光环大数据可视化培训告诉你什么是数据可视化_光环大数据培训
大数据的可视化实训报告
一、实训背景随着信息技术的飞速发展,大数据已经成为现代社会的重要资源。
为了培养具备大数据处理、分析及可视化能力的人才,我们开展了大数据可视化实训。
本次实训旨在使学生了解大数据可视化的基本原理和方法,掌握数据可视化工具的使用,并能够将数据分析结果以可视化的形式展示出来。
二、实训目标1. 了解大数据可视化的基本概念和原理;2. 掌握常见的数据可视化工具,如ECharts、Tableau等;3. 学会使用Python、R等编程语言进行数据可视化;4. 能够根据实际需求,设计并实现数据可视化项目。
三、实训内容1. 数据可视化基本原理(1)数据可视化概述:数据可视化是将数据以图形、图像等形式呈现,使人们更容易理解数据内涵和规律的一种方法。
(2)数据可视化类型:包括散点图、柱状图、折线图、饼图、雷达图等。
(3)数据可视化原则:包括清晰性、简洁性、准确性、易读性等。
2. 常见数据可视化工具(1)ECharts:一款基于JavaScript的交互式图表库,支持多种图表类型,具有丰富的交互功能。
(2)Tableau:一款数据可视化工具,可以连接多种数据源,支持丰富的图表类型和交互功能。
(3)Python可视化库:包括Matplotlib、Seaborn、Pandas等,可以方便地绘制各种图表。
3. 数据可视化项目实践(1)项目背景:某公司销售部门需要了解不同地区、不同产品的销售情况,以便制定合理的销售策略。
(2)数据收集:收集公司近一年的销售数据,包括地区、产品、销售额、利润等。
(3)数据处理:使用Python进行数据清洗、整合和预处理。
(4)数据可视化:使用ECharts绘制销售地图、柱状图、折线图等,展示不同地区、不同产品的销售情况。
(5)结果分析:根据可视化结果,分析不同地区、不同产品的销售趋势,为公司制定销售策略提供参考。
四、实训总结1. 通过本次实训,我们掌握了大数据可视化的基本原理和方法,了解了常见的数据可视化工具。
光环大数据的人工智能培训 让你快速掌握高薪人工智能技术_光环大数据培训
光环大数据的人工智能培训让你快速掌握高薪人工智能技术_光环大数据培训光环大数据的人工智能培训——让你快速掌握高薪人工智能技术。
近年来,科技巨头围绕人工智能产业,开展了大量的收购;标的包括人工智能初创企业、大数据公司)和芯片研发公司,人工智能以更快的速度发展中。
人工智能培训人工智能(ArtificialIntelligence),英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
在未来,人工智能将成为一种更常见、更重要的陪伴者。
人工智能助理会知道你在工作且有10分钟的空余时间,然后帮你完成待办事项中优先级靠前的事项。
人工智能将会让我们的生活更富成效和更具创造性。
毫无疑问,我们是在创造一个新的物种,一个在智力上可能没有上限的物种。
一些未来主义者预测,所谓的奇点,即计算机智能超越人类智能的时刻,可能会在2100年之前到来,而另一些人声称这将仍然只是科幻作品中的畅想。
这种可能性听起来令人振奋,但也让人觉得有点可怕——也许两者都有一些。
人工智能的发展将来对人类有益还是有害呢?光环大数据的人工智能培训讲师坚信是有益的。
那么人工智能培训光环大数据好不好?我们先来看看人工智能培训课程的安排吧。
如果课程安排都不尽如人意,还能奢望学生学到多少实用的技术呢?课程一阶段PythonWeb学习内容:PythonWeb内容实战人工智能培训学习目标:掌握HTML与CSS基础与核心、JavaScript原生开发,jQuery框架、XML与AJAX技术完成项目:大型网站设计项目、京东电商网站项目、JS原生特效编写实战。
课程二阶段PythonLinux学习内容:PythonLinux实战开发学习目标:熟练Linux安装与管理、熟练使用Shell核心编程,掌握服务器配置与管理。
完成项目:ERP员工管理系统开发、图书管理系统开发、数据库系统调优。
课程三阶段文件与数据库学习内容:文件与数据库实战开发学习目标:熟练掌握Python各类操作,熟练掌握数据库语法与函数编程,及大数据库解决方案完成项目:权限系统数据库设计、日志系统数据库设计、综合系统数据库设计。
数据可视化培训资料
数据可视化培训资料在当今数字化的时代,数据已经成为了企业和组织决策的重要依据。
然而,面对海量的数据,如何能够快速、准确地理解和分析它们,成为了一个关键的问题。
数据可视化作为一种有效的手段,可以将复杂的数据以直观、清晰的方式呈现出来,帮助人们更好地理解数据背后的信息和规律。
因此,掌握数据可视化的技能对于提升个人和团队的数据分析能力具有重要意义。
一、数据可视化的基本概念数据可视化是指将数据通过图形、图表、地图等视觉元素进行表达和呈现的过程。
其目的是将抽象的数据转化为易于理解和感知的形式,以便用户能够快速发现数据中的模式、趋势和关系。
数据可视化不仅仅是简单地绘制图形,更是一种通过设计和布局来传达数据内涵的艺术。
二、数据可视化的重要性1、增强数据理解通过将数据以可视化的形式呈现,可以让人们更容易理解数据的含义和结构。
相比于枯燥的数字表格,直观的图表能够更快速地传达数据的主要特征和趋势。
2、发现数据中的规律可视化能够帮助我们发现隐藏在数据中的规律和模式。
例如,通过折线图可以清晰地看到数据的变化趋势,通过柱状图可以比较不同类别之间的数据差异。
3、提高沟通效率在团队合作和决策过程中,数据可视化能够有效地促进成员之间的沟通和交流。
清晰的可视化图表可以避免因对数据理解不一致而产生的误解和争议。
4、支持决策制定决策者可以基于可视化的数据做出更明智、更准确的决策。
直观的展示能够让他们快速了解业务的现状和问题,从而制定出更有效的策略。
三、数据可视化的基本原则1、准确性可视化的结果必须准确地反映数据的真实情况,不能因为追求美观而扭曲数据。
2、简洁性避免过度复杂的设计和过多的元素,保持图表简洁明了,让用户能够快速获取关键信息。
3、一致性在同一套可视化作品中,使用一致的颜色、字体、图表类型等,以保持整体的风格统一。
4、突出重点通过适当的颜色、大小、形状等手段,突出数据中的重点和关键信息,引导用户的注意力。
四、常用的数据可视化工具1、 Excel作为最常见的办公软件之一,Excel 提供了丰富的图表功能,如柱状图、折线图、饼图等,适合处理简单的数据可视化任务。
大数据可视化
大数据可视化一、引言大数据可视化是指通过图表、图形、地图等可视化方式将大量的数据呈现出来,使得数据更加直观、易于理解和分析。
随着大数据时代的到来,大数据可视化成为了重要的工具和技术,匡助人们更好地利用和应用大数据。
本文将介绍大数据可视化的定义、优势、应用场景以及常用的工具和技术。
二、定义大数据可视化是一种将大数据呈现为可视化形式的技术和方法。
通过将大数据转化为图表、图形、地图等可视化元素,使得数据更加直观、易于理解和分析。
大数据可视化能够匡助人们发现数据中的模式、趋势和关联性,从而支持决策和判断。
三、优势1. 提供直观的数据呈现:大数据可视化通过图表、图形等形式将数据直观地展示出来,使得人们能够一目了然地看到数据的特征和规律。
2. 促进数据分析和决策:通过大数据可视化,人们可以更加深入地分析数据,发现隐藏在数据暗地里的模式和趋势,从而做出更加准确和明智的决策。
3. 提高信息传递效率:大数据可视化能够将复杂的数据变得简单易懂,使得信息传递更加高效和清晰,减少沟通和理解的障碍。
四、应用场景1. 商业智能分析:大数据可视化在商业智能分析中起到了重要的作用。
通过将销售数据、市场数据等可视化展示,匡助企业了解市场趋势、产品销售情况等,从而做出相应的调整和决策。
2. 金融风控:大数据可视化在金融风控中也有广泛的应用。
通过将大量的金融数据可视化展示,匡助金融机构发现潜在的风险和异常情况,及时采取相应的措施。
3. 医疗健康:大数据可视化在医疗健康领域也有着重要的应用。
通过将患者的病历数据、医疗数据等可视化展示,匡助医生更好地了解患者的病情和治疗效果,提供个性化的医疗服务。
五、常用工具和技术1. Tableau:Tableau是一种常用的大数据可视化工具,提供了丰富的图表和图形展示方式,支持多种数据源的连接和分析。
2. Power BI:Power BI是微软推出的一款大数据可视化工具,与其他微软产品无缝集成,提供了强大的数据分析和可视化功能。
Echarts个人轨迹可视化实现_光环大数据培训
Echarts个人轨迹可视化实现_光环大数据培训1. 个人轨迹的可视化是echart通过调用百度地图API后实现,关于Echarts如何调用百度地图API,请参考上一篇文章《Echarts引入百度地图》2. 下图展示的个人轨迹均为虚拟数据3. 本文只做单用户轨迹展示说明,并未深入探讨批量用户轨迹的可视化及优化4.使用工具为:Echarts1.Echart版本说明及模块化文件引入目前百度搜索能看到的有echart2和echart3,由于echart3已不提供百度地图实例化的样本(若强行用echart3,需自行写好相关js脚本),所以下文是基于echart2,下载地址为:/build/echarts-2.2.7.zip模块化文件的引入主要有main.js,map.js,还有echart.jsrequire.config({ paths: { echarts:"echarts", }, }); require([ "echarts", "echarts/chart/main", "echarts/chart/map", ],其中:main.js文件对应在下载的echart2压缩包目录echarts-2.2.7/extension/BMap/src下,该文件是杨骥(echart团队)写的百度地图在echart上的扩展文件map.js文件对应目录为:build/dist/chart,再声明一次,引入百度地图时,dist目录需全部复制到开发文件相应目录下echarts.js同样存在于dist文件此处详细参见《Echarts引入百度地图》一文。
2.个人轨迹展示的思考及实现2.1 对于个人轨迹的可视化,最初的设想是:在用echart写时发现timeline属性始终对应不到options列表,无法渲染options下用户的轨迹参数列表,再后来与R REmap包作者交谈中进一步确认,echart中timeline目前还无办法在百度地图上渲染,这里应该知会一下echart团队的,下面就不对timeline使用做过多说明了。
光环大数据培训用三个案例透析大数据思维的核心
光环大数据培训用三个案例透析大数据思维的核心光环大数据培训机构了解到,逻辑推理能力是人类特有的本领,给出原因,我们能够通过逻辑推理得到结果。
在过去,我们一直非常强调因果关系,一方面是因为我们常常是先有原因,再有结果,另一方面是因为如果我们找不出原因,常常会觉得结果不是非常可信。
而大数据时代,大数据思维要求我们从探求因果联系到探索强相关关系。
以下三个案例分别来自药品研发、司法判决与广告投放,从三个不同的角度了解大数据思维的核心。
大数据与药品研发:寻找特效药的方法比如在过去,现代医学里新药的研制,就是典型的利用因果关系解决问题的例子。
青霉素的发明过程就非常具有代表性。
首先,在19世纪中期,奥匈帝国的塞麦尔维斯(Ignaz Philipp Semmelweis,1818—1865)a、法国的巴斯德等人发现微生物细菌会导致很多疾病,因此人们很容易想到杀死细菌就能治好疾病,这就是因果关系。
不过,后来弗莱明等人发现,把消毒剂涂抹在伤员伤口上并不管用,因此就要寻找能够从人体内杀菌的物质。
最终在1928年弗莱明发现了青霉素,但是他不知道青霉素杀菌的原理。
而牛津大学的科学家钱恩和亚伯拉罕搞清楚了青霉素中的一种物质—青霉烷—能够破坏细菌的细胞壁,才算搞清楚青霉素有效性的原因,到这时青霉素治疗疾病的因果关系才算完全找到,这时已经是1943年,离赛麦尔维斯发现细菌致病已经过去近一个世纪。
两年之后,女科学家多萝西·霍奇金(Dorothy Hodgkin)搞清楚了青霉烷的分子结构,并因此获得了诺贝尔奖,这样到了1957年终于可以人工合成青霉素。
当然,搞清楚青霉烷的分子结构,有利于人类通过改进它来发明新的抗生素,亚伯拉罕就因此而发明了头孢类抗生素。
在整个青霉素和其他抗生素的发明过程中,人类就是不断地分析原因,然后寻找答案(结果)。
当然,通过这种因果关系找到的答案非常让人信服。
其他新药的研制过程和青霉素很类似,科学家们通常需要分析疾病产生的原因,寻找能够消除这些原因的物质,然后合成新药。
数据治理(Data Governance) _光环大数据培训
数据治理(Data Governance) _光环大数据培训什么是数据治理数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据井井有条的一个过程。
数据治理的全过程数据治理其实是一种体系,是一个关注于信息系统执行层面的体系,这一体系的目的是整合IT与业务部门的知识和意见,通过一个类似于监督委员会或项目小组的虚拟组织对企业的信息化建设进行全方位的监管,这一组织的基础是企业高层的授权和业务部门与IT部门的建设性合作。
从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从源头到终端再回到源头形成一个闭环负反馈系统(控制理论中趋稳的系统)。
从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合如果您将要添加一个多领域MDM(主数据是指在整个企业范围内各个系统(操作/事务型应用系统以及分析型系统)间要共享的数据)系统并承认CRM和ERP系统并不是设计用于管理主数据,为何不进行下一步骤并取消它们的创建、更新或删除主数据的功能,而是允许这些系统只能读取和处理主数据呢?{规定某一系统进行数据的录入,其他系统只用该系统的数据。
或者另外搞一套系统,专门用来维护公共数据}何时开始主动数据治理?一些情况要求立即开始主动数据治理,例如当您获得多个CRM系统和ERP系统,它们要求与多领域MDM系统集成,以便让它们继续充当录入系统,或当您的当前源系统非常脆弱或很难维护或修改。
在这些情况下,要忍受困难并从一开始便为主动数据治理作出计划。
一些组织拥有成千上万个直接在MDM系统中授权主数据的最终用户,并且有一个数据管理员团队支持他们、发现异常、解决低质量匹配、在需要时手动合并重复记录等等。
另一种应用情况是当您发现自己最终会选择主动数据治理方法—何必再为建立源系统到多领域MDM系统的双向集成而争论?您或许不妨直接授权最终用户来编写主数据。
云计算与粒计算_光环大数据培训
云计算与粒计算_光环大数据培训云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享 ...云计算云计算,不必细说谁都知道是什么,人们多多少少都有所耳闻。
云计算是继20世纪80年代大型计算机到C/S转变之后,IT界的又一次巨变,它通过互联网将某计算任务分布到大量的计算机上,并可配置共享计算的资源池,且共享软件资源和信息可以按需提供给用户的一种技术。
云计算真正作为一个新兴技术得到IT界认可是在2007年左右,经过这十年的普及和发展,云计算早已走进千万个数据中心,成为IT世界里炙手可热的技术门类,并可以在未来的一段时间内继续获得长足发展。
云计算固然好,但也有不少的缺陷和使用限制,这样才出现了雾计算、霾计算等技术,这些技术都是针对云计算做的很好的补充,满足多样化的市场应用需求。
本文也介绍一个新技术,就是粒计算,粒计算同样是和云计算有着千丝万缕的联系。
其实,粒计算比云计算的概念出现得还早。
在1997年时,美国一大学教授首次在论文中提出了粒计算,这标志着涉及多学科的一个应用研究领域产生。
此后,国外诸多学者对它进行了研究,提出了许多有关粒计算的理论、方法和模型,现已成为研究模糊的、不较精确的、不完整的及海量信息处理的重要工具。
粒计算是一个含义广泛的术语,覆盖了所有有关粒的理论、方法学、技术和工具的研究,并认为粒计算是模糊信息粒化、Rough集理论和区间计算的超集,是粒数学的子集。
粒计算是在问题求解中使用粒子,构建信息粒化,将一类对象基于不可分辨关系、相似性等特征划分为一系列粒。
粒计算模型分为两大类:一类以处理不确定性为主要目标,如以模糊处理为基础的计算模型,以粗糙集为基础的模型,侧重于计算对象的不确定性处理。
模糊概念是粒计算的主要组成部分;另一类则以多粒度计算为目标,如商空间理论。
光环国际大数据可视化培训 什么是大数据可视化_光环大数据培训
光环国际大数据可视化培训什么是大数据可视化_光环大数据培训光环国际大数据可视化培训_什么是大数据可视化?【光环大数据官网:】大据可视化是将数据以不同形式展现在不同系统中,其中包括属性和变量的单位信息,大数据可视化越来越受到企业的重视,光环国际大数据可视化培训怎么样?光环国际大数据可视化培训怎么样?光环国际大数据可视化培训的课程中D3,Smartbi,Tableau,SAPDesignStudio及七大行业的建模,为整个课程的核心知识点。
光环国际大数据可视化培训的课程分为12大阶段50大模块课程+8大企业真实项目实战,每个阶段都有实力案例和项目结合,从简单到专业一步一步带领学生走进大数据可视化的世界,帮助学生顺利走上大数据工程师的道路!光环国际大数据可视化培训,是国内知名的大数据可视化培训机构,作为国内大数据人工智能培训领域的领军者,光环大数据近年来不断开展与国际国内一线技线企业实战技术体系,努力打造企业级高端实战技术人才,为学员创造更大的教育价值,获得广泛的好评。
过去十六年,光环通过高效的教学模式和就业服务的创新,帮助了数十万年轻人实现了自己的梦想,未来,光环将继续探索更为有效的教学模式和教学方法,联合更多国内外知名企业提供更好的就业服务保障体系,帮助更多年轻人实现职业梦。
常规大数据可视化方法许多传统的数据可视化方法经常被使用,比如表格、直方图、散点图、折线图、柱状图、饼图、面积图、流程图、泡沫图表等以及图表的多个数据系列或组合像时间线、维恩图、数据流图、实体关系图等。
此外,一些数据可视化方法经常被使用,却不像前面那些使用的广泛,它们是平行坐标式、树状图、锥形树图和语义网络等。
大数据可视化并非仅仅是静态形式,而应当是互动的。
交互式可视化可以通过缩放等方法进行细节概述。
它有如下的步骤:1、选择:交互式根据用户的兴趣选择数据实体或完整的数据集,以及它的子集。
2、链接:在多个视图找到有用的信息,如图3所示。
光环国际教育 光环国际大数据培训_光环大数据培训
光环国际教育光环国际大数据培训_光环大数据培训光环国际教育,光环国际大数据培训。
光环大数据隶属于光环国际,是国内较早做大数据培训的机构之一,光环大数据成立于2001年,十几年的IT培训经验,积累了优质的讲师团队、课程研发团队和就业合作企业。
光环国际教育,开设多种培训课程,其中大数据培训、人工智能培训是近几年就业非常好的培训课程。
光环大数据是专注大数据、人工智能垂直领域高薪就业培训机构,多年来专注大数据人才培养,携17年IT培训经验,与中关村软件园共同建立国家大数据人才培养基地,并与全球知名大厂商cloudera战略合作培养中国大数据高级人才,专注为大学生及在职人员提供专业师资平台及培训服务,助力他们高薪名企就业。
光环大数据所有项目都由阿里云真实项目数据,光环大数据成为阿里云授权认证中心,毕业通过相关考试就可以获得阿里云的证书。
学员参加培训班的目的就是为了毕业找到满意的工作,所以培训机构要有强光环大数据为了保障学员就业,为保障学员就业与中关村软件园战略合作,并与学员签订就业协议保障就业,学员毕业后平均薪资8K以上,学员反馈口碑非常好!同时,光环大数据不定期举办专场招聘会,邀请众多企业来这里寻找大数据、人工智能人才。
大数据发展已经踏上新时代的新征程,前景必将更加灿烂辉煌,我们诚挚的欢迎大家都来拥抱贵州这片热土,与我们一道耕耘,共同谱写新时代大数据融合发展的新篇章。
在信息技术更新层出不穷的今天,推动大数据产业创新发展,必须要突破核心技术,推动形成一套包括政策、人才等资源要素聚集的数据驱动型创新体系,为顺应时代发展,光环大数据联合阿里云大学,启动了推进人工智能人才发展的“AI智客计划”。
作为国内大数据和人工智能培训的领军企业,光环大数据将与阿里云大学在人工智能和大数据领域深度合作。
未来三年,光环大数据将联合国内百所大学,通过“AI智客计划”,共同推动人工智能产业人才生态建设,培养和认证5-10万名AI大数据领域的专业人才,构建中国的人工智能人才优势。
光环大数据培训_ Palantir之核心技术探秘
光环大数据培训_Palantir之核心技术探秘1.Palantir源起:B2B大数据和企业级Google。
Palantir(中文名帕兰提尔,源于《指环王》中可穿越时空、洞悉世间一切的水晶球Palantír)被誉为硅谷最神秘的大数据独角兽企业,短短几年内跻身百亿俱乐部,成为全球估值排名第四的初创公司。
它的主要客户只在美剧和好莱坞里出现,如美国联邦调查局(FBI)、美国中央情报局(CIA)、美国国家安全局(NSA)、美国军队和各级反恐机构,当然还有如JPMorgan这样的华尔街金融大鳄等等。
关于Palantir的传奇故事很多,CIA通过他家的大数据技术追踪到本拉登;创始人Alex Karp师从德国的Jürgen Habermas(研究西方马克思主义)获得哲学博士,热衷中国气功和太极;帮多家银行揭露旁氏骗局挽回数十亿损失,帮助摩根大通解决欺诈交易和黑客攻击问题,每年节约数亿美元;公司创始人和投资人(号称“硅谷黑帮”)由海军陆战队员随时保护以防不测;产品只卖美国及其盟友国;与棱镜门有说不清楚的关系等…这些花边新闻不是本文的关注点,本文重点从大数据技术角度来揭密Palantir的B2B大数据王国。
如果说谷歌是互联网大数据的霸主(我在前文《从Tensorflow看谷歌的云端人工智能战略》有详细解读),那么Palantir的目标就是未来企业级大数据霸主,做企业和政府领域的Google。
为什么这样讲?从技术角度来分析,这是大数据发展的必然趋势,互联网上的数据多半是UGC用户产生内容,或是如电商平台这种某细分领域的独立生态数据,而真正的大数据金矿还在众多大型企业和政府机构的服务器集群中沉睡。
比如一个国家的情报部门和各部、各局信息中心,无不是掌握着成千上万关键领域的大数据,包括各种业务数据、监控数据、DNA样本、语音视频图片、地图时空数据等(当然前提是信息化程度及其发达,就像我们的税务系统一样,而不是房产登记系统),面对如此海量、多源、异构而且高关联性、复杂性、动态性大数据,如果没有快速的大数据分析技术和工具支持,那只能是望数兴叹。
什么是大数据可视化
什么是大数据可视化大数据可视化是将大量数据转化为可视化图形、图表、图像等形式,以清晰、直观、易于理解的方式展示数据的过程。
它利用图形、颜色、形状等视觉元素,帮助人们发现数据中的规律、趋势和模式,以帮助决策者更好地理解数据、做出明智的决策。
大数据可视化具有以下几个重要的特点:首先,大数据可视化能够将庞大、复杂的数据转化为易于理解的图表和图形。
通过使用直观的可视化图形,大数据可视化可以更好地传递数据的信息。
例如,通过柱状图、折线图、饼图等形式展示销售额、市场份额、用户增长率等数据,人们可以一目了然地了解数据的趋势和关联。
其次,大数据可视化具有交互性。
利用交互式的可视化工具,用户可以通过鼠标滚动、放大、缩小等手势与数据进行互动,从而深入挖掘数据背后的隐藏信息。
用户可以通过对图表的操作,探索数据的不同维度和属性,发现数据的新模式和规律。
第三,大数据可视化能够帮助用户快速发现问题和解决问题。
通过可视化图形,用户可以迅速发现数据中的异常、异常值和离群点,从而及时采取相应的措施。
例如,通过实时监控销售数据的可视化图表,销售经理可以迅速发现某个产品的销量下降,以便及时采取补救措施,提高销售业绩。
此外,大数据可视化还可以帮助用户更好地进行数据分析和预测。
通过将大量的数据转化为可视化图形,用户可以更好地理解数据之间的关系和相互影响。
例如,通过绘制散点图和趋势线,用户可以快速判断两个变量之间的相关性;通过绘制热力图和地图,用户可以观察数据在不同地区的分布情况。
通过分析可视化图形中呈现的数据模式和规律,用户可以进行更准确的数据预测和决策。
在进行大数据可视化时,需要注意一些原则和技巧。
首先,选择合适的可视化工具和图表类型。
不同的数据类型适合使用不同的图表类型,例如,对于时间序列数据可以使用折线图,对于分类数据可以使用柱状图,对于比例数据可以使用饼图。
其次,要保持数据的准确性和可信度。
在进行可视化之前,需要对数据进行清洗、筛选和验证,以确保数据的准确性和可靠性。
光环大数据培训:精准聚焦大数据时代国际人才集聚
光环大数据培训:精准聚焦大数据时代国际人才集聚光环大数据培训了解到,10月22日,上海社会科学界第十五届学术年会智库专场“精准聚焦大数据时代国际人才集聚”学术研讨会在复旦大学召开,会议由上海社会科学界联合会主办,复旦大学管理学院和国家社科基金重大项目“大数据时代国际人才集聚及中国战略对策研究”课题组承办。
复旦大学文科科研处处长陈玉刚、复旦大学管理学院企业管理系系主任苏勇参加开幕式并致辞。
国家社科基金重大项目“大数据时代国际人才集聚及中国战略对策研究”首席专家、复旦大学管理学院教授姚凯主持会议并作专题发言。
从国家竞争优势的高度谋划人才集聚战略在日趋激烈的国际人才竞争中如何实现广聚天下人才而用之的宏伟蓝图?姚凯认为,中国需要充分把握大数据时代的特点,从国家竞争优势的高度出发谋划国际人才集聚战略。
我们需要对我国主要的竞争国家在大数据时代下的国际人才集聚现状、影响因素、集聚模式和国别竞争优势进行宏观、中观和微观国际比较,从而找出中国人才集聚及其效应的问题和差距,通过建立国家和国际人才集聚重要节点城市的国际人才集聚竞争优势指数体系,为中国制定大数据时代国际人才集聚战略及对策提供国际借鉴。
同时,姚凯强调,大数据技术正在对传统人力资源管理和人才管理的职能和价值链产生深刻而革命性的变革,要充分采用大数据技术重新科学设计国际人才预测、分析、引导、管理、服务和激励的新机制,研究大数据时代国际人才在全球城市网络中集聚的新载体和新方式,重视国际人才动态集聚、虚拟集聚等新趋势,对接中国建立创新型国家和上海建设全球有影响力的科创中心战略,建立起有利于国际人才集聚的新的体制机制和生态系统。
姚凯建议在上海率先建立起全球性的国际人才集聚大数据中心和人才库。
中国人才学会副会长沈荣华认为,国际人才集聚必须适应中国参与全球化的发展进程,实行三大转变:其一要从引进国内人才为主转到引进国外人才为主;其二要从引进国外一般人才为主转到引进国外高层次人才为主;其三要从只注重引进人才转到营造良好的人才国际环境,实现由劳动力集聚到人才集聚再到国际人才集聚,当好国际人才集聚的引领者。
数据分析必备的三大能力体系_光环大数据数据分析培训
数据分析必备的三大能力体系_光环大数据数据分析培训数据分析目前在国内互联网圈的受重视程度在逐步提升,但是问题也很突出:1、大家对于数据分析的认知和理解支离破碎,缺乏一个整体的、系统的思维框架;2、大家的视野更多局限在数据报表、BI系统、广告监测等领域,对于数据以及数据分析其实是缺乏深层次洞察的。
这篇文章就从整体框架出发,介绍一下数据分析的三大层次。
包括对数据分析的整体理解和认识,做数据分析的科学方法,以及数据分析相关的工具介绍。
一、数据分析价值观上面我介绍了:“道”指的是价值观,即如何看待数据分析的价值。
要想真正吃透这一点,必须在价值认同、工作定位和商业模式三点上取得突破。
数据分析的价值观(一)数据分析的价值认同做好数据分析,首先要认同数据的意义和价值。
一个不认同数据、对数据分析的意义缺乏理解的人是很难做好这个工作的。
放到一个企业里面,企业的CEO及管理层必须高度重视和理解数据分析的价值。
你想一下,如果老板都不认可数据分析的价值,那么数据相关的项目在企业里面还能推得动吗?然后,企业内部还需要有数据驱动的公司文化。
如果大家宁可拍脑袋做决定也不相信数据分析师的建议,那么数据分析往往是事倍功半、走一下形式而已,反之则是事半功倍。
(二)数据分析的工作定位做好数据分析,要对数据分析的价值有清楚的定位。
既不要神化数据分析,把它当做万能钥匙;也不要轻易否定数据分析的意义,弃之不用。
数据分析应该对业务有实际的指导意义,而不应该流于形式,沦为单纯的“取数”、“做表”、“写报告”。
在LinkedIn那么多年的工作时间里面,我们对数据分析的工作早已有了清晰的定位:利用(大)数据分析为所有职场人员作出迅捷、高质、高效的决策,提供具有指导意义的洞察和可规模化的解决方案。
数据分析的EOI框架当时我们还采用了一套EOI的分析框架,对不同业务的数据分析价值有明确的定位。
针对核心任务、战略任务和风险任务,我们认为数据分析应该分别起到助力(Empower)、优化(Optimize)、创新(Innovate)的三大作用。
优秀的可视化分析案例_光环大数据培训
优秀的可视化分析案例_光环大数据培训数据可视化可以帮你更容易的解释趋势和统计数据。
数据是非常强大的。
当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。
通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。
必须用一个合乎逻辑的、易于理解的方式来呈现数据。
谈谈数据可视化。
人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。
但是,并非所有的数据可视化是平等的。
(点击“为什么大多数人的图表和图形看起来像废话”了解我想表达的意思)那么,如何将数据组织起来,使其既有吸引力又易于理解?通过下面的16个有趣的例子获得启发,它们是既注重风格和也注重内容的数据可视化案例。
什么是数据可视化?数据可视化是指将数据以视觉形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。
文本形式的数据很混乱(更别提有多空洞了),而可视化的数据可以帮助人们快速、轻松地提取数据中的含义。
用可视化方式,您可以充分展示数据的模式,趋势和相关性,而这些可能会在其他呈现方式难以被发现。
数据可视化可以是静态的或交互的。
几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。
交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。
感到兴奋了吗?让我们来看一些不错的交互和静态数据可视化的例子。
交互数据可视化的实例1)为什么会有“巴士群”现象这里有一个关于复杂数据集的很好的例子,它看起来感觉像一个游戏。
在这个例子里,Setosa网站为我们呈现了“巴士群”现象是如何发生的,即,当一辆巴士被延迟,就会导致多辆巴士在同一时间到站。
只用数字讲述这个故事是非常困难的,所以取而代之的是,他们把它变成一个互动游戏。
当巴士沿着路线旋转时,我们可以点击并按住一个按钮来使巴士延迟。
然后,我们所要做的就是观察一个短暂的延迟如何使巴士在一段时间以后聚集起来。
什么是数据可视化
什么是数据可视化数据可视化是数字信息以图形结构的方式呈现出来。
它将复杂的信息结构化,使之容易理解,帮助人们快速掌握重要信息。
在各行各业中,数据可视化有其重要的作用。
下面是数据可视化的科普文章,旨在为你科普数据可视化的基本知识:一、概念梳理数据可视化是指使用技术将数据以易于理解、容易方便地查看和对比的形式展现给用户。
主要通过图表和图形等手段,使数据可以在不同的视觉条件下进行更为清晰、可靠的表达,从而帮助人们在短时间内较为直观地获取大量的数据信息。
二、主要功能数据可视化的主要功能有三:1. 让数据更加容易理解,方便用户更快地掌握其中所包含的信息;2. 帮助用户更好地分析数据,把握整体态势、发现数据间的联系关系,以便更精准地进行决策;3. 将复杂的数据结构可视化,让用户可以便捷地查看、可视化地访问这些信息。
三、工具使用数据可视化的实现主要依赖于专业的数据可视化工具。
这些工具可以帮助用户快速和准确地完成数据可视化的任务。
常用的数据可视化工具有Tableau、Power BI、Qlikview,GIS、Excel,Python,D3.js等。
这些工具都拥有专业的可视化功能,可以快速、有效地处理复杂的数据,获得见解。
四、对市场的影响数据可视化不断推动着市场走向智能化、数据驱动,让数据及其分析有效地参与到企业管理策略的制定中。
数据可视化的发展令企业可以更有效率地工作,更有力地优化组织流程,实现业务的提升和收益的最大化。
此外,数据可视化还为企业增加各种竞争优势,改善了生产管理,提高了品牌知名度,改善了公司投资环境,助力智能制造。
通过以上内容,本文对数据可视化进行了初步的科普,介绍了数据可视化的基本概念、主要功能和通用的数据可视化工具,并分析了其对市场的影响。
未来数据可视化会被越来越多的领域所使用,并发挥着重要作用。
大数据可视化培训是什么pdf
大数据可视化培训是什么大数据可视化培训是什么?大数据可视化培训,就是培训讲师,利用大数据可视化的技术,将海量数据的每一个数据项作为单个图元元素表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。
简单说,大数据可视化分析=大数据分析+大数据可视化。
现在有许多同学想要学习大数据可视化,但苦于找不到一个专业的大数据可视化培训机构,魔据教育在业内被公认为大数据可视化培训机构领航者,下面小编就带大家看一下魔据教育是如何成为专业的大数据可视化培训机构的。
一.科学完整的大数据可视化培训课程科学完整的大数据可视化课程体系对于大数据可视化培训是十分重要的一环,一个丰富而且科学的大数据可视化课程可以让学生掌握更多的大数据可视化知识。
如果学生在培训期间学习了一个单薄无用的大数据可视化课程,那学生在培训完以后还是达不到企业的要求,最后就业就会成为一个难题,这样的大数据可视化培训就是完全失败的和无意义的,这样的大数据可视化培训机构也是非常不负责任的。
现在有的培训机构,课程的大部分知识都是java,落实到大数据可视化的知识点只是皮毛,学生到最后什么大数据可视化知识都没有掌握,这样的大数据培训效果基本为零。
魔据教育在业内被公认为大数据课程标准的制定者,以科学完整的大数据可视化培训课程而著名。
魔据教育的大数据可视化课程已经经过了成千上万的毕业学员的检阅,是学员们高薪就业的“武林宝典”。
而且魔据教育的大数据可视化课程体系也会参考企业单位的用人需求,让每位毕业的学生都更加的适应企业,比其他的人更加具有竞争力。
二.专业严谨的大数据可视化研发团队那是因为魔据斥重资建立了一支30人左右的大数据可视化课程研发团队,专门从事大数据可视化课程研发工作,研发人员都是从事IT行业数年之久,具有丰富的行业经验和教学经验,制定出来的大数据可视化课程科学有效,符合企业的用人需求,并能保证学员全方位掌握,这支大数据可视化课程研发团队要保证大数据可视化课程的实时更新,不断迭代;要保证大数据可视化课程永远都走在大数据培训机构课程中的前面。
什么是大数据可视化
什么是大数据可视化大数据可视化是指将庞大的数据集通过图表、地图、仪表盘等可视化工具呈现出来,使人们能够直观地理解和分析数据。
它是数据分析和决策过程中的重要工具,有助于揭示数据背后的模式、趋势和关联关系,帮助用户更好地理解数据,并根据数据进行决策。
大数据可视化的目的是将复杂的数据转化为容易理解和解释的可视化形式,以便用户能够快速准确地获取信息并进行决策。
通过可视化,可以直观地呈现数据的分布情况、趋势变化、关联性等,帮助用户识别数据中的规律和异常点。
同时,大数据可视化还能够提供交互功能,用户可以根据自身需求选择不同的维度和指标进行分析,探索数据中的更多信息。
在大数据可视化中,选择合适的图表类型非常重要。
不同类型的图表适用于不同的数据类型和分析目的。
常见的图表类型包括柱状图、折线图、饼图、散点图、热力图等。
通过选择合适的图表类型,可以更好地展示数据的特征和关系,提高数据分析的效果。
大数据可视化还可以使用地图来展示地理分布和空间关联。
通过地图可视化,可以直观地展示地区之间的差异,如销售额、人口密度等。
地图可视化也可以用于可视化路径、运输网络等,帮助用户了解物流和交通情况。
除了使用静态图表和地图,大数据可视化还可以使用动画、交互效果和虚拟现实技术来增强用户体验。
动画可以展示数据的变化趋势和动态过程,交互效果可以让用户根据自身需求进行自定义分析,虚拟现实技术可以提供沉浸式的数据探索和交互体验。
大数据可视化的应用非常广泛。
在商业领域,大数据可视化可以帮助企业了解市场需求、制定营销策略和优化供应链。
在医疗领域,大数据可视化可以用于研究疾病的传播和流行趋势,辅助医生做出诊断和治疗决策。
在政府和公共服务领域,大数据可视化可以帮助政府了解社会问题和民众需求,优化资源分配和政策制定。
然而,大数据可视化也存在一些挑战和局限性。
首先,大数据的处理和可视化需要强大的计算和存储能力,对硬件和软件技术要求较高。
其次,大数据可视化需要专业的数据分析师和设计师进行数据分析和可视化设计,这对人才的需求较高。
大数据的三个层次是什么_北京光环大数据培训机构
大数据的三个层次是什么_北京光环大数据培训机构大数据的三个层次是什么第一个是数据采集层,以App、saas为代表的服务。
第二个技术服务层,以七牛云存储为代表的大数据技术服务层,这些包括数据的存储,数据的分析,数据的挖掘等等,第三个是数据应用层,以数据为基础,为将来的移动社交、交通、教育,金融进行服务。
下面我就主要的讲下三个层面。
数据采集层——App、saas服务在移动互联网时代,大数据的来源层有两个方面,一个方面是面向个人的数据来源前端如各种各样的App,一方面是面向企业服务的saas服务的产品。
面向个人的App在饮食领域的App,如饿了么,用户通过App进行选餐,下单,通过App交互就会形成饮食领域的大数据;在o2o领域,如嗒嗒巴士,用户通过使用App进行乘坐交通,上班下班,就会形成交通领域的大数据,如穿衣助手,用户通过App进行选择衣服颜色,样式,进行搭配,就会形式服务类的大数据,当然了还有秒拍、快看等娱乐类的消费数据。
面向个人用户的App,以满足用户的需求为主要出发点,产生用户的数据,这些数据包括以个人基础的数据,也包括随群体数据,随着App用户量的增长,这些App数据就成了大数据。
面向个人的数据来源,直接通过用户的需求产生数据,而面向企业服务的——saas服务则不一样,他们通过为企业提供一套完整的解决方案,而产生数据,比如图灵机器人,人脸识别技术,气象plus、海康威视等,他们通过完美的解决方案服务企业,最终服务用户,从而产生大数据,数据采集层,是大数据的来源,也是大数据的基础。
云存储对大数据的促进作用有了数据采集层,那么下一步就是数据的存储层了,使用云存储技术将数据存储在云主机上,保证数据的安全、稳定、高效都需要云存储技术来完成。
云存储主要负责数据的存储以及计算,比如七牛的云存储技术,云存储技术是大数据发展跨不过去的一道坎,如果没有云存储技术,大数据就不能得到发展。
云存储中面向企业存储的数据最大当前的云存储分为公共云存储和私有云存储,公共云存储主要是面向个人,比如百度网盘等,而私有云存储主要是面向企业,其实面向企业的云存储的存储的大数据最终来源还是来自个人,比如目前的很多saas服务,IM、统计等企业服务,服务主要是面向个人的App,而类似七牛云存储这样的云存储则是出于更底层,基于云主机之上,而位于所有个人服务、企业服务之下,所以说,七牛云存储应该积累了更多的大数据,而通过即将月底举办的这次《数据重构未来》的大会,我想可以获得更多的关于大数据的干货。
什么是大数据可视化
什么是大数据可视化数据可视化,是关于数据视觉表现形式的科学技术研究。
其主要目的是借助图形手段,清晰、有效地进行传达与沟通信息,其中,数据的可视化表示被定义为一种以某种形式提取的信息,包括相应信息单元的各种属性和变量。
数据可视化技术包含以下几个基本概念:1.数据空间数据空间是由n维属性和m个元素组成的数据集所构成的多维信息空间。
2.数据开发数据开发是指利用一定的算法和工具对数据进行定量的推演和计算。
3.数据分析数据分析指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据。
4.数据可视化数据可视化是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化优点1.接受更快人脑对视觉信息的处理要比书面信息容易得多。
使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。
节省接受时间。
2.增强互动数据可视化的主要好处是它及时带来了风险变化。
与静态图表不同,可视化的应用可以是流动性的操作,更有力的了解数据信息。
3.强化关联数据可视化的应用可以使数据之间的各种联系方式紧密关联。
以数据图表的形式描绘各组数据之间的联系。
4.美化数据可视化从视觉的角度来描绘数据,可根据技术工具对数据的表现形式进行美化,以达到观看数据的同时对于视觉也是一种享受的效果。
数据可视化是大数据发展的产物,它增强了普通用户对大数据的理解。
目前,可视化技术的应用领域主要集中在BI和报表行业。
复杂的数据需要借助有效的工具实现数据可视化,易于理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光环大数据可视化培训告诉你什么是数据可视化_光环大数据培训光环大数据大数据培训机构,5个典型实例告诉你:什么是数据可视化
大数据时代,数据是非常重要的,怎样把它的重要之处就展示出来是我们需要掌握的,这就是光环大数据小编本文要讲的重点:数据可视化。
通过观察数字和统计数据的转换以获得清晰的结论并不是一件容易的事。
必须用一个合乎逻辑的、易于理解的方式来呈现数据。
(一)谈谈数据可视化
人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。
但是,并非所有的数据可视化是平等的。
那么,如何将数据组织起来,使其既有吸引力又易于理解?通过下面的16个有趣的例子获得启发,它们是既注重风格和也注重内容的数据可视化案例。
(二)什么是数据可视化?
数据可视化是指将数据以视觉形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。
文本形式的数据很混乱(更别提有多空洞了),而可视化的数据可以帮助人们快速、轻松地提取数据中的含义。
用可视化方式,您可以充分展示数据的模
式,趋势和相关性,而这些可能会在其他呈现方式难以被发现。
数据可视化可以是静态的或交互的。
几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。
交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。
感到兴奋了吗?让我们来看一些不错的交互和静态数据可视化的例子。
(三)5个交互数据可视化的实例
(1)世界上的语言
这个由DensityDesign设计的互动是个令人印象深刻的成果,它将世界上众多(或者说,我们大多数人)的语言用非语言的方法表现出来。
一共有2678种。
这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。
这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式解读。
大数据
(2)按年龄段分布的美国人口百分比
这是如何以令人信服的方式呈现一种单一的数据的好榜样。
PewResearch创造了这个GIF动画,显示随着时间推移的人口统计数量的变化。
这是一个好方法,它将一个内容较多的故事压缩成了一个小的package。
大数据
此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。
如果你想自己用Photoshop做GIF,这里有一个详细的教程。
(3)NFL(国家橄榄球联盟)的完整历史
体育世界有着丰富的数据,但这些数据并不总是能有效地呈现(或者准确的说,对于这个问题)。
然而,FiveThirtyEight网站做的特别好。
在下面这个交互式可视化评级中,他们计算所谓“等级分”–根据比赛结果对球队实力进行简单的衡量–在国家橄榄球联盟史上的每一场比赛。
总共有超过30,000个评级。
观众可以通过比较各个队伍的等级来了解每个队伍在数十年间的比赛表现。
大数据
(4)政治新闻受众渠道分布图
据Pew研究中心称,通常,当设计师在信息内容很多又不能删节的时候,他们通常会把信息放到数据表中,以使其更紧凑。
但是,他们使用分布图来代替。
为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。
在分布图上,每个媒体的渠道之间的距离尤为显著。
如果这些点仅仅是在表中列出,观众无法看到每个渠道之间的比较。
大数据
(5)Kontakladen慈善年度报告
不是所有的数据可视化都需要用动画的形式来表达。
当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。
设计师MarionLuttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。
该组织为奥地利的吸毒者提供支持,所以Luttenberger的使命就是通过真实的视觉来宣传。
例如,这辆购物车形象的表现了受助者每一天可以负担得起多少生活必需品。
为什么大家选择光环大数据!
大数据培训、人工智能培训、Python培训、大数据培训机构、大数据培训班、数据分析培训、大数据可视化培训,就选光环大数据!光环大数据,聘请专业的大数据领域知名讲师,确保教学的整体质量与教学水准。
讲师团及时掌握时代潮流技术,将前沿技能融入教学中,确保学生所学知识顺应时代所需。
通过深入浅出、通俗易懂的教学方式,指导学生更快的掌握技能知识,成就上万个高薪就业学子。
【报名方式、详情咨询】
光环大数据官方网站报名:/
手机报名链接:http:// /mobile/。