电解电容的知识
铝电解电容器基础知识培训资料
短路或断路可能是由于制造缺陷或使用不当造成,应检查电容器是 否有损坏,必要时更换。
06
铝电解电容器的未来发展与趋势
新材料的应用
1 2
新型电极材料
采用高导电性、高稳定性、低成本的电极材料, 如碳纳米管、金属复合材料等,以提高电容器的 性能和稳定性。
新型电解质材料
研发新型电解质材料,如固态电解质,以提高电 容器的耐压、耐高温性能和稳定性。
为法拉(F)。
额定电压
铝电解电容器能够承受 的最大电压。
漏电流
当施加电压时,铝电解 电容器中流过的微小电
流。
损耗角正切值
表示铝电解电容器能量 损耗的参数,越小表示
损耗越小。
03
铝电解电容器的制造工艺
铝箔的制造
01
铝箔的制造是铝电解电容器制造 的第一步,通常采用轧制和退火 工艺,得到具有特定厚度和物理 性能的铝箔。
铝电解电容器基础知识培训资料
目录
• 铝电解电容器简介 • 铝电解电容器的工作原理 • 铝电解电容器的制造工艺 • 铝电解电容器的性能测试与评估 • 铝电解电容器的选用与使用注意事项 • 铝电解电容器的未来发展与趋势
01
铝电解电容器简介
定义与特性
定义
铝电解电容器是一种电子元件, 由铝制阳极和电解液组成,通常 与电解质一起封装在塑料或金属 外壳中。
结构
主要由阳极、电解质、绝缘材料和引 脚等部分组成,其中阳极是电容器的 主要部分,通常采用铝制箔片作为电 极材料。
02
铝电解电容器的工作原理
电容的基本原理
电容
由两个平行、相对的导电 板组成的装置,能够存储 电荷。
电容的单位
法拉(F),表示电容的大 小。
电解电容基础知识培训
电解电容基础知识培训首先,在深入学习了解电解电容之前,我们必须给电容下个定义,这里我援引一位IT界资深硬件专业人士万鹏先生的一个定义:电容就是两块导体之间夹杂着一块绝缘体而构成的一种电子元器件。
从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,并且不考虑介质漏电和自放电效应,电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。
电容的产量占到全球电子元器件产量的40%以上。
基本上所有的电子产品,里面都有电容的存在。
电容是两块导体(阴极和阳极)夹杂着一块绝缘体(介质)构成的电子元器件。
因此,电容首先按照介质来分类。
根据介质的不同,可将电容分为三大类:无机介质电容、有机介质电容和电解电容。
这里,我们着重研究电解电容。
如果说电容是电子元器件中最重要和不可取代的元件的话,那么电解电容器又在整个电容产业中占据了半壁江山。
我国电解电容年产量 300亿只,且年平均增长率高达 30%,占全球电解电容产量的 1/3以上。
大家别小看电解电容,它其实是一个国家的工业能力和技术水平的反映。
世界上最先进的电解电容的设计和生产国是美国和日本,顶级的电解电容器的生产工艺要求非常高,别看我国电解电容产量这么高,可是各项核心技术都掌握在其它国家手里,我国也就能算来料加工的“世界工厂”而已,自主力量还很薄弱,并且生产的产品也都以低档的为主。
因此,对于电解电容的研究,具有十分重要的意义。
2. (电解)电容的作用:电容的用途非常多,主要有如下几种:1 隔直流:作用是阻止直流通过而让交流通过;2 退耦:为交流电路中某些并联的元件提供低阻抗通路,将不需要的交流信号去掉;3 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路;4 温度补偿:针对其它元件对温度的适应性不够带来的影响进行补偿,改善电路的稳定性;5 计时:电容器与电阻器配合使用,确定电路的时间常数;6 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机;7 滤波:电源电路中将交流电压滤成平滑的直流电压减小负载电路的纹波干扰;8 储能:储存电能,用于必须要的时候释放。
电解电容温度和寿命
电解电容温度和寿命
电解电容是一种常见的电子元件,用于储存电荷并在电路中起到滤波和耦合作用。
然而,电解电容在工作过程中会受到温度的影响,从而影响其性能和寿命。
本文将介绍电解电容的温度特性和寿命相关知识。
首先,我们来看电解电容的温度特性。
电解电容在工作时会发热,温度升高会导致电容器内部的电解液膨胀,从而影响电容器的性能。
一般来说,电解电容的工作温度范围是-40℃至105℃,超出这个范围电容器的性能会明显下降。
此外,温度还会影响电解电容的电容值和泄漏电流。
温度升高会使电容值减小,泄漏电流增加,从而影响电容器的稳定性和性能。
其次,电解电容的寿命也和温度密切相关。
电解电容的寿命一般用电解电容的工作温度和电容器内部电解液的性质来评估。
电容器内部的电解液会随着温度的升高而蒸发,从而减少电容器的电解液,导致电容器的寿命缩短。
此外,电容器的电极和电解液之间的化学反应也会受到温度的影响,从而影响电容器的寿命。
一般来说,电解电容的寿命随着温度的升高而减少,因此在电路设计中需要考虑电容器的工作温度范围,以确保电容器的长期稳定性和可靠性。
总的来说,电解电容的温度和寿命是电容器性能的重要参数,工程师在电路设计和电容器选型时需要考虑电容器的工作温度范围和寿命特性,以确保电容器在不同工作环境下能够稳定工作并具有长寿命。
通过合理的电容器选型和电路设计,可以有效提高电容器的稳定性和可靠性,从而保证电路的正常工作和性能。
希望以上内容能帮助您更好地了解电解电容的温度和寿命特性,对电容器的选型和电路设计有所帮助。
如果有其他问题,欢迎继续咨询。
CBB电容和电解电容相关知识
CBB电容、电解电容等各种电容相关知识名称:聚丙烯电容(CBB)(1)铝电解电容分正负极,不得加反向电压和交流电压,对可能出现反向电压的地方应使用无极性电容。
(2)对需要快速充放电的地方,不应使用铝电解电容器,应选择特别设计的具有较长寿命的电容器。
新晨阳电子(3)不应使用过载电压直流电压玉文博电压叠加后的缝制电压低于额定值。
两个以上电解电容串联的时候要考虑使用平衡电阻器,使得各个电容上的电压在其额定的范围内。
新晨阳电子(4)设计电路板时,应注意电容齐防爆阀上端不得有任何线路,,并应留出2mm以上的空隙。
(5)电解也主要化学溶剂及电解纸为易燃物,且电解液导电。
当电解液与pc板接触时,可能腐蚀pc板上的线路。
,以致生烟或着火。
因此在电解电容下面不应有任何线路。
(6)设计线路板向背应确认发热元器件不靠近铝电解电容或者电解电容的下面。
电容量:1000p--10u额定电压:63--2000V新晨阳电子主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路名称:铝电解电容电容量:0。
47--10000u额定电压:6。
3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等新晨阳电子名称:但电解电容(CA)铌电解电容(CN)电容量:0.1--1000u额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容摘录电解电容厂家的“铝电解电容器适用指南”如下:新晨阳电子一.电路设计安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全. 它包括了X电容和Y电容。
x电容是跨接在电力线两线(L-N)之间的电容,一般选用金属薄膜电容;Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现。
基于漏电流的限制,Y电容值不能太大,一般X电容是uF级,Y电容是nF级。
X电容抑制差模干扰,Y电容抑制共模干扰。
硬件十万个为什么:电解电容基础知识
硬件十万个为什么:电解电容基础知识
因为电容的充电需要一定的时间,所以可以利用电容来实现硬件的延时。
在电容在4.7uF以上,我们通常选用电解电容,特点是精度小,容量大。
小容量电容为瓷片电容,一般为贴片式的,也有插件式的。
特点容量小,精度高。
一般在电源电路中和点解电容配合使用。
一般情况下,电源负载对后面电路输送能量时,都接一个储能电容。
电解电容可以储能一般滤掉低频波,对高频波过滤一般。
一般加个瓷片电容滤高频波。
有极性的电容一定不能接反,否则电容会短路容易发生爆炸。
C1为无极性电容,C2为极性电容。
瓷片电容没有极性。
特点容量小精度高无极性,多用于滤波电路,长用于震荡电路中。
电容量为几皮法到几百纳法。
如100纳法的104电容。
可以滤。
电解电容知识
电解电容知识电解电容是一种重要的电子元件,在电子电路中起着重要的作用。
本文将详细介绍电解电容的基本原理、结构、应用以及常见问题等内容。
一、基本原理电解电容是一种带有电解质的电容器,它的构造基本上由阳极、阴极和电解质组成。
当正向电压施加于阳极时,阴极上的电解质会发生电化学反应,形成绝缘膜。
这个绝缘膜起到了存储电荷的作用,使得电解电容能够在电路中起到存储和释放电能的作用。
电解电容的重要特点之一是极性,它们具有正向和负向电极的区别。
正极是阳极,由铝箔或铝铸件制成;负极是阴极,由铝箔和导电涂层构成。
这种极性使得电解电容在直流电路中有特殊的应用。
二、结构与类型电解电容一般由铝电解电容和钽电解电容两种类型。
以下将对它们的结构和特点进行介绍。
1. 铝电解电容:铝电解电容器的极板由铝箔制成,一般涂有氧化铝膜。
氧化铝膜是通过对阳极进行阳极氧化处理而得到的,它的薄膜绝缘性能很好,能够承受较高的电压。
铝电解电容器容量较大,成本较低,广泛应用于电子产品中。
2. 钽电解电容:钽电解电容器的极板由钽金属制成,与铝电解电容器相比,它的绝缘氧化膜更薄,但电容量更大。
钽电解电容器具有体积小、电容量大、工作稳定等特点,广泛应用于高端电子设备中,如通信设备、航天器等。
三、应用领域电解电容在电子电路中应用广泛,以下列举了几个常见的应用领域。
1. 电源滤波:在直流电源中,电解电容用于平滑电压波动,防止纹波对电路的干扰。
2. 信号耦合:在放大器电路中,电解电容用于传送信号的交流部分,将信号耦合到下一个级联放大器。
3. 延迟电路:电解电容的充放电特性使其成为延迟电路的重要组成部分,能够稳定地控制电路的时间常数。
4. 电解电容放电:电解电容器在断电或停电后能够持续释放储存在其中的电能,用于保护电路中的重要设备。
四、常见问题1. 电解电容极性:电解电容具有正极和负极之分,连接时应确保正确的电极连接,否则电容器可能会烧坏。
2. 电容值和电压额定值:在选用电解电容时,要根据电路的需求选择合适的电容值和电压额定值,以避免电容器过载或工作不稳定的问题。
电解电容_纹波_温度_寿命_计算
电解电容_纹波_温度_寿命_计算电解电容器是一种常见的电子元件,用于存储和释放电荷。
在实际应用中,电解电容器的性能参数包括电解电容、纹波电压、温度和寿命等。
1.电解电容电解电容是指电容器的额定值,单位是法拉(F)。
电解电容主要取决于电解液的种类和容量,以及电容器的结构和材料。
一般来说,电解电容越大,存储电荷的能力越强。
2.纹波电压纹波电压是指在交流电路中,电解电容器上的电压变化。
由于电解电容器的内部结构,它对交流信号的响应能力有限,会有一定程度的电压波动。
纹波电压越小,说明电解电容器对交流信号的滤波效果越好。
3.温度温度是电解电容器性能的重要影响因素之一、温度过高会导致电解液的蒸发、内阻上升,从而影响电解电容器的工作稳定性和寿命。
一般来说,电解电容器的温度范围应在指定范围内使用,过高或过低的温度都会对性能产生不良影响。
4.寿命电解电容器的寿命是指其可靠工作的时间。
电解电容器的寿命主要受电解液的腐蚀性和电容器的结构质量等因素影响。
一般来说,电解电容器具有一定的工作寿命,超过寿命后可能会出现容值下降、纹波电压增加等问题。
计算电解电容器的性能参数需要根据具体的电容器型号和规格,以及电路的设计要求进行分析和计算。
以下是一些常用的电解电容器的计算公式:1.电容器的纹波电压计算公式:纹波电压=(I*t)/(C*ΔV)其中,I是负载电流,t是纹波时间周期,C是电解电容容量,ΔV是纹波电压的标准值。
2.电解电容器的额定寿命计算公式:寿命=(T/ΔT)^k其中,T是电解电容器的工作温度,ΔT是电容器工作温度与最大允许温度的差值,k是材料系数。
在实际应用中,电解电容器的纹波和寿命通常是通过实验和测试得出的,也可以根据电解液种类和电容器的结构参数进行估算。
对于设计师来说,选用合适的电解电容器和合理的工作条件是确保电子设备正常工作和提高寿命的关键。
铝电解电容器知识
铝电解电容器基础一、电容器的原理只要在当作电极之相对两导体中间存在电气绝缘体,即可构成电容器。
原理图如图1所示1、电容量的定义及单位电容量定义:对某一特定的电容器,充电后的电荷量与充电电压成正比即Q/V=常数,我们就定义Q/V 为该电容器的电容量(C)即C=Q/V,它代表一个电容所能储存电荷的多少,也可以定义为电压每升高1V,极板两端电荷的增量。
若极板面积为S,电气绝缘体的厚度为d,相对介电常数为εr,真空介电常数为ε0,两极板间的介质电场强度为E,因为Q=ε0εr S×E, V=E×d,则该电容器的电容量C=Q/V=ε0εr S/d,也就是说电容量与相对面积和电气绝缘体介电常数成正比,与电气绝缘体的厚度成反比。
单位:电容量的国际单位为法拉(F),但实用上法拉这个单位太大,使用不方便,实际上经常使用uF 、mF、nF、pF等单位。
1uF=10-6F、1mF=10-3F、1nF=10-9F、1pF=10-12F2、电容器在线路中的特性及应用电容器有以下特性和应用:(1)通交流隔直流——旁路作用、滤波作用、耦合作用(2)通高频、阻低频——频率分离作用(3)电流的相位超前于电压——移相作用、功率因数改善、电机启动用(4)储能作用——闪光灯、点熔接、放电加工(5)电压不能突变——电器接点的防火花、尖脉冲吸收(6)RC时间常数——定时作用(7)电流非线性变化——S校正作用二、铝电解电容器的原理铝电解电容器的原理示意图如下:阳极箔为一个电极,其上氧化膜为电气绝缘体电解液为真正的阴极,同时起修补氧化膜作用(电解质包括电解液(electrolyte)、二氧化锰(MnO2)、有机半导体TCNQ、导体聚合物(PPy、PEDT)、凝胶电解质PEO等)电解纸起隔离阳极箔和阴极箔作用,同时贮存电解液阴极箔起引出电极作用。
三、铝电解电容器的结构和特点1、结构部件图引出条、铝导针:引出作用橡皮头、铝壳:密封作用,保护芯子盖板:引出固定作用套管:绝缘、美观、标识。
铝电解电容器基础知识
十、使用铝电解电容器注意事项
施加电压 1.电容器有极性,施加反向电压或交流电压后,会导致失火等致命不良。 2.在极性转换回路中请使用双极性电容,但这种情况不使用于交流电路。 3.直流电压上叠加交流成分时,峰值不要超过额定电压,否则会引起短 路失火等致命重大不良。 4.多只电容器并联时,应考虑导线电阻等。 5.多只电容器串联时使用同一规格的电容,请并联均压电阻,设计时要 考虑这时加在电容上的电压完全一样。 6.不能用于重复急剧充放电回路,熔接机器等充放电时,电容器请特别 设计。 即使非快速充放电,但电压变化大则会导致寿命特性恶化,要实际上 机认真确认或与海立联系。
1、一般整流电源的滤波;开关电源的高频输出滤波。 2、能量的贮存和转换;频繁的充放电。 3、讯号的旁路和耦合;电源排的退耦。 4、特殊用途,如定时电路中的作大时间常数元件的电解电容器、音频 分频电路中的电解电容器、单相电动机启动用的电解电容器、S形 较正用电解电容器、闪光灯用电解电容器。
六、铝电解电容器的组成
C[F]= ε ·ε·S/t
0
ε0:介质在真空状态下的介电常数(=8.85x10-12 F/M) 铝氧化膜的相对介电常数为7~8,要想获得更大的电容,可以通过增加 表面积S或者减少其厚度t来获得。在很多情况下,电容器的命名通常 是根据介质所使用的材料来决定的,例如:铝电解电容器、钽电容器 等。
一、铝电解电容器的基本概要
下表给出施加允许纹波电流时的中心最大温升(此数值通过温度修正 系数而修正)最大中心温度上升设定
环境温度 (℃) 40 每一温度中 心温度上升 设定(k) 60(55) 70 85 105 T0(℃) L0(小时) 保证使用寿命(小时) HCGH (250WV以 下) 31 22 12.5 5 2 107 4000 2000 HCGHA HCGHD 35 30 15 8.5 5 110 4000 2000 HCGF5A HCGF5D HCGF6A 31 19 12.5 5 90 4000 2000 FXA FXD FX2 35 25 8.5 93.5 8000 5000
电解电容120uf 200v电解电容
电解电容器是一种常见的电子元件,它能够在电路中储存电荷以及释放电荷。
而120uF 200V电解电容器是一种特定规格的电解电容器,本文将就这一规格的电解电容器进行详细介绍。
1. 电解电容器的基本原理电解电容器是利用电极上的氧化物膜作为介质而形成的。
电解电容器的基本结构由正极(阳极)、负极(阴极)和电解液组成。
在电解电容器中,正极和负极之间的电介质是一层很薄的氧化膜。
当电解电容器工作时,电介质就会在正负极板之间蓄积电荷。
2. 120uF 200V电解电容器的规格120uF 200V电解电容器是指其具有的电容量为120微法(uF),工作电压为200伏特(V)。
电容量是电解电容器的一个重要指标,它反映了电解电容器可以储存的电荷量。
而工作电压则代表了电解电容器可以承受的最大电压。
3. 120uF 200V电解电容器的应用领域适用于大电流、高频率漏电流小、交流电容器变更多的直流电源滤波电路。
主要用于大功率电旋变频驱动器、直流和逆变电源、脉冲系统等电源滤波。
4. 120uF 200V电解电容器的特点120uF 200V电解电容器具有体积小、重量轻、耐腐蚀性强、电容大、电压高等特点。
由于它的工作电压较高,因此可以在高压环境下工作,稳定性较强。
5. 注意事项在使用120uF 200V电解电容器时,需要注意其极性。
电解电容器的两极具有区别,一般正极接电源负极接地。
若连接错误将会导致电解电容器损坏。
6. 结语120uF 200V电解电容器作为一种特定规格的电解电容器,在电子电路中起着重要的作用。
它具有电容大、电压高、耐腐蚀性强的特点,适用于各种大功率电旋变频驱动器、直流和逆变电源、脉冲系统等电源滤波。
在使用时需要注意其极性,正确连接以避免损坏。
7. 120uF 200V电解电容器的使用场景120uF 200V电解电容器可以在各种电子设备中找到用途。
它们常用于电源电路中,用于过滤电源中的噪声和波动,确保设备获得稳定的电压和电流。
电解电容知识
电容的种类很多,为了区别开来,常用几个拉丁字母来表示电容的类别。第一个字母C表示电 容,第二个字母表示介质材料,第三个字母以后表示形状、结构等。上图是小型纸介电容,下图是 立式矩开密封纸介电容。表1列出电容的类别和符号。表2是常用电容的几项特性. 顺序 类别 名称 简称 称号
>1000~10000
可变电容 最小>7pF 最大<1100pF 100以上 低频,高频
>500
2) 电容的标志方法: (1) 直标法:用字母和数字把型号、规格直接标在外壳上。 (2) 文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位: P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF 的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。 (3) 色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的, 位置靠近正极引出线的根部,所表示的意义如下表所示:
3. 额定电压( U R )。在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上 的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。电容器应用在高电压场和时,必须注 意电晕的影响。电晕是由于在介质 / 电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄 生信号外,还会导致电容器介质击穿。在交流或脉动条件下,电晕特别容易发生。对于所有的电容 器,在使用中应保证直流电压与交流峰值电压之和不得超过电容器的额定电压。
钽电解电容器的基本知识
壳号
1 2 3 4
允许功率损耗 参考外形尺寸
直径×高 (mm) 3.2×8
5×12
6×14
8×14
功率损耗 (W)
0.09 0.10 0.125 0.18
温度降额系数
温度 (℃)
25 85 125
降额系数
1 0.9 0.4
非固体电解质钽电容器的最大纹波电流有效值
壳号
参考外形尺寸
最大纹波电流值
4
直径×高(mm)
第一章 钽电解电容器的基本知识
一、 电解电容器的基本知识 1. 概念
电容器是由两极板中间夹绝缘介质层组成。绝缘层是陶瓷的我们称为陶瓷电 容器,绝缘层是纸的称为纸介电容器,而绝缘介质层是由作为极板的金属,经电 化学反应生成的金属氧化物组成的,这种电容器我们称为电解电容器,这种金属 氧化物具有单向导电性,因此电解电容器具有极性。当这种金属是钽时,我们叫 钽电解电容器,这种金属是铝时,我们称为铝电解电容器。钽这种金属作为电解 电容器的阳极,钽金属氧化物作为绝缘介质层,当引出阴极为液体、凝胶、糊状 的称为非固体电解电质钽容器,引出阴极为固体的叫固体电解质钽电容器。由电 解电容器的结构,我们可以推断其以下性能特点。 2. 电解电容器的性能特点 1) 单位体积内所具有的电容量特别大,当要求几十微法以上的电容量时,只有从 电解电容器方面去考虑,广泛应用在电源滤波,交流旁路、储能等、直流电源 系统的退耦以及耦合等用途上。 2) 具有单向导电性,即所谓有极性。因此不能使用在纯交流电路中。非固体钽电 解电容器不能承受反向电压;而固体钽电解电容器能承受的反向电压最大不超 过 1V。如果电容器长期使用在有反向电压的电路中,请选用双极性电解电容器, 而双极性电解电容器仅仅改变了电容器的结构,并没改变氧化膜的单向导电性, 因此也只能在极性变换而频率不太高的直流或脉动电路中使用。 3) 工作电压受到限制。非固体钽电解电容器的额定工作电压一般为 125V,最高不
电解电容基础知识
电解电容基础知识1,标称参数就是电容器外壳上所列出的数值。
*静电容量,用UF表示。
就不多说了。
*工作电压(working voltage)简称WV,应为标称安全值,也就是说应用电路中,不得超过此标称电压。
*温度常见的大多为85度、105度。
高温条件下(例如纯甲类功放)要优选105度标称的。
一般情况下优选高温度系数的对于改善其他参数性能也有积极的帮助。
2 ,散逸因数dissipation factor(DF)有时DF值也用损失角tan表示。
DF值是高还是低,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高的DF值就愈低。
频率愈高DF值愈高,温度愈高DF值也愈高。
DF 值一般不标注在电容器上或规格介绍上面。
在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理。
尽管使用50V的从承受电压正常工作方面并无不妥,但从DF值方面考虑就欠缺一些。
使用63V或71V耐压的会有更好的表现的。
当然再高了性价比上就不合算了。
3 ,等效串联电阻ESRESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好。
当额定电压固定时,容量愈大ESR愈低。
当容量固定时,选用高额定电压的品种可以降低ESR。
低频时ESR高,高频时ESR低,高温也会使ESR上升。
等效串联电阻ESR 很多品牌可以从规格说明书上查到。
4,漏电流一看就明白,就是漏电!铝电解电容都存在漏电的情况,这是物理结构所决定的。
不用说,漏电流当然是越小越好。
电容器容量愈高,漏电流就愈大;降低工作电压可降低漏电流。
反过来选用更高耐压的品种也会有助于减小漏电流。
结合上面的两个参数,相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命。
真是好处多多,唯价格上会高一些。
有个说法,既电解电容工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致电解电容的极化而降低涟波电流,增大ESR,从而提早老化。
电解电容知识
-25℃ ℃
1
ESR ( ) Impedance( )
+20℃ ℃ +65℃ ℃
-25℃ ℃
0.1
+105℃ ℃
+20℃ ℃ +65℃ ℃ +105℃ ℃
0.01 100 1K 10K 100K
Frequency (Hz) Impedance & ESR vs. Frequency Characteristics
端子
A d
電容器是由兩片相對之電极間加入介質構成的 ( K為介質常數 為電極板有效面 為介質常數,A為電極板有效面 電容量( 為介質常數 電容量 C ) 積,d為電極板間的距離 為電極板間的距離
∝ K A d
電解電容器的种類
依電气絕緣體可分: 依電气絕緣體可分
1.非電解電容器 非電解電容器 * 第一、二電极導體只要是導體即可 通常是由金屬組成 第一、二電极導體只要是導體即可,通常是由金屬組成 * 電气絕緣體為云母、磁器、塑膠等 電气絕緣體為云母、磁器、 * 通常以絕緣物的名稱加以命名 2. 電解電容器 * 第一電极導體為陽极 媸為正箔 第一電极導體為陽极, * 電气絕緣體由氧化皮膜組成 電解液能在陽极箔表面生成一 電气絕緣體由氧化皮膜組成,電解液能在陽极箔表面生成一 种具有絕緣性能的氧化皮膜,鋁箔化成電壓不同 鋁箔化成電壓不同,氧化皮膜的厚 种具有絕緣性能的氧化皮膜 鋁箔化成電壓不同 氧化皮膜的厚 度也不同,氧化皮膜厚薄与正箔的電壓大小成正比 氧化皮膜厚薄与正箔的電壓大小成正比,氧化皮膜厚 度也不同 氧化皮膜厚薄与正箔的電壓大小成正比 氧化皮膜厚 度每1V約為 ~20 埃 度每 約為15 約為 * 第二電极導體為電解質
4.紋波電流 4.紋波電流 超過額定的紋波電流將會使電容本體發熱, 超過額定的紋波電流將會使電容本體發熱,一方面使 電容值衰減, 電容值衰減,上方面可導致防爆孔作用 5.端子 5.端子 電容器端子或CP線端子注意不能加施重力、彎折、 CP線端子注意不能加施重力 電容器端子或CP線端子注意不能加施重力、彎折、拖 拉等外力、基板移動切忌提拿電容本體或撞緊, 拉等外力、基板移動切忌提拿電容本體或撞緊,否則將 損電容本體之結構, 損電容本體之結構, 6.基板的孔穴與間距 6.基板的孔穴與間距 插件基板在設計時,請配合電容器的端子間距設定, 插件基板在設計時,請配合電容器的端子間距設定,這 樣才不致於因端子間距不符而於插入時, 樣才不致於因端子間距不符而於插入時,電容器端子承 受至不確之力量,造成短路、斷線、 受至不確之力量,造成短路、斷線、破壞到電容器之結 構而形成漏液、 構而形成漏液、密閉的破壞影到電容器的使用壽命
电解电容知识
什么是电容,电容的用途引用万鹏原话:电容就是两块导体中间夹着一块绝缘体构成的电子元件,就像三明治一样。
电容是电子设备中最基础也是最重要的元件之一。
电容的产量占全球电子元器件产品(其它的还有电阻、电感等)中的40%以上。
基本上所有的电子设备,小到闪盘、数码相机,大到航天飞机、火箭中都可以见到它的身影。
作为一种最基本的电子元器件,电容对于电子设备来说就象食品对于人一样不可缺少。
小小一颗电容却是一个国家工业技术能力的完全体现,尤其是高档电容所代表的是本国精密加工、化工、、材料、基础研究的水平(美国、日本是世界上电容设计研究能力最高的两个国家)大家千万别小看它,其高档产品的设计制造要求甚至不亚于CPU。
同样是这棵不起眼的电容,上到神五,下到U盘,可以说有电源的地方就有它。
用途:1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。
例如相机闪光灯,加热设备等等。
(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
电容分类:无机介质电容有机介质电容双电层电容电解电容这里只介绍电解电容日系传统电解液电容分类(等级分类可能有些不对)品牌:Nichicon (尼康) NCC(日本化工) Rubycon(红宝石) SANYO(三洋) Matsushita(松下) 等级型号: HE KY YXF,YXG MV-AX,MV-CX FC (P2,P3,K6时代等级)HD,HV KZE ZL,ZLH MV-WX FM (P3,K7时代等级)HM,HC KZG MBZ MV-WG FJ (K7,P4,K8,P4+ 时代高级电容)HN KZJ MCZ (更高一级的电容,市面上极少见到)HZ KZV (电解电容之王.)特征: 防暴纹是“十”字"奔驰"防暴纹防暴纹为英文字母“K”字型防暴纹是奇怪的T 字防爆纹别看见“十”字就叫侧面注有“Rubycon”字样看下图与M 的标记台系里“十”字很多侧面盾形标志这些传统电容在主板上大量采用(又是万鹏原话)主板产品因为面积大,可以用稳压电源,这样开关频率相对较低,所以没必要太好的电容,而显卡因为面积小,对电容要求就高。
电容器培训资料铝电解电容器基础知识培训资料
随着技术的进步和成本的降低,铝电解电容器逐渐应用于民用电 子产品,如电视、音响等。
现状与市场规模
目前,铝电解电容器已成为电子行业中使用最广泛的电容器之一 ,市场规模持续扩大。
市场现状与未来趋势分析
市场竞争格局
市场上存在众多铝电解电容器生产厂家,竞争激烈,但高端市场 仍由少数国际品牌主导。
工作温度
注意监测电容器的工作温度,确保其在允许的温 度范围内运行,过高或过低的温度都可能影响电 容器性能和寿命。
纹波电流
控制电容器的纹波电流在规定范围内,避免过大 的纹波电流导致电容器发热、失效。
铝电解电容器的维护与故障排查
定期检查
定期对电容器进行外观检查,查看是否存在漏液、变形、裂纹等异 常情况,及时发现问题并处理。
射和热源附近。
连接方式
02
采用正确的连接方式,确保电容器正负极正确接入电路,并使
用合适的导线和接头,保证连接牢固、低电阻。
接地处理
03
电容器外壳应可靠接地,以防止静电积累和电磁干扰。
使用过程中的注意事项
1 2 3
工作电压
确保电容器工作电压在额定范围内,避免过电压 或欠电压工作,以防损坏或性能下降。
品性能和可靠性。
02
新材料应用
纳米材料、复合材料等新材料在铝电解电容器中的应用,有助于进一步
提高产品性能和降低成本。
03
未来展望
随着科技的不断进步,铝电解电容器将更加小型化、高性能化和环保化
。同时,新兴市场和应用领域的拓展将为铝电解电容器带来更广阔的发
展空间。
THANKS
感谢观看
性能测试
定期进行电容器的性能测试,如容量、损耗角正切、漏电流等参数 ,确保性能满足要求。
铝电解电容器概要与应用知识
①产品类型 ②尺寸(长×宽)(mm) ③介质种类 ④标称电容量(Pf) S 军筛级 0402 1.00×0.50 CQ 高Q 材料 0R5 0.5 E 工业级 0603 1.60×0.80 CG 高频材料 1R0 1.0 C 消费级 0805 2.00×1.25 102 10×102
焊料过多,这样会因端头压力过大而可能引起芯片受损 焊料过少,固定力量不足,可能会引起电容芯片与线路接触不良
铝电解电容器 电容供应商 电容大全 新晨阳
铝电解电容器概要 1. 铝电解电容器的组成
铝电解电容器有正箔、负箔和电解纸卷成芯子,用引线引出正负极,含浸电解液后通 过导针引出,用铝壳和胶粒密封起来。 2. 电容器的基本原理
电容器的基本原理可以用以下圆来描述 当在两个正对的金属极上施加电压时,电荷将电压的大小被储存起来 3. 电容器的等效电路 电容器的等效电路图可由以下图表示 4.电容的基本电性能参数 5.电容的寿命 此类介质材料的电容器为Ⅰ类电容器,主要包括CQ 和CG 电容器。其中CQ 电容器电性能 最稳 定,几乎不随温度、电压和时间的变化而变化,适用于低损耗,稳定性要求高的高频电路。
尺 寸 0402 0603 0805 工作电压 6.3V 10V 16V 25V 50V 6.3V 10V 16V 25V 50V 6.3V 10V 16V 25V 50V 电容量 0.1pf 0.5pf 1pf 2pf 3pf 4pf 5pf 6pf 7pf 8pf 9pf 10pf 15pf 18pf 22pf 30pf 33pf 47pf
● 可靠性测试
项目 技术规格 测 试 方 法 标称容量 测试频率 测试电压 容量 Ⅰ类 Cp 应符合指定的误差级别 ≤1000pF >1000 pF 1MHZ±10% 1.0±0.2Vrms DF 标称容量 测试频率 测试电压 ≤0.56% Cr<5 pF 1.5[(150/Cr)+7]×10-4 5pF≤Cr<50 pF ≤0.15% 50pF≤Cr≤1000 pF 损耗角 正切 Ⅰ类 ≤0.15% >1000 pF 1MHZ±10% 1.0±0.2Vrms 绝缘电 阻 Ⅰ类 C≤10 nF, Ri≥50000MΩ C>10 nF, Ri·CR≥500S 测试电压:额定电压;测试时间: 60±5 秒;测试 湿度:≤75%;测试温度:25℃±3℃;测试充放电 电流:≤50mA
电解电容并联小电容
电解电容并联小电容电解电容并联小电容电解电容并联小电容是一种常见的电路连接方式,用于扩大电容容量或改变电容特性。
本文将通过讨论电解电容的工作原理、电路应用以及注意事项等方面,介绍电解电容并联小电容的相关知识。
1. 电解电容的工作原理电解电容是一种利用电解质的电解过程来储存电能的器件。
其内部结构由两个电极,即阳极和阴极,以及电解质组成。
当外加电压使阳极带正电荷,阴极带负电荷时,电解质中的离子会向阳极迁移,并与阳极表面发生化学反应,从而形成一层电解质的氧化膜。
在电解质的氧化膜上形成的氧化层具有很高的电容,可以储存大量的电荷。
因此,电解电容的电容量相对较大,可以在电子电路中广泛应用。
2. 电解电容并联小电容的作用当需要更大的电容容量时,可以将多个电解电容并联连接。
通过将多个电解电容的正极和负极连接在一起,可以将它们的电容值相加,从而实现电容容量的扩大。
同时,电解电容并联小电容还可以改变电容特性。
由于不同型号的电解电容具有不同的特性参数,例如额定电压、最大工作温度和ESR 等,因此可以通过并联连接来调整电容的工作特性。
这在某些需要特定电容参数的电子电路中非常有用。
3. 电解电容并联小电容的电路应用电解电容并联小电容广泛应用于各种电子电路中。
其中一种常见的应用是滤波电路。
在电源的输出端,为了去除电源中的高频干扰,可以使用电解电容并联小电容,形成低通滤波器。
这样可以减小输出端的纹波电压,提供更稳定的直流电源。
此外,电解电容并联小电容还可以应用于功率放大电路中。
在功率放大器的输出端,为了提高电流放大能力和降低输出阻抗,可以使用并联电解电容来提高输出电容值。
4. 电解电容并联小电容的注意事项在使用电解电容并联小电容时,需要注意几个问题。
首先,由于每个电解电容的内阻不同,电容之间可能存在电压分配不均匀的情况。
因此,在进行设计时,需要合理选择电解电容的额定电压,以避免某个电容器超过其额定电压。
其次,由于电解电容的极性,应注意将阳极和阴极正确连接,以免电容器在反向电压下出现损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电解电容的知识资料由电解电容知名品牌美国CDE公司提供1,电解电容器的构造腐蚀 Etching阳极和阴极金属箔是由高纯度的,很薄的只有0.02—0.1mm铝箔做成的,为了增加盘面积和电容量,与电解液接触的表面积的增加是通过蚀刻金属箔去溶解铝,使整个铝箔的表面形成一个高密度的网状的有几十亿个精细微管道的结构.化成 Forming阳极箔上有电容器的电介质.电介质是一层很薄的铝氧化物,AL2O3,那是一个在阳极箔上的化学生长过程,这个过程叫“化成”.这个电压是最后电容器额定电压的135%-200%.阴极箔不用化成,它保持着很高的表面积和高密度的蚀刻模式.氧化膜的耐电压不足和电解液自身的闪火放电都会造成短路.卷绕 Winding电容元件的卷绕是一层隔离纸,一层阳极箔,另一层隔离纸和阴极箔.这些隔离纸防止箔之间接触形成短路,这些隔离物后来保留住电解液.在卷绕铝箔芯子或卷绕过程中为后来连接电容器端子附上箔.最好的方法是通过冷焊,把箔焊上带子,冷焊可以减少短路失效,有更好的高纹波电流性能和放电性能.内引出端面切口、与引出端铆接的箔条和电极箔剖面的切口都会有毛刺,从而造成相对电极间短路.电容器发热芯包膨胀和安全阀打开时的压力冲击,芯包发生变形,导致电极间短路.封口 Sealing电容元件被密封在一个罐子里.为了释放氢,密封圈不是密闭的,它经常是压力封闭的即将罐子的边沿滚进一个橡胶垫圈,一个橡胶末端插销或滚进压成石碳酸薄板的橡胶.太则紧密封会导致压力增加,太松则密封会因为电解液的可允许的流失而导致缩短寿命.2, 电容量电容量公差 Capacitance T olerance电容量的公差是指可允许的电容量的最大值和最小值,用相对于额定电容量的百分数的增加和减少来表示,即ΔC/C.电容量的温度特性 Capacitance Temperature characteristics电容量随温度的变化而变化.这个变化的本身很小程度上是依赖于额定电压和电容的尺寸的.从25℃到限制的最高温度电容量的增加量小于5%.大部份电容在-20℃至-40℃時,容值下降很快, 对於標稱-40℃的產品,在-40℃時低压的电容,电容值一般下降20%,高压电容下降40% .对于额定温度为-55℃的电容,在-40℃时电容值的下降量一般小于10%,在-55℃时电容值的下降量一般小于20% .电容量的频率特性 Capacitance frequency characteristics等效电容值随频率的增加而降低.根据电容量自谐振频率一般低于100kHz.電容量和電壓關係Capacitance vs Voltage例如: 如果我们有一个20V 1.2F 尺寸为3×8.63的电容器,我想用400V 同样尺寸的电容器去代替,那我们选用的容量是多少?1.2×(400/20)1.5=13000uF --- 0.013F@400V即:C1*V1^1.5=C2*V2^1.5.3,电压额定DC电压 Rated DC voltage额定直流电压时标示在电容上的电压,它是包括纹波电压的最大峰值电压,这个电压可能在额定温度范围内在端子之间持续的被供给.较高额定电压的电容可能代替较低额定电压的电容所只要外形尺寸,DF和ESR的额定值是兼容的.工作电压(working voltage)简称WV应为标称安全值,也就是说应用电路中,不得超过此标称电压.电解电容工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致电解电容的极化而降低涟波电流,增大ESR,从而提早老化.但是这个说法的前提是“远低于额定工作电压”,综合一些长期的实践经验来看,选取额定工作电压标称值的2/3左右为正常工作电压,是比较合理的.额定浪涌电压 Rated surge voltage额定浪涌电压是最大的直流过电压,即25℃时时间不超过30秒偶然的间隔不少于5分钟电容可能承受的的电压.浪涌电压的测量 Surge voltage measurement在正常的室温下给电容通过一个1000Ω±10%的电阻加上额定浪涌电压(如果电容量是2500uF或更高,则使用2500,000/CΩ±10%的电阻,C是电容单位是uF).循环加电压1/2分钟开接着41/2分钟关,当处于关状态时,每个电容通过充电电阻或等效电阻放电.重复循环120小时.公布测试的必要条件是为了DCL,ESR,DF 满足最初的条件,且没有机械损坏或电解液的泄漏的迹象.没有小滴或可视的流动的电解液残留物是允许的.瞬态过压 Transient over-voltage铝电解电容一般能承受限制能量的非常高的瞬态过压.超过电容浪涌电压额定值50V以上的应用将造成高的漏电流和固定电压工作模式就像齐纳二极管的反向击穿.如果电解液不能承受电压的压力,电容可能损坏短路,但是即使电解液能承受电压的压力,这种操作模式也不能维持很长时间,因为由电容所产生的氢气和压力的积累将造成损坏.冗余电压铝电解电容器先充电,再放电,而后将引线短接,再将其放置一段时间后,两端子间存在电压上升的现象;由这种现象所引起的电压称之为再生电压.当电压施加在介质之上时,在介质内部引起电子的转移,从而在介质内部产生感应电场,其方向与电压的方向相反,这种现象称之为极化反应.在施加电压引起介质极化后,如果两端子进行放电一直到端子间的电压为零,尔后将其开路放置一段时间后,一种潜在的电势将出现在两端子上,这样就引起了再生电压.再生电压在电容器开路放置10天~20天时达到峰值,然后逐渐降低,再生电压有随着元件变大而增大的趋势.如果电容器在产生再生电压后,两端子短路,瞬间高压放电可能引起组装线上的操作员工的恐惧感,并且,有可能导致一些低压驱动元件被击穿的危险,预防出现这种情况的措施是在使用前加100ohm~1Kohm的电阻进行放电,或者在产品包装中用铝箔覆盖引起两端子间短路放电.极性-反向电压 Polar-Reversed Voltage在电路设计和安装时要检查每一个电容的极性.在电容上会标示极性.尽管电容能持续承受1.5V的反向电压,超过这个值就会因为过热,压力过大或介质损坏而损坏电容.这会造成相关联的开路或短路故障和电容压力释放口的破裂.充电-放电Charge-Discharge铝电解电容没有被设计成可以频繁快速的充电和放电,频繁快速的充电和放电会使电容因为过热,压力过大或崩溃而损坏,随后的故障是开路或短路.对于充电-放电的应用使用电容设计成这种应用,不要超过制造商所建议的放电速率.电压分配Voltage Sharing在充电期间,每个串联电容的电压与实际的电容量的倒数成正比.但是达到最终电压时,每个电容上的电压与电容的漏电流的倒数成正比.当然串联回路上所有的漏电流是相同的,趋向于更高漏电流的电容将获得比较小的电压.因为漏电流随所提供的电压的增加而增加,较低的电压会造成较高的漏电阻抗,使电压趋向相同.测试高压母线上的串联电容,供给电容多出额定电压两倍的10%的电压,在整个温度范围内显示出良好的电压分配,没有电容电压曾经超过其额定值.电压的降额 Voltage Derating电压的降额用百分比来表示,即给定电压小于额定电压的百分比,如一个450V的电容工作在400V将有11%的电压降额.如用至少高于额定电压135%的化成电压和85℃的额定或更高温度鋁箔所制作的铝电解电容器,不需要过多的电压降额,降额可持续增加工作寿命.在应用中,在温度小于45℃时工作不需要降额.高于75℃,10%的降额是足够的.对于更高的温度和高的纹波电流,15% 或20%的降额是合适的.军事和空间的应用使用50%的电压降额.在正常室温下,照相闪光(photoflash)电容可以在满额定电压下被使用,因为它们是为这样的职责而设计的.至少10%的电压降额对于频闪(strobe)电容有好处,因为它们连续工作会使它们变热.4,温度工作温度范围 Operating Temperature Range它是环境温度范围,在这个温度下电容被设计能持续工作.很大程度上化成电压决定了高温限制值.低温限制值很大程度上由电解液的低温电阻系数所决定.105 ℃等级的化成电压要高于85 ℃.所以105 ℃等级的电容比85 ℃的电容具有更长的寿命或更高的承受纹波电流的能力.5, 纹波电流纹波电流 Ripple Current纹波电流是流进电容的交流电流.之所以称为纹波电流是因为其所关联的依附在电容的直流偏置电压上的交流电压的行进就像水上的纹波一样.纹波电流使电容发热,太高的温升将使电容超过它的最大可允许管芯的温度而很快损坏,但是工作于接近最大允许管芯温度将大大缩短预期的寿命.最大可允许的纹波电流决定于多大可被允许且仍能满足电容的负载寿命指标.对于铝电解电容工作于最大允许管芯温度其负载寿命指标典型值是1000到10,000小时.即六个星期到一年零七个星期,对于大多数的应用这个时间都太短了.纹波电流的技术规格 Ripple current specification纹波电流是由在额定温度下获得希望的温升所决定的.通常额定温度为85℃的电容允许的温升是10℃,最大允许管芯温度是95℃.通常额定温度为105℃的电容允许的温升是5℃,最大允许管芯温度是110℃. 纹波电流额定值通常假定电容是对流冷却,整个罐子与空气接触.0.006W/℃/in2的对流系数是假设温升是从空气到外壳,管芯温度假设与外壳温度相同.功率损耗等于纹波电流的平方乘以ESR , ( P=I (square)*R) .通常使用25℃,120Hz的最大的ESR,但是既然ESR随温度的增加而减少,所以可使用低于最大ESR的值去计算功率损耗.这有一个例子,对于4700uF,450V,直径为 3 inch(76mm),长为55/8 inchs(143mm) 的罐型电容,其25℃,120Hz最大的ESR是30mΩ,假设你想要这种电容纹波电流额定值.罐型的面积-不包括端子末端-是60.1in2(388mm2).热导系数是(0.006)(60.1)=0.36W/℃.对于10℃的温升,外壳可能损耗3.6W.所以对于最大的ESR是30mΩ可允许的纹波电流是11A.(3.6=I square x 0.03) 像这个例子里的大的罐型电容忽略了从外壳到管芯的温升就会严重的夸大了纹波电流的容量.纹波电流的温度特性 Ripple current temperature characteristics对于工作温度小于额定温度额定纹波电流会增加.在技术指标中会显示增加量.一般增加量决定于最大管芯温度(Tc),额定温度(Tr)和环境温度(Ta)即:纹波温度增量=[(Tc- Ta)/ (Tc- Tr)]1/2高的纹波电流会使工作寿命小于预期寿命,因为电容时间越长其ESR越大对于相同的纹波电流发热量会增加.这加速了磨损.纹波电流的频率特性 Ripple current frequency characteristics工作频率不是120Hz时,要校正额定纹波电流.在技术指标中会显示增加量.通常增加量决定于预期随频率的变化的ESR,但是就像上面所讨论的,ESR是温度,电容量,额定电压和频率复杂的函数.所以很难产生一个精确模拟其对频率依赖的纹波-频率的增量表.对于高纹波电流的应用要确认在你感兴趣的频率下的ESR,并计算总的功率损耗.电解电容器的寿命还与电容器长时间工作的交流电流与额定脉冲电流(一般是指在85℃的环境温度下测试值,但是有一些耐高温的电解电容器是在125℃时测试的数据)的比值有关.一般说来,这个比值越大,电解电容器的寿命越短,当流过电解电容器的电流为额定电流的3.8倍时,电解电容器一般都已经损坏.所以,电解电容器有它的安全工作区,对于一般应用,当交流电流与额定脉冲电流的比值在3.0倍以下时,对于寿命的要求已经满足.实际上d的变化范围在5%—20%之间,它造成纹波电流大小约是电容直流输出电流,的2-4倍.D的选择对电容器的影响很大,一个比较小的d值和高峰值的冲点线路能够产生一个比较大的纹波电流值.纹波电流和d的关系可在中看到,根据ESR和频率的关系,变换d将会导致电容的能耗,这个能耗正比于纹波电流,或正比于纹波电流的平方,或者是着两个值中的某一点.涟波电流对于石机的滤波电路来说,是一个很重要的参数.涟波电流Irac 是愈高愈好.他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小.传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感.在我们现有的摩滤波电容的文章中,推荐的大部分电容都是日本货,比如说elna,红宝石,nichicon(篮精灵),当然还有日本化工等品种,由于我们一入道就接触这些电容,因此先入为主的我们就认为这些电容就是最好的电容.当然,玩胆机的朋友,眼界更为开阔,他们决不轻易使用这些日本货,而是想方设法地去寻找欧美货.根据本人这些年的实践来看,在上面的那些日本货中,除了ENLA的极少数品种和欧美品种和能有一拼外,其他的品种根本不是欧美货的对手.在胆机用滤波电容中,美国的cornell dubilier的效果不错,它的直径是35mm,高度要比日本货高一倍,但是相同耐压的RIFA电容的直径是75mm,无法安装.cornell dubilier电容的脚是2个较粗的接线柱,通过螺丝固定,而很多日本货是四个脚,直接焊接,因此在替换的时候仍然比较麻烦,我费了很大力气才把我的胆机上的四个滤波电容换好.6,等效串联電阻ESR等效串联电阻 Equivalent Series Resistance等效串联电阻(ESR)是一个单一的电阻值,它代表了所有的电容的欧姆损耗与电容相串联.用于DC/DC开关稳压电源输入滤波电容器,因开关变换器是以脉冲形式向电源汲取电能,故滤波电容器中流过较大的高频电流,当电解电容器等效串联电阻(ESR)较大时,将产生较大损耗,导致电解电容器发热.而低ESR电解电容器则可明显减小纹波(特别是高频纹波)电流产生的发热. 电解电容器ESR较低,能有效地滤除开关稳压电源中的高频纹波和尖峰电压.ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好.当额定电压固定时,容量愈大ESR愈低.当容量固定时,选用高额定电压的品种可以降低ESR.低频时ESR高,高频时ESR低,高温也会使ESR上升.ESR的测量 ESR measurement对于铝电解电容,是在25℃时测试在一个测量桥式电路中等效串联电路中的电阻值作为ESR的值,测量桥式电路用120Hz没有谐波含量最大AC信号电压为1Vrms没有正向偏置电压的电源来供电.ESR的温度特性 ESR T emperature characteristicsESR随温度的的增加而降低.从25℃到限制的最高温度ESR大约降低35%到50%.但是在限制的最低温度时ESR的增加超过10倍.对于额定温度为-20℃或-40℃的电容,在-40℃时ESR的增加超过100倍.ESR的频率特性 ESR Frequency characteristics像DF一样,ESR随频率而变化.重写一次上面DF的公式,ESR可由下面的公式来模拟:ESR=10,000(DFif) /2лfC +ESRhf用ESR来表示,在低频时ESR随着频率的增加稳定的下降,关电源的体积不断缩小,能量转换效率不断提高,使得开关电源的工作频率不断提高(从20kHz到500kHz,甚至达到1MHz以上),导致其输出部分的高频噪声加大,为了有效滤波,必须使用超低高频阻抗或低等效串联电阻(ESR)的电容器.D.3 损耗因数- Dissipation Factor(DF)Tan& (损耗角正切)在等效电路中,等效串联电阻ESR同容抗1/wC 之比称为Tan& ,其测量条件与电容量相同.Tan&=R(ESR)/(1/ wC)= wC R(ESR)其中:R(ESR)= ESR(120HZ) w =2 X 3.14 fF= 120HzTan& 随着测量频率的增加而变大,随着测量温度的下降而增大.损耗因数是测量损耗角的正切值并用百分数来表示.损耗因数也是ESR同容性电抗的比值,因此与ESR有关,用公式表示:DF=2лfC(ESR)/10,000DF是用百分数表示的没有单位的数值,测试频率f的单位是Hz,电容量C的单位是Uf,ESR的单位是Ω.DF的测试 DF measurementDF的测试是在25℃用120Hz没有谐波含量最大AC信号电压为1Vrms没有偏置电压的电源来供电下完成的.DF的值与温度和频率有关.DF的温度特性 DF Temperature characteristics损耗因数随温度的升高而降低.从25℃到最高温度限制值时DF大约降低50%,但是在最低温度限制值时,DF增加超过10倍.额定温度为-55℃的更好的器件的DF值在-40℃时增加量不到5倍.DF的频率特性 DF Frequency characteristics、损耗因数在高频时随频率的变化而变化.DF用以下的公式来模拟:DF=DFif+2лfC(ESRhf)/10,000DF是用百分数来表示的总的损耗因数,DFif是用百分数来表示的低频的损耗因数,ESRhf是高频时的ESR单位Ω,f是测试频率单位Hz,C是测试频率下的电容量单位uF.DFif是由功率损失所造成的,功率损失是由在铝氧化介质的分子排列方向的电场所产生的.ESRhf是由在薄膜,连接器和电解液/隔离物垫上的阻性损耗所造成的.电解液/隔离物垫上的电阻值经常起主导作用,它的电阻值随频率变化很小.DFif的范围大约是从1.5%到3%.ESRhf的范围是从0.002到10Ω,随温度而降低.上面DF的公式表明DF在低频时是个常数,在交越频率处跨越到降低的DF和固定的ESR,交越频率与电容量成反比.因此高电容量的电容其交越频率就低.随着频率的增加高电容量的电容比低电容量的电容DF降低的更多.DF值是高还是低,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高,DF值就愈低.频率愈高,DF值愈高,温度愈高, DF值也愈高.DF 值一般不标注在电容器上或规格介绍上面.在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理.尽管使用50V的从承受电压正常工作方面并无不妥,但从DF值方面考虑就欠缺一些.使用63V 或71V耐压的会有更好的表现的.当然再高了性价比上就不合算了.含浸 Impregnation电容器元件注入电解液,浸透纸隔离物并且渗透到蚀刻管道里.注入的方法可能会涉及到器件的浸入和真空压力周期的应用不管使用或不使用加热,或者在小单元情况下仅仅是简单的吸收.电解液是根据电压和工作温度范围用不同的公式表示的成分的复杂混合物.其基本的成分是具有可溶性和可导电性的盐-一种溶解物-以产生电的传导.普通的溶剂是乙烯乙二醇(EG), 二甲基的甲酰胺(DFM)和微克丁内酯(GBL).普通的溶解物是铵硼酸盐和其它的铵盐.EG典型应用于额定值为-20℃或-40℃的电容.DFM和GBL经常应用于额定值为-55℃的电容.在电解液里水起很大的作用.水增加了导电性因此减少了电容的阻抗.但是它降低了沸点因而妨碍了高温性能,减少了贮藏寿命.占几个百分点的水是必要的,因为电解液要维持铝氧化物电介质的完整性.当漏电流流动时,水被分解为氢和氧,氧被附着在阳极金属薄片上通过增加更多的氧来复原漏电流地点.氢通过电容的密封橡胶溢出.7,漏电流DCL漏电流 DC Leakage Current(DCL)DC漏电流是指在给定的额定电压下流过电容的直流电流值.漏电流的值依赖于给定的电压,充电周期和电容的温度.电容器的介质对直流电具有很大的阻碍作用.由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流,刚施加电压时,漏电流较大,随着时间的延长,漏电流会逐渐减小并最终保持稳定. 测试温度和电压对漏电留具有很大的影响.漏电流会随着温度和电压的升高而增大DCL的测试方法 DCL Method of measurement漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值.铝电解电容都存在漏电的情况,这是物理结构所决定的.漏电流当然是越小越好.电容器容量愈高,漏电流就愈大.降低工作电压可降低漏电流.选用更高耐压的品种也会有助于减小漏电流.相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命.真是好处多多,唯价格上会高一些.而漏电流值大小的控制是电容器三个参数中的重点,漏电流值大小是判断电容器质量的一个重要标志.影响铝电解电容漏电流值的主要因素有:(1)所用原材料的纯度情况, 包括正极箔的含杂质情况, 负极箔纯度、去离子水的纯度, 电解纸的杂质含量以及其它结构材料、密封材料等等 .(2)工作电解液的成分、粘度、P H 值、比电阻 .(3)工作和贮存环境的影响 .(4)电容器生产的环境和制造工艺的控制, 特别是老炼工艺, 电容器内部氧化膜的修补过程等 .把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小.DCL的温度特性 DCL Temperature characteristics随温度的增加而增加DCL的测试方法 DCL Method of measurement漏电流的测量是在25℃的温度下,提供额定电压并通过1000Ω的保护电阻同测量电路中的电容相串联.加电压5分钟以后,漏电流没有超过规格所给定的最大值. 把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度.下降电压越少的漏电流就越小.DCL的电压特性 DCL Voltage characteristics漏电流的值随着提供的电压的降低会迅速的减少.8,外部气压 External Pressure对于固体电解液的电容没有关联.铝电解电容能在80000英尺(20320m)和3kPa 低的气压下工作.最大的空气压力依赖于尺寸和电容的类型.超过最大值会通过压坏外壳,打开压力释放口或产生一个短路电路使电容损坏.9,电感 Inductance电感是等效串联电感,对于温度和频率相对独立.对于SMT典型值的范围是从2到8nH,对于径向引线的类型其典型值的范围是从10到30nH,对于螺丝端子的类型其典型值的范围是从20 nH到50nH,对于轴向引线的类型其典型值高达200nH.这些低的值是通过制表区域和介质接触几何学的固有的低的电感量所获得的.电容元件具有小于2nH的典型的电感量.CDE 电感的简单计算公式: ( 直径/2) +5 < 电感(nH)< 直径-810,绝缘和接地 Insulation and Grounding非固态电解液铝电解电容的铝外壳通过与电解液接触与负极相连.所产生的绝缘电阻从几个欧姆到几千个欧姆.对于轴向端子的电容和扁平组件封装外壳与负极端子连接.如果同外壳接触的器件有一定电平而不是负极端子,使用带绝缘套的电容.塑料绝缘(UL224VW-1 )能承受3000Vdc或2500Vac,60Hz1分钟,电压加在外壳和一个1/4英寸宽围绕绝缘套的金属薄膜之间.给电容安装上满意的尼龙螺母和间隔孔.在薄膜和电容外壳之间加电100V 2分钟以后,绝缘电阻不小于100MΩ.11,平衡电阻Balancing Resistors在额定温度时,串联的两个电容漏电流的差异能被估计为0.0015CVr单位是uA,C是额定电容量单位是uF,Vb是通过两个电容的电压单位是Vdc.使用这种估计数值,使用下面的公式来为每个电容选取平衡电阻的值.。