沈阳农业大学601 621数学(理)18.20年真题
2020年辽宁高考理科数学试题及答案
2020年辽宁高考理科数学试题及答案注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上。
本试卷满分150分。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A BUA.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3}2.若α为第四象限角,则A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .55B .255C .355D .4556.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =A .2B .3C .4D .57.下图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .329.设函数()ln |21|ln |21|f x x x =+--,则f (x ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减10.已知△ABC的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为 AB .32C .1 D11.若2x-2y<3−x-3−y,则A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln ∣x -y ∣>0D .ln ∣x -y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)
2020年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)【名师简评】本套试卷全面考查了《考试大纲》所规定的考试内容,如第4、15、18题分别考查了程序框图、三视图、统计案例等新增内容的应用;第22、23、24题分别考查了选修系列4中的几何证明选讲、坐标系与参数方程、不等式证明等知识。
试卷充分重视主干知识的地位,考的宗旨对推动数学教学改革起到了良好的导向作用。
第I 卷一、选择墨:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项 是符合题目要求的,(1) 已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2)设a,b 为实数,若复数11+2ii a bi=++,则 (A )31,22a b == (B) 3,1a b == (C) 13,22a b == (D) 1,3a b ==(3)两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )12 (B)512(C)14 (D)16(4)如果执行右面的程序框图,输入正整数n ,m , 满足n ≥m ,那么输出的P 等于(A )1m n C -(B) 1m nA -(C) mn C (D) mn A(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是(A )23 (B)43 (C)32(D)3(6)设{a n }是有正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =(A )152 (B)314 (C)334(D)172(7)设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足.如 果直线AF 的斜率为-3,那么|PF|= (A)43 (B)8 (C)83 (D) 16(8)平面上O,A,B 三点不共线,设,OA=a OB b =,则△OAB 的面积等于 (A)222|||()|a b a b -g (B) 222|||()|a b a b +g (C)2221|||()2|a b a b -g (D) 2221|||()2|a b a b +g(9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐 近线垂直,那么此双曲线的离心率为 (A) 2 (B)3 (C)312+ (D) 512+(1O)已知点P 在曲线y=41x e +上,a 为曲线在点P 处的切线的倾斜角,则a 的取值 范围是 (A)[0,4π) (B)[,)42ππ 3(,]24ππ (D) 3[,)4ππ(11)已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤-(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)(0,62+) (B)(1,22)(C) (62-,62+) (D) (0,22)二、填空题:本大题共4小题,每小题5分。
高考最新-2018年辽宁省高考数学试卷(理科) 精品
2018年辽宁省高考数学试卷第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()( 球的表面积公式24R S π=,其中R 表示球的半径球的体积公式V R =433π,其中R 表示球的半径一. 选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 复数111-++-=iiz ,在复平面内,z 所对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件3. 设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A. 10100610480C C C ⋅B. 10100410680C C C ⋅C. 10100620480C C C ⋅D. 10100420680C C C ⋅ 4. 已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂ 其中真命题是( ) A. ①和② B. ①和③ C. ③和④ D. ①和④ 5. 函数1ln(2++=x x y 的反函数是( )A. 2x x e e y -+= B. 2x x e e y -+-=C. 2x x e e y --= D. 2xx e e y ---=6. 若011log 22<++a a a,则a 的取值范围是( ) A. ),21(+∞ B. ),1(+∞ C. )1,21( D. )21,0(7. 在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则( )A. 11<<-aB. 20<<aC. 2321<<-a D. 2123<<-a 8. 若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( ) A. (1,2) B. (2,+∞) C. [3,+∞) D. (3,+∞)9. 若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( ) A. 8或-2 B. 6或-4 C. 4或-6 D. 2或-810. 已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,1-≠λ,λλα++=121x x ,λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A. 0<λB. 0=λC. 10<<λD. 1≥λ11. 已知双曲线的中心在原点,离心率为3。
2018年辽宁省高考理科数学试题Word版含答案
2018年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c是非零向量,学科 网已知命题P :若0a b ∙= ,0b c ∙= ,则0a c ∙= ;命题q :若/,/a b b c,则//a c,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减D .在区间[,]63ππ-上单调递增10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12B .23C .34D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-.若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12B .14C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X . 19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5}【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i - 【答案】D(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B(4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A(6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =(A ) 2 (B )73 (C ) 83(D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2 于是63693112471123S q q S q ++++===++ 【答案】B (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x x x x ---=--,当x =1时切线斜率为k =-2 【答案】D(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23【答案】B(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23【答案】A10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)
2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73 (C ) 83(D )3 (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2020年(理科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若1z i =+,则2|2|(z z -= ) A .0B .1C .2D .22.(5分)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+4.(5分)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则(p = ) A .2B .3C .6D .95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C)︒的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(1,i i x y i =,2,⋯,20)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+B .2y a bx =+C .x y a be =+D .y a blnx =+6.(5分)函数43()2f x x x =-的图象在点(1,(1))f 处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.(5分)设函数()cos()6f x x πω=+在[,]ππ-的图象大致如图,则()f x 的最小正周期为( )A .109πB .76π C .43π D .32π 8.(5分)25()()y x x y x++的展开式中33x y 的系数为( )A .5B .10C .15D .209.(5分)已知(0,)απ∈,且3cos28cos 5αα-=,则sin (α= ) A 5B .23 C .13D 5 10.(5分)已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.(5分)已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB 最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.(5分)若242log 42log a b a b +=+,则( ) A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。