AO ,则∠AOD = ∠ABD =90°, ∵AD = 2, ∴AO = OD = 1, ∴S 阴影= S 扇形-S △AOD =90 ·π×12360-12×1×1= π4-12. 9. 如图,在△ABC 中,以AC 为直径的⊙O 分别交AB ,BC 于点D ,E ,连接DE ,AD =BD ,∠ADE =120°. (1)证明:△ABC 是等边三角形; (2)若AC =2,求图中阴影部分的面积.第9题图(1)证明:如解图,连接CD , ∵AC 为⊙O 的直径, ∴CD ⊥AB , ∵AD =BD , ∴AC =BC ,∵∠ADE =120°,∴∠ACE =60°, 又∵AC =BC ,∴△ABC 是等边三角形;第9题解图(2)解:∵△ABC 是等边三角形, ∴∠CAB =∠ACB =∠B =60°,∵∠ADE =120°,∴∠BED =∠BDE =∠B =60°, ∴△BDE 是等边三角形, ∴BD =ED , ∵AD =BD ,∴DE =AD = BE =12AB = 12BC ,∴DE ︵=AD ︵,DE 为△ABC 的中位线,E 为BC 的中点, ∴S 弓形DE =S 弓形AD ,∴S 阴影=S △DEB = 12S △BDC ,∵AC =2,∴AD =BD =1,∴DC =3,∴S 阴影=12×12×1×3= 34.10. 如图,在△ABC 中,AB = AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD .第10题图(1)求证:点E 是BD ︵的中点;(2)当BC = 12,且AD ∶CD =1∶2,求⊙O 的半径. (1)证明:如解图,连接AE ,DE ,第10题解图∵AB 是直径, ∴AE ⊥BC , ∵AB = AC , ∴BE = EC ,∵∠CDB =90°,DE 是斜边BC 的中线, ∴DE = EB , ∴ED ︵= EB ︵,即点E 是BD ︵的中点; (2)设AD =x ,则CD = 2x , ∴AB =AC =3x ,∵AB 为直径, ∴∠ADB =90°, ∴BD 2= (3x )2-x 2=8x 2, 在Rt △CDB 中, (2x )2+8x 2=122, ∴x =23, ∴OA = 32x =33,即⊙O 的半径是3 3.类型二 与切线有关的证明与计算1. 如图,AB 是⊙O 的切线,B 为切点,圆心O 在AC 上,∠A = 30°,D 为BC ︵的中点.第1题图(1)求证:AB =BC ;(2)试判断四边形BOCD 的形状,并说明理由. 解:(1)∵AB 是⊙O 的切线,∴∠OBA = 90°,∠AOB = 90°-30°= 60°. ∵OB =OC ,∴∠OBC =∠OCB ,∠OCB = ∠A = 30°, ∴AB = BC ;(2)四边形BOCD 为菱形,理由如下:连接OD 交BC 于点M , ∵D 是BC ︵的中点,第1题解图∴OD 垂直平分BC , 在Rt △OMC 中, ∵∠OCM = 30°, ∴OC =2OM =OD , ∴OM =MD ,∴四边形BOCD 为菱形.2. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠BAC =∠DAC ,过点C 作直线EF ⊥AD ,交AD 的延长线于点E ,连接BC .(1)求证:EF 是⊙O 的切线;(2)若DE =1,BC =2,求劣弧BC ︵的长l .第2题图(1)证明:如解图,连接OC , ∵OA =OC , ∴∠OAC =∠OCA , ∵∠BAC =∠DAC , ∴∠DAC =∠OCA , ∴AD ∥OC , ∵EF ⊥AD , ∴∠AEC =90°,∴∠OCF =∠AEC =90°, ∴EF 是⊙O 的切线;(2)解:如解图,连接OD ,DC .第2题解图∵∠DAC =12∠DOC ,∠OAC =12∠BOC ,∠DAC =∠OAC , ∴∠DOC =∠BOC , ∴DC =BC =2, 在Rt △EDC 中, ∵ED =1,DC =2, ∴sin ∠ECD =DE DC =12, ∴∠ECD =30°,∴∠OCD =90°-30°=60°, 又∵OC =OD ,∴△DOC 为等边三角形,∴∠BOC =∠COD =60°,OC =2, ∴l =60π×2180=23π. 3. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DF ⊥AC ,垂足为点F .第3题图(1)求证:DF 是⊙O 的切线; (2)若AE =4,cos A =25,求DF 的长.(1)证明:如解图,连接OD ,第3题解图∵OB =OD , ∴∠ODB =∠B . 又∵AB =AC , ∴∠C =∠B . ∴∠ODB =∠C . ∴OD ∥AC , ∵DF ⊥AC , ∴∠DFC =90°.∴∠ODF =∠DFC =90°, ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线;(2)解:如解图,过点O 作OG ⊥AC ,垂足为点G . ∴AG =12AE =2.∵cos A =AG OA =25,∴OA =225=5.∴OG =OA 2-AG 2=21.∵∠ODF =∠DFG =∠OGF =90°. ∴四边形OGFD 为矩形, ∴DF =OG =21.4. 如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=34,求⊙O的半径.第4题图(1)证明:如解图,连接OD,第4题解图∵BC是⊙O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC;(2)解:∵AC=8,tan∠P AC=CDAC=34,∴CD=6,在Rt△ACD中,AD=AC2+CD2=10,如解图,连接DE ,∵AE 为⊙O 的直径, ∴∠ADE = 90°, ∴∠ADE = ∠C , ∵∠CAD =∠OAD , ∴△ACD ∽△ADE , ∴AD AC = AE AD ,即108= AE10, ∴AE =252,∴⊙O 的半径是254.5. 如图,AB 为⊙O 的直径,CB ,CD 分别切⊙O 于点B ,D ,CD 交BA 的延长线于点E ,CO 的延长线交⊙O 于点G ,EF ⊥OG 于点F .(1)求证:∠FEB =∠ECF ; (2)若BC =6,DE =4,求EF 的长.第5题图(1)证明:∵EF ⊥OG ,BC 是⊙O 的切线, ∴∠CBA = ∠EFC =90°,∴∠EOF +∠FEB = 90°,∠BOC +∠BCO =90°, ∵∠EOF = ∠COB , ∴∠FEB = ∠BCO , ∵CB ,CD 是⊙O 的切线, ∴∠ECF = ∠BCO , ∴∠FEB = ∠ECF ;(2)解:如解图,连接OD ,则OD ⊥CE ,第5题解图∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.6. 如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.第6题图 (1)证明:如解图,连接OB,第6题解图∵OB =OC ,∠ACB =30°,∴∠OBC =∠OCB =30°,∵DE ⊥AC ,∴∠DEC =90°,∴∠D =60°,∵CB =BD ,∴BE =BD ,∴△BDE 为等边三角形,∴∠DBE =60°,∴∠EBO =180°-∠DBE -∠OBC =180°-60°-30°=90°,即OB ⊥BE ,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;(2)解:∵AC 为⊙O 的直径,∴∠ABC =90°,在Rt △ABC 中,BC =BD =BE =3,∠ACB =30°,∴AB =BC ·tan30°= 3,AC = 2AB =23,∴OA =12AC =3,∴S △ABC =12AB ·BC = 12×3×3=332, ∴S 阴影= S 半圆-S △ABC = 12π×(3)2-332=3π-332. 7. 如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC = 8,⊙O 的半径OA =6,求CE 的长.第7题图(1)证明:∵BE ∥CO ,∴∠OCB =∠EBC ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OBC =∠EBC ,∴BC 是∠ABE 的平分线;(2)解:∵CD 是⊙O 的切线,∴CD ⊥CO ,∴∠DCO =90°,在Rt △DCO 中,有DC 2+CO 2=DO 2,即82+62=DO 2,∴DO =10,∵CO ∥BE ,∴CE DC =BO DO ,即CE 8=610, ∴CE =4.8.8. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,BD 是⊙O 的弦,点E 是BC 的中点,连接DE .第8题图(1)求证:DE 是⊙O 的切线;(2)若CD ∶AD =1∶3,BC =2,求线段BD 的长. (1)证明:如解图,连接OD .第8题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =90°,在Rt △CDB 中,∵点E 是BC 的中点,∴DE 是Rt △CDB 斜边BC 上的中线,∴ED =12BC ,EB =12BC , ∴ED =EB ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠ODB =∠OBD ,∠OBD +∠EBD =∠ODB +∠EDB =∠ABC =90°,∴∠ODE =90°,∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)解:在Rt △CDB 和在Rt △CBA ,∵∠C=∠C ,∠CDB=∠ABC=90°,∴Rt △CDB ≌Rt △CBA.∴CD :BC= BC :AC ,∵CD :AD=1:3,∴设CD 为x ,则AD =3x ,AC=4x ,∴x :2=2:4x ,解得x 1=1, x 2=-1(舍),∴CD =1,∴BD=222221 3.BC CD -=-=9. 如图,在⊙O 中,AB 为直径,C 为圆上一点且∠P +12∠AOC =90°. (1)求证:P A 是⊙O 的切线;(2)cos B =45,P A =8,求⊙O 的半径.第9题图(1)证明:∵∠B 与∠AOC 所对的弧都为弧AC ,∴∠B =12∠AOC , 又∵∠P +12∠AOC =90°, ∴∠P +∠B =90°.在△ABP 中,∠BAP =180°-90°=90°,∴P A ⊥AB .又∵AB 为⊙O 的直径,∴P A 是⊙O 的切线;(2)解:在Rt △ABP 中,∵cos B =45,P A =8,∴AB PB =45. ∴设AB =4x ,则PB =5x ,根据勾股定理得P A 2+AB 2=PB 2,∴82+(4x )2=(5x )2,化简得:9x 2=64,解得x =83. ∴AB =4×83=323, ∴AO =12AB =12×323=163. ∴⊙O 的半径为163.10. 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC = BC = DC .(1)若∠CDB =39°,求∠BAD 的度数;(2)求证:∠1=∠2.第10题图(1)解:∵BC =DC ,∴∠CBD =∠CDB = 39°,∵∠BAC =∠CDB = 39°,∠CAD = ∠CBD = 39°,∴∠BAD =∠BAC +∠CAD = 39°+39°= 78°;(2)证明:∵BC = EC ,∴∠CBE =∠CEB ,∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE = ∠1+∠CBD ,∵∠BAE =∠CBD ,∴∠1= ∠2.。

(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)

(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)
(2)连接 EB 交 CD 于点 G,过点 G 作 GH⊥AB 于点 H,若 PC=4 ,PB=4,求 GH 的长.
2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,∠AC 平分∠BAD,连接 BF. (1)求证:AD⊥ED; (2)若 CD=4,AF=2,求⊙O 的半径.
圆压轴题八大模型题(二)
引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
直线 CM 是⊙O 的切线.
【变式运用】
1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE⊥AB 于点 E 且 DE 交 AC 于点 F,DB 交 AC 于点 G,若 = ,则
= .
(图 1-2)
2.(2018·泸州)如图,在平行四边形 ABCD 中,E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠BAD 和∠ADC。(1)求证:AE⊥DE;(2)设以 AD 为直径的半圆交 AB 于 F,连接 DF
求 PA 和 AD.
求 AD、PD、PA 的长.
【典例】 (2018·四川乐山)如图,P 是⊙O 外的一点,PA、PB 是⊙O 的两条切线,A、B 是切点,PO 交 AB 于点 F,延长 BO 交⊙O 于点 C,交 PA 的延长交于点 Q,连结 AC. (1)求证:AC∥PO;
(2)设 D 为 PB 的中点,QD 交 AB 于点 E,若⊙O 的半径为 3,CQ=2,求 的值.

圆周角复习

圆周角复习
圆周角专题复习
乐素河初级中学 李改艳
1、了解考情:
选择题第9题 (3分) 填空题第14题(3分) 解答题第23题(8分)
2、回顾梳理知识点
(九下40页-43页)
(1)圆周角的定义 (2)圆周角定理 (3)圆周角推论
3、复习反馈1 圆周角的定义
考考你 :
判断下列图形中所画的∠P是否为圆周角?并说明理由
不是
顶点不 在圆上。

顶点在圆上, 两边和圆相 交。
不是
两边不和 圆相交。
不是
有一边和圆 不相交。
复习反馈2 圆周角定理
圆周角定理:在同圆或等圆中,同 弧或等弧所对的圆周角_都__相_等_,都 等于该弧所对的圆心角的 _一_半___, 相等的圆周角所对的 _弧____相等。
C G
A、70°;
B、110°;
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
A
∵∠C=30 ° ,∴∠AOB=60 °
又∵OA=OB ,∴△AOB是等边三角形
∴OA=OB=AB=2,即半径为2。
A ED
O
C
C
O
B
(2)AB2=BC •BG .
中考数学试题
考点第23题
(2017)如图,已知⊙O 的半径为 5,PA 是⊙O 的一条切线, 切点为 A,连接 PO 并延长,交⊙O 于点 B,过点 A 作 AC⊥ PB 交⊙O 于点 C、交 PB 于点 D,连接 BC,当∠P=30°时, (1)求弦 AC 的长; (2)求证:BC∥PA.
5.如图 AB是⊙O的直径, C ,D是圆上的两点, 若∠ABD=40°,则∠BCD=_____.

中考数学二轮专题复习-圆的性质及有关计算及答案详解

中考数学二轮专题复习-圆的性质及有关计算及答案详解

中考数学二轮专题复习-圆的性质及有关计算一、单选题1.如图,点A、B、C在⊙O上,∠CAB=70°,则∠BOC等于()A.100°B.110°C.130°D.140°2.如图,⊙O的半径为5,弦AB=6,P是弦AB上的一个动点(不与A、B重合),下列符合条件的OP的值可以是()A.3.1B.4.2C.5.3D.6.43.如图,AB是⊙O的直径,CD是弦,若∠BCD=34°,则∠ABD等于()A.66°B.34°C.56°D.68°4.如图,点A,B,C在上,是等边三角形,则的大小为()A.60°B.40°C.30°D.20°5.已知为圆的直径,为圆周上一点,,.则的度数为()A.10°B.15°C.20°D.30°6.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.7.如图,是⊙O的弦,且,点是弧中点,点是优弧上的一点,,则圆心到弦的距离等于()A.B.C.D.8.如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是()A.A,B,C都不在B.只有BC.只有A,C D.A,B,C9.如图,四边形ABCD内接于,若,则的度数为()A.50°B.100°C.130°D.150°10.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.45°B.30°C.20°D.15°11.如图,AB是⊙O的直径,点C,D为⊙O上的点.若∠D=120°,则∠CAB的度数为()A.30°B.40°C.50°D.60°12.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°13.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.14.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形16.如图所示,半径为R的⊙O的弦AC=BD,AC,BD交于点E,F为上一点,连结AF,BF,AB,AD,有下列结论:①AE=BE;②若AC⊥BD,则AD=R;③若AC⊥BD,=,AB=,则BF+CE=1.其中正确的是()A.①②B.①③C.②③D.①②③17.如图,AB为⊙O的直径,点C为⊙O上一点,连接CO,作AD OC,若CO=,AC=2,则AD=()A.3B.C.D.18.如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:①=2 ;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1B.2C.3D.419.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2 -2B.2C.3 -1D.220.如图,AB是⊙o直径,M,N是上两点,C是上任一点,∠ACB角平分线交⊙o 于点D,∠BAC的平分线交CD于点E,当点C从M运动到N时,C、E两点的运动路径长之比为()A.B.C.D.二、填空题21.如图,在⊙O中,点A在上,∠BOC=100°,则∠BAC=.22.如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为.23.如图,四边形是的内接四边形,对角线是的直径,,,则的半径长为.24.如图,CD是⊙O的直径,AB是弦,CD⊥AB于点E,若OA=5,AB=8,则AD的长为.25.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是26.如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的角专题复习二圆中确定角相等一般圆周角定理为圆中角的等量关系提供了丰富的理论依据,圆心角定理、按弧所对角来确定,要特别注意直径与直角的关系.).,∠AOC=40°,则所对的圆心角的度数为(A1.如图所示,AE∥CD,连结AO D.30°C.60°A.40°B.50°)4题题)(第第(第1题)(第2题)(3所对的圆周角∠DEB=35°,则∠AODC的一条弦,且OD⊥AB于点,2.如图所示,AB是⊙O).的度数是(C C.70° D.110°A.35° B.55°3). 所对圆心角的度数为AB在⊙O中,圆心O到弦AB的距离(OD=C AB,则弦如图所示,3.6 C.120°D.150°A.60° B.90°则∠PAQ70°,30°,A4.如图所示,量角器的外缘边上有,P,Q三点,分别表示读数180°,). (D的度数为 D.20° A.10°B.30° C.40°,则下列判,AB为直径的⊙O分别交BCAC于点D,E如图所示,在△ABC5.中,AB=AC,以). 断:①BD=CD;②BD=DE;③AE=DE;④△ABC为锐角三角形.其中正确的判断有(C A.1个个个D.4 B.2个 C.3)8)5题)(第6题(第7题)(第题第(上,并且也在格点上,6.如图所示,⊙O的圆心O在正方形网格的格点上,B两点在⊙OA,45°.C为⊙O上一点,则∠ACB=75°为⊙O 的弦,若∠BAD=50°,则∠AED= .,7.如图所示,AD8.如图所示,AC为⊙O的直径,B,D,E都是⊙O上的点,则∠A+∠B+∠C= 90°.图1图2(第9题)9.如图所示,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°.(1)若点C在优弧BD上,求∠ACD的大小.(2)若点C在劣弧BD上,直接写出∠ACD的大小.页 1 第【答案】(1)∵AO⊥BD,∴=.∴∠AOB=2∠ACD.∵∠AOB=80°,∴∠ACD=40°.9题答图)(第在上时,∠ACD=∠ACD=40°.C(2)①如答图所示,当点11上时,∵∠AC②如答图所示,当点C在D+∠ACD=180°,22∴∠ACD=140°.2 40°.综上所述,∠ACD=140°或)(第10题33轴于为半径作⊙M交210.如图所示,在平面直角坐标系中,以点M(0x,)为圆心,轴于点E.,连结CA,B两点,交y轴于,D两点,连结AM并延长交⊙M于点PPC交x P的坐标.(1)求点C,.求证:(2)BE=2OE(第10题答图),直径,∴∠PBA=90°.∵MO⊥AB的所图示,连结PB.∵PA是⊙M(1)【答案】如答333.OM=,P坐标为(3).∵MC=22∴PB∥MO,OB=OA=3.∴PB=2OM=2.∴点333).,--OM=的坐标为.∴点C(0,∴OC=MC333为等.,OC=.∴AM=MC=AC=2如答图所示,连结(2)∴△AMCAC.∵AM=MC=2,AO=3,径直为⊙M的.∵AP边三角形 -∴∠ACP=90°.∴∠OCE=30°.∴OE=1.∴BE=OBOE=2.∴BE=2OE.分别相交于作⊙O,并与两腰,如图所示,过等腰三角形11.ABC三边的中点DF,GAB,AC).等于,若∠B=72°,则∠BDH(C EH点, B.34°A.32° D.72°C.36°页 2 第)题第12题)(第13题(第11)(). D,B,C是⊙O上的三个点,∠AOB=2∠BOC,则下列说法中,正确的是(12.如图所示,A 内接于⊙OA.∠OBA=∠OCA B.四边形OABC D.∠OBA+∠BOC=90°C.AB=2BC分别交ABCD为矩形,△ACE为以AC为底的等腰直角三角形,连结BE13.如图所示,四边形③EM=EA;于点M.给出下列结论:①BE⊥ED;②AB=AF;NAD,AC于点F,,CM平分∠ACB交BN).④AM平分∠BAC.其中正确的结论有(D个 C.3个 D.4A.1个B.2个20°,且∠AFC=∠BFD,的度数是60°,14.如图所示,AB是⊙O的直径,的度数是 50°∠AGD=∠BGE,则∠FDG 的度数为.(第14题) (第15题)15.如图所示,AB=AC=AD,∠ABD=50°,∠BDC=30°,则∠CBD= 10° .16.如图所示,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AC,点D为垂足,E是BC上一点,G是DE的中点,OG的延长线交BC于点F.(1)线段OD,BC所在直线有怎样的位置关系?写出你的结论,并给出证明过程.(2)线段BE,EF,FC三者之间有怎样的数量关系?写出你的结论,并给出证明过程.(第16题)【答案】(1)OD∥BC.证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°,即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)EF=BE+FC.证明:∵OD⊥AC,∴AD=DC.∵O为AB的中点,∴OD是△ABC的中位线.∴BC=2OD. ∵∠ODG=∠FEG,DG=EG,∠GOD=∠GFE,∴△ODG≌△FEG.∴OD=EF.∴BC=BE+EF+FC=2OD=2EF. ∴EF=BE+FC.17.如图所示,是劣弧,M是的中点,B为上任意一点.自点M向BC引垂线,垂足为点D,求证:AB+BD=DC.页 3 第题答图)17题) (第17(第是MN.∵M连结CM,如答图所示,在CD上取点N,使CN=AB,.的中点,∴【答案】,∴△ABM≌△CNM.∴BM=MN.∵MD⊥BN,∴BD=DN.=CM∴AM=CM.∵AB=CN,∠BAM=∠BCM,AMCD.∴AB+BD=CN+DN=)18题(第我们称∠APB,)是⊙O上的动点(不与点A,B重合18.如图所示,A,B是⊙O上的两个定点,P 的滑动角.是⊙O上关于点A,B. 的滑动角(1)已知∠APB是⊙O上关于点A,B . 90°①若AB是⊙O的直径,则∠APB=2②若⊙O的半径是1,的度数.AB=,求∠APB上关是⊙OO为圆心作一个圆与⊙O交于A,B两点,∠APB(2)已知O是⊙O外一点,以点12211,点N与点B均不重合)分别交⊙OPA,PB于点M,N(点M与点A,A于点,B的滑动角,直线2连结AN,试探索∠APB与∠MAN,∠ANB之间的数量关系.【答案】 (1)①90°222.∴∠AOB=90°.∴OA+OB=AB所示,连结AB,OA,OB.在△AOB中,∵OA=OB=1,AB=2,1②如答图11上时,∠AP′B=上时,∠APB=在劣弧AB∠AOB=45°.当点P当点P在优弧APB22 -∠AOB)=135°.(360°.在⊙O上的位置分为以下四种情况(2)根据点P1图1图2图3图4图5题答图)18(第. 之间BM之间,点在点P与点NP外,且点2①如答图所示,点P在⊙OA在点与点2-∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN∠ANB.. BNP外,且点3②如答图所示,点P在⊙OA在点与点M之间,点在点P与点之间2∵∠MAN=∠APB+∠ANP=∠APB+(180°-180°.-∠ANB),∴∠APB=∠MAN+∠ANB. 与点N之间PBAPM外,且点P4③如答图所示,点在⊙O在点与点之间,点在点2-∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°∠MAN-∠ANB. 内.∠APB=∠MAN+∠ANB.P所示,点5④如答图在⊙O2页 4 第)题(第19上D,且∠COD=60°,E为AB是⊙O的直径,点C在⊙O上,CD⊥AB于点如图所示,19. 于点G.,过点E分别作于EF⊥AB于点F,EG⊥OCB一动点(不与点,C重合) 一定为等腰三角形;④点E 在现给出以下四个命题:①∠GEF=60°;②CD=GF;③△GEF上运动时,存在某个时刻使得△GEF为等边三角形.).①②④ (写出所有正确命题的序号其中正确的命题是题答图)(第20题)(第20AE=BD.,点D20.【上海】如图所示,⊙O是△ABC的外接圆,在边BC上,AE∥BC,AD=CE.(1)求证:. 是平行四边形AG=AD,求证:四边形AGCE)(2)如果点G在线段DC上(不与点D重合,且,,∴AB=AC.∴∠B=∠ACB.∵AE∥BC∵【答案】(1)在⊙O中,CAAB???EAC??B?,△CAE∴∠EAC=∠ACB.∴∠B=∠EAC.在△ABD和∵中,??AE?BD?∴△ABD≌△CAE(SAS).∴AD=CE.为半径,∴AH⊥BC.∴BH=CH.于点H.∵,OA如答图所示, (2)连结AO并延长,交边BCAGCEBD=CG.∵BD=AE,∴CG=AE.∵CG∥AE,∴四边形,∴DH=HG.∴BH-DH=CH-GH即∵AD=AG,.是平行四边形,与点上的一个动点C是(点CA,B不重合)的直径,121.如图所示,已知AB是⊙O连结DE⊥AB,垂足为点的中点,作弦F.DAC,是. CAB的度数是等腰三角形时,求∠和不重合,连结若点(1)C和点EBC,CEEB,当△BCE.E(2)若点C和点重合,如图2所示,试探索的数量关系并说明理由与ACAB图21图图(第1 图21题)2(第21题答图)页 5 第1OC,当△时,如答图BCE是等腰三角形时,分两种情况:①当【答案】(1)连结为的度数为2x°.∵DE⊥AB,的度数为所示,∴CE=BC.设的度数为x°,则x°,AB∴的中点,3x°.∵D的度数为∴直径,6x°∴的.∴的度数为是1×36°=18°.x=36.∴∠CAB=的度数为180°,∴5x=180,解得度数为2x°+3x°=5x°.又∵AB2x°.∵DE⊥AB,x°,的度数为如答图则2.所示.∴②当的度数为CE=BE时,设是的度数为6x°.∴.∴∴AB为直径,的度数为3x°.∵D∴的中点,1×90°的度数为90°.∴∠CAB=解得x=45.∴的度数为4x°.又180°,的度数为∴4x=180,2=45°.综上所述,当△BCE是等腰三角形时,∠CAB的度数是18°或45°.3AB.理由如下:设的度数为x°,则的度数为x°.∵D是(2)AC=的中点,∴2的度数为3x°.∵2x°.∴且其度数为的度数为180°,∴3x=180,解得,3AB. 的直径,∴OAC=为⊙x=60.∴∠A=30°.∵AB2页 6 第。

相关文档
最新文档