恒压供水系统设计

合集下载

变频恒压供水控制系统设计

变频恒压供水控制系统设计

变频恒压供水控制系统设计一、引言变频恒压供水控制系统是一种能够自动调节水泵电机的转速,保持管网内水压恒定的系统。

该系统通过变频器控制水泵电机的转速,根据实时水压信号对水泵进行调节,从而实现供水系统的恒压供水。

本文将从系统设计原理、硬件选型、控制策略等方面对变频恒压供水控制系统进行设计。

2. 控制原理变频恒压供水控制系统采用闭环控制原理,主要分为压力调节环和流量调节环两部分。

压力调节环根据实时水压信号,控制变频器调节水泵电机的转速,以维持管网内的水压恒定。

流量调节环主要通过监测流量传感器的输出信号,控制变频器调节水泵电机的转速,以满足用户的实际用水量需求。

三、硬件选型1. 水泵电机选择适当功率的三相异步电动机,能够满足供水系统的实际需求,保证系统的正常运行。

2. 变频器选用带有PID调节功能的变频器,能够根据实时水压信号对电机转速进行精确调节,确保系统供水的恒压运行。

3. 压力传感器选择高灵敏度的压力传感器,能够实时监测管网内的水压信号,为系统提供准确的控制信号。

5. 控制面板控制面板应具有良好的人机界面,能够显示系统的运行状态、参数,方便用户对系统进行监测和操作。

6. 其他配件根据实际需求,可能需要选购接线端子、线缆、散热器等辅助设备。

四、控制策略1. 系统启动当系统启动时,变频恒压供水控制系统应自动进行初始化,自检各传感器和执行机构,确保系统能够正常运行。

3. 流量调节系统同时监测流量传感器的输人信号,根据用户的实际用水量,控制变频器调节水泵电机的转速,以满足流量调节环的要求。

4. 故障处理系统应具备故障自诊断功能,当系统发生故障时,能够自动报警或进入相应的故障处理程序,保证对用户的供水不受影响。

五、系统调试1. 对水泵电机、变频器等设备进行正确的接线和安装。

2. 对传感器进行校准,确保其输出信号的准确性。

3. 对控制系统进行相关参数的设定和调试。

4. 对整个系统进行联合调试,验证系统的正常运行。

恒压供水系统设计

恒压供水系统设计

恒压供水系统设计恒压供水系统是一种新型的供水方式,其主要优点在于能够保持水压的稳定性。

在城市化进程中,恒压供水系统已经成为了供水基础设施建设的重要分支,其需求量逐年递增。

因此,本文将介绍如何设计一个高效的恒压供水系统。

首先,需要明确恒压供水系统的组成部分。

一个典型的恒压供水系统包括:水源、水泵、调压器、配水管道以及其他辅助设备等。

每个部件的设计都需要综合考虑系统的整体性能。

其次,需要确定系统的设计流量。

流量是恒压供水系统中的关键参数,也是其效率的决定因素。

流量大小一方面取决于区域的供水需求,另一方面则取决于系统中各个部件的设计规格。

因此,在设计流量时,需要综合考虑这些因素,以保证系统的有效运行。

接着,设计水泵的大小。

水泵是实现恒压供水的核心设备,其大小直接影响系统的压力稳定性。

选择适当大小的水泵可以减少系统运行时的能耗,提高设备寿命。

一般来说,水泵的设计大小应根据系统的最大流量、总扬程和泵房的操作条件等要素进行计算。

然后,设计调压器的参数。

调压器是维护系统水压的重要部件。

调压器的设计需要满足以下几个条件:一是能够适应系统的压力范围变化,保证供水的稳定性;二是减少设备损耗,延长设备寿命;三是体积小、造价低、维护简便。

调压器的设计参数应根据系统的流量、压力和传输路径等因素综合计算。

最后,设计配水管道。

配水管道是系统中最核心的组成部分之一。

在设计配水管道时,需要考虑管道的材质、直径、长度、倾斜度和细节等方面。

其中,管道的直径应根据设计流量、断面流速和压力损失等要素进行计算。

另外,对于长距离管道,还需要考虑斜坡或梯度,以确保水的正常流动。

综上所述,设计一个高效的恒压供水系统需要考虑多个方面的因素,包括设计流量、水泵大小、调压器参数和配水管道等。

在实际设计过程中,还需考虑实践经验和技术要求,以确保系统能够高效、稳定地供水。

恒压供水自动控制系统设计方案

恒压供水自动控制系统设计方案

恒压供水自动控制系统设计方案控制策略:1.PID控制策略:根据水压的反馈信号与设定值之间的误差,计算出控制阀门的开度,以调节出水流量,使水压保持在设定值范围内。

2.水泵组合运行策略:根据需求的水流量大小,自动选择合适的水泵数量和运行状态(单泵或多泵并联),以满足供水系统对水压的要求。

3.系统监测与故障诊断策略:通过监测系统中的传感器,实时监测供水系统的压力、流量、温度等参数,并能够自动诊断故障,提供警报和故障排除建议。

硬件选择:1.压力传感器:选用高精度、稳定性好的压力传感器,能够实时准确地测量供水系统中的水压,并将信号传送给控制器。

2.控制阀门:选择高灵敏度、响应速度快的电动或气动控制阀门,能够根据控制信号快速调节水量,实现恒压供水。

3.变频器:选择适合的变频器可以根据供水需求调节水泵的运行频率,提高系统的能效,减少能耗。

4.控制器:选用可编程控制器(PLC)或微处理器控制器(MCU),具有强大的计算和控制能力,能够实时处理信号,控制整个供水系统的运行。

系统布局:1.水源与水池:根据供水需求选择水源和水池的容量,保证水能够持续供应。

2.水泵配置:根据供水系统的水压需求,选择合适的水泵类型和数量,自动控制其启停和运行状态,以稳定供水压力。

3.阀门安装:在输送管道上设置自动控制阀门,根据系统控制信号调节阀门的开度,以控制出水量,保持恒定的水压。

4.传感器安装:将压力传感器、流量计等安装在适当的位置,能够准确地测量和传递相关参数,为系统控制提供实时反馈信号。

5.控制器布置:控制器应该安装在恒温恒湿的环境中,与其他元件紧密配合,并与操作界面(如触摸屏)相连,便于操作和监控系统运行。

以上是对恒压供水自动控制系统设计方案的一个基本描述。

具体的实施方案需要根据实际情况进行具体分析和设计,以确保系统运行的稳定性、可靠性和效果。

恒压供水系统自动控制设计

恒压供水系统自动控制设计

恒压供水系统自动控制设计一、控制策略设计:1.压力传感器:安装在水泵的出水管道上,用于实时监测出水压力,并将监测数据反馈给控制装置。

2.控制装置:根据压力传感器的反馈数据,判断当前的出水压力是否达到设定值,并决定是否调整水泵的运行状态。

3.设定值设定:用户可以通过控制装置进行设定,可以根据实际需要设定出水压力的目标值。

二、控制装置设计:1.控制算法:根据压力传感器的反馈数据,控制算法可以采用PID控制策略,通过对比设定值和实际值来计算出相应的控制信号,控制水泵的开启和关闭。

2.控制信号传输:控制装置通过控制信号传输装置将计算出的控制信号传输给水泵控制装置。

3.水泵控制装置:根据接收到的控制信号,控制水泵的启停和运行速度。

可以采用变频控制方式,通过调整水泵的转速来实现出水压力的调节。

三、系统优化设计:1.启停设置:当出水压力低于设定值时,自动启动水泵;当出水压力达到设定值后,自动停止水泵。

避免压力超过设定值或低于设定值过多的情况,保持出水压力稳定。

2.变频控制:根据压力传感器的反馈数据,控制装置可以实时调整水泵的转速。

当出水压力低于设定值时,增加水泵的转速;当出水压力高于设定值时,降低水泵的转速。

通过改变水泵的转速,可以实现稳定的出水压力。

3.故障保护:当水泵运行异常或发生故障时,控制装置应能够及时报警,并关闭水泵以避免进一步损害设备。

同时,还可以设计自动切换备用水泵的功能,保证供水的连续性和可靠性。

综上所述,恒压供水系统的自动控制设计包括压力传感器的安装和数据反馈、控制装置的设计、设定值的设定、控制算法的选择、控制信号传输装置的设计、水泵控制装置的设计等多个方面。

通过合理的设计和控制策略,可以实现恒压供水系统的稳定运行,提高供水的效率和质量,同时还能够减少能源的消耗和设备的损耗。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种以恒定压力为目标进行供水的系统。

PLC(可编程逻辑控制器)是一种专门用于自动化系统控制的设备,它可以根据预设的程序控制各种设备和执行各种操作。

恒压供水系统一般包括水泵、水箱、传感器、流量计和控制器等组件。

PLC可以根据不同的需求和实时传感器数据,对这些组件进行控制和调节,以实现恒定的供水压力。

设计一个基于PLC的恒压供水系统时,首先需要确定系统的工作要求,包括所需的最小和最大供水压力范围、水泵的工作状态和切换条件等。

然后,根据这些要求编写PLC的控制程序。

控制程序的主要功能包括以下几个方面:1. 监测供水压力:PLC需要连接压力传感器,实时监测供水压力,并将其数据传输到控制器。

2. 控制水泵的启停:根据实时的供水压力数据和预设的最小和最大压力范围,PLC可以控制水泵的启停,保持供水压力在设定的范围内。

3. 控制水泵的运行速度:当供水压力低于最小压力时,PLC可以调节水泵的运行速度,增加供水流量,提高供水压力。

4. 控制水泵的切换:当供水压力达到最大压力时,PLC可以控制一个备用水泵的启动,实现水泵的切换。

5. 数据记录和报警:PLC可以记录供水压力、流量等各种数据,并根据预设的条件产生报警信号,提醒操作人员进行维护或处理异常情况。

在设计过程中,需要充分考虑系统的稳定性、可靠性和安全性。

PLC的选型和配置需要根据系统的规模和要求来确定,同时还需要设计合理的电气控制、保护和联锁装置,确保系统的正常运行。

基于PLC的恒压供水系统的设计需要充分考虑供水压力的监测和控制,合理调节水泵的运行速度和切换,以实现稳定的恒压供水。

还需要保证系统的可靠性和安全性,提供数据记录和报警功能,便于维护和处理异常情况。

工厂恒压供水控制系统设计

工厂恒压供水控制系统设计

工厂恒压供水控制系统设计在设计工厂恒压供水控制系统时,需要考虑以下几个方面:1.系统结构设计:系统可以包括水泵、水箱、压力传感器、控制器等设备。

水泵负责将水从水源中抽取,然后将水送至水箱进行储存,并通过压力传感器实时监测水箱内的水压情况。

控制器根据传感器反馈的数据,控制水泵的工作状态,以保持水压的稳定。

同时,系统还应该设计有报警装置,一旦发生异常情况,系统能够及时发出警报。

2.水泵选择:在选择水泵时,需要根据工厂的实际需求来确定水泵的流量和扬程。

流量决定了水泵每分钟输送的水量,扬程则决定了水泵能够达到的最高供水高度。

此外,还需要考虑水泵的功率和效率,以及工作可靠性和维护方便性。

3.水箱容量和位置:水箱的容量应根据工厂的供水需求而确定,一般可以根据平均日供水量计算。

水箱的位置应尽量选择在离水源和用水点较近的位置,以减少管道的长度和压力损失。

4.压力传感器选型:压力传感器应具备较高的精度和稳定性,能够准确测量水箱内的水压。

传感器的输出信号一般为模拟信号,需要通过模数转换器转换为数字信号,进一步传输到控制器。

5.控制器设计:控制器应具备自动控制的功能,能够根据压力传感器的反馈数据,自动调节水泵的启停和转速。

控制器还应具备一定的运算能力,能够实现压力设定、报警、监测和数据记录等功能。

6.系统的安全性和可靠性:为了确保系统的安全性和可靠性,应在系统中设置合适的安全装置,如过流保护、过压保护和短路保护等。

此外,在日常维护工作中应定期对系统进行检查和维护,及时发现并排除故障。

7.系统的扩展性和可升级性:在设计系统时,应考虑到工厂未来扩建或改造的可能性。

系统应具备良好的扩展性和可升级性,以便进行后续的改造和升级。

总而言之,工厂恒压供水控制系统的设计需要考虑到工厂的实际需求和水源条件,合理选择水泵、水箱、压力传感器等设备,并设计合适的控制器。

同时,还应注意系统的安全性和可靠性,以及系统的扩展性和可升级性。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。

随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。

在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。

而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。

恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。

基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。

研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。

1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。

传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。

对于基于PLC的恒压供水系统的研究具有重要的意义。

通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。

本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。

1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。

通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。

通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。

通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。

基于单片机的恒压供水系统设计

基于单片机的恒压供水系统设计

基于单片机的恒压供水系统设计
恒压供水系统是一种常见的水泵控制系统,主要用于保持用户端的水
压稳定。

在本文中,将介绍基于单片机的恒压供水系统的设计。

恒压供水系统的基本原理是通过控制水泵的启停和转速,以保持用户
端的水压恒定不变。

系统的设计主要包括传感器的选择与连接、单片机的
编程、驱动电路的设计等。

首先,选择和连接传感器。

恒压供水系统中最关键的传感器是压力传
感器和流量传感器。

压力传感器用于测量用户端的压力大小,而流量传感
器则用于计算水泵的工作流量。

这两个传感器应该能够与单片机进行连接
并传输数据。

其次,进行单片机的编程。

单片机可以根据传感器测得的数据,通过
控制水泵的启停和转速,以实现恒定的水压。

编程的关键是根据实际需求
确定水泵的工作状态和转速,并实现相应的控制逻辑。

例如,当水压低于
设定值时,单片机可以启动水泵并逐渐增加转速;当水压达到设定值时,
单片机可以停止水泵或者降低转速。

最后,进行驱动电路的设计。

水泵通常需要较大的电流和电压来工作,因此需要设计适当的驱动电路。

这个电路应该能够与单片机进行连接,并
根据单片机的控制信号提供所需的电流和电压给水泵。

在整个系统设计中,还需要考虑到系统的可靠性和安全性。

例如,可
以设置安全开关来监测水泵的状态,当水泵出现故障时及时停止供水,避
免水泵过热或水压过高等问题。

同时,还可以设置报警装置来提醒用户系
统的异常情况。

恒压供水系统设计

恒压供水系统设计

恒压供水系统设计恒压供水系统设计一、引言随着城市化进程的加速,城市供水系统已成为促进经济、保障人民生活和促进城市和谐发展的重要基础设施。

然而,传统的供水系统存在很多问题,如供水压力不稳定、水质难以保证等。

因此,如何设计一种高效、稳定、安全的恒压供水系统已成为供水领域的研究热点之一。

本文将介绍恒压供水系统的设计及其原理,包括供水系统的结构、控制策略、电控柜、水泵及配套设备等方面。

希望通过本文的介绍,能够更好地指导恒压供水系统的设计和应用。

二、供水系统的结构恒压供水系统的结构主要包括水泵及其配套设备、控制系统、压力容器及差压开关。

1.水泵及其配套设备水泵是恒压供水系统的核心部分,其主要作用是将源水从储水池或水井中抽出并提升到供水管网中。

水泵可以分为离心泵、潜水泵和柱塞泵等多种类型,不同类型的泵适用于不同的工作条件。

水泵的配套设备主要包括阀门、配管、非负压开关、过滤器、逆止阀等。

这些设备可以有效保护水泵,延长其使用寿命,并可根据实际需要进行配置。

2.控制系统恒压供水系统的控制系统主要由电控柜、变频器、PLC等组成。

控制系统可以根据供水管网的压力变化自动控制水泵的启停,从而达到恒压供水的目的。

同时,控制系统还可以实现保护、监测和报警等功能。

3.压力容器及差压开关压力容器和差压开关是恒压供水系统中常用的配件。

压力容器可以通过存储压缩空气的方式,来缓解水泵在启动或停机时的水击现象,从而保护水泵和管道;差压开关可以对水泵的进出水口进行监测,实现自动控制启停。

三、控制策略恒压供水系统的控制策略可以根据实际需要分为分级控制和组合控制两种。

1.分级控制分级控制是指根据不同用水压力要求,将供水管网划分为不同的区域,并分别配置相应的水泵和控制系统。

当某一区域的用水量增加时,控制系统就自动启动该区域对应的水泵,并通过变频器控制其运行频率,从而达到维持该区域用水压力恒定的目的。

当该区域用水量下降时,控制系统会自动停止该区域的水泵,从而节约能源。

恒压供水系统设计 (2)

恒压供水系统设计 (2)

恒压供水系统设计概述恒压供水系统是一种利用控制技术保持水压恒定的供水系统。

在传统的供水系统中,水压可能会受到外界因素的影响而波动,导致水压不稳定的问题。

而恒压供水系统通过控制水泵的运行来调整水压,使其保持在一个稳定的水平,从而解决了水压不稳定的问题。

本文将介绍恒压供水系统的设计原理和操作步骤。

设计原理恒压供水系统的设计原理基于控制技术。

系统通过感应水压的变化,实时调整水泵的运行状态,从而保持水压恒定。

具体原理如下: 1. 感应:系统在关键水路上安装压力传感器,以感应水压的变化。

2. 反馈控制:感应器将实时采集到的数据传输给控制器。

控制器通过与设定的目标水压进行比较,确定水压是否处于合适的范围内。

3. 调整水泵运行:当实际水压低于设定水压时,控制器会启动水泵,增加供水量;当实际水压高于设定水压时,控制器会停止水泵,减少供水量。

4. 反馈机制:调整完毕后,控制器通过再次检测水压来确认调整是否达到预期效果。

如果水压仍然不达标,控制器会继续调整水泵的运行状态,直到水压稳定在设定范围内。

设计步骤恒压供水系统的设计包括以下步骤: 1. 系统需求分析:根据实际需求确定使用恒压供水系统的区域范围、水压要求等参数。

2. 设计水路结构:根据系统需求和实际情况设计水路结构,包括水泵布置、管道布置等。

3. 选择水泵和控制器:根据系统需求选定合适的水泵和控制器。

水泵的选择需要考虑供水量、扬程等参数;控制器的选择需要考虑水压调节范围、调节精度等参数。

4. 安装:根据设计图纸进行水泵和管道的安装工作,确保安装准确稳固。

5. 连接和调试:将水泵、控制器、压力传感器等设备进行连接,进行系统调试和功能测试。

6. 操作和维护:完成系统安装和调试后,进行操作和维护培训,确保系统正常运行,并定期进行设备检查和维护。

优点和应用恒压供水系统具有以下优点: - 水压稳定:恒压供水系统可以实时调整水泵的运行状态,保持水压的恒定,提高供水质量。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。

恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。

本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。

同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。

三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。

其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。

四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。

2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。

3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。

4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。

五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。

2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。

3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。

4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。

六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。

2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种实现供水自动控制和恒定水压的系统,其中PLC(可编程逻辑控制器)是系统的核心控制设备。

本文将介绍基于PLC的恒压供水系统的设计。

需要明确恒压供水系统的工作原理。

恒压供水系统通过感应水压信号,实时检测并调节水泵的运行状态,以保持恒定的水压。

当水压下降时,PLC将接收到水压信号,并根据预设的控制逻辑,自动启停水泵。

当水压恢复到设定的压力范围内时,PLC会停止水泵的运行。

1. 系统布局设计:首先需要对供水系统的布局进行设计。

包括水泵的位置安排、水源与供水管道的连接方式等。

通过合理的布局设计,可以确保供水系统的稳定运行。

2. PLC选型和安装:根据实际需求选择合适的PLC设备,并进行安装。

选型时需要考虑PLC的输入输出点数量,通信接口等因素。

安装时需要按照PLC的安装手册进行操作,确保PLC设备的正常运行。

3. 传感器的选择和安装:恒压供水系统的关键是实时检测水压信号。

需要选择合适的传感器来感应水压信号,并将信号输入到PLC中。

一般可以选择压力传感器或液位传感器作为水压信号的检测装置。

安装传感器时需要遵循传感器的安装手册,确保传感器的准确度和可靠性。

4. PLC程序编写:根据系统需求,编写PLC程序。

程序的编写需要根据实际情况设置水压的设定值、水泵的启停逻辑等控制策略。

编写完程序后,需要进行PLC程序的调试和测试,确保程序的正确性和稳定性。

5. 系统调试和优化:系统调试是确保恒压供水系统正常运行的关键步骤。

调试过程中需要检查各个设备的连接情况、信号传输的准确性等。

同时还需要对恒压供水系统进行性能优化,例如设置合理的启停控制逻辑,调整设定的水压范围等,以提高供水系统的稳定性和节能效果。

6. 系统运行和维护:系统调试完成后,可以正式启动恒压供水系统的运行。

在系统运行过程中,需要定期检查和维护系统设备,保持设备的正常运行。

同时也需要注意系统的安全性,定期检查阀门、电气连接等,确保供水系统的安全运行。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计随着工业技术的不断发展,PLC(可编程逻辑控制器)在自动化领域中发挥着越来越重要的作用。

PLC可以实现逻辑控制、运算处理、故障诊断、通信联网等功能,因此在工业生产中广泛应用。

在工业生产中,恒压供水系统是一种重要的自动化系统,它能够保证供水系统在不同负荷条件下稳定供水,提高了供水系统的效率和可靠性。

本文将介绍一种基于PLC的恒压供水系统的设计方案。

一、恒压供水系统的结构和工作原理1. 结构恒压供水系统通常由水泵、水箱、变频器、传感器、PLC控制系统、阀门等组成。

其中水泵负责将水送入水箱,变频器负责控制水泵的转速,传感器用于监测系统的压力、液位等参数,PLC控制系统负责根据传感器的反馈信号来对水泵进行控制,以保持系统的恒压供水。

2. 工作原理恒压供水系统的工作原理主要是通过PLC不断地监测系统的压力变化,当系统压力低于设定值时,PLC控制系统会通过变频器提高水泵的转速,增加供水量;当系统压力高于设定值时,PLC控制系统会通过变频器降低水泵的转速,减少供水量,以达到恒压供水的目的。

1. 水泵选择在恒压供水系统设计中,水泵的选择非常重要。

一般选用离心泵,因为它具有流量大、压力稳定等特点,适合恒压供水系统的要求。

2. 传感器选择恒压供水系统需要具有对压力和液位的监测功能,因此需要选择适合的传感器。

一般选用压力传感器和液位传感器,它们能够准确地监测到系统的压力和液位变化,并将这些信息传输给PLC控制系统。

3. PLC选择PLC控制系统是恒压供水系统的“大脑”,需要选择性能稳定、可靠性高的PLC。

一般选用国内外知名品牌的PLC产品,如西门子、施耐德等。

变频器作为恒压供水系统中控制水泵转速的关键设备,需要选择具有可调节范围广、响应速度快等优点的产品。

同样,一般选用国内外知名品牌的变频器产品。

5. 恒压控制算法设计在PLC控制系统中,需要设计恒压控制算法,通过对系统压力和液位的监测,不断地调节水泵的转速来实现恒压供水。

恒压供水系统设计

恒压供水系统设计

恒压供水系统设计2篇恒压供水系统设计(一)恒压供水系统是一种通过自动调节管网压力来实现稳定供水的系统。

其设计原理是通过控制设备,使得在各个用水点的供水压力保持不变,不受流速、水量和管道布置的变化影响。

恒压供水系统设计的目标是提供稳定的水压,确保用户在任何时间、任何位置都能得到符合需求的供水。

对于恒压供水系统的设计,首先需要确定系统所需的最小输出压力。

这可以根据用户需求、水压变化规律和供水区域的具体情况来决定。

然后,根据所需的最小输出压力确定恒压供水系统的工作参数,包括自动调节阀的开度、泵的流量和压力控制设置等。

在设计过程中,需要充分考虑用水的峰值和谷值,以及管道的阻力特性等因素。

根据实际情况,可以采用单一泵或多泵并联供水的方式来满足用水量的变化需求。

同时,还要考虑到水泵的启停次数,以减少能耗和设备磨损。

在安装恒压供水系统时,要确保管道的正常运行以及管网的稳定性。

为了避免噪音和水锤现象,需要进行合理的管道布置和降压装置的设置。

此外,还要注意管道的抗震性能和排气阀的设置,以保证系统的安全运行。

恒压供水系统设计(二)在恒压供水系统的设计中,需要考虑到不同区域的压力平衡和调节器的选择。

为了实现恒压供水,可以采用稳压罐、自动调节阀或调速泵等设备。

这些设备能够监测用水情况,并根据实际需求调整水压,保证供水的稳定性。

在恒压供水系统中,还需要注意水源的选择和利用。

优先选择自然水源,如地下水和河流水,以减少对自来水厂的依赖,并降低成本。

同时,要考虑水质的问题,采用适当的水处理设备进行处理,确保供水质量达到标准要求。

在设计恒压供水系统时,还应考虑到紧急情况的处理和备用供水的设置。

如遇到水源中断或管道故障时,要能够及时启动备用供水系统,以保证用户正常用水。

同时,要有紧急停水装置,用于紧急情况下的停水处理。

在系统运行过程中,要定期进行检查和维护,保证设备的正常工作和供水系统的稳定性。

对供水泵、自动调节阀和稳压罐等设备进行定期保养,清洗管道内部的杂质和沉积物,确保系统的畅通。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。

恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。

本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。

包括供水范围、水压要求、水泵数量及功率等。

同时,还需考虑系统的稳定性、可维护性及节能性等因素。

2. 硬件设计硬件设计是恒压变频供水系统的基础。

主要包括PLC控制器、变频器、水泵、压力传感器等设备。

其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。

3. 软件设计软件设计是实现恒压变频供水系统的关键。

通过PLC编程,实现对水泵的转速、输出及水压的精确控制。

同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。

三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。

通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。

在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。

2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。

确保各设备之间能够正常通信,并实现精确的控制与协调。

3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。

人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。

四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。

确保系统能够满足实际需求。

2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。

优化过程中,需充分考虑系统的实际运行情况及外界环境因素。

恒压供水控制系统设计毕业设计

恒压供水控制系统设计毕业设计

恒压供水控制系统设计毕业设计一、引言恒压供水控制系统是一种新型的供水系统,它能够保证在供水过程中,水压始终保持稳定,不会因为用水量的变化而产生波动。

这种系统在城市供水和工业生产中得到了广泛应用。

本文将介绍恒压供水控制系统的设计过程。

二、需求分析1. 系统功能需求恒压供水控制系统需要实现以下功能:(1)通过传感器监测用水量,并根据用水量调整出水量;(2)通过调节出水阀门的开度,实现恒压供水;(3)对出入口压力进行监测和调整,确保出口压力稳定;(4)对系统进行故障检测和报警。

2. 系统性能需求(1)稳定性:在各种工况下,都能保证出口压力稳定;(2)可靠性:系统应具有较高的可靠性,能够避免故障发生;(3)精度:系统应具有较高的精度,能够准确地控制出口压力。

三、设计方案1. 系统结构图2. 系统组成部分(1)传感器:用于监测用水量和出口压力;(2)控制器:根据传感器的信号,控制出水阀门的开度,实现恒压供水;(3)出水阀门:通过调节开度,控制出水量;(4)电源:为系统提供电力;(5)报警器:在系统故障时发出警报。

3. 控制算法恒压供水控制系统的核心是控制算法。

本设计采用PID控制算法,通过对传感器信号进行处理,计算出输出值,从而实现对出水阀门开度的调节。

四、系统实现1. 硬件设计硬件部分主要包括传感器、控制器、电源、报警器等组成部分。

其中,传感器采用压力传感器和流量计两种类型,以监测用水量和出口压力;控制器采用单片机进行设计,并加入了PID控制算法;电源采用稳定的直流电源;报警器使用蜂鸣器进行报警。

2. 软件设计软件部分主要包括单片机程序和上位机程序两部分。

单片机程序主要负责对传感器信号进行处理,并根据PID算法计算输出值,从而实现对出水阀门开度的调节;上位机程序主要用于对系统进行监测和控制,包括实时监测出口压力、用水量等参数,并能够进行参数设置和故障诊断。

五、测试与验证在完成系统设计后,需要对系统进行测试和验证。

变频恒压供水控制系统设计

变频恒压供水控制系统设计

变频恒压供水控制系统设计一、系统设计概述变频恒压供水控制系统是一种用于城市供水系统和建筑物水供系统的先进控制系统。

通过使用变频控制器和压力传感器,系统能够监测并调节系统的运行,实现水压恒定,避免因为供水系统压力不足或者过高而导致的浪费和损坏。

本文将阐述变频恒压供水控制系统的设计原理和技术要点。

二、变频恒压供水控制系统的工作原理1. 压力传感器检测变频恒压供水控制系统首先通过安装在管道上的压力传感器实时检测供水管道内的水压情况。

压力传感器将检测到的水压情况反馈给控制系统。

2. 控制器调节控制系统根据压力传感器反馈的水压情况,利用变频器调节水泵的转速,以使得供水管道内的压力始终维持在设定的恒定值之上。

当管道内的水压低于设定值时,控制系统将增加水泵的转速以增加供水量;当管道内的水压超过设定值时,控制系统将降低水泵的转速以减少供水量。

3. 故障自诊断系统还具有故障自诊断功能,当传感器或控制器出现故障时,系统能够自动诊断并给出报警信号,指示维修人员前往修复。

1. 变频器的选型变频器是变频恒压供水控制系统中的关键组件,它能够根据控制系统的指令调节水泵的转速。

在选型时,需要考虑控制系统对变频器的精度和稳定性的要求,以及水泵的功率和额定转速。

一般情况下,应选择具有较高性能和较高精度的变频器,以保证控制系统的准确性和稳定性。

压力传感器是变频恒压供水控制系统中用于检测管道内水压情况的装置,因此其精度和可靠性对系统的性能至关重要。

在选型时,需要考虑管道内水压的测量范围和精度要求,以及传感器的耐压能力和抗干扰能力。

3. 控制系统的程序设计控制系统的程序设计需要考虑到系统运行的稳定性和响应速度。

程序设计应充分考虑水泵和变频器的控制逻辑,并充分考虑各种工况下的供水量和供水压力的变化趋势,以实现系统的准确控制和稳定运行。

4. 系统的安全保护设计变频恒压供水控制系统需要具备完善的安全保护功能,以防止水泵和管道的损坏。

安全保护设计应考虑到水泵的过流、过载和短路等故障情况,并配备相应的保护装置,及时停止水泵的运行以避免对设备和管道的损坏。

恒压供水设计方案

恒压供水设计方案

恒压供水设计方案恒压供水设计方案一、设计原则1. 提供稳定的水压,保证用户用水的舒适性和正常使用。

2. 节约能源,降低供水成本,提高供水效率。

3. 保证供水管道的可持续发展,具有一定的扩展性和可靠性。

二、设计方案1. 供水泵站设计(1)选择合适的泵站设备,应根据供水系统的工作压力、流量和运行特点来确定。

(2)采用多台泵机并联的方式工作,能够实现安全、有效地供水。

(3)设置自动切换和备用泵机,以防止主泵故障或维护时造成供水中断。

(4)设置调节阀门和变频器,可根据实际需求调整泵机的工作状态,提高供水效率。

2. 供水管道设计(1)选择合适的管材和管径,应根据供水量、用水地点和距离来确定,以保证供水的稳定性和正常使用。

(2)对于远离泵站的供水管道,应采取适当的措施降低水压损失,例如设置增压泵、增设储水罐等。

(3)建立完善的管网系统,包括主干管、支线管和用户管道,确保供水的覆盖范围和供水质量。

3. 控制系统设计(1)采用先进的水位监测技术来监控水池或储水罐的水位变化,及时调整泵机的运行状态。

(2)安装流量计和压力传感器来监测和调节供水的流量和压力,保持供水的稳定性。

(3)设置自动控制系统,根据供水量和用户需求来调整泵机的运行状态,实现恒压供水。

三、设备优化1. 选择高效节能的供水泵机,减少能源消耗。

2. 采用智能控制系统,实现供水过程的自动化控制和调整,提高供水效率。

3. 定期对设备进行检测和维护,保证设备的正常运行和寿命。

四、安全保障措施1. 为供水设备安装过压和过流保护装置,以防止设备因过载而损坏。

2. 设备运行过程中及时发现并处理漏水和管道破损等问题,及时修复和更换。

3. 建立完善的供水管理系统,加强对供水质量和供水压力的监测和控制,确保供水的安全性和稳定性。

综上所述,恒压供水设计方案应根据实际需求和条件来确定,要充分考虑稳定性、节能和可靠性等因素,以提供舒适的水压和正常的供水。

在设计和运行过程中,要定期检测和维护设备,保证其正常运行和寿命,同时要加强对供水质量和压力的监测和控制,保障供水的安全性和稳定性。

基于plc恒压供水系统毕业设计

基于plc恒压供水系统毕业设计

基于plc恒压供水系统毕业设计恒压供水系统是一种自动化控制系统,通过控制水泵电机的启停,实现恒定的水压。

本文通过PLC控制器控制水泵电机的启停和压力传感器的反馈,实现一个基于PLC的恒压供水系统。

一、系统组成恒压供水系统由水源装置、水泵、管道、压力传感器、PLC控制器等组成。

系统功能是稳定的将水泵输出的水流量保持在一个恒定的水压力范围内,以满足供水的需要,并且应具备系统自我检测及保护等功能。

二、系统工作原理当水压力低于给定的最小值时,PLC控制器发出启动水泵的指令,水泵开始工作,向管路供水,并通过压力传感器反馈实时的压力数据,当压力达到设定最大值时,PLC控制器发出停止水泵的指令,水泵停止工作。

当用户需求水量变化时,系统通过控制水泵的启停以及输出水流量的调节,保持水压在给定范围内,从而实现恒压供水。

三、系统硬件设计(1)PLC选型本系统采用FX3U系列的三菱PLC。

FX3U系列PLC具有较高的性能、可靠性和处理速度,对于高性能、高可靠性的自动化系统来说非常适合。

(2)水泵及电机选型根据所需供水量及水压,选用起动电流较小、继电容较小型号的水泵,同时配合相应容量的交流电机,在保证水压的同时,提高系统的效率。

(3)压力传感器选型压力传感器是系统中关键的一部分,它将水管路的实时压力转化为具有一定精度和稳定性的电信号,供PLC控制器处理。

本系统中采用的压力传感器是0-1MPa的压力传感器,精度为0.5。

(4)PLC控制器电路设计PLC控制器电路包括输入电路和输出电路两部分。

输入电路用于控制水泵的启动和停止,其中启动信号来自压力传感器,停止信号来自电源控制。

输出电路用于控制水泵电机的正反转动及其调速,其中正转和调速信号由PLC控制器发出,反转信号由相应的感应器反馈。

系统软件运用了Fx-Work中的三种编程语言:LD、ST和FBD。

其中LD程序用于控制水泵启动和停止的输入信号,ST程序用于控制水泵电机的正反转动和调速,FBD程序用于实现数据处理、数据采集和数据分析功能。

恒压供水设计方案

恒压供水设计方案

恒压供水设计方案恒压供水是指在管网压力条件下,通过调整和控制供水泵的运行,使用户所用水压力保持稳定的一种供水方式。

它能够有效解决供水过程中压力不稳定的问题,给用户提供更加舒适的用水环境。

1.系统结构设计:恒压供水系统由恒压供水设备、主管道、分支管道和用户终端组成。

设备包括水泵、调速器、压力传感器、控制系统等。

主管道要选择适当的材料,保证输水流量和压力的稳定性。

分支管道要合理布局,避免压力损失和水质变化。

2.泵选型设计:根据用户的用水需求和压力要求,选择合适的水泵。

一般情况下,恒压供水系统中采用多台水泵并联运行,根据需求进行启停或变频调速控制,以保持恒定的供水压力。

水泵的选型需要考虑到用户用水周期性的变化,以及管网输水容量的要求。

3.控制系统设计:恒压供水系统中的控制系统起到起停和调速的功能,主要包括开关控制、流量调整和压力调整。

开关控制可以手动或自动实现,流量调整可以通过启停水泵或调节水泵扬程实现,压力调整可以通过调节水泵的出口压力来实现。

控制系统的设计需要考虑到用户的需求和供水的稳定性。

4.安全措施设计:恒压供水系统在设计中需要考虑到各种可能出现的故障情况,并做好相应的安全措施。

例如,设置过压保护和低压保护装置,以防止系统超压或低压情况发生。

另外,还需要设置液压保护和液位控制装置,对阀门和水泵进行监测和控制,防止设备损坏和供水中断。

5.经济性分析:恒压供水系统的设计要考虑到经济效益,综合考虑设备投资、运行成本和维护费用等因素,进行经济性分析。

通过优化设计和选择合适的设备,使系统达到性价比最优化。

综上所述,恒压供水设计方案需要综合考虑用户需求、管网设计、设备选型和控制系统等多个方面。

只有通过合理的设计和选择,才能实现恒定的供水压力,提供舒适和稳定的用水环境。

同时,还需要注重安全性和经济性的考虑,以确保系统的正常运行和经济效益的实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 摘要 (1)1.1 引言 (1)1.1变频恒压供水系统理论分析 (2)1.1.1变频恒压供水系统的原理 (2)1.1.2 变频恒压控制理论模型 (2)1.2恒压供水控制系统构成 (3)2 变频恒压供水系统设计 (4)2.1 设计任务及要求 (4)2.2 系统主电路设计 (5)2.3 系统工作过程 (6)3 器件的选型及介绍 (7)3.1 变频器简介 (7)3.1.1 变频器的基本结构与分类 (7)3.1.2 变频器的控制方式 (8)3.2 变频器选型 (9)3.2.1 变频器的控制方式 (9)3.2.2 变频器容量的选择 (10)3.2.3 变频器主电路外围设备选择 (11)3.3 可编程控制器(PLC) (13)3.3.1 PLC的定义及特点 (13)3.3.2 PLC的工作原理 (14)3.3.3 PLC及压力传感器的选择 (15)4 PLC编程及变频器参数设置 (15)4.1 PLC的I/O接线图 (15)4.2 PLC程序 (16)4.3 变频器参数的设置 (20)4.3.1 参数复位 (20)4.3.2 电机参数设置 (20)总结 (21)参考文献 (22)摘要以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。

采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

关键字:恒压供水、变频器、PLC控制器Combined with frequency as the core component of the PLC control system with high reliability, strong anti-interference ability, combined flexible programming, easy maintenance and low cost, and many other characteristics, frequency conversion constant pressure water supply system combines technology, electrical technology, lightning lightning protection technology, modern control, remote monitoring technology and integration. Using the system for water supply can improve the stability and reliability of water supply systems, water supply systems to facilitate the implementation of centralized management and monitoring; the same time the system has good energy efficiency, which is an increasing scarcity of energy is particularly important today, so the study design of the system, for improving efficiency and living standards, reduce energy consumption has important practical significanceKeywords: constant pressure water supply, inverter, PLC controller恒压供水系统设计梁文虎西南大学工程技术学院,北碚4007151.引言变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。

通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。

因此,供水系统变频的实质是异步电动机的变频调速。

异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

1.1.1变频恒压供水系统理论分析1.1.2变频恒压供水系统的原理变频恒压供水系统以管网水压 (或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节 (PID),使供水系统自动恒稳于设定的压力值:即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求,同时达到了提高供水品质和供水效率的目的,“用多少水,供多少水”;采用该设备不需建造高位水箱,水塔,水质无二次污染,是一种理想的现代化建筑供水设备。

1.1.3变频恒压控制理论变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。

设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。

所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上。

从中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。

该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。

如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此而减小。

同样,最后调节的结果是实际供水压力和设定压力相等。

图1-2变频恒压控制原理图1.2恒压供水控制系统构成变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。

通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。

因此,供水系统变频的实质是异步电动机的变频调速。

异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

图1-3恒压供水系统方框图水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。

由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。

同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。

西门子系列PLC编程采用STEP7软件,它是西门子PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。

系统程序包括主程序和起动子程序,主程序包括参与调节程序和电机切换程序;电机切换程序又包括加电机程序和减电机程序。

起动子程序实际上是清零子程序。

在主程序中,设置两个变频器频率上下限到达滤波时间继电器,用于稳定系统。

2 变频恒压供水系统设计2.1 设计任务及要求本系统是以一个供水系统作为被控对象,PLC与变频器协调控制电机的转速与启动和停止。

系统控制要求:(1) 工艺参数: 供水系统由3台水泵组成:母管压力H≥0.8时,一台定速,一台变速,一台备用。

母管压力H≤0.64时,一台定速或变速,二台备用。

母管压力H≤0.52时,一台变速,二台备用。

(2) 电动机参数:型号:JD-L-39-4功率:75KW额定频率:50Hz额定电压:380V AC;额定转速:1470 r/min额定电流:126.6 A(3) 水泵电机的起动/停止、正转、调速控制。

(4) 变频器采用远方控制方式。

(5) 通过母管压力变送器测得实际压力大小,同时和压力给定组成闭环控制。

(6) 变频器的运行状态指示(如运行、停止、过流、低压等)。

(7) 变频器的报警处理。

2.2 系统主电路设计图2.1 系统主电路图由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。

变频器可以对任何一台水泵启动和恒压供水控制。

空气开关(QL)是当电动机过载时自动将电动机从电网中断开热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。

2.3 系统工作过程1、减泵过程当用水量减少、水压上升、变频器输出频率低于下限值时,但管网压力仍偏高时,则各泵将依次退出运行,依次退出运行的方式有两种。

(1)先开先停方式。

PLC接收到下限频率到达信号,延时一定时间后,接触器1KM2失电复位,水泵M1脱离工频电源停止运行。

变频器输出频率仍然低于下限值,重复上述过程,水泵M2脱离工频电源停止运行,变频器驱动水泵M3恒压供水,水压稳定在设定值上。

这种方式称为循环方式,通常用于各台水泵的容量都相等的供水系统中。

其优点是可以自动的使各泵运行的时间比较均衡;缺点是工频运行状态直接停机时,可能由于停机太快而使管网压力发生较大波动。

(2)先开后停方式。

首先使正在变频运行的M3减速停机,然后使变频器的输出频率升至50Hz,将M2切换为变频工作,依此类推这种方式通常用于各台水泵的容量不相等的供水系统中,其优点是水泵的停机比较缓慢,管网压力比较稳定;缺点是不能自动地循环变换。

2、加泵过程首先由M1在变频控制的情况下工作。

当用水量增大、水压下降,变频器输出频率上升到50Hz时水压仍然不足,经过短暂的延时,将M1切换为工频工作,同时变频器的输出频率迅速降低为0,然后使M2投入变频运行。

当M2也达到额定频率而水压仍不足时,重复开始运行时的过程,水泵M2脱离变频器驱动,由工频供电全速运行,变频器驱动水泵M3变频运行,使水压恒定在设定值上。

变频器的选型及介绍3.1 变频器简介3.1.1 变频器的基本结构与分类1、变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。

相关文档
最新文档