初中数学经典最值问题提高题

合集下载

初中数学“最值问题”集锦(一)

初中数学“最值问题”集锦(一)

“最值问题”集锦(一)●平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。

⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。

取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变 思路点拨 先考虑当圆心在正三角形的顶点C 时, 其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下, 动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为 △ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,⌒⌒从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.(1)求证:MN∥AB;(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )25 D.14A.8 B.12 C.211.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( )A.23+3+ D.21+ C.22+ B.212.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案111213●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点 A′,即作 AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时 P点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B, P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式 P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?14解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),1516D ′B 2=(2+4)2+12=37.⑥容易知道,从D ′出发经过上侧面再进入右侧面到达B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D ′点出发,经过上底面然后进入前侧面到达B 点(上页图(2)),或者经过后侧面然后进入下底面到达B 点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A 和B 两点之间的最短路线问题(下左图),同样可以把A 、B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A 、B 成线段AP1P2B ,P1、P2是线段AB 与两条侧棱线的交点,则折线AP1P2B 就是AB 间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A 点,绕一周之后终点为B 点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB 剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A ′、B ′分别与A 、B 重合),连接AB ′,再将上页右图还原成上页左图的形状,则AB ′在圆柱面上形成的曲线就是连接AB 且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A 、B 在同一母线上,B 为AO 的中点,试求以A 为起点,以B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米, B点沿母线到桶口 D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B关于直线CD 的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是 B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.17解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE +EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段 A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E →F→B→A是最短路线.1819B ●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。

题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。

例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。

初中数学方程最值问题培优专题训练

初中数学方程最值问题培优专题训练

初中数学方程最值问题培优专题训练引言初中数学方程最值问题是一类常见的数学问题,它要求在给定的条件下确定方程的最大值或最小值。

解决这类问题不仅需要掌握基本的方程求解方法,还需要灵活应用数学知识和技巧。

本文将介绍一些初中数学方程最值问题的培优专题训练,帮助学生提高解决这类问题的能力。

问题一:确定方程的最大值题目描述已知函数 $y=ax^2+bx+c$,其中 $a,b,c$ 为常数,且 $a>0$。

求函数 $y$ 的最大值及对应的 $x$ 值。

解题思路根据函数的性质,当二次函数的系数 $a>0$ 时,函数的图像开口向上,最大值出现在顶点处。

因此,我们需要先求得函数的顶点坐标 $(x_0,y_0)$,其中 $x_0=-\frac{b}{2a}$,$y_0=-\frac{b^2-4ac}{4a}$。

最大值即为 $y_0$。

解答步骤1. 根据题目给出的系数$a,b,c$,计算出顶点坐标$(x_0,y_0)$。

2. 最大值为 $y_0$,对应的 $x$ 值为 $x_0$。

问题二:确定方程的最小值题目描述已知函数 $y=ax^2+bx+c$,其中 $a,b,c$ 为常数,且 $a>0$。

求函数 $y$ 的最小值及对应的 $x$ 值。

解题思路与问题一类似,但当二次函数的系数 $a>0$ 时,函数的图像开口向上,最小值也出现在顶点处。

因此,我们仍然需要先求得函数的顶点坐标 $(x_0,y_0)$,其中 $x_0=-\frac{b}{2a}$,$y_0=-\frac{b^2-4ac}{4a}$。

最小值即为 $y_0$。

解答步骤1. 根据题目给出的系数$a,b,c$,计算出顶点坐标$(x_0,y_0)$。

2. 最小值为 $y_0$,对应的 $x$ 值为 $x_0$。

结论通过以上培优专题训练,学生可以更好地解决初中数学方程最值问题。

掌握了寻找顶点的方法,可以迅速确定方程的最大值或最小值,提高解题效率。

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

初中数学100道最值问题经典

初中数学100道最值问题经典

初中数学100道经典最值题1.如图1所示,在Rt △ABC 中,∠A =30°,AB =4,D 为边AB 的中点,P 为边AC 上的动点,则PB+PD 的最小值为( )B. C. D.2.如图2所示,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PAB ABCD S S =矩形 ,则点P 到AB 两点距离之和PA+PB 的最小值为 。

3.如图3所示,在矩形ABCD 中,AD =3,点E 为边AB 上一点,AE =1,平面内动点P 满足13PAB ABCD SS =矩形,则|DP -EP|的最大值为 。

4.已知y ,则y 的最小值为 。

5.已知y =,则y 的最大值为 。

6.如图4所示,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =,D 是边AB 上一动点,连接CD ,以AD 为直径的圆交CD 于点E ,则线段BE 长度的最小值为 。

7.如图5所示,正方形ABCD 的边长是4,点E 是边AB 上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 时边AB 上另一动点,则PD+PG 的最小值为 。

8.如图6所示,在矩形ABCD 中,AB =2,AD =3,点E 、F 分别为边AD 、DC 上的点,且EF =2,点G 为EF 的中点,点P 为边BC 上一动点,则PA+PG 的最小值为 。

9.在平面直角坐标系中,A(3,0),B(a,2),C(0,m),D(n,0),且m2+n2=4,若点E为CD 的中点,则AB+BE的最小值为。

A.3B.4C.5D.2510.如图7所示,AB=3,AC=2,以BC为边向上构造等边三角形BCD,则AD的取值范围为。

11.如图8所示,AB=3,AC=2,以BC为腰(点B为直角顶点)向上构造等腰直角三角形BCD,则AD的取值范围为。

12.如图9所示,AB=4,AC=2,以BC为底边向上构造等腰直角三角形BCD,则AD的取值范围为。

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

初中数学千题解——最值问题100题(详解版)

初中数学千题解——最值问题100题(详解版)

1.如图3.1所示,在Rt △ABC 中,∠A =30°,AB =4,点D 为边AB 的中点,点P 为边AC 上的动点,则PB +PD 的最小值为( )A.B.A.A.1.解 延长BC 至点'B ,使'BC B C =,连接'B P 、'B A ,如图4.1所示, ∴AC 垂直平分'BB ,∴'B A BA =,∴AC 平分'B AB ∠. ∵30CAB ︒∠=,∴'60B AB ︒∠=,∴'ABB ∆为等边三角形.∵点P 为AC 上一点,∴'PB PB =,∴''PB PD PB PD B D +=+≥,当且仅当'B 、P 、D 在同一直线上时,如图4.2所示,PB PD +取得最小值.在'Rt ADB ∆中,122AD AB ==,'60B AB ︒∠=,∴'tan 60B D AD ︒==故答案是C.思路点拨:这是典型的“将军饮马”型线段和最值问题,利用对称法将动线段构造至动点P 所在直线的两侧;根据“两点之间线段最短”找到最小值位置,利用勾股定理进行计算即可.拓展 若点D 为边AB 上任意一定点,则依旧可以根据勾股定理和60°特殊角计算'B D 的长度;若点D 是边AB 上的一动点,则'B D 将变为一条动线段,利用“垂线段最短”可确定最值位置还是在中点处.2.如图3.2所示,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PAB ABCDS S矩形,则点P 到AB 两点距离之和P A +PB 的最小值为 .2.解 令点P 到AB 的距离为d .图3.1PCBD AD 图 4.2图 4.1ABCPB 'B 'PD CBAP ADBC图3.2∵111=35=5=5332PAB ABCD S S d ∆=⨯⨯矩形,∴2d =,∴点P 为到AB 距离为2的直线1l 、2l 上的点.直线1l 、2l 关于AB 对称,因此选其中一条进行计算.作点B 关于直线1l 的对称点'B ,连接'B C 、'B P 、'AB ,如图4.3所示, ∴''PA PB PA PB AB +=+≥,当且仅当A 、P 、'B 三点共线时取得最小值,如图4.4所示. 在'Rt ABB ∆中,5AB =,'24BB d ==,∴'AB =, 故PA PB +思路点拨:这是典型的“将军饮马”型线段和最值问题.根据题目中中给出的面积关系,可判断点P 的运动轨迹为直线(或称为“隐线”);利用轴对称的性质,构造对称点'B ,再运用线段公理获得不等式;根据勾股定理计算最值'AB .3.如图3.3所示,在矩形ABCD 中,AD =3,点E 为边AB 上一点,AE =1,平面内动点P 满足13PAB ABCDS S矩形,则DP EP 的最大值为 .3.解 令点P 到AB 的距离为d .∵13PAB ABCD S S ∆=矩形,∴2d =,∴点P 在到AB 距离为2的直线1l 、2l 上,如图4.5所示.作点E 关于直线1l 的对称点'E ,连接'E D 并延长交直线1l 于点P ,连接EP ,如图4.6所示, ∴'E P EP =.当点P 在直线1l 上时,''DP EP DP E P E D -=-≤,当且仅当D、'E 、P 三点共线时取得最大值图3.3B'E D =当点P 在直线2l 上时,DP EP ED -≤,当且仅当D 、E 、P 三点共线时取得最大值,如图4.7所示.在Rt △ADE 中,3AD =,1AE =,∴DE ==∴DP EP ED -≤=∴当点P 为DE 的延长线与直线2l思路点拨:解法如题2,需要找出满足条件的点P 所在的“隐线”,这里两条直线均要考虑(因为图形不对称).由于两边之差小于第三边,在共线时取得最大值,故遵循“同侧点直接延长,异侧点需对称后再延长”的规律,分别计算最大值并进行大小比较.特别说明 笔者认为这里的最大值只能取一个值.改编此题的目的是让大家不要忽略矩形外的“隐线”,毕竟题中叙述点P 时用的是“平面内”,而非“矩形内”. 4.已知222222y x xx x ,则y 的最小值为 .4.解 原式=+.建立平面直角坐标系,设(),0P x ,()1,1A ,()1,1B --,则AB 在x 轴的两侧,∴PA =PB ,∴y PA PB AB +=+≥,当A 、P 、B 三点共线时,y 值最小,∴min y AB ==思路点拨:若将式子看作函数,对于初中生来说解题难度较大.若换个角度,将每一个根式都看作是两点间的距离(距离公式是平面直角坐标系中的勾股定理),则将问题转化为我们熟悉的几何最值模型——两点之间线段最短. 5.已知22(3)9(1)4y x x ,则y 的最大值为 .5.解 原式=-.建立平面直角坐标系,设),0P x ,3,3A ,1,2B ,∴PA =PB =∴y PA PB AB -≤,当A 、P 、B 三点共线,即点P 在AB 延长线上时y值最大,∴max y AB ==. 思路点拨:阅读题目时需观察清楚“+”或“-”,切不可盲目下笔.本题与题4形式相似,解法相近,但是又有所不同.将代数式转化为平面直角坐标系中的两条线段的差;利用三边关系中的两边之差小于第三边,共线时取等找到最大值.6.如图3.4所示,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =,点D 是边AB 上一动点,连接CD ,以AD 为直径的圆交CD 于点E ,则线段BE 长度的最小值为 .B解:连接AE ,取AC 得中点F ,连接EF ,如图4.8所示∵AD 是圆的直径 ∴∠AED =90° ∴∠AEC =90°∴EF =12AC =2∴点E 的轨迹为以点F 为圆心的圆弧(圆的定义) ∴BE ≥BF -EF当且仅当B 、E 、F 三点共线时等号成立,如图4.9所示 在Rt △ABF 中,AF =2,AB =4∴BF, ∴()min BE =BF -EF=-2BB思路点拨阅读题目时要找到三条关键信息:点E 为圆周上一点,AD 所对的圆周角是90°,∠DEC 是平角,连接AE 后就找到了定弦定角(或斜边上的中线),若一个角的度数和其所对的一条线段均为定值,则这个角的顶点的轨迹为圆(根据题目需求判断是否需要考虑两侧).因此判断出点E 的轨迹是圆(不是完整的圆,受限于点D 的运动范围).根据三角形的三边关系,知B 、E 、F 三点共线时BE 取得最小值.7.如图3.5所示,正方形ABCD 的边长是4,点E 是边AB 上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 时边AB 上另一动点,则PD +PG 的最小值为 .GP E DCBA解:取BC 得中点F ,连接GF ,作点D 关于AB 的对称点D ′,连接D ′P 、D ′A ,如图4.10所示.∴DP =D ′P∵∠BGC =90°,点F 为BC 的中点∴GF =12BC =2∵PD +PG =PD ′+PG ≥D ′G 又D ′G +GF ≥D ′F∴PD +PG +GF ≥D ′F -GF如图4.11所示,当且仅当D ′、P 、G 、F 四点共线时取得最小值.根据勾股定理得D ′F=∴PD +PG 的最小值为2FD'ABCDE P G GP EDCB AD'F思路点拨不难发现∠BGC =90°是个定角,因此点G 的轨迹为以BC 为直径的圆(部分),可以通过斜边上的中线构造长度不变的动线段,再利用三边关系求解.8.如图3.6所示,在矩形ABCD 中,AB =2,AD =3,点E 、F 分别为边AD 、DC 上的点,且EF =2,点G 为EF 的中点,点P 为边BC 上一动点,则P A +PG 的最小值为 .GP FED CB A解:作点A 关于BC 的对称点A ′,连接A ′B 、A ′P 、DG ,如图4.12所示∴P A ′=P A∴P A +PG =P A ′+PG ∵∠ADC =90°,EF =2∴DG =12EF =1∵P A ′+PG +DG ≥A ′D ∴P A ′+PG ≥A ′D -DG如图4.13所示,当且仅当A ′、P 、G 、D 四点共线时等号成立 根据勾股定理得 A ′D=5∴P A +PG 的最小值为4.A'AB C D EFP GGP FED CB AA'思路点拨与题7的已知条件是相似的,解法几乎一致,抓住核心条件,线段EF 始终不变,线段EF 所对的角为直角,因此斜边上的中线DG 始终不变,从而判断出点G 的轨迹图形为圆.利用轴对称的性质将线段和最小值问题转化为点到动点的距离最小值问题,再根据圆外一点到圆周上一点的距离最值求解.9.在平面直角坐标系中,A (3,0),B (a ,2),C (0,m ),D (n ,0),且m 2+n 2=4,若点E 为CD 的中点,则AB +BE 的最小值为( )A .3B .4C .5D .25 解:∵C (0,m ),D (n ,0),m 2+n 2=4,∴CD 2=4, ∴CD =2在Rt △COD 中,点E 为CD 的中点∴OE =1,即点E 在以O 为圆心,1为半径的圆上.作图4.14,连接OE ,过点A 作直线y =2的对称点A ′,连接A ′B 、A ′O ∴A ′(3,4)∴AB +BE =A ′B +BE =A ′B +BE +EO -EO ≥A ′O -EO如图4.15所示,当且仅当A ′、B 、E 、O 四点共线时等号成立.根据勾股定理得A ′O 5 ∴AB +BE 的最小值为4思路点拨根据两点之间的距离公式m 2+n 2=CD 2,得到CD 的长度;由已知条件判断出OE 为斜边上的中线,OE =12CD (定值);根据圆的定义可知点E 的轨迹是以坐标原点为圆心、12CD 为半径的圆;利用对称的性质将线段和的最值问题转化为圆外一点到圆周上一点的距离最值问题.10.如图3.7所示,AB =3,AC =2,以BC 为边向上构造等边三角形BCD ,则AD 的取值范围为 .DCBA解:以AB 为边向上作等边△ABE ,连接DE ,如图4.16所示∴AB =BE ,CB =BD ,∠ABC =∠EBD =60°-∠CBE 在△ABC 和△EBD 中 ,,,AB BE ABE EBD CB BD =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌△EBD (SAS ) ∴DE =AC =2∴点D 的轨迹是以点E 为圆心,2为半径的圆. ∴AE -ED ≤AD ≤AE +ED如图4.17和图4.18所示,当且仅当A 、E 、D 三点共线时取得最值 ∴1≤AD ≤5EBCDED BADCBE思路点拨这样理解AB =3,AC =2这个条件:固定一边AB ,∠CAB 可以自由变化,因此点C 的轨迹是以点A 为圆心、2为半径的圆.通过构造全等图形找出点D 的运动轨迹.利用圆外一点到圆周上的距离最值来解决问题.拓展 本题的解法较多,对于“定点+动点”的最值问题,探究动点的轨迹图形时直接的方法.11.如图3.8所示,AB =3,AC =2,以BC 为腰(点B 为直角顶点)向上构造等腰直角三角形BCD ,则AD 的取值范围为 ;解答:以AB 为腰做等腰直角△ABE (∠ABE =90°),连接DE ,如图4.19所示,∴AE =√2AB =3√2,∠ABC =∠EBD =90°-∠CBE , 在△ABC 和△EBD 中{AB =BE ∠ABC =∠EBD CB =BD图3.8DC图4.19C∴△ABC ≌△EBD (SAS ) ∴ED =AC =2∴点D 的轨迹为以点E 为圆心、2为半径的圆 ∴AE -ED ≤AD ≤AE +ED如图4.20和图4.21所示,当且仅当A ,E ,D 三点共线时取得最值,∴3√2-2≤AD ≤3√2+2思路点拨:解题方法基本同上题,也是通过构造全等图形找出点D 的运动轨迹上,再利用圆外一点到圆周上的距离最值来解决问题12. 如图3.9所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,则AD 的取值范围为 ,解答:以AB 为底边构造等腰直角△AEB (∠AEB =90°),连接DE ,如图4.22所示,图4.20图4.21C图3.9DBAC图4.22DBAC∴AE =√22AB =2√2,∠EBA =∠CBD =45°∵{ABEB =CBDB =√2∠ABC =∠EBD =45°-∠CBE ∴△ABC ∽△EBD∴DE =√22AC =√2∴点D 的轨迹为以点E 为圆心、√2 为半径的圆 AE -ED ≤AD ≤AE +ED如图4.23和图4.24所示,当A 、E 、D 三点共线时取得最值∴√2≤AD ≤3√2思路点拨:与前面两题不同的是,由于旋转中心不再是等腰三角形顶角的顶点,因此构造全等图形变成构造相似图形,从而找出点D 的运动轨迹,最后根据圆外一点到圆周上的距离最值来解决问题13. 如图3.10所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为 ,图4.23BAC图4.24BAC解答:以AB 为底边构造等腰直角△AEB (∠AEB =90°),连接DE ,如图4.25所示,∴AE =√22AB =2√2,∠EBA =∠CBD =45°∵{AB EB=CBDB =√2∠ABC =∠EBD =45°-∠CBE∴△ABC ∽△EBD ∴DE =√22AC =√2∴点D 的轨迹为以点E 为圆心、√2 为半径的圆 延长AE 至点Q ,使AE =E Q ,连接P Q 、B Q , ∵AD =DP ,∴D Q=2DE =2√2如图4.23和图4.24所示,当A 、E 、D 三点共线时取得最值 ∵BE 垂直平分A Q ,∴AB =B Q ∵∠Q AB =45°,∴△AB Q 为等腰直角三角形,∴B Q=AB =4图3.10PA C图4.25AC∴B Q -P Q≤PB ≤B Q +P Q如图4.26和图4.27所示,当B 、P 、Q 三点共线时取得最值∴4-2 √2≤PB ≤4+2 √2思路点拨:注意到点P 的产生与中点有关,点P 的运动与点D “捆绑”在一起,故可通过构造中位线来判断点P 的运动轨迹,再利用圆外一点到圆周上的距离最值来解决问题14. 如图3.11所示,正六边形ABCDEF 的边长为2,两顶点A 、B 分别在x 轴和y 轴上运动,则顶点D 到坐标原点O 的距离的最大值和最小值的乘积为 ;解答:取AB 的中点G ,连接DG 、O G ,如图4.28所示,图4.26图4.27PAC图3.11∵∠A O B =∠x O y =90°,∴O G = 12AB =1,连接DB 、O D∴△DCB 为等腰三角形 ∵∠C =120°,∴∠DBC =30°,DB = √3DC =2 √3, ∴∠DBA =120°-30°=90°在Rt △DGB ,GB =1,∴DG =√DB 2+GB 2=√(2√3)2+12=√13∴DG -O G ≤O D ≤O G +DG当且仅当O 、G 、D 三点共线时取得最值D 、G 在点O 同侧时取得最大值,在点O 异侧时取最小值,如图4.29所示,∴√13-1≤O D ≤√13+1∴O D 的最大值和最小值乘积为(√13−1)(√13+1)=12图4.28图4.29思路点拨:这个是“墙角”型问题,类似于梯子在墙角滑动,将墙角变为平面直角坐标系,这样移动的范围能扩大到负方向;利用“墙角”产生的直角,以及AB 边长不变的特点,作出AB 的中点G ,利用斜边上的中线O G 和位置固定的两点D 、G 来构造两条大小不变、位置变化的线段O G 、DG ;利用两边之和与两边之差得到O D 的最大值和最小值;另辟蹊径:利用相对运动的知识,我们假设正六边形是不变的,坐标系可以绕着正六边形运动;利用∠A O B =90°,AB =2,判断出点O 的运动轨迹为一个圆,如图4.30所示,利用圆外一点到圆周上的距离最值解得O D 的最大值和最小值;读者可以自行计算验证15. 如图3.12所示,AB =4,点O 为AB 的中点,⊙O 的半径为1,点P 是⊙O 上一动点,△PBC 是以PB 为直角边的等腰直角三角形(点P 、B 、C 按逆时针方向排列),则AC 的取值范围为 ;解答:如图4.31所示,以O B 为腰向上构造等腰直角△O B Q ,连接O P 、C Q 、A Q ;图4.30O 2E图3.12CAB在等腰直角△O B Q 和等腰直角△BPC 中,CB BP =QBBO =√2,∠Q B O=45°, ∴∠CB Q=45°-∠Q BP =∠PB O ,∴△CB Q ∽△PB O ∴OPCQ =OBBQ =√22,∴C Q= √2 ∴点C 在以点Q 为圆心, √2为半径的圆上,∵OQ=O B =O A =2,∠QO B =90° ∴A Q= √AQ 2+OQ 2=2 √2 ∴A Q -Q C ≤AC ≤A Q +Q C如图4.32和图4.33所示,当且仅当A 、C 、Q 三点共线时取得最值,∴√2≤AC ≤3 √2思路点拨:由于△PBC 形状固定,两个动点P 、C 到点B 的距离之比始终不变,这是比较典型的位似旋转,也可理解为点P 、C “捆绑”旋转;旋转过程中,点C 的轨迹与点P 的轨迹图形相似,相似比为√2:1;利用相似找出动点C 轨迹的圆心,AC 的最值即定点A 到定圆上一动点的距离的最值16.如图3.13所示,⊙O 的半径为3,Rt △ABC 的顶点A 、B 在⊙O 上,∠B =90°,点C 在⊙O 内,且tan A =34.当点A 在圆上运动时,OC 的最小值为( )图4.31AB图4.32ABP 图4.33ABB.32D.53图3.13答案:连接OB,过点B向下作BD⊥OB,取BD=43OB,连接AD,如图4.34所示.∵∠CBA=∠OBD=90°,∴∠OBC=90°-∠OBA=∠DB A.∴CBAB=OBBD=34,∴△OCB∽△DAB,∴OCAD=34.∵AD≥OD-OAOA=2,当且仅当O、A、D三点共线时取得最值,∴OC=34AD≥34×2=32.图4.34思路点拨又是比较典型的位似旋转问题,我们利用相似的性质将OC的最值问题转化为AD的最值问题.通过旋转型相似构造Rt△OBD,其中∠OBD=90°,∠ODB=∠CAB,因此点D为定点.另外,由△OCB∽△DAB得到OC和AD之间的固定比例,从而可利用AD的最值求解OC的最值.AD的最值即为圆外一点到圆周上一点的距离最值.另辟蹊径根据直径所对的圆周角为90°,找到直径AD,而∠ACD=180°-∠ACB为定值,因此由定弦定角得出点C的轨迹为圆弧,可根据图4.35所示计算OC的最小值.图4.3517.如图3.14所示,在平面直角坐标系中,Q(3,4),点P是以Q为圆心、2为半径的⊙Q上一动点,A(1,0),B(-1,0),连接P A、PB,则P A2+PB2的最小值是___________.答案:连接OP 、QP 、OQ ,如图4.36所示.设P (x ,y ). 根据两点距离公式得∴P A 2=(x -1)2+y 2,PB 2=(x +1)2+y 2, ∴P A 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2.∴OP OP 2=x 2+y 2,∴P A 2+PB 2=2OP 2+2,要求P A 2+PB 2的最小值,即求OP 2的最小值,也就是求OP 的最小值,∴OP ≥OQ -PQ , 如图4.37所示,当且仅当O 、P 、Q 三点共线时取得最值, ∴OP =5-2=3,∴P A 2+PB 2=2OP 2+2≥2×32+2=20.思路点拨根据P A 2+PB 2这样的形式,产生两个联想,一是勾股定理,二是坐标公式.要使用勾股定理,就得把P A 和PB 构造为两条直角边,在题图中难以实现,所以转而利用坐标公式表达,我们便发现P A 2+PB 2与OP 2的联系,而OP 的最小值即圆外一点到圆周上一点的距离最小值.弦外之音 我们会发现,虽然点P 在动,但OP 始终是△ABP 边AB 上的中线,且AB 是个定值,我们可以直接利用中线长公式得到P A 2+PB 2=2OP 2+24AB ,接下来的计算和上面是一致的.公式的应用有助于对思路的拓展,因此学有余力的同学可以自行推导中线长公式(仅用勾股定理即可).18.如图3.15所示,两块三角尺的直角顶点靠在一起,BC =3,EF =2,G 为DE 上一动点.将三角尺DEF 绕直角顶点F 旋转一周,在这个旋转过程中,B、G 两点的最小距离为___________.图3.15答案:在Rt △DEF 中,CE =2,∠CDE =30°,∴DF =DE =4. 如图4.38所示,当点G 与点D 重合时,CG max =DF =当CG ⊥DE 时,CG min =h =2DEFS DE⋅△CG当CG =3时,以C 为圆心、CG 为半径的圆恰好经过点B. 在△DEF 旋转的过程中,点G 会经过点B.因此,当BG 恰好重合时,BG 取得最小值为0.图4.38')思路点拨这是个“特别”的题,点G 是DE 上一动点,因此在转动的过程中,点G 的轨迹不是线而是面,这个面的形状为以点C 为圆心、分别以CG min 和CG max 为半径的同心圆环,点B 也在这个“面轨迹”中,因此BG 的最小值为0.19.如图3.16所示,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,BC =△ADC 与△ABC 关于AC 对称,点E 、F 分别是边DC 、BC 上的任意一点,且DE =CF ,BE 、DF 相交于点P ,则CP 的最小值为()A.1 C.32D.2图3.16PEDBA答案:连接BD ,如图4.39所示.∵△ADC 与△ABC 关于AC 对称,∠ACB =30°,∴BC =CD ,∠BCD =60°, ∴△BDC 是等边三角形,∴BD =CD ,∠BDC =∠BCD =60°. 在△BDE 和△DCF 中,BD =CD ,∠BDC =∠BCD ,DE =CF , ∴△BDE ≌△DCF (SAS ),∴∠BED =∠DF C.∵∠BED +∠PEC =180°,∴∠PEC +∠DFC =180°, ∴∠DCF +∠EPF =∠DCF +∠BPD =180°. ∵∠DCF =60°,∴∠BPD =120°. ∵点P 在运动中保持∠BPD =120°,∴点P 的运动路径为以A 为圆心、AB 为半径的120°的弧.当C 、P 、A 三点共线时,CP 能取到最小值,如图4.40所示, ∴CP ≥AC -AP =2,即线段CP 的最小值为2.图4.40图4.39DABPE思路点拨需要熟悉等边三角形中的常见全等图形.因为点P 在运动中保持∠BPD =120°,BD 又是定长,所以点P 的路径是一段以点A 为圆心的弧,于是将CP 的最小值转化为圆外一点到圆上一点的距离最小值.20.如图3.17所示,sin O =35,长度为2的线段DE 在射线OA 上滑动,点C 在射线OB 上,且OC =5,则△CDE 周长的最小值为___________.图3.17EDCB A答案:过点C 作CC '∥DE 且CC '=DE ,连接C 'E ,如图4.41所示, ∴四边形CC 'ED 为平行四边形,∴C 'E =C D.作点C 关于OA 的对称点C ″,连接C ″E 、C ″D 、C ″C ,∴CE =C ″E , ∴CD +CE =C 'E +CE =C 'E +C '″E ≥C 'C ",当且仅当C '、E 、C "三点共线时取得最值,如图4.42所示. ∵CC "关于OA 对称,∴OA 垂直平分CC ", ∴CC "=2CF =2OC ·sin O =6.在Rt △CC 'C "中,C 'C "∴△CDE 周长的最小值为2.图4.42图4.41AEC″C'B CODA E DB COF C″C'思路点拨因为DE 为定值,所以△CDE 周长的最小值问题转变为CD +CE 的最小值问题.似“饮马”非“饮马”,注意观察,这是一定两动问题.利用平移将动线段DE “压缩”为一个动点;轴对称后根据两点之间线段最短找到最小值线段,再根据勾股定理计算即可解决问题.21、如图3.18所示,在矩形ABCD 中,AB=6,MN 在边AB 上运动,MN=3,AP=2,BQ=5,则PM+MN+NQ 的最小值是______________。

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

初中数学专题《四边形中的最值问题》专项训练30道含答案解析

专题18.8 四边形中的最值问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可强化学生对四边形中最值问题模型的记忆与理解!一.选择题(共10小题)1.(2022春•重庆期末)如图,矩形ABCD中,AB=23,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )A.43+3B.221C.23+6D.45【分析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.【解答】解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE 的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=AB2+BC2=43,∴AC=2AB,∴∠ACB=30°,AC=2AB=43,∵∠BCE=60°,∴∠ACE=90°,∴AE=(43)2+62=221,故选:B.2.(2022•灞桥区校级模拟)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是( )2 A.5B.7C.72D.72【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=AM,CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=22推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,AM,∴AD=22∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,,∴AD的最大值为722故选:D .3.(2022春•中山市期末)如图,在边长为a 的正方形ABCD 中,E 是对角线BD 上一点,且BE =BC ,点P 是CE 上一动点,则点P 到边BD ,BC 的距离之和PM +PN 的值( )A .有最大值aB .有最小值22a C .是定值a D .是定值22a 【分析】连接BP ,作EF ⊥BC 于点F ,由正方形的性质可知△BEF 为等腰直角三角形,BE =a ,可求EF ,利用面积法得S △BPE +S △BPC =S △BEC ,将面积公式代入即可.【解答】解:如图,连接BP ,作EF ⊥BC 于点F ,则∠EFB =90°,∵正方形的性质可知∠EBF =45°,∴△BEF 为等腰直角三角形,∵正方形的边长为a ,∴BE =BC =a ,∴BF =EF =22BE =22a ,∵PM ⊥BD ,PN ⊥BC ,∴S △BPE +S △BPC =S △BEC ,∴12BE ×PM +12BC ×PN =12BC ×EF ,∵BE =BC ,∴PM +PN =EF =22a .则点P 到边BD ,BC 的距离之和PM +PN 的值是定值22a .故选:D .4.(2022春•三门峡期末)如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A.2B.4C.2D.22【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP 的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,CE.∴P1P2∥CE且P1P2=12当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P∥CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=2,AD=1,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=1.∴BP1=2.∴PB的最小值是2.故选:C.5.(2022春•滨湖区期末)如图,已知菱形ABCD的面积为20,边长为5,点P、Q分别是边BC、CD上的动点,且PC=CQ,连接PD、AQ,则PD+AQ的最小值为( )A.45B.89C.10D.72【分析】过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,根据菱形的性质和勾股定理可得BM=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,可得B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),然后证明△ABP≌△ADQ(SAS),可得AP=AQ=A′P,连接A′D,AP,A′P,由A′P+PD>A′D,可得A′,P,D三点共线时,PD+A′P取最小值,所以PD+AQ 的最小值=PD+A′P的最小值=A′D,利用勾股定理即可解决问题.【解答】解:如图,过点A作AM⊥BC于点M,延长AM到点A′,使A′M=AM,∵四边形ABCD是菱形,∴AB=BC=AD=5,∠ABC=∠ADC,∵菱形ABCD的面积为20,边长为5,∴AM=4,在Rt△ABM中,根据勾股定理得:BM=AB2−AM2=3,以点B为原点,BC为x轴,垂直于BC方向为y轴,建立平面直角坐标系,∴B(0,0),A(3,4),C(5,0),D(8,4),A′(3,﹣4),∵PC=CQ,BC=CD,∴BP=DQ,在△ABP和△ADQ中,AB=AD∠ABC=∠ADC,BP=DQ∴△ABP≌△ADQ(SAS),∴AP=AQ=A′P,连接A′D,AP,A′P,∵A′P+PD>A′D,∴A′,P,D三点共线时,PD+A′P取最小值,∴PD+AQ的最小值=PD+A′P的最小值=A′D=(8−3)2+(4+4)2=89.故选:B.6.(2022•泰山区一模)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为2,则线段CF的最小值是( )A.2B.1C.5−1D.5−2【分析】根据正方形的性质可得AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,然后利用“HL”证明Rt△ADM和Rt△BCN全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△DCE和△BCE全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AFD=90°,取AD的中点O,连接OF、OC,根据直角AD=1,利用勾股定理列式求出OC,然三角形斜边上的中线等于斜边的一半可得OF=12后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,AD=BCAM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠1=∠2,在△DCE和△BCE中,BC=CD∠DCE=∠BCE,CE=CE∴△DCE≌△BCE(SAS),∴∠2=∠3,∴∠1=∠3,∵∠ADF+∠3=∠ADC=90°,∴∠1+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,AD=1,则OF=DO=12在Rt△ODC中,OC=DO2+DC2=12+22=5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=5−1.故选:C.7.(2022•龙华区二模)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为13−2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的判定和性质即可得到PE=PC;故②正确;连接EF,推出点E、P、F、C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且EPCF四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO =1AE,推出点P在以O为圆心,AE为直径的圆上,当OC最小时,CP的值最小,根2据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【解答】解:连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E、P、F、C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,同理当F运动到C点右侧时,此时∠FPC=45°,且E、P、C、F四点共圆,EC=FC=3,故此时BF=BC+CF=4+3=7.因此BF=1或7,故③错误;取AE的中点O,连接PO,CO,AE,∴AO=PO=12∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当OC最小时,CP的值最小,∵PC ≥OC ﹣OP ,∴PC 的最小值=OC ﹣OP =OC −12AE ,∵OC =22+(72)2=652,在Rt △ADE 中,AE =42+12=17,∴PC 的最小值为652−172,故④错误,故选:B .8.(2022•南平校级自主招生)如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F .则EF 的最小值为( )A .4B .4.8C .5.2D .6【分析】先由矩形的判定定理推知四边形PEAF 是矩形;连接PA ,则PA =EF ,所以要使EF ,即PA 最短,只需PA ⊥CB 即可;然后根据三角形的等积转换即可求得PA 的值.【解答】解:如图,连接PA .∵在△ABC 中,AB =6,AC =8,BC =10,∴BC 2=AB 2+AC 2,∴∠A =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F .∴∠AEP =∠AFP =90°,∴四边形PEAF 是矩形.∴AP =EF .∴当PA 最小时,EF 也最小,即当AP ⊥CB 时,PA 最小,∵12AB •AC =12BC •AP ,即AP =AB ⋅AC BC =6×810=4.8,∴线段EF 长的最小值为4.8;故选:B .9.(2022春•崇川区期末)如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .2B .3C .5D .6【分析】连接AE ,利用△ABE ≌△BCF 转化线段BF 得到BF +DE =AE +DE ,则通过作A 点关于BC 对称点H ,连接DH 交BC 于E 点,利用勾股定理求出DH 长即可.【解答】解:连接AE ,如图1,∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°.又BE =CF ,∴△ABE ≌△BCF (SAS ).∴AE =BF .所以BF +DE 最小值等于AE +DE 最小值.作点A 关于BC 的对称点H 点,如图2,连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点.根据对称性可知AE =HE ,所以AE +DE =DH .在Rt △ADH 中,AD =1,AH =2,∴DH =AH 2+AD 2=5,∴BF +DE 最小值为5.故选:C .10.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为( )A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=2AB=22,∴d1+d2+d3最小=AC=22,故选:C.二.填空题(共10小题)11.(2022春•江城区期末)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.运动过程中点D到点O的最大距离是 3+13 .【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于的一半可得OE=12第三边可得OD过点E时最大.【解答】解:如图:取线段AB的中点E,连接OE,DE,OD,∵AB=6,点E是AB的中点,∠AOB=90°,∴AE=BE=3=OE,∵四边形ABCD是矩形,∴AD=BC=2,∠DAB=90°,∴DE=AE2+AD2=13,∵OD≤OE+DE,∴当点D,点E,点O共线时,OD的长度最大.∴点D到点O的最大距离=OE+DE=3+13,故答案为:3+13.12.(2022•东莞市校级一模)如图,在矩形ABCD中,AB=6,AD=5,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+DQ的最小值为 13 .【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【解答】解:如图,连接BP,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,∴PC+QD=PC+PB,∴PC+QD的最小值转化为PC+PB的最小值,如图,在BA的延长线上截取AE=AB=6,连接PE,CE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,∴PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=BE2+BC2=13.∴PC+DQ的最小值为13.故答案为:13.13.(2022•钱塘区一模)如图,在矩形ABCD中,线段EF在AB边上,以EF为边在矩形ABCD内部作正方形EFGH,连结AH,CG.若AB=10,AD=6,EF=4,则AH+CG的最小值为 62 .【分析】方法一:延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,可得四边形AA′EH是平行四边形,所以A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,根据勾股定理即可解决问题.方法二:过点G作GA′∥AH交AF于点A′,可得四边形AHGA′是平行四边形,进而可以解决问题.【解答】解:方法一:如图,延长DA至A′,使A′A=EH=EF=4,连接A′E,EG,∵HE⊥AB,AA′⊥AB,∴AA′∥EH,∵A′A=EH,∴四边形AA′EH是平行四边形,∴A′E=AH,则AH+CG的最小值即为A′E+CG的最小值,∵四边形EFGH是正方形,∴EF=FG=4,∴EG=42,∵A′D=AD+AA′=6+4=10,在Rt△A′DC中,DC=AB=10,∴A′C=A′D2+DC2=102,∴A′E+CG=A′C﹣EG=62.方法二:如图,过点G作GA′∥AH交AF于点A′,∴四边形AHGA′是平行四边形,∴AA′=HG=4,A′G=AH,∴A′B=AB﹣AA′=6,∵BC=6,∴A′C=62,∴AH+CG=A′G+CG≥A′C,则AH+CG的最小值为62.故答案为:62.14.(2022春•东城区期中)在正方形ABCD中,AB=5,点E、F分别为AD、AB上一点,且AE=AF,连接BE、CF,则BE+CF的最小值是 55 .【分析】连接DF,根据正方形的性质证明△ADF≌△ABE(SAS),可得DF=BE,作点D关于AB的对称点D′,连接CD′交AB于点F′,连接D′F,则DF=D′F,可得BE+CF=DF+CF=D′F+CF≥CD′,所以当点F与点F′重合时,D′F+CF最小,最小值为CD′的长,然后根据勾股定理即可解决问题.【解答】解:如图,连接DF,∵四边形ABCD是正方形,∴AD=AB,∠BAE=∠DAF=90°,在△ADF 和△ABE 中,AD =AB ∠FAD =∠EAB AF =AE,∴△ADF ≌△ABE (SAS ),∴DF =BE ,作点D 关于AB 的对称点D ′,连接CD ′交AB 于点F ′,连接D ′F ,则DF =D ′F ,∴BE +CF =DF +CF =D ′F +CF ≥CD ′,∴当点F 与点F ′重合时,D ′F +CF 最小,最小值为CD ′的长,在Rt △CDD ′中,根据勾股定理得:CD ′=CD 2+DD′2=52+102=55,∴BE +CF 的最小值是55.故答案为:55.15.(2022春•虎林市期末)如图,在Rt △ABC 中,∠BAC =90°,且BA =12,AC =16,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 245 .【分析】由勾股定理求出BC 的长,再证明四边形DEAF 是矩形,可得EF =AD ,根据垂线段最短和三角形面积即可解决问题.【解答】解:连接AD 、EF ,∵∠BAC =90°,且BA =9,AC =12,∴BC =AB 2+AC 2=122+162=20,∵DE ⊥AB ,DF ⊥AC ,∴∠DEA =∠DFA =∠BAC =90°,∴四边形DEAF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时,△ABC 的面积=12AB ×AC =12BC ×AD ,∴12×16=20AD ,∴AD =485∴EF 的最小值为485,∵点G 为四边形DEAF 对角线交点,∴GF =12EF =245;故答案为:245.。

初中数学函数最值问题培优专题训练

初中数学函数最值问题培优专题训练

初中数学函数最值问题培优专题训练1. 引言函数最值问题是初中数学中的一个重要课题,它涉及到如何确定一个函数在特定区间内的最大值和最小值。

正确解决函数最值问题对于提高学生的数学分析和问题解决能力具有重要意义。

本文将提供一些初中数学函数最值问题的培优专题训练,帮助学生加深对这一知识点的理解和掌握。

2. 常见类型的函数最值问题在函数最值问题中,常见的类型包括线性函数最值问题、二次函数最值问题和分段函数最值问题。

我们将分别介绍这些类型的问题和解题方法。

2.1 线性函数最值问题线性函数最值问题是最简单的一类问题。

线性函数的图像为一条直线,最大值和最小值通常出现在函数的两个端点上。

解决线性函数最值问题,只需要找到函数的两个端点,并比较它们的函数值即可。

例如,对于线性函数$y=2x+1$,最大值和最小值分别出现在$x$的最小值和最大值上。

我们将$x$的最小值和最大值代入函数,可以得到最大值和最小值的函数值。

2.2 二次函数最值问题二次函数最值问题是一类稍复杂的问题。

二次函数的图像通常为抛物线,最大值或最小值出现在抛物线的顶点上。

解决二次函数最值问题,需要找到函数的顶点,并判断该顶点对应的函数值是最大值还是最小值。

例如,对于二次函数$y=x^2+2x+1$,顶点坐标为$(-1, 0)$。

我们可以通过求导数等方法得到这一结果。

根据抛物线的形状,我们可以判断该顶点对应的函数值为最小值,因为$y$值随着$x$的增大而增大。

2.3 分段函数最值问题分段函数最值问题是一类较为复杂的问题。

分段函数由多个部分组成,每个部分可能具有不同的表达式。

解决分段函数最值问题,需要分别考虑每个部分的最值,并比较它们的函数值。

例如,对于分段函数$y=\begin{cases}x^2, &\text{if } x<0\\2x,&\text{if } x\geq0\end{cases}$,我们可以分别求出$x<0$和$x\geq0$两个部分的最值,并比较它们的函数值。

初中数学千题解——最值问题100题(详解版)

初中数学千题解——最值问题100题(详解版)
当且仅当 B ' 、P、D 在同一直线上时,如图 4.2 所示, PB PD 取得最小值.
在 Rt ADB ' 中, AD
1
AB 2 , B ' AB 60 ,∴ B ' D AD tan 60 3 AD 2 3 ,
2
故答案是 C.
B'
B'
C
C
P
P
A
D
图 4.1
当且仅当 A、P、 B ' 三点共线时取得最小值,如图 4.4 所示.
在 Rt ABB ' 中, AB 5 , BB ' 2d 4 ,
∴ AB ' AB 2 BB '2 52 42 41 ,
故 PA PB 的最小值是 41 .
思路点拨:
这是典型的“将军饮马”型线段和最值问题.根据题目中中给出的面积关系,可判断点 P 的运动轨迹为
在△ABC 和△EBD 中
AB BE ,

ABE EBD,
∠∠
CB BD,

∴△ABC≌△EBD(SAS)
∴DE=AC=2
∴点 D 的轨迹是以点 E 为圆心,2 为半径的圆.
∴AE-ED≤AD≤AE+ED
如图 4.17 和图 4.18 所示,当且仅当 A、E、D 三点共线时取得最值
∴AC 垂直平分 BB ' ,∴ B ' A BA ,∴AC 平分 B ' AB .
∵ CAB 30 ,∴ B ' AB 60 ,∴ ABB ' 为等边三角形.
∵点 P 为 AC 上一点,∴ PB PB ' ,∴ PB PD PB ' PD B ' D ,

初二数学最值问题专项训练

初二数学最值问题专项训练

初二数学最值问题专项训练1. 认识最值问题最值问题,顾名思义,就是要找出在某个条件下,某个量的最大值或最小值。

就好比你去超市买零食,想要在预算内买到最多的薯片,这可真是个“艰难”的选择呀!我们经常会遇到这样的情况,生活中大大小小的决策其实都离不开这门“数学艺术”。

在课堂上,老师讲得头头是道,仿佛让我们看到了数学的美,但等到自己做题时,那感觉就像是在和“怪兽”搏斗一样!所以,今天咱们就一起来“聊聊”最值问题,别担心,我们会轻松幽默地来一趟数学之旅。

2. 最值问题的基本思路2.1 确定问题首先,解决最值问题,最重要的是要“明确目标”。

就像打游戏一样,你得知道终极boss在哪里,才能制定出“攻略”。

同样,在数学题里,我们要搞清楚想要求哪个数,是最大值还是最小值。

比如,题目问“在这个范围内,x的最大值是多少?”那你就得心里打个小鼓,准备好迎接挑战。

2.2 列出条件接下来,咱们得把所有条件“摊开来”,就像一场麻将游戏,你得知道每一张牌是什么。

题目里的条件往往是帮助我们找到最优解的“钥匙”。

这里面可能有不等式、方程,甚至还有一些特别的限制条件,得好好捋一捋,确保不会漏掉任何一个小细节。

3. 应用实际3.1 生活中的最值问题让我们稍微“跑题”一下,想想生活中的例子。

比如,周末你和小伙伴们计划去看电影,大家都有各自的预算。

如何在预算内选到最划算的电影票呢?这其实就是个最值问题。

你得考虑票价、时段、甚至是优惠活动,最终选择出既能满足大家又能“荷包不瘪”的电影。

这种情况常常让人感到无比纠结,但只要有方法,照样能轻松解决!3.2 课堂上的应用回到课堂上,最值问题往往会出现在函数的应用题里。

比如,我们需要找到一个抛物线的顶点,这就是寻找最大值或最小值的过程。

抛物线就像是一个快乐的笑脸,而顶点则是那最高兴的部分,想要“笑出声”来,就得算准那个位置。

通过求导或者配方,能帮我们找到顶点的位置,那种瞬间的“恍然大悟”,简直比吃到糖还要甜!4. 练习与总结4.1 多做练习最后,最值问题的关键还是要多做练习。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

71 反比例函数中的最值计算问题-【初中数学】120个题型大招!冲刺满分秘籍!

71 反比例函数中的最值计算问题-【初中数学】120个题型大招!冲刺满分秘籍!

反比例函数中的最值计算问题k 的几何意义与反比例函数对称性1.如图一,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCA OCB ODB ODA S S S S S ∆∆∆∆∆=+=+,此两种方法是绝大部分学生选用的方法。

常规方法,费时、费力、而且还易计算出错。

2.如图二,我们知道反比例函数的图象是双曲线,关于原点成中心对称,那么延长BO 交双曲线于点E ,连接AE 、则OB OE =,OAB OAE S S ∆∆=,因此可以将OAE ∆的面积转化为梯形的面积1、如图,已知一次函数y =x +2的图象分别与x 轴、y 轴交于点A 、C 与反比列函数y =的图象在第一象限内交于点P ,过点P 作PB ⊥x 轴,垂足为B ,且△ABP 的面积为9.(1)点A 的坐标为,点C 的坐标为,点P 的坐标为;(2)已知点Q 在反比例函数y =的图象上,其横坐标为6,在x 轴上确定一点M 使得△PQM 的周长最小,求出点M 的坐标.【答案】(1)(﹣4,0),(0,2),(2,3);(2)当△PQM的周长最小时,点M的坐标为(5,0)【解析】【分析】(1)求直线与坐标轴的交点坐标时,令横纵坐标等于零即可求出A,C的坐标,再利用P为直线与双曲线的交点和△ABP的面积为9列出二元一次方程组求出P点坐标即可,(2)根据题意作出Q的对称点Q′,连接PQ′交x轴于点M,求出解析式,即可求出点M的坐标.【详解】(1)当y=0时,x+2=0,解得:x=﹣4,当x=0时,y=2,∴点A的坐标为(﹣4,0),点C的坐标为(0,2),设点P的坐标为(a,b)(a>0),则,解得:,(舍去),∴点P的坐标为(2,3),故答案为:(﹣4,0),(0,2),(2,3);(2)如图,作点Q关于x轴的对称轴Q′,连接PQ′,与x轴交于点M,连接QM,此时△PQM的周长最小.∵点P(2,3)在反比例函数y=图象上,∴k=2×3=6,即反比例函数解析式为y=,∴点Q的坐标为(6,1),点Q′的坐标为(6,﹣1),设直线PQ′的解析式为y=mx+n(m≠0),将点P(2,3),Q(6,1)代入y=mx+n,得:,解得:,∴直线PQ′的解析式为:y=﹣x+5,当y=0时,﹣x+5=0,解得:x=5,∴点M的坐标为(5,0),∴当△PQM的周长最小时,点M的坐标为(5,0).2、如图,一次函数y=-x+6的图像与反比例函数y=kx(k>0)的图像交于A、B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为2.5.(1)求反比例函数的表达式;(2)在y轴上有一点P,当PA+PB的值最小时,求点P的坐标.【答案】(1)反比例函数的表达式为y =5x;(2)P(0,133).【解析】【分析】(1)根据反比例系数和三角形面积关系,求出k ,即可;(2)作点A 关于y 轴的对称点C ,连接BC 交y 轴于P 点.由两个函数解析式组成方程组,求出交点坐标,再用待定系数法求直线BC 的解析式.,再求出P 的坐标.【详解】解:(1)设A (m,n ),则12AOM mn S ∆=∵S △AOM =2.5,∴12|k|=2.5.∵k>0,∴k =5,∴反比例函数的表达式为y =5x (2)如图,作点A 关于y 轴的对称点C ,连接BC 交y 轴于P点.∵A ,B 是两个函数图象的交点,∴56y x y x ==-+⎧⎪⎨⎪⎩解{1115x y ==或{2251x y ==∴A(1,5),B(5,1),∴C(-1,5).设y BC =kx +b ,代入B ,C 两点坐标得{5-15k b k b=+=+解得23133k b =-=⎧⎨⎩∴y BC =-23x +133,∴P(0,133),3、如图,直线y 1=k 1x +b 与双曲线y 2=在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)k 1=,k 2=,b =.(2)直接写出不等式y 2>y 1的解集;(3)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,求△PED 的面积S的最大值.解:(1)∵A (1,m ),B (2,1)在双曲线y 2=上,∴k 2=m =2×1=2,∴A (1,2),则,解得:,∴k1=﹣1,k2=2,b=3;故答案为:﹣1,2,3;(2)由图象得:不等式y2>y1的解集是:0<x<1或x>2;(3)设点P(x,﹣x+3),且1≤x≤2,∵PD=﹣x+3,OD=x,则,∵,∴当时,S有最大值,最大值为.4、如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)直接写出当y1>y2时,x的取值范围;(3)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标.解:(1)把A(3,5)代入,可得m=3×5=15,∴反比例函数的解析式为;把点B(a,﹣3)代入,可得a=﹣5,∴B(﹣5,﹣3).把A(3,5),B(﹣5,﹣3)代入y1=x+b,可得,解得,∴一次函数的解析式为y1=x+2;(2)当y1>y2时,﹣5<x<0或x>3.(3)一次函数的解析式为y1=x+2,令x=0,则y=2,∴一次函数与y轴的交点为P(0,2),此时,PB﹣PC=BC最大,P即为所求,令y=0,则x=﹣2,∴C(﹣2,0),∴.5、如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.(1)求一次函数和反比例函数的关系式;(2)直接写出当x<0时,kx+b﹣<0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.解:(1)过点B作BF⊥x轴于点F,∵点C坐标为(﹣1,0),点A坐标为(0,2).∴OA=2,OC=1,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,在△AOC和△CFB中∴△AOC≌△CFB(AAS),∴FC=OA=2,BF=OC=1,∴点B的坐标为(﹣3,1),将点B的坐标代入反比例函数解析式可得:1=,解得:k=﹣3,故可得反比例函数解析式为y=﹣;将点B、C的坐标代入一次函数解析式可得:,解得:.故可得一次函数解析式为y=﹣x﹣.(2)结合点B的坐标及图象,可得当x<0时,kx+b﹣<0的解集为:﹣3<x<0;(3)作点A关于x轴的对称点A′,连接B A′与x轴的交点即为点M,∵A(0,2),∴A′(0,﹣2),设直线BA′的解析式为y=ax+b,将点A′及点B的坐标代入可得:,解得:.故直线BA′的解析式为y=﹣x﹣2,令y=0,可得﹣x﹣2=0,解得:x=﹣2,故点M的坐标为(﹣2,0),AM+BM=BM+MA′=BA′==3.综上可得:点M的坐标为(﹣2,0),AM+BM的最小值为3.6、定义:若实数x,y,x',y'满足x=kx'+2,y=ky'+2(k为常数,k≠0),则在平面直角坐标系xOy中,称点(x,y)为点(x',y')的“k值关联点”.例如,点(3,0)是点(1,﹣2)的“1值关联点”.(1)在A(2,3),B(1,3)两点中,点是P(1,﹣1)的“k值关联点”;(2)若点C(8,5)是双曲线y=(t≠0)上点D的“3值关联点”,求t的值和点D的坐标;(3)设两个不相等的非零实数m,n满足点E(m2+mn,2n2)是点F(m,n)的“k值关联点”,求点F 到原点O的距离的最小值.解:(1)若点A(2,3)是P(1,﹣1)的“k值关联点”,∴k=≠,不合题意,若点B(1,3)是P(1,﹣1)的“k值关联点”,∴k===﹣1,符合题意,故答案为:B;(2)设点D坐标为(x,y),∵点C(8,5)是点D的“3值关联点”,∴∴∴点D坐标为(2,1),∵点D是双曲线y=(t≠0)上点,∴t=2×1=2;(3)∵点E(m2+mn,2n2)是点F(m,n)的“k值关联点”,∴,∴m2n+mn2﹣2n=2n2m﹣2m,∴(m﹣n)(mn+2)=0,∵m≠n,∴mn=﹣2,∴m=,∵(m﹣n)2≥0,∴m2+n2﹣2mn≥0,∴m2+n2≥2mn,∴m2+n2=+n2≥2×n×=4,∴点F到原点O的距离==,∴点F到原点O的距离的最小值为2.7、如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象在第一象限交于A(1,3),B(3,m)两点,一次函数的图象与x轴交于点C.(1)求反比例函数和一次函数的表达式;(2)当x为何值时,y2>0?(3)已知点P(0,a)(a>0),过点P作x轴的平行线,在第一象限内交一次函数y2=k2x+b的图象于点M,交反比例函数y1=的图象于点N.结合函数图象直接写出当PM>PN时a的取值范围.解:(1)∵反比例函数的图象过点A(1,3),∴,∴k1=3,∴反比例函数表达式为:;∵点B(3,m)在函数的图象上,∴,∴B(3,1).∵一次函数y2=k2x+b的图象过点A(1,3),B(3,1),∴,解得,∴一次函数的表达式为:y2=﹣x+4;∴反比例函数和一次函数的表达式分别为,y2=﹣x+4.(2)∵当y2=0时,﹣x+4=0,x=4,∴C(4,0),由图象可知,当x<4时,y2>0.(3)如图,由图象可得,当1<a<3时,PM>PN.8、如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)根据图象直接写出kx+b<的x的取值范围;(3)点D为反比例函数图象上使得四边形BCPD为菱形的一点,点E为y轴上的一动点,当|DE﹣PE|最大时,求点E的坐标.解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=;(2)观察图象可知:<kx+b时x的取值范围0<x<4;(3)假设存在这样的D点,使四边形BCPD为菱形,如下图所示,连接DC交PB于F,∵四边形BCPD为菱形,∴CF=DF=4,∴CD=8,将x=8代入反比例函数y=得y=1,∴D点的坐标为(8,1)∴则反比例函数图象上存在点D,使四边形BCPD为菱形,此时D坐标为(8,1);延长DP交y轴于点E,则点E为所求,则|DE﹣PE|=PD为最大,设直线PD的表达式为:y=sx+t,将点P、D的坐标代入上式得:,解得:,故直线PD的表达式为:y=﹣x+3,令x=0,则y=3,故点E(0,3).9、已知,在直角坐标系中,平行四边形OABC的顶点A,C坐标分别为A(2,0),C(﹣1,2),反比例函数y=的图象经过点B(m≠0)(1)求出反比例函数的解析式(2)将▱OABC沿着x轴翻折,点C落在点D处,作出点D并判断点D是否在反比例函数y=的图象上(3)在x轴是否存在一点P使△OCP为等腰三角形?若存在,写出点P的坐标;若不存在,请说明理由.解:(1)分别过点C、B作x轴的垂线,垂足分别为:E、F,∵四边形OABC为平行四边形,则∠COE=∠BAF,CO=AB,∴Rt△COE≌Rt△BAF,∴AF=OE=1,故点B(1,2),故m=2,则反比例函数表达式为:y=;(2)翻折后点D的坐标为:(﹣1,﹣2),∵(﹣1)•(﹣2)=2,∴D在反比例函数y=的图象上;(3)当OP=OC时,点P(,0);当OC=PC时,点P(﹣2,0);当OP=PC时,设点P(m,0),则m2+(m+1)2+4,解得:m=﹣2.5;综上,点P的坐标为:(,0)或(﹣2,0)或(﹣2.5,0).10、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;△A'EF的面积=S正方形A′B′C′D′(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=(舍去)或;当EF=PF时,同理可得:m=(舍去负值);当EP=PF时,同理可得:m=,故点P的坐标为:(,0)或(,0)或(,0).11、如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE =27.(1)求直线AC和反比例函数的解析式;(2)连接AD,求△ACD的面积.解:(1)在y=﹣x﹣6中,当x=0时,y=﹣6;当y=0时,x=﹣6.∴A(﹣6,0),B(0,﹣6),=27,∴OB=OA=6,又S△ABE∴OB×AE=27,∴AE=9,OE=3.过C作CN⊥x轴于N,则CN∥OB,又∵BE=3CE,∴===,∴EN=1,CN=2,ON=4,∴C(4,2).∴反比例函数的解析式为y=.设直线AC的解析式为y=kx+b(k≠0),将A(﹣6,0),C(4,2)代入得:,解得:.∴直线AC的解析式为y=x+;(2)根据题意设直线CD的解析式为y=﹣x+b1,将点C(4,2)代入得:﹣4+b1=2,∴b1=6.∴直线CD的解析式为y=﹣x+6.将直线CD 和反比例函数解析式联立得:,解得:,,∴D (2,4).过D 作DM ∥y 轴交AC 于M ,则M (2,1.6),∴S △ACD =S △ADM +S △CDM=DM •|x M ﹣x A |+DM •|x C ﹣x M |=DM •|x C ﹣x A |=×(4﹣1.6)×|4﹣(﹣6)|=12.12、菱形ABCD 的顶点C 与原点O 重合,点B 落在y 轴正半轴上,点A 、D 落在第一象限内,且D 点坐标为(4,3).(1)如图1,若反比例函数y=(x>0)的图象经过点A,求k的值;(2)菱形ABCD向右平移t个单位得到菱形A1B1C1D1,如图2.①请直接写出点B1、D1的坐标(用含t的代数式表示):B1、D1;②是否存在反比例函数y=(x>0),使得点B1、D1同时落在y=(x>0)的图象上?若存在,求n的值;若不存在,请说明理由.解:(1)如图,作DF⊥x轴于点F,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5.∴A点坐标为(4,8),∴xy=4×8=32,∴k=32;(2)①平移后B1、D1的坐标分别为:(t,5),(t+4,3),故答案为:(t,5),(t+4,3);②存在,理由如下:∵点B1、D1同时落在(x>0)的图象上B1(t,5),D1(t+4,3),∴5t=n,3(t+4)=n,解得:t=6,n=30所以,存在,此时n=30.13、如图,直线y=﹣x+6与反比例函数y=(x>0)分别交于点D、A(AB<AC),经探索研究发现:结论AB=CD始终成立.另一直线y=mx(m>0)交线段BC于点E,交反比例函数y=(x>0))图象于点F.(1)当BC=5时:①求反比例函数的解析式.②若BE=3CE,求点F的坐标.(2)当BE:CD=1:2时,请直接写出k与m的数量关系.解:(1)①针对于直线y=﹣x+6,令x=0,则y=6,∴A(0,6),∴OA=6,令y=0,则0=﹣x+6,∴x=8,∴D(8,0),∴OD=8,∴AD=10,∵BC=5,∴AB+CD=AD﹣BC=5,∵AB=CD,∴AB=,过点B作BG⊥y轴于G,∴∠AGB=90°=∠AOB,∴△ABG∽ADO,∴,∴,∴AG=,BG=2,∴OG=OA﹣AG=,∴B(2,),∵点B在反比例函数y=(x>0))图象上,∴k=2×=9,∴反比例函数的解析式为y=;②∵BC=5,∴BE+CE=5,∵BE=3CE,∴BE=,∴AE=AB+BE=,过点E作EH⊥y轴于H,∴∠AHE=90°=∠AOB,∴△HAE∽△OAD,∴,∴,∴AH=,BG=5,∴OH=OA﹣AH=,∴E(5,),∴直线OE的解析式为y=x,联立,解得,(舍)或,∴F(2,);(2)∵BE:CD=1:2,∴BE=a,则CD=2a,∴AB=CD=2a,∴AE=AB+BE=3a,过点E作EH⊥y轴于H,同(1)的方法得,△HAE∽△OAD,∴,∴,∴AH=a,EH=a,∴OH=OA﹣AH=6﹣a,∴E(a,6﹣a),将点E坐标代入直线y=mx(m>0)中,解得am=6﹣a,∴a=,将点E的坐标代入反比例函数y=(x>0)中,解得,k=a(6﹣a)=a(10﹣3a)=×(10﹣)=.14、如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,=S△ACE=,∴S△AEO∵AD=2DE,∴AE=DE,=2S△AOE=3;∴S△AOD(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,=S△OAH=﹣,∵S△OEF∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,=S△ADO=3=1,∴S△OAH∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).15、如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,4).反比例函数y=(x>0)的图象经过点D,点P是一次函数y=kx+4﹣4k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+4﹣4k(k≠0),当随x的增大而增大时,确定点P横坐标的取值范围(不必写过程).解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(4,1),C(4,4),∴BC⊥x轴,AD=BC=3,而A点坐标为(1,0),∴点D的坐标为(1,3).∵反比例函数y=(x>0)的函数图象经过点D(1,3),∴3=,∴m=3,∴反比例函数的解析式为y=;(2)当x=4时,y=kx+4﹣4k=4k+4﹣4k=4,∴一次函数y=kx+4﹣4k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,∵一次函数y=kx+4﹣4k(k≠0)过C点,并且y随x的增大而增大时,∴k>0,P点的纵坐标要小于4,横坐标大于4,当纵坐标小于4时,∵y=,∴<4,解得:a>,则a的范围为a>1或a<.。

初中数学几何模型与最值问题11专题-二次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题11专题-二次函数在实际应用中的最值问题(含答案)

初中数学几何模型与最值问题专题11 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中数据,用所学过一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.①分别求出当和时,与的函数关系式;①设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m.设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?①求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?专题11 二次函数在实际应用中的最值问题 答案1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元? 【解析】(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,①y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,①﹣17.7<0,①y 随x 的增大而减小,①当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,①y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,①﹣3<0,①当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,①当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中数据,用所学过一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式 (2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用) 【解析】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩,①301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ①所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元, 故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+ ⎪⎝⎭,解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【解析】(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a +120)+(﹣0.5a 2+16a +160) =﹣a 2+12a +280=﹣(a ﹣6)2+316, 当a =6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y =﹣4x +220(10≤x ≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 【解析】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)①w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,①当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【解析】(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,(2)1a =-时,21:(1)4C y x =--,①当112t ≤<时,12x =时,有最小值2154y =,x t =时,有最大值21(1)4y t =--+, 则21215(1)414y y t -=--+-=,无解; ①312t ≤≤时,1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+,12114y y -=≠(舍去);①当32t >时,1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+,212(1)1y y t -=-=,解得:0t =或2(舍去0),故222:(2)44C y x x x =--=-;(3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --,当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =, 故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-, 故:13a ≤-; 综上,故:103a <≤或1a ≥或13a ≤-.6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值; (2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示. ①分别求出当和时,与的函数关系式;①设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【解析】(1)由题意得,解得答:a的值为0.04,b的值为30.(2)①当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得①y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得①y与t的函数关系式为y=t+30①由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t①3600>0,①当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250①-10<0,①当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m.设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【解析】(1)①=,①当x=25时,占地面积y最大;(2)=,①当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.①26-25=1≠2,①小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x ≤15且x 为整数)时每盒成本为p 元,已知p 与x 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y 盒,y 与x 之间的关系如下表所示:(1)求p 与x 的函数关系式;(2)若每天的销售利润为w 元,求w 与x 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果. 【解析】(1)设p =kx +b (k ≠0),①第3天时,每盒成本为21元;第7天时,每盒成本为25元,①321725k b k b +=⎧⎨+=⎩,解得:118k b =⎧⎨=⎩,所以p =x +18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,①﹣10<0,①w 随x 的增大而减小,①当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,①当x =13时,w 最大为361, 综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?①求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【解析】(1)根据题意得:2120{32205a ba b+=+=,解得:a=35,b=50;(2)①由题意得:y=(x﹣40)[100﹣5(x﹣50)]①y=﹣5x2+550x﹣14000;①①y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,①当x=55时,y最大=1125,①销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【解析】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,①-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【解析】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,①-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【解析】(1)当6≤x ≤10时,由题意设y =kx +b (k =0),它的图象经过点(6,1000)与点(10,200), ①1000620010k b k b =+⎧⎨=+⎩ ,解得2002200k b =-⎧⎨=⎩, ①当6≤x ≤10时, y =-200x +2200,当10<x ≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩ (2)设利润为w 元,当6≤x ≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ①-200<0,6①x ≤10,当x =172时,w 有最大值,此时w=1250; 当10<x ≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,①200>0,①w =200x -1200随x 增大而增大,又①10<x ≤12,①当x =12时,w 最大,此时w=1200,1250>1200,①w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【解析】(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =①1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩ ①y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+①20a =-<;①抛物线开口向下;①对称轴65x =;①当65x <时,W 随着x 的增大而增大;①3060x ≤≤,①60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。

初三数学最值问题练习题

初三数学最值问题练习题

初三数学最值问题练习题在初中数学中,最值问题一直是一个常见的考点。

通过解决最值问题,我们可以更好地理解和应用数学概念。

本文将提供一些初三数学最值问题的练习题,帮助同学们巩固相关知识。

1. 把一个数的10倍增加120后,得到的结果为200。

求这个数是多少?解析:设这个数为x,则可以列出方程:10x + 120 = 200。

解这个方程,我们可以得到x = 8。

2. 某数的6倍比18大3,求这个数。

解析:设这个数为x,则可以列出方程:6x = 18 + 3。

解这个方程,我们可以得到x = 3。

3. 一个数与5的和的四倍等于41,求这个数。

解析:设这个数为x,则可以列出方程:4(x + 5) = 41。

解这个方程,我们可以得到x = 6。

4. 一个数的一半减1比3大,求这个数。

解析:设这个数为x,则可以列出方程:(1/2)x - 1 = 3。

解这个方程,我们可以得到x = 14。

5. 一个数减去13比其4倍的5倍少4,求这个数。

解析:设这个数为x,则可以列出方程:x - 13 = 4(5x - 4)。

解这个方程,我们可以得到x = 7。

通过解答以上练习题,我们可以发现解决最值问题的关键在于将问题用数学语言进行表达,并建立相应的方程。

通过解方程,可以得到最终的解答。

初三的数学学习中,最值问题练习题仅仅是其中一部分,还有更多的应用题目需要我们去研究和解答。

通过不断的训练和实践,我们可以提高解决最值问题的能力,掌握更多解题的技巧。

希望以上练习题对同学们在初三数学学习中的提高有所帮助。

通过多做类似的练习,我们可以逐渐掌握解决最值问题的方法,从而在考试中取得好成绩。

加油!。

(完整word版)初中数学《几何最值问题》典型例题

(完整word版)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.轴对称最值图形lPBANM lBAAPBl 原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形B'NMCAB原理两点之间线段最短特征在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值.转化转化成求AB'+B'N+NC的最小值1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为.【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵PC关于OA对称,∴∠COP=2∠AOP,OC=OP同理,∠DOP=2∠BOP,OP=OD∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.∴△COD是等腰直角三角形.则CD=2OC=2×32=6.【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键.2.如图,当四边形P ABN的周长最小时,a=.【分析】因为AB,PN的长度都是固定的,所以求出P A+NB的长度就行了.问题就是P A+NB什么时候最短.把B点向左平移2个单位到B′点;作B′关于x轴的对称点B″,连接AB″,交x轴于P,从而确定N点位置,此时P A+NB最短.设直线AB″的解析式为y=kx+b,待定系数法求直线解析式.即可求得a的值.【解答】解:将N点向左平移2单位与P重合,点B向左平移2单位到B′(2,﹣1),作B′关于x轴的对称点B″,根据作法知点B″(2,1),设直线AB″的解析式为y=kx+b,则123k bk b=+⎧⎨-=+⎩,解得k=4,b=﹣7.∴y=4x﹣7.当y=0时,x=74,即P(74,0),a=74.故答案填:74.【题后思考】考查关于X轴的对称点,两点之间线段最短等知识.3.如图,A 、B 两点在直线的两侧,点A 到直线的距离AM =4,点B 到直线的距离BN =1,且MN =4,P 为直线上的动点,|P A ﹣PB |的最大值为.D PB′N MA【分析】作点B 于直线l 的对称点B ′,则PB =PB ′因而|P A ﹣PB |=|P A ﹣PB ′|,则当A ,B ′、P 在一条直线上时,|P A ﹣PB |的值最大.根据平行线分线段定理即可求得PN 和PM 的值然后根据勾股定理求得P A 、PB ′的值,进而求得|P A ﹣PB |的最大值.【解答】解:作点B 于直线l 的对称点B ′,连AB ′并延长交直线l 于P . ∴B ′N =BN =1,过D 点作B ′D ⊥AM , 利用勾股定理求出AB ′=5 ∴|P A ﹣PB |的最大值=5.【题后思考】本题考查了作图﹣轴对称变换,勾股定理等,熟知“两点之间线段最短”是解答此题的关键.4.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为 .【分析】本题关键在于找到两个极端,即BA ′取最大或最小值时,点P 或Q 的位置.经实验不难发现,分别求出点P 与B 重合时,BA ′取最大值3和当点Q 与D 重合时,BA ′的最小值1.所以可求点A ′在BC 边上移动的最大距离为2.【解答】解:当点P 与B 重合时,BA ′取最大值是3, 当点Q 与D 重合时(如图),由勾股定理得A ′C =4,此时BA ′取最小值为1. 则点A ′在BC 边上移动的最大距离为3﹣1=2. 故答案为:2【题后思考】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.5.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .【分析】如图,经分析、探究,只有当直径EF最大,且点A落在BD上时,PD最小;根据勾股定理求出BD的长度,问题即可解决.【解答】解:如图,∵当点P落在梯形的内部时,∠P=∠A=90°,∴四边形PF AE是以EF为直径的圆内接四边形,∴只有当直径EF最大,且点A落在BD上时,PD最小,此时E与点B重合;由题意得:PE=AB=8,由勾股定理得:BD2=82+62=80,∴BD=45,∴PD=458 .【题后思考】该命题以直角梯形为载体,以翻折变换为方法,以考查全等三角形的判定及其性质的应用为核心构造而成;解题的关键是抓住图形在运动过程中的某一瞬间,动中求静,以静制动.6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.【分析】取AB的中点E,连接OD、OE、DE,根据直角三角形斜边上的中线等于斜边的一半可得OE=AB,利用勾股定理列式求出DE,然后根据三角形任意两边之和大于第三边可得OD过点E时最大.【解答】解:如图,取AB的中点E,连接OD、OE、DE,∵∠MON=90°,AB=2∴OE=AE=12AB=1,∵BC=1,四边形ABCD是矩形,∴AD,∴DE2,根据三角形的三边关系,OD<OE+DE,∴当OD过点E是最大,最大值为2+1.故答案为:2+1.【题后思考】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,勾股定理,确定出OD过AB的中点时值最大是解题的关键.7.如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD 和等腰直角△BCE,那么DE长的最小值是.【分析】设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=22x,CD′=22(4﹣x),根据勾股定理然后用配方法即可求解.【解答】解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=22x,CD′=22(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=12x2+12(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.【题后思考】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×33∴PK+QK3故答案为:3.【题后思考】本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.9.如图所示,正方形ABCD的边长为1,点P为边BC上的任意一点(可与B、C重合),分别过B、C、D作射线AP的垂线,垂足分别为B′、C′、D′,则BB′+CC′+DD′的取值范围是.【分析】首先连接AC,DP.由正方形ABCD的边长为1,即可得:S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,继而可得12AP•(BB′+CC′+DD′)=1,又由1≤AP≤2,即可求得答案.【解答】解:连接AC,DP.∵四边形ABCD是正方形,正方形ABCD的边长为1,∴AB=CD,S正方形ABCD=1,∵S△ADP=12S正方形ABCD=12,S△ABP+S△ACP=S△ABC=12S正方形ABCD=12,∴S△ADP+S△ABP+S△ACP=1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2 AP,∵1≤AP≤2,∴当P当P与C重合时,有最小值2.∴2≤BB′+CC′+DD′≤2.故答案为:2≤BB′+CC′+DD′≤2.【题后思考】此题考查了正方形的性质、面积及等积变换问题.此题难度较大,解题的关键是连接AC,DP,根据题意得到S△ADP+S△ABP+S△ACP=1,继而得到BB′+CC′+DD′=2 AP.10.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【题后思考】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.。

轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学

轴对称中的最值模型问题(将军饮马)重难点题型专训(学生版)-初中数学

轴对称中的最值模型问题(将军饮马等)重难点题型专训题型一将军饮马之线段和最值题型二将军饮马之线段差最值题型三将军饮马之两定一动最值题型四三点共线最大值题型五双对称关系求周长最小值题型六两定两动型最值题型七两动一定最值题型八费马点最值问题将军饮马中最短路径问题四大模型一两定点在直线的异侧问题1作法图形原理在直线l 上找一点P ,使得P A+PB 的和最小。

连接AB ,与直线l 的交点P 即为所求。

两点之间,线段最短,此时P A +PB 的和最小。

二两定点在直线的同侧问题2:将军饮马作法图形原理在直线l 上找一点P ,使得P A +PB 的和最小。

作B 关于直线l 的对称点C ,连AC ,与直线l 的交点P 即为所求。

化折为直;两点之间,线段最短,此时P A +PB 的和AC 最小。

三两动点一定点问题问题3:两个动点作法图形原理作P 关于OA 的对称点P 1,作P 关于OB 的对称两点之间,线段最短,此时PC +PD +CD点P 在锐角∠AOB 的内部,在OA 边上找一点C ,在OB 边上找一点D ,,使得PC +PD +CD 的和最小。

点P 2,连接P 1P 2。

的和最小。

四造桥选址问题问题4:造桥选址作法图形原理直线m ∥n ,在m ,n 上分别求点M 、N ,使MN ⊥m ,MN ⊥n ,且AM +MN +BN 的和最小。

将点A 乡向下平移MN 的长度得A 1,连A 1B ,交n 于点N ,过N作NM ⊥m 于M 。

两点之间,线段最短,此时AM +MN +BN 的最小值为A 1B +MN 。

注意:本专题部分题目涉及勾股定理,各位同学可以学习完第3章后再完成该专题训练.勾股定理公式:a 2+b 2=c 2【经典例题一将军饮马之线段和最值】1.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当长为半径画弧,两弧分别交于E 、F ,画直线EF ,D 为BC 的中点,M 为直线EF 上任意一点,若BC =5,△ABC 的面积为15,则BM +MD 的最小长度为()A.5B.6C.7D.82.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠BAC,若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.1.2B.2.4C.4.8D.9.63.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是.4.唐朝著名诗人李颀的代表作品《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”,其中隐含着一个有趣的数学问题.如图1,诗中将士在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问在何处饮马才能使总路程最短?我们可以用轴对称的方法解决这个问题.(1)如图2,作点B关于直线l的对称点B ,连接AB 与直线l交于点C,点C就是所求的位置.理由:如图3,在直线l上另取不同于点C的任一点C ,连接AC ,BC ,B C ,因为点B、B 关于直线l对称,点C、C 在直线l上,所以CB=,C B=,所以AC+CB=AC+CB =,在△AC B 中,依据,可得AB <AC +C B ,所以AC+CB<AC +C B ,即AC+CB最小.(2)迁移应用:如图4,△ABC是等边三角形,N是AB的中点,AD是BC边上的中线,AD=6,M是AD上的一个动点,连接BM、MN,则BM+MN的最小值是.【经典例题二将军饮马之线段差最值】5.如图,在△ABC中,AB=CB,∠B=100°.延长线段BC至点D,使CD=BC,过点D作射线DP∥AB,点E为射线DP上的动点,分别过点A,D作直线EC的垂线AM,DN.当AM-DN的值最大时,∠ACE的度数为.6.如图,AB⎳DP,E为DP上一动点,AB=CB=CD,过A作AN⊥EC交直线EC于N,过D作DM ⊥EC交直线EC于点M,若∠B=114°,当AN-DM的值最大时,则∠ACE=.7.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.已知△ABC的顶点均在格点上.(1)画出格点三角形ABC关于直线DE对称的△A B C ;(2)△A B C 的面积是(3)在直线DE上找出点P,使P A-PC最大,并求出最大值为.(保留作图痕迹)8.如图,已知△ABC的三个顶点在格点上.(1)画出△A1B1C1,使它与△ABC关于直线MN对称;(2)在直线MN上画出点D,使∠BDM=∠CDN.(3)在直线MN上画出点P,使P A-PC最大.【经典例题三将军饮马之两定一动最值】9.小王准备在红旗街道旁建一个送奶站,向居民区A,B提供牛奶,要使A,B两小区到送奶站的距离之和最小,则送奶站C的位置应该在( ).A. B.C. D.10.(2023春·黑龙江齐齐哈尔·八年级校考阶段练习)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11.(2023春·全国·八年级专题练习)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是.12.(2023·江苏·八年级假期作业)如图,在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线DE交AB于点D,若AE=3,(1)求BC的长;(2)若点P是直线DE上的动点,直接写出P A+PC的最小值为.【经典例题四三点共线最大值】13.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A-PB的最大值为.14.如图,AC,BD在AB的同侧,AC=2,BD=8,AB=10,M为AB的中点,若∠CMD=120°,则CD的最大值为()A.12B.15C.18D.2015.如图,△ABC为等腰直角三角形,∠ACB=90°,M在△ABC的内部,∠ACM=4∠BCM,P为射线CM上一点,当|P A-PB|最大时,∠CBP的度数是.16.如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)若以N点为原点建立平面直角坐标系,点B的坐标为0,5,则△ABC关于x轴对称△A2B2C2,写出点A2,C2的坐标.(3)在直线MN上找点P使PB-P A的最大值.最大,在图形上画出点P的位置,并直接写出PB-P A【经典例题五双对称关系求周长最小值】17.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°18.如图,在四边形ABCD中,∠A=∠C=90°,∠B=32°,在边AB,BC上分别找一点E,F使△DEF的周长最小,此时∠EDF=()A.110°B.112°C.114°D.116°19.如图,在△ABC中,AB=AC=10cm,BC=9cm,AB的垂直平分线交AB于点M,交AC于点N,在直线MN上存在一点P,使P、B、C三点构成的△PBC的周长最小,则△PBC的周长最小值为.20.在草原上有两条交叉且笔直的公路OA、OB,在两条公路之间的点P处有一个草场,如图,∠AOB=30°,OP=6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.21.几何模型:条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.解法:作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且P A+PB的最小值为线段A B的长.(1)根据上面的描述,在备用图中画出解决问题的图形;(2)应用:①如图2,已知∠AOB=30°,其内部有一点P,OP=12,在∠AOB的两边分别有C、D两点(不同于点O),使△PCD的周长最小,请画出草图,并求出△PCD周长的最小值;②如图3,∠AOB=20°,点M、N分别在边OA、OB上,且OM=ON=2,点P,Q分别在OB、OA上,则MP+PQ+QN的最小值是.22.如图,在四边形ABCD中,∠BAD=∠B=∠D=90°,AD=AB=4,E是AD中点,M是边BC上的一个动点,N是边CD上的一个动点,则AM+MN+EN的最小值是.23.如图,在等边△ABC中,AC=12,AD是BC边上的中线,点P是AD上一点,且AP=5.如果点M、N分别是AB和AD上的动点,那么PM+MN+NB的最小值为.【经典例题七两动一定最值】24.如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.25.如图所示,在等边△ABC中,点D、E、F分别在边BC、AB,AC上,则线段DE+DF的最小值是()A.BC边上高的长B.线段EF的长度C.BC边的长度D.以上都不对26.如图,在△ABC中,∠ABC=90°,BC=8,AC=10,点P、Q分别是边BC、AC上的动点,则AP+PQ的最小值等于()A.4B.245C.5 D.48527.如图,在等腰△ABC中,AB=AC=8,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB、AD上的动点,则MN+BN的最小值是.【经典例题八费马点最值问题】28.【问题提出】(1)如图1,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM,CM.若连接MN,则△BMN的形状是.(2)如图2,在Rt△ABC中,∠BAC=90°,AB+AC=10,求BC的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD,AB+BC=6千米,∠ABC=60°,公园内有一个儿童游乐场E,分别从A、B、C向游乐场E修三条AE,BE,CE,求三条路的长度和(即AE+ BE+CE)最小时,平行四边形公园ABCD的面积.29.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat po int).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为6的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.6B.32+6C.63D.930.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是等边△ABC的费马点,且OA+OB+OC=18,则这个等边三角形的高的长度为;(2)如图2,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:点P是△ABC的费马点;(3)应用探究:已知有A、B、C三个村庄的位置如图3所示,能否在合适的位置建一个污水处理站Q,使得该处理站分别连接这三个村庄的水管长度之和最小?如果能,请你说明该如何确定污水处理站Q的位置,并证明该位置满足设计要求.31.定义:若P为△ABC内一点,且满足∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)如图1,若点O是高为3的等边△ABC的费马点,则OA+OB+OC=;(2)如图2,已知P是等边△ABD外一点,且∠APB=120°,请探究线段P A,PB,PD之间的数量关系,并加以证明;(3)如图3,已知△ABC,分别以AB、AC为边向外作等边△ABD与等边△ACE,线段CD、BE交于点P,连接AP,求证:①点P是△ABC的费马点;②P A+PB+PC=CD.32.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC=∠CP A=120°,P A+PB+PC的值最小.(1)如图2,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,小林利用“转化”思想,将△ABP绕顶点A旋转到△ACP 处,连接PP ,此时△ACP ≌△ABP,这样就可以通过旋转变换,将三条线段P A,PB,PC转化到一个三角形中,从而求出∠APB=.(2)如图3,在图1的基础上延长BP,在射线BP上取点D,E,连接AE,AD.使AD=AP,∠DAE=∠P AC,求证:BE=P A+PB+PC.(3)如图4,在直角三角形ABC中,∠ABC=90°,∠ACB=30°,AB=1,点P为直角三角形ABC的费马点,连接AP,BP,CP,请直接写出P A+PB+PC的值.33.(2024八年级上·浙江·专题练习)如图,△ABC中,点D在BC边上,过D作DE⊥BC交AB于点E,P为DC上的一个动点,连接P A、PE,若P A+PE最小,则点P应该满足()A.P A=PCB.P A=PEC.∠APE=90°D.∠APC=∠DPE34.(24-25八年级上·全国·课后作业)如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的一动点,要使P A+PB的值最小,则点P应满足的条件是()A.P A=PBB.PC=PDC.∠APB=90°D.∠BPC=∠APD35.(23-24八年级下·四川巴中·期末)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当长为半径画弧,两弧分别交于E、F,画直线EF,D为BC的中点,M为直线EF上任意一点,若BC=5,△ABC 的面积为15,则BM+MD的最小长度为()A.5B.6C.7D.836.(23-24八年级下·河南郑州·阶段练习)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为()A.60°B.120°C.90°D.45°37.(23-24八年级上·湖南湘西·期末)在某草原上,有两条交叉且笔直的公路OA、OB,如图,∠AOB=30°,在两条公路之间的点P处有一个草场,OP=4.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,存在M、N使得△PMN的周长最小.则△PMN周长的最小值是( ).A.4B.6C.8D.1238.(22-23八年级下·福建漳州·期中)如图,在△ABC中,AB=AC,BC=6,S△ABC=18,D是BC中点,EF垂直平分AB,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.3B.6C.9D.1239.(23-24八年级上·福建福州·期中)在平面直角坐标系xOy中,A0,4,动点B在x轴上,连接AB,将线段AB绕点A逆时针旋转60°至AC,连接OC,则线段OC长度最小为()A.0B.1C.2D.340.(22-23七年级下·山东济南·阶段练习)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找到一点M、N,使得△AMN的周长最小,则∠AMN+∠ANM的度数为()A.100°B.110°C.120°D.130°41.(21-22八年级上·四川广元·期末)如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2CD,在AD上找一点P,使PC+PB的值最小;则PC+PB的最小值为()A.4B.3C.5D.642.(21-22八年级上·广东广州·期中)在Rt △ABC 中,∠C =90°,∠A =30°,点P 是边AC 上一定点,此时分别在边AB ,BC 上存在点M ,N 使得△PMN 周长最小且为等腰三角形,则此时AP PC 的值为()A.12B.1C.32D.243.(2024七年级下·全国·专题练习)如图,△ABC 中,AB =AC ,BC =5,S △ABC =15,AD ⊥BC 于点D ,EF 垂直平分AB ,交AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为.44.(23-24七年级下·陕西西安·阶段练习)如图,在四边形ABCD 中,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小,此时∠MAN =80°,则∠BAD 的度数为.45.(23-24七年级下·山东济南·期末)在草原上有两条交叉且笔直的公路OA 、OB ,在两条公路之间的点P 处有一个草场,如图,∠AOB =30°,OP =6.5.现在在两条公路上各有一户牧民在移动放牧,分别记为M、N,若存在M、N使得△PMN的周长最小,则△PMN周长的最小值是.46.(22-23七年级下·广东河源·期末)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB、BC上分别找一点E、F,使△DEF周长最小,此时∠EDF=.47.(22-23八年级上·广东东莞·期中)如图,点A-2,1,点P是在x轴上,且使P A+PB最小,写,B2,3出点P的坐标.48.(22-23八年级上·湖南岳阳·期中)如图,直线l垂直平分△ABC的AB边,在直线l上任取一动点O,连结OA、OB、OC.若OA=5,则OB=.若AC=9,BC=6,则△BOC的最小周长是.49.(22-23八年级上·四川绵阳·期中)在平面直角坐标系xOy中,点A的坐标是0,2,点B在x轴的负半轴上且∠ABO=30°,点P与点O关于直线AB对称,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为.50.(22-23八年级上·海南海口·期中)如图,在四边形ABCD中,∠A=∠C=90°,∠B=36°,在边AB,BC上分别找一点E,F使△DEF的周长最小.此时∠EDF的大小是.51.(22-23八年级上·湖北黄石·期末)如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=103cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为cm.52.(21-22八年级上·福建厦门·期末)小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由P A、PB 跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长PQ+P A+PB的和最小.已知P A=1.6km,PB=3.2km,PQ=0.1km,在A村看点P位置是南偏西30°,那么在A村看B村的位置是.53.(22-23八年级上·云南昆明·期末)如图,△ABC的三个顶点坐标分别为A2,3.,B1,1,C5,3(1)作出△ABC关于y轴对称的图形△A1B1C1.(2)求△A1B1C1的面积;(3)在x轴上找一点P,使得PC+PB最小,请直接写出点P的坐标.54.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在平面直角坐标系中,已知A-3,4,B-1,2,C1,3.(1)在平面直角坐标系中画出△ABC,将△ABC平移得到△A B C ,已知A 1,-1,则C 坐标是.(2)求出△ABC的面积;(3)在x轴上有一点P,使得P A+PB的值最小,保留作图痕迹.55.(23-24八年级下·广东深圳·期末)【综合实践活动】【问题背景】如图1,A,B表示两个村庄,要在A,B一侧的河岸边建造一个抽水站P,使得它到两个村庄的距离和最短,抽水站P应该修建在什么位置?【数学建模】小坤发现这个问题可以用轴对称知识解决,他先将实际问题抽象成如下数学问题:如图2,A,B是直线l同侧的两个点,点P在直线l上.P在何处时,P A+PB的值最小.画图:如图3,作B关于直线l的对称点B ,连结AB 与直线l交于点P,点P的位置即为所求.证明:∵B和B 关于直线l对称∴直线l垂直平分BB∴PB=,∴P A+PB=P A+PB根据“”(填写序号:①两点之间,线段最短;②垂线段最短;③两点确定一列条直线.)可得P A+ PB 最小值为(填线段名称),此时P点是线段AB 和直线l的交点.【问题拓展】如图4,村庄B的某物流公司在河的对岸有一个仓库C(河流两侧河岸平行,即GD∥EF),为了方便渡河,需要在河上修建一座桥MN(桥的长度固定不变,等于河流的宽度且与河岸方向垂直),请问桥MN修建在何处才能使得B到C的路线最短?请你画出此时桥MN的位置(保留画图痕迹,否则不给分).【迁移应用】光明区某湿地公园如图5所示,四边形AEDC为花海景区,∠CDE=∠E=90°,AE=80米,DE=50米,长方形CFGH为人工湖景区,为了方便市民观景,公园决定修建一条步行观光路线(折线AM-MN-BN),A为起点,终点B在ED上,BD=30米,MN为湖边观景台,长度固定不变(MN =40米),且需要修建在湖边所在直线CF上,步行观光路线的长度会随着观景台位置的变化而变化,请直接写出步行观光路线的最短长度.2156.(2023九年级·四川成都·专题练习)在△ABC 中,AC =BC ,点E 在是AB 边上一动点(不与A 、B 重合),连接CE ,点P 是直线CE上一个动点.(1)如图1,∠ACB =120°,AB =16,E 是AB 中点,EM =2,N 是射线CB 上一个动点,若使得NP +MP 的值最小,应如何确定M 点和点N 的位置?请你在图2中画出点M 和点N 的位置,并简述画法;直接写出NP +MP 的最小值;(2)如图3,∠ACB =90°,连接BP ,∠BPC =75°且BC =BP .求证:PC =P A .57.(23-24七年级下·广东深圳·期末)【背景材料】对称美是我国古人和谐平衡思想的体现,常被用于建筑、器物、绘画、标识等作品的设计上,比如图1.同时,对称在解决生活中的实际问题时,也往往有很大的作用.【问题提出】某小区要在街道旁修建一个奶站,向居民区A ,B 提供牛奶,奶站应建在什么地方,才能使A ,B 到它的距离之和最短?该问题给牛奶公司造成了困扰,现向居民们征求意见.【问题解决】小明同学将小区和街道抽象出的平面图形,并用轴对称的方法巧妙地解决了这个问题.如图2,作A 关于直线m 的对称点A ,连接A B 与直线m 交于点C ,点C 就是所求的位置.(1)请你在下列阅读、应用的过程中,完成解答并填空:证明:如图3,在直线m 上另取任一点D ,连结AD ,A D ,BD ,∵直线m 是点A ,A 的对称轴,点C ,D 在m 上,22∴CA =,DA =,∴AC +CB =A C +CB =.在△A DB 中,∵A B <A D +DB ,∴A C +CB <A D +DB .∴AC +CB <AD +DB ,即AC +CB 最小.(2)如图4,在等边△ABC 中,E 是AB 上的点,AD 是∠BAC 的平分线,P 是AD 上的点,若AD =5,则PE +PB 的最小值为.【拓展应用】(3)“龙舟水”来势汹汹,深圳“雨雨雨”模式开启,深圳某学校的志愿者们在查阅地图后,画出了平面示意图5.其中,点A 表示龙潭公园,点B 表示宝能广场,点C 表示万科里,点D 表示万科广场,点E 表示龙城广场地铁站.如图6,志愿者计划在B 宝能广场和D 万科广场之间摆放一批共享雨伞,使得共享雨伞的位置到B宝能广场、C 万科里、D 万科广场和E 龙城广场地铁站的距离的和最小.若点A 与点C 关于BD 对称,请你用尺子在BD 上画出“共享雨伞”的具体摆放位置(用点G 表示).58.(24-25八年级上·全国·假期作业)如图,B、C 两点关于y 轴对称,点A 的坐标是0,b ,点C 坐标为-a ,-a -b .(1)直接写出点B 的坐标为;(2)用尺规作图,在x 轴上作出点P ,使得AP +PB 的值最小;(3)∠OAP =度.59.(21-22七年级上·陕西商洛·期末)点C 为∠AOB 内一点.23(1)在OA上求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.60.(23-24八年级上·湖南长沙·期末)在四边形ABCD中,∠BAD=BCD=90°,∠ABC=135°,AB=32,BC=1,在AD、CD上分别找一点E、F,使得△BEF的周长最小,求△BEF周长的最小值.61.(2023八年级上·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,CD平分∠ACB交斜边AB于点D,动点P从点C出发,沿折线CA-AD向终点D运动.(1)点P在CA上运动的过程中,当CP时,△CPD与△CBD的面积相等;(直接写出答案)(2)点P在折线CA-AD上运动的过程中,若△CPD是等腰三角形,求∠CPD度数;(3)若点E是斜边AB的中点,当动点P在CA上运动时,线段CD所在直线上存在另一动点M,使两线段MP、ME的长度之和,即MP+ME的值最小,则此时CP的长度(直接写出答案).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学的几何最值问题经典例题1. (2016山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21+B .5C .1455 5D .522.(2016湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。

3.(2016四川凉山5分)如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。

4. (2016四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .5.(2016湖北荆门3分)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm6.(2016广西贵港2分)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 .7.(2016浙江台州4分)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为A . 1B .3C . 2D .3+18.(2016四川广元3分) 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0)B.(21-,21-)C.(22,22-)D.(22-,22-)9.(2016江苏连云港12分)已知梯形ABCD ,AD∥BC,AB⊥BC,AD =1,AB =2,BC =3,问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么?问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE =PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P 为DC 边上任意一点,延长PA 到E ,使AE =nPA(n 为常数),以PE 、PB 为边作平行四边形PBQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.10. (2016四川自贡12分)如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.11. (2016福建南平14分)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)12.(2016四川南充8分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M 是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.13.(2016云南昆明12分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.14. (2016甘肃兰州4分)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为【 】A .130° B.120° C.110° D.100°15.(2016湖北十堰6分)阅读材料:例:说明代数式 22x 1(x 3)4++-+的几何意义,并求它的最小值. 解: 222222x 1(x 3) 4 (x 0)1(x 3)2++-+=-++-+,如图,建立平面直角坐标系,点P (x ,0)是x 轴上一点,则22(x 0)1-+可以看成点P 与点A (0,1)的距离,22(x 3)2-+可以看成点P 与点B (3,2)的距离,所以原代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA +PB 的最小值.设点A 关于x 轴的对称点为A′,则PA=PA′,因此,求PA +PB 的最小值,只需求PA′+PB 的最小值,而点A′、B 间的直线段距离最短,所以PA′+PB 的最小值为线段A′B 的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32。

根据以上阅读材料,解答下列问题:(1)代数式22(x 1)1(x 2)9-++-+的值可以看成平面直角坐标系中点P (x ,0)与点A (1,1)、点B 的距离之和.(填写点B 的坐标)(2)代数式 22x 49x 12x 37++-+的最小值为 .16.(2016江苏扬州3分)如图,线段AB 的长为2,C 为AB上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE,那么DE 长的最小值是 .17.(2016广东广州14分)如图,在平行四边形ABCD 中,AB=5,BC=10,F 为AD 的中点,CE⊥AB 于E ,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE 的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k∠AEF?若存在,求出k 的值;若不存在,请说明理由.②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.18.(2016江苏镇江11分)等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1)。

(1)求证:AM=AN;(2)设BP=x。

①若,BM=38,求x的值;②记四边形ADPE与△ABC重叠部分的面积为S,求S与x之间的函数关系式以及S的最小值;③连接DE,分别与边AB、AC交于点G、H(如图2),当x取何值时,∠BAD=150?并判断此时以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由。

19. (2016陕西省12分)如图,正三角形ABC的边长为3+3.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上.在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形E'F'P'N',且使正方形E'F'P'N'的面积最大(不要求写作法);(2)求(1)中作出的正方形E'F'P'N'的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得D、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值及最小值,并说明理由.第16题图H G F E DCB A20.(2016四川宜宾12分)如图,在△ABC 中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF 与△ABC 重合在一起,△ABC 不动,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 、始终经过点A ,EF 与AC 交于M 点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF 运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.21.(2016安徽省12分)在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A 1B 1C .(1)如图1,当AB∥CB 1时,设A 1B 1与BC 相交于点D .证明:△A 1CD 是等边三角形;(2)如图2,连接AA 1、BB 1,设△ACA 1和△BCB 1的面积分别为S 1、S 2.求证:S 1∶S 2=1∶3;(3)如图3,设AC 的中点为E ,A 1B 1的中点为P ,AC =a ,连接EP .当θ= °时,EP 的长度最大,最大值为 .22.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________(沈阳)23.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .(武汉)。

相关文档
最新文档