人教版七年级数学上册课本全部内容

合集下载

人教版新版教材初中七年级上册数学课本目录

人教版新版教材初中七年级上册数学课本目录

人教版新版教材初中七年级上册数学课本目

目录
第一章有理数
1.1 正负数
1.2 相反数和绝对值
1.3 有理数的比较
1.4 有理数的加减
1.5 有理数的乘法
1.6 有理数的除法
第二章代数式
2.1 代数式的概念
2.2 代数式的展开和化简
2.3 多项式和单项式
2.4 单项式的加减
2.5 一元二次方程
第三章整式的乘法与因式分解
3.1 整式的乘法
3.2 因式分解公式的应用
3.3 取整与判定约数
第四章方程与不等式
4.1 方程的概念
4.2 一元一次方程的解法
4.3 不等式的概念
4.4 一元一次不等式的解法
第五章平面图形的初步认识5.1 线段、射线和直线
5.2 角的概念
5.3 角的分类与角度的度量
5.4 特殊角的性质
5.5 三角形的概念
第六章三角形
6.1 直角三角形的性质
6.2 三角形的角平分线
6.3 三角形的内心、外心、垂心和重心6.4 三角形的相似
6.5 三角形的面积公式
第七章数据与概率
7.1 平均数
7.2 中位数和众数
7.3 数据的图示表示
7.4 概率的概念和基本事件
附录
习题答案
常用数学符号表。

七年级上册数学人教版

七年级上册数学人教版

七年级上册数学人教版
一、数的认识与运算本部分主要介绍了整数、分数、小数的概念与运算。

其中,整数的四则运算、分数的加减乘除、小数的四则运算以及各种数的转化都被详细地描述了。

二、代数式与方程式本部分主要介绍了代数式、多项式、方程式的概念以及运算法则。

此外,还介绍了一元一次方程的解法和应用。

三、几何图形与运算本部分主要介绍了点、线、面的概念以及各种几何图形的特性和运算法则。

特别是对于平面图形的面积和周长的计算方法都被详细地讲解了。

四、比例与相似本部分主要介绍了比例与相似的概念、判定与运算法则。

通过学习本部分,学生可以掌握比例和相似图形的求解方法。

五、数的统计与概率本部分主要介绍了统计学的基本概念和方法,包括频率分布、中心与离散程度的计算和图形展示等。

此外,还涉及了概率的基本概念和运算,包括事件的概率、随机变量和分布等方面的知识。

六、函数本部分主要介绍了函数的概念、性质、图像和应用方面的知识。

学生通过学习本部分,可以深入了解函数的概念,进一步提高数学应用能力。

七、立体几何本部分主要介绍了立体图形的概念、特性和运算法则,包括立方体、长方体、球的表面积和体积等方面的知识。

综上所述,七年级上册数学课本人教版电子课本是一本详细全面的数学学习资料,对于学生的学习十分有帮助。

人教版七年级数学上册电子课本(全册)

人教版七年级数学上册电子课本(全册)

人教版七年级数学上册电子课本(全册)本文档旨在为用户提供人教版七年级数学上册电子课本的全册内容。

以下是每个单元的简要概述。

第一单元:整数本单元介绍了整数的概念和表示方法,以及整数的加法和减法运算。

还包括整数的乘法和除法,以及负数的概念和运算规则。

第二单元:分数本单元主要讲解分数的定义和分数的基本运算,如分数的加减乘除。

同时,介绍了分数的化简和比较大小的方法。

第三单元:代数式本单元引入了代数式的概念,并讲解了代数式的运算法则。

包括常数、变量、系数和指数的概念,以及代数式的加减乘除运算。

第四单元:方程与不等式本单元介绍了一元一次方程和一元一次不等式的概念和解法。

还包括方程与不等式的实际应用,以及方程与不等式的图示表示。

第五单元:比例与相似本单元主要讲解比例的概念和比例的运算法则。

包括比例的简化、扩大和倒数,以及比例的应用问题。

同时,介绍了相似的概念和相似图形的性质。

第六单元:图形的初步认识本单元介绍了点、线、面和图形的基本概念,以及几何图形的分类和性质。

包括直线、射线、线段、角和三角形的概念和特征。

第七单元:计算器的使用本单元讲解了如何正确使用计算器进行数学计算。

包括计算器的基本操作方法,如加减乘除、分数运算和开平方等。

第八单元:统计图本单元介绍了各种常见的统计图形,并讲解了统计图的绘制方法和数据的解读。

包括条形图、折线图、饼图和散点图等。

第九单元:坐标直角坐标系本单元引入了坐标直角坐标系的概念,并讲解了坐标的表示方法和坐标图形的绘制。

同时,介绍了平面中点的概念和距离的计算方法。

第十单元:三角形本单元主要讲解三角形的概念和三角形的性质。

包括三角形的分类、角度和边长的关系,以及三角形的内外角和三角形的直角判定。

第十一单元:作图本单元介绍了几何作图的基本方法和步骤,并讲解了如何用尺规作图和圆规作图解决几何问题。

此文档总结了人教版七年级数学上册电子课本的各个单元内容,希望对用户有所帮助。

如需详细内容,请查阅原版电子课本。

七年级数学上册课本内容

七年级数学上册课本内容

七年级数学上册课本内容第一章数的开端1.1 正数和负数1.1.1 正数和负数的概念正数是大于零的数,负数是小于零的数。

正数和负数统称为实数。

实数可以分为有理数和无理数两类。

1.1.2 正数和负数的表示正数和负数可以用小数、分数和整数来表示。

正数和负数的表示方法有:(1)小数表示法:将数表示为小数形式,如2.5、3.14等。

(2)分数表示法:将数表示为分数形式,如1/2、3/4等。

(3)整数表示法:将数表示为整数形式,如3、5等。

1.1.3 正数和负数的运算(1)同号相加,异号相减。

(2)同号相乘或相除,结果为正数。

(3)异号相乘或相除,结果为负数。

1.2 整数1.2.1 整数的概念整数是正整数、零和负整数的总称。

整数可以分为奇数和偶数两类。

1.2.2 整数的表示整数可以用小数、分数和整数来表示。

整数的表示方法有:(1)小数表示法:将整数表示为小数形式,如2.0、3.0等。

(2)分数表示法:将整数表示为分数形式,如2/1、3/1等。

(3)整数表示法:将整数表示为整数形式,如2、3等。

1.2.3 整数的运算(1)加法:同号相加,异号相减。

(2)减法:减去一个数相当于加上它的相反数。

(3)乘法:同号相乘,异号相乘,结果为负数。

(4)除法:同号相除,异号相除,结果为负数。

1.3 分数1.3.1 分数的概念分数是表示部分数量的数,由分子和分母组成。

分数可以分为真分数和假分数两类。

1.3.2 分数的表示分数可以用小数、分数和整数来表示。

分数的表示方法有:(1)小数表示法:将分数表示为小数形式,如1/2、3/4等。

(2)分数表示法:将分数表示为分数形式,如1/2、3/4等。

(3)整数表示法:将分数表示为整数形式,如2/1、3/1等。

1.3.3 分数的运算(1)加法:同分母相加,异分母先通分再相加。

(2)减法:同分母相减,异分母先通分再相减。

(3)乘法:分子相乘,分母相乘。

(4)除法:分子相除,分母相除。

第二章代数初步2.1 代数式的概念代数式是由数字、字母和运算符号组成的式子。

人教版七年级数学上册课本目录

人教版七年级数学上册课本目录

人教版七年级数学上册课本目录人教版七年级数学上册课本目录为题《人教版七年级数学上册》是一本应用性很强的数学教材。

它的目标是培养学生的数学思维和数学解决问题的能力。

这套教材将数学知识与实际生活相结合,注重学生的理解和综合应用能力的培养。

下面将以这本课本的目录为题,来介绍一下《人教版七年级数学上册》这本书。

【目录】第一单元数与代数初步第一课自然数第二课算术整体图第三课命题第四课数字之间的关系第五课代数式第六课代数式第七课代数式第八课面积问题第二单元图形初步第九课什么是几何第十课实际问题与图形第十一课图形的初步认识第十二课二维图形的初步认识第十三课四边形第十四课正方形和长方形第十五课三角形第十六课直角三角形第三单元数与式第十七课式子的值第十八课式子的值与计算第十九课用文字表示式子第二十课计算第四单元分数第二十一课单位分数第二十二课分数的大小比较第二十三课分数加减法第五单元基本图形初步第二十四课空间几何初步第二十五课立体图形初步第六单元称量第二十六课重量的认识与重量的比较第二十七课重量的加减法第二十八课长度的认识与长度的比较第二十九课长度的加减法......《人教版七年级数学上册》共分为六个单元,囊括了许多基础的数学知识和技能。

第一个单元是数与代数初步,从自然数的概念开始介绍,并逐渐引入了算术整体图、命题、数字关系以及代数式等内容。

第二个单元是图形初步,帮助学生认识几何图形及其性质,包括实际问题与图形、二维图形的初步认识、四边形、正方形和长方形以及直角三角形等。

第三个单元是数与式,学习如何计算代数式的值、文字表示式子以及基本计算等内容。

接着是第四个单元分数,学习单位分数、分数的大小比较以及分数的加减法。

第五个单元是基本图形初步,了解空间几何和立体图形的基本知识。

第六个单元是称量,重点介绍了重量和长度的认识、比较以及加减法。

此外,课本还包括关于图形的初步认识、解题方法、代数练习、倍数和公倍数、角的概念和角的比较、使用Pi值进行计算等内容。

人教版七年级数学上册电子书高清

人教版七年级数学上册电子书高清

人教版七年级数学上册电子书高清
本文档旨在提供人教版七年级数学上册电子书的高清完整版,以便学生和老师能够方便地使用和参考。

以下是该电子书的简要内容概述:
第一章:有理数
- 1.1 正负数及其表示方法
- 1.2 有理数的加减法
- 1.3 有理数的乘除法
第二章:代数式
- 2.1 代数式的定义与概念
- 2.2 代数式的合并与分拆
- 2.3 代数式的值
第三章:方程与不等式
- 3.1 一元一次方程
- 3.2 整数系数一元一次方程
- 3.3 一元一次方程的解及其性质
- 3.4 一元一次方程应用题
- 3.5 一元一次不等式及其解法
- 3.6 解一元一次方程与不等式应用题第四章:长度、面积、体积
- 4.1 从图形认识长度、面积、体积
- 4.2 长度、面积、体积的计算
第五章:数据的收集总结与分析
- 5.1 数据与调查
- 5.2 统计图及其应用
第六章:图形的运动学
- 6.1 图形的平行、相等及重合
- 6.2 图形的旋转、翻折和平移
注意:本电子书仅供教学参考使用,请勿用于商业用途。

新版初一数学书上册

新版初一数学书上册

新版初一数学书上册初一数学书上册内容。

一、有理数。

1. 有理数的概念。

- 有理数是整数(正整数、0、负整数)和分数的统称。

例如,5是正整数,属于有理数; - 3也是有理数;(1)/(2)是分数,同样是有理数。

原因在于数系的发展过程中,为了能够表示生活中诸如相反意义的量(如盈利与亏损、上升与下降等),需要引入包括负数在内的有理数概念。

2. 有理数的运算。

- 加法。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如,3 + 5=8,( - 2)+( - 3)=-(2 + 3)= - 5。

这是因为同号的数相加,它们的方向是一致的,所以符号不变,只需要把数量(绝对值)相加。

- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

例如,3+( - 2)=3 - 2 = 1,( - 5)+3=-(5 - 3)= - 2。

这是因为异号相加时,相当于在较大数的基础上加上或减去一个较小的数,符号取决于绝对值较大的数。

- 减法。

- 有理数的减法可以转化为加法,即减去一个数等于加上这个数的相反数。

例如,5 - 3 = 5+( - 3)=2,3 - 5=3+( - 5)= - 2。

这样规定的原因是为了统一加法和减法的运算规则,方便计算。

- 乘法和除法。

- 两数相乘(除),同号得正,异号得负,并把绝对值相乘(除)。

例如,3×5 = 15,( - 3)×( - 5)=15,15÷3 = 5,( - 15)÷( - 3)=5,15÷( - 3)= - 5,( - 15)÷3=-5。

这是基于数的运算规律和保持运算的一致性而规定的。

二、整式的加减。

1. 整式的概念。

- 单项式和多项式统称为整式。

单项式是数或字母的乘积,单独的一个数或一个字母也是单项式。

例如,3x是单项式,- 5也是单项式。

多项式是几个单项式的和,如2x+3y是多项式。

2. 整式的加减。

(完整版)最新人教版七年级数学上册目录及知识点汇总

(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

人教版七年级上册数学课本知识点归纳精华版

人教版七年级上册数学课本知识点归纳精华版

人教版七年级上册数学课本知识点归纳第一章有理数(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. a−b = a +(−b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= b a4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方1.求n个相同因数的积的运算,叫做乘方。

写作a n 。

(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式(一)整式9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(一)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

人教版七年级数学上册课本目录3篇

人教版七年级数学上册课本目录3篇

人教版七年级数学上册课本目录第一篇:目录前言、目录、课时分配第一章有理数第一节有理数的认识第二节有理数的比较第三节有理数的运算第四节有理数的应用第二章代数式与方程第一节代数式的认识第二节简单的代数式第三节一元一次方程的认识第四节一元一次方程的解法第三章图形的初步认识第一节点、线、面的认识第二节角的认识第三节直线及其相关角度第四节三角形、四边形、多边形的认识第四章分数第一节分数的认识第二节分数的应用第五章数据的应用第一节统计调查与数据的收集第二节直方图与统计量第三节折线图第四节数据的分析第六章比例与函数第一节比例的认识第二节比例的应用第三节函数的认识第四节函数的图象第七章空间与立体图形第一节空间的认识第二节立体图形的认识第三节立体图形的展开图和视图第四节空间图形的计算第八章圆的认识第一节圆的认识第二节弧、弦、切线、切点的认识第三节圆的计算第四节圆的应用第九章实数的认识第一节实数的认识第二节实数的计算第三节实数的应用附录数学常识表一至表八表一数宇、数位表二数的读法表三算法口诀表四常见单位和单位换算表五长方体、正方体及其份面积、体积表六直角坐标系表七直角坐标系中一次函数图象和方程表八数学符号第二篇:前言、目录、课时分配第一章直线与角第一节点、线、角的基本概念第二节角的度量与大小比较第三节直线、角的简单性质第二章三角形的性质第一节三角形的分类第二节三角形的性质第三节三角形的应用第三章同次幂的乘除及乘方的运算第一节同底数幂的乘除法第二节幂的乘方运算第三节幂的运算、化简式子第四章特殊的角和直线第一节垂线的性质第二节垂线的应用第三节两线之间的关系第四节角的平分线第五章图形的运动和对称第一节图形的运动第二节对称图形的认识第六章比例与相似第一节比例的属性第二节相似的性质第三节相似计算第四节勾股定理和三角形的相似第七章平面向量的初步认识第一节向量的概念第二节向量的平移、共线、相等、相反及模长的计算第三节向量的夹角及口诀第四节向量加减的规律及计算第五节向量的数量积及应用第八章二次根式的概念与运算第一节二次根式的概念第二节二次根式的化简第三节二次根式的四则运算第四节勾股定理的推广第九章算法初步第一节口诀的学习和田径运动员的成绩分析第二节初等数论与整数性质第三节素数、合数、因子和倍数第四节不等式的意义及解不等式第三篇:前言、目录、课时分配第一章规律的发现第一节分类讨论第二节规律性第三节给出模型第四节推广规律第二章數列第一节概念及判断數列单调性第二节等差数列的基本概念及性质第三节等差数列通项公式及性质第四节等比数列的基本概念及性质第五节等比数列通项公式及性质第六节數列求和的基本方法及应用第三章几何作图第一节作圆圆心的位置关系及作圆第二节作三角形的各种辅助线第三节作相似图形第四节网格纸上的图形变换第四章空间几何与常见几何实体第一节空间几何的基本概念及公理化第二节线段、直线和平面在空间中的基本位置关系第三节常见几何实体的基本概念及平面图形展开图第四节空间几何推理及模型应用第五章圆锥与圆柱的认识第一节圆锥、圆柱的共性及特性第二节圆锥中的视锥、投影、棱锥、直锥、内锥、外锥第三节圆柱的视柱、投影、凹柱、凸柱的认识第四节圆锥、圆柱的计算第五节应用通例第六章球面的认识第一节球的基本概念及表面积和体积的关系第二节球面的性质第三节球面的切与平面、直线与平面之间的位置关系第四节球的投影应用第七章概率第一节随机性及事件、样本空间和概率的概念第二节概率的计算方法及简单初步应用第三节相互独立的事件及概率大小之间的比较和运算第四节排列组合及其应用第八章结论与证明第一节理解与运用数、代数、几何的一些基本概念及性质第二节思维的基本形式及思考和探索的方法第三节总结性的问题、结论和证明第四节应用初步。

七年级上册数学课本 人教版

七年级上册数学课本 人教版

七年级上册数学课本人教版
人教版七年级上册数学课本目录。

人教版七年级上册数学课本
第一章有理数
1.1正数和负数
阅读与思考用正负数表示加工允许误差
1.3有理数的加减法
实验与探究填幻方
阅读与思考中国人最先使用负数
1.4有理数的乘除法
观察与思考翻牌游戏中的数学道理
1.5有理数的乘方
数学活动
小结
复习题1
第二章整式的加减
2.1整式
阅读与思考数字1与字母X的对话
2.2整式的加减
信息技术应用电子表格与数据计算
数学活动
小结
复习题2
第三章一元一次方程
3.1从算式到方程
阅读与思考“方程”史话
3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数
3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程
数学活动
小结
复习题3
第四章图形认识初步
4.1多姿多彩的图形
阅读与思考几何学的起源
4.2直线、射线、线段
阅读与思考长度的测量
4.3角
4.4课题学习设计制作长方体形状的包装纸盒数学活动
小结
复习题4
部分中英文词汇索引。

新版七年级上册数学书人教版

新版七年级上册数学书人教版

新版七年级上册数学书人教版一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.5(即1/2)是分数, - 0.333…(即 - 1/3)也是分数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 任何一个有理数都可以用数轴上的一个点来表示。

例如,2在原点右边2个单位长度处, - 3在原点左边3个单位长度处。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,5 = 5, - 3=3。

- 绝对值的几何意义:一个数的绝对值就是这个数在数轴上所对应的点到原点的距离。

5. 有理数的加减法。

- 加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如,3+5 = 8,(-2)+(-3)= - 5。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如,3+( - 2)=1, - 5+3=-2。

- 一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

例如,5 - 3 = 5+( -3)=2。

6. 有理数的乘除法。

- 乘法法则:- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如,3×5 = 15,(-2)×(-3)=6,2×(-3)= - 6。

- 任何数同0相乘,都得0。

- 多个有理数相乘:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

例如,(-2)×(-3)×(-4)= - 24,(-2)×3×4=-24,2×3×4 = 24。

2021年人教版七年级数学上册课本全部内容

2021年人教版七年级数学上册课本全部内容

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎪⎩⎪⎨⎧---...5.351...2.03121321.0...321.,,负分数:如,,,正分数:如分数,,负整数:如,,,正整数:如整数数理有第一讲 有理数欧阳光明(2021.03.07)概念图1、像5,1,2,21,…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.22、在正数前面加上“—”号的数叫做负数,如-10,- 3,…3、0既不是正数也不是负数.4、整数和分数统称为有理数.你能用所学过的数表示下列数量关系吗?如果自行车车条的的长度比标准长度长2mm ,记作+2mm ,那么比标准长度短3mm 记作什么?如果恰好等于标准长度,那么记作什么?探索【1】 下列语句:①所有的整数都是正数;②所有的正数都是整数;③分数都是有理数;④奇数都是正数;⑤在有理数中不是负数就是正数,其中哪些语句是正确的?探索【2】 把下列各数填在相应的集合内:15,-6,-0.9,21,0,0.32,-411,51,8,-2,27,71,-43,3.4,1358. 正整集:{ };负数集:{ };正分数集:{ };负分数集:{ };整数集:{ };自然数集:{ }.探索【3】 如果规定向南走10米记为+10米,那么-50米表示什么意义?轻松练习1、下列关于0的叙述中,不正确的是( )A.0是自然数B.0既不是正数,也不是负数C.0是偶数D.0既不是非正数,也不是非负数2、某班数学平均分为88分,88分以上如90分记作+2分,某同学的数学成绩为85分,则应记作( )⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧与有理数的关有---画法---单位长度正方向原点定义---数轴A.+85分 B.+3分 C. -3 D.-3分3、在有理数中( )A.有最大的数,也有最小的数B.有最大的数,但没有最小的数C.有最小的数,但没有最大的数D.既没有最大的数,也没有最小的数4、下列各数是正有理数的是( )A. -3.14B.32C.0D. - 165、正整数、_______、________统称正数,_______和______统称分数,_______和_______统称有理数.6、把下列各数填入相应的集合内.整数集合:{ } 分数集合:{ }负数集合:{ } 有理数集合:{ }7、(1)某人向东走5m ,又回头向西走5米,此人实际距离原地多少米?若回头向西走了10米呢?(以向东为正) (2)世界第一高峰珠穆朗玛峰海拔8848m ,江苏的茅山主峰比它低8438m ,茅山主峰的海拔高度是多少米?第二讲 数轴概念图:1、数轴:规定了原点、正方向和单位长度的直线.2、数轴的三要素:原点、正方向、单位长度.3、所有的有理数都可以用数轴上的点表示.4、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数. 探索【1】把数-3,-1,1.2,-21,3.5,212在数轴上表示出来,再用“<”号把它们连接起来.探索【2】分别写出下列各数的相反数.213 -0.25 0 +30探索【3】某人从A 地出发向东走10m ,然后折回向西走3m ,又折回向东走6m ,问此人 A 地哪个方向,距离多少?轻松练习:1、如图所示,数轴上的点M 和N 分别表示有理数m 和n ,那么以⎪⎪⎪⎩⎪⎪⎪⎨⎧--⎩⎨⎧有理数大小比较非负性性质代数意义几何意义意义绝对值下结论正确的是( )A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<02、下列各对数中,互为相反数的是( )A.+(—8)和(—8)B.—(—8)和+8C.—(—8)和+(+8)D.+8和+(—8)3、一个数的相反数是非负数,这个数一定是( )A.非正数B.非负数C.正数D.负数4、914-的相反数是_________,—16与____互为相反数,—(+3)表示______的相反数.5、化简—[—(+3.6)]=________.6、数轴上到原点的距离为5个单位长度的点有_______个,它们表示的数是______,它们的关系是_______.7、(1)写出所有比3小的正整数____________________________.(2)写出两个比—3大的负整数____________________________.8、如图所示,在数轴上有A 、B 、C 三点,请回答:(1) 将点A 向右移动2个单位长度后,点A 表示的有理数是____________.(2) 将点B 向左移动3个单位长度后,点B 表示的有理数是_____________.(3) 将点C 向左移动5个单位长度后,点C 表示的有理数是_____________.9、化简下列各数中的符号.(1))313(-- (2))8(+- (3))75.0(-- (4))31(-+ (5))]2([+-- 10、若2x+1是-9的相反数,求x 的值.第三讲 绝对值概念图:1、在数轴上表示数a 的点与原点的距离叫做数a 的绝对 值,记作|a|.2、一个正数的绝对值是它本身,零的绝对值是零,一个负数的绝对值是它的相反数,可表示为探索【一】求下列各数的绝对值.211- -0.3 0 )213(--10-1an 0m 探索【二】比较下列有理数大小.(1)—3和0 (2)—3和|—5| (3)-(-)31和|21-| 探索【三】比较-(-a )与—|a|的大小.探索【四】若数a 在数轴上对应的点如下图所示,则化简|a+1|的结果是( )A.a+1B. -a+1C.a -1D. -a -1 探索【五】已知|a -1|+|b+2|=0,求a 和b 的值.练习: 1、在数轴上,一个数所对应的点与__________的距离叫做该数的绝对值.2、21-的绝对值是_______,绝对值为3的数是_______,绝对值等于本身的数是________.3、绝对值不大于3的整数有________个,它们分别是__________________________.4、52的相反数是______.5、-|-2|的倒数是( )A.2B.21C.21-D. -26、如图所示,点A 、B 在数轴上对应的 实数分别为m 、n ,则A 、B 是________.(用含m 、n 的式子表示)7、与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在北京时间是15:00,那么纽约时间是_________. 8、若|x -2|+|y+3|=0,则x=_____,y=_____.当x=_____时,1+|x+1|的最小值是________.9、用“<”连接下列各数.-2.5 1 |-3| —1 0 -(-2)10、 比较6543--和的大小. 11、如果x 与2互为相反数,那么|x —1|等于( )A.1B. -1C.3D. -3第四讲 有理数的加法概念图1、同号两数相加,取相同的符号,并把绝对值相加; ⎪⎪⎪⎧⎪⎪⎨⎧异号两数相加同号两数相加则法数理有ab c 02、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3、一个数同0相加,仍得这个数.4、有理数加法的运算律:(1) 加法的交换律:a+b=b+a(2) 加法的结合律:(a+b )+c=a+(b+c ) 探索【1】计算:探索【二】计算:探索【三】有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的有( )① b+c>0 ②a+b>a+c ③a+c<0 ④a+b>0A.1个B.2个C.3个D.4个探索【四】一口水井,水面比井口低3m ,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5m 后又往下滑了0.1m ;第二次往上爬了0.42m ,却又下滑了0.15m ;第三次往上爬了0.7m ,又下滑了0.15m ;第四次往上爬了0.75m ,又下滑了0.1m ;第五次往上爬了0.55m ,没有下滑;第六次蜗牛又往上爬了0.48m ,问蜗牛有没有爬出井口?练习:1、下列各式中,运算正确的有( )(1)918)9)(4(;500)50)(3(;6121)31)(2(;0)2()2(=+--=+-=+-+-+-A.1个B.2个C.3个D.4个2、某天股票A 开盘价20元,上午11:30跌1.2元,下午收盘时又涨了0.5元,则股票A 这天收盘价为( )A .18.3元 B.20元 C.0.5元 D.19.3元3、一个数是10,另一个数比10的相反数小2,则这两个数的和为( )A.18B.—2C.—18D.24、计算:._______1.6)2.5(______,)13()12(13)11(=+-=-++++-5、若|a|=3,|b|=2,则a+b=________.6、若a>0,b>0,则a+b_____0;若a<0,b<0,则a+b_____0;若a>0,b<0,|a|>|b|,则a+b____0;若a>0,b<0,|a|<|b|,则a+b_____0;若a ,b 互为相反数,则a+b____0.7、若|a -3|与|b+2|互为相反数,求a+b+5的值.8、小敏靠勤工俭学维持上大学的费用,下表是小敏一周的收支情况(收入为正,支出为负,单位:元)(1)(2) 照这样一个月(按30天计算)小敏有多少节余?9、用适当的方法计算下列各题:第五讲 有理数的减法概念图探索【一】计算:探索【二】计算:探索【三】设数轴上的点A 、B 、C 分别表示数-3、21、4,利用数轴求A 与B ,B 与C ,A 与C 之间的距离,你能从中发现什么规律吗?探索【四】(1)某冷库温度是零下100C ,下降-30C 后又下降50C ,两次变化后冷库温度是多少?(2)零下120C 比零上120C 低多少?(3)数轴上A 、B 两点表示的有理数分别是437216和-,求A 、B 两点的距离.练习:1、计算87--的值为( )A. -15B.-1C.15D.12、下列说法正确的是( )A.两个有理数的差一定不大于被减少B.两个有理数的差一定小于这两个数的和C.绝对值相等的两个数的差等于零D.零减去一个数等于这个数的相反数3、请看下面的算式:1)1(0;0|3|)3(;0)3()3(;0)2(2=--=---=+--=--其中正确的算式有( )A.1个B.2个C.3个D.4个4、在(—5)—( )= -7中的括号里应填( )A. -2B.+2C. -12 D+125、填空.(1)( )+(-8)=-12 (2)(+8)+( )= -12(3)( )+(-7.1)=8 (4)(-2)-( )= -7(5)(-10)-( )= -8 (5)(+2)-( )=156、计算.(1)(3.1+4.2)-(4.2-1.9) (2)(-2.4)-0.6-1.82(3)16983)41(+-- (4)731)72()71(---- (5)21614131-++- (6))321()313()1(--+-- 7、某潜艇从海平面以下27米上升到海平面以下18米,此潜艇上升了多少米?8、如图所示:311-(1)A 、B (2)B 、C 9、若a+b>a —b ,则a 、b 满足___________;若a+b=a -b ,则a 、b 满足____________;若a+b<a -b ,则a ,b 满足______________.10、若|2x -4|+3|6+2y|=0,求下列各式的值.(1)|x -y|;(2)|x|-|y|11、某市冬季的一天,最高气温为60C ,最低气温为-110C ,这天晚上的天气预报说将有一股冷空气袭击该市,第二天气温将下降10~120C.请你利用以上信息,估计第二天该市的最高气温不会高于多少摄氏度,最低气温不会低于多少摄氏度,以及最高气温与最低气温的差为多少摄氏度.第六讲 有理数的加减(1)探索【1】计算:(1))32()31(-+- (2))7.10()8.10(++- (3)0)6(+- (4))7452(7452-+ 探索【2】计算:(1))3(6-- (2))2(0-- (3))5()7(--- (4)0)2(-- 探索【3】计算:(1)563)8.12()52()8.59(+-+--+ (2))313(4183)832()2(++---+- 练习:1、计算:2、计算:3、计算:4、计算:第七讲 有理数的加减(2)探索【1】计算:探索【2】在数109,108,107,106,105,104,103,102的前面分别添加“+”或“-”,使它们的和为1. 你能想出多少种方法?探索【3】一个水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.1米;第五次往上爬了0.55米,没有下滑;第六次又往上爬了0.48米. 问蜗牛有没有爬出井口?练习:1、计算:2、计算:3、潜水艇原来在水下200米处.若它下潜50米,接着又上浮130米,问这时潜水艇在水下多少米处?4、数轴上点A表示5 ,将A点向左移动3个单位后又向右移动8个单位,求此时A点表示的数是多少?5、判断题:(1)若两个数的和为负数,则这两个数都是负数. ()(2)若两个数的差为正数,则这两个数都是正数. ()(3)减去一个数,等于加上这个数的相反数. ()(4)零减去一个有理数,差必为负数. ()(5)如果两个数互为相反数,则它们的差为0. ()6、出租车司机小王,某天下午的营运全在东西走向的人民路上.如果规定向东为正,向西为负,这天下午他行车里程(单位:千米)如下:(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远?在什么方向?(2)若汽油耗油量为0.1升/千米,这天下午小王共耗油多少升?7、请在数1,2,3,…,2006,2007前适当加上“+”或“-”号,使它们的和的绝对值最小.8、某天早晨的温度为5℃,到中午上升了7℃,晚上又下降了6℃,求晚上的温度.9、要测量A、B两地的高度差,但又不能直接测量,找了D、E、F、G、H共五个中间点,测量出一些高度差,结果如下表(单位:第八讲绝对值的进一步介绍(一)探索【1】绝对值为10的整数有哪些?绝对值小于10的整数有哪些?绝对值小于10的整数共有多少个?它们的和为多少?探索【2】若0a 2≤≤-,化简|2a ||2a |-++.探索【3】若,0x <化简|x ||3x ||x 2|x ||---.探索【4】设a<0,且||x a a ≤,试化简|2x ||1x |--+. 练习:1、判断下列各题是否正确.(1)当b<0时,b |b |-=. ( )(2)若a 是有理数,则|a|一定是正数. ( )(3)当|m|=m 时,m>0. ( )(4)若.|b ||a |b a =-=,则 ( )(5)若a<b ,则|a|<|b|. ( )(6)a+|a|一定是正数. ( )2、若.|a |a 3|||a 3|a 20a --<,试化简 3、若.|1x ||1x |1x 1--+<<-,试化简4、绝对值小于100的整数有哪些?共多少个?它们的和是多少?5、已知.b a 311|b |325|a |的值,求,-==6、设a 和b 是有理数,若a>b ,那么|a|>|b|一定正确吗?如果正确,请你说出理由;如果不正确,请举出反例.第九讲 绝对值的进一步介绍(二)探索【1】数a 、b 在数轴上对应的点如下图所示,试化简||a |a ||b ||a b ||b a |--+-++.探索【2】化简||x 5|x 2|x3|x |2--.探索【3】化简|3x 2||5x |-++..探索【4】若2002y x |2y ||1x |)互为相反数,试求(与++-.探索【5】.ab b a |b a |b a 的值,试求为有理数,且、-=+练习:1、化简.|51x ||51x |++-2、已知;有理数a 、b 、c 的位置如下图所示,化简.|b a ||c b ||c a |+-+++3、若.b a |b ||a ||b a |应满足的关系,,试求+=-4、|b a ||b a |0|b a ||b a |2005200520052005-++=-++,化简已知. 5、.|1x 5||5x 3||3x 2|+--+-化简6、设a 是有理数,求a+|a|的值.第十讲 一元一次方程探索【1】 解下列方程:(1)m m -=-534 (2)x x 11856=-(3))72(65)8(5-=-+x x (4))13(72)21(31+=-x x探索【2】 解方程121312=--+x x探索【3】小张在解方程1523=-x a (x 为未知数)时,误将x 2-看做+2x ,得方程的解为x =3,请求出常数a 的值和原方程的解.探索【4】解关于x 的方程1242+=-mx x m 练习:1、如果式子32+x 与5-x 互为相反数,则x =_______.2、当k=_____时,方程835+=-x k x 的解是2-.3、若代数式61221++-x x 与131+-x 的值相等,则x =______.4、如果03245=--a x 是关于x 的一元一次方程,那么a =_____,此时方程的解为_____.5、解下列方程6、解关于x 的方程.7、若,0)43(|32|2=+-++y x x 求2)1(-y 的值.8、解方程11312-+=-a x x ,小明在去分母时,方程的右边1-没有乘以3,因而他求得方程的解为x =6.求a 的值,并正确地解方程.巩固与加强: 一元一次方程的应用1、利民商店把某种服装按成本价提高50%后标价,又以7折卖出,结果每件仍获利20元,这种服装每件的成本是多少元?2、A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时出发,相向而行,已知甲的速度为4.5千米/时,乙的速度为5.5千米/时,求甲、乙两人几小时后相遇?3、某中学开展校外植树活动,让七年级学生单独植树,需要7.5小时完成;让八年级学生单独种植,需要5小时完成,现在让七年级和八年级学生先一起种植1小时,再由八年级学生单独完成剩余部分,共需多少小时完成?4、丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动,某外贸公司推出品牌“山山牌”香菇、“奇尔”牌慧明茶共10吨前往参展,用6辆骑车装运,每辆汽车规定满载,且只能装运一种产品;因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨,问装运香菇、茶叶的汽车各需要多少辆?5、晓晓商店以每支4元的价格进100支钢笔,卖出时每支的标价是6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店盈利188元,其中打9折的钢笔有几支?6、某班学生到一景点春游,队伍从学校出发,以每小时4千米的速度前进。

人教版初一七年级上册数学原版高清电子课本

人教版初一七年级上册数学原版高清电子课本

人教版初一七年级上册数学原版高清电子课本引言本电子课本为人教版初一七年级上册数学原版高清电子课本,旨在为学生提供一种全新的研究体验。

通过高清图像和电子格式,学生可以随时随地研究数学知识。

本课本内容涵盖了整个学期的教学大纲,旨在帮助学生掌握数学基础知识,培养数学思维能力。

目录1. 第一单元:有理数1.1. 第一节:有理数的概念1.2. 第二节:有理数的运算1.3. 第三节:有理数的应用2. 第二单元:整式的加减2.1. 第一节:整式的概念2.2. 第二节:整式的加减运算2.3. 第三节:整式的应用3. 第三单元:一元一次方程3.1. 第一节:方程的概念3.2. 第二节:一元一次方程的解法3.3. 第三节:方程的应用4. 第四单元:不等式4.1. 第一节:不等式的概念4.2. 第二节:不等式的解法4.3. 第三节:不等式的应用5. 第五单元:函数的概念5.1. 第一节:函数的概念5.2. 第二节:函数的性质5.3. 第三节:函数的应用6. 第六单元:几何基础6.1. 第一节:几何图形的性质6.2. 第二节:几何图形的计算6.3. 第三节:几何图形的应用7. 第七单元:三角形7.1. 第一节:三角形的概念7.2. 第二节:三角形的性质7.3. 第三节:三角形的应用8. 第八单元:四边形8.1. 第一节:四边形的概念8.2. 第二节:四边形的性质8.3. 第三节:四边形的应用结语通过本电子课本的研究,学生可以掌握初一七年级上册数学的全部知识点,并能够将这些知识应用到实际问题中。

我们希望这本电子课本能够为学生的数学研究提供帮助,并激发学生对数学的兴趣和热情。

2024新版七年级上册数学教材

2024新版七年级上册数学教材

2024新版七年级上册数学教材一、有理数。

1. 有理数的概念。

- 整数(正整数、0、负整数)和分数(有限小数和无限循环小数)统称为有理数。

- 例如:3是正整数,属于有理数; - 5是负整数,属于有理数;0.5是有限小数,是分数,属于有理数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 任何一个有理数都可以用数轴上的一个点来表示。

例如:表示2的点在原点右侧2个单位长度处;表示 - 3的点在原点左侧3个单位长度处。

3. 相反数。

- 绝对值相等,符号相反的两个数互为相反数。

- 例如:3和 - 3互为相反数,0的相反数是0。

4. 绝对值。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

- 例如:5 = 5, 4 = 4。

5. 有理数的加减法。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3+5 = 8,(-2)+(-3)= - 5。

- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 2)=1,(-5)+3=-2。

- 减去一个数,等于加上这个数的相反数。

例如:5 - 3 = 5+( - 3)=2。

6. 有理数的乘除法。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,(-2)×(-3)=6,3×(-4)= - 12。

- 任何数与0相乘都得0。

- 除以一个不等于0的数,等于乘这个数的倒数。

例如:6÷3 = 6×1/3 = 2,6÷(-2)=6×(-1/2)= - 3。

7. 有理数的乘方。

- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

例如:2×2×2 = 2³,(-3)×(-3)=(-3)²。

- 正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

例如:2² = 4,(-2)² = 4,(-2)³=-8。

人教版七年级上册数学课本

人教版七年级上册数学课本

人教版七年级上册数学课本标题:《人教版七年级上册数学课本》引言:数学是一门抽象而实用的学科,它既具有逻辑性和思维性,也与日常生活息息相关。

为了培养学生的数学思维和解决问题的能力,人教版七年级上册数学课本提供了全面而系统的数学知识,并通过丰富的例题、练习和探究活动,引导学生理解数学的本质和应用。

本文将分为四个部分,分别介绍数学的四个主要模块:整数、有理数、图形与运算、统计与概率。

第一部分:整数整数是学习数学的基础,人教版七年级上册数学课本将整数的概念、运算法则和应用形象地呈现出来。

在本部分中,学生将学习整数的定义、数线的表示方法以及正整数和负整数之间的关系。

通过多样的实例和练习题,学生能够逐步理解负数的概念,并掌握整数的加减法运算。

此外,课本还引入了绝对值的概念和计算规则,以提高学生的运算能力。

第二部分:有理数在人教版七年级上册数学课本中,有理数是一个相对复杂的概念。

本部分首先介绍了有理数的定义,然后通过有理数的加减法运算来帮助学生理解和掌握有理数的概念。

通过分数和小数的转化,学生可以更好地把握有理数的性质和应用。

此外,课本还讲解了有理数的乘法和除法运算,强调了运算法则和技巧,以提高学生的运算速度和准确性。

第三部分:图形与运算人教版七年级上册数学课本中的图形与运算模块着重介绍了三角形、四边形和平行四边形等基本图形的性质和运算规律。

课本通过丰富的例题和练习,引导学生运用图形的定义和性质解决实际问题。

此外,课本还提供了一些有趣的探究活动,帮助学生培养动手实践和问题解决的能力。

第四部分:统计与概率统计与概率是人教版七年级上册数学课本的最后一个模块。

这一部分内容主要涉及数据的收集和整理、频数和频率的计算以及简单的概率计算等。

通过课本中的实例和练习题,学生将学会如何分析统计数据和运用概率计算解决问题。

此外,课本还引导学生使用统计图表和概率树解决实际问题,培养学生的数据分析和判断能力。

结语:人教版七年级上册数学课本不仅仅是一本教材,更是学生学习数学的宝贵资源。

人教版七年级数学上册课本全部内容

人教版七年级数学上册课本全部内容

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎪⎩⎪⎨⎧---...5.351...2.03121321.0...321.,,负分数:如,,,正分数:如分数,,负整数:如,,,正整数:如整数数理有⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧与有理数的关有---画法---单位长度正方向原点定义---数轴第一讲 有理数概念图1、 像5,1,2,21,…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.22、 在正数前面加上“—”号的数叫做负数,如-10,- 3,…3、 0既不是正数也不是负数.4、 整数和分数统称为有理数.第二讲 数轴概念图:1、 数轴:规定了原点、正方向和单位长度的直线.2、 数轴的三要素:原点、正方向、单位长度.3、 所有的有理数都可以用数轴上的点表示.4、 相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴;⎪⎪⎪⎩⎪⎪⎪⎨⎧--⎩⎨⎧有理数大小比较非负性性质代数意义几何意义意义绝对值)(0a )0a ()0a (a 0a|a |<=>⎪⎩⎪⎨⎧-=1、数轴的三要素:原点、正方向、单位长度。

2、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度); 四标(标数字)。

3、性质: ① 在数轴上表示的两个数,右边的数总比左边的数大;② 正数都大于0,负数都小于0,正数大于一切负数;③ 所有有理数都可以用数轴上的点表示。

第三讲 绝对值 概念图:1、 在数轴上表示数a 的点与原点的距离叫做数a 的绝对 值,记作|a|.2、 一个正数的绝对值是它本身,零的绝对值是零,一个负数的绝对值是它的相反数,可表示为第四讲 有理数的加法 概念图 1、 同号两数相加,取相同的符号,并把绝对值相加; 2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧律合结律换交运算律一个数与零相加异号两数相加同号两数相加则法加的数理有对值.互为相反数的两个数相加得0. 3、 一个数同0相加,仍得这个数. 4、 有理数加法的运算律: (1) 加法的交换律:a+b=b+a(2) 加法的结合律:(a+b )+c=a+(b+c )第六讲第七讲有理数的加减正分数负分数正整数0负整数第八讲第九讲 绝对值的进一步介绍第十讲 一元一次方程3.1.1一元一次方程1、含有未知数的等式是方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册课本全部内容标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎪⎩⎪⎨⎧---...5.351...2.03121321.0...321.,,负分数:如,,,正分数:如分数,,负整数:如,,,正整数:如整数数理有第一讲 有理数 概念图1、像5,1,2,21,…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+2、在正数前面加上“—”号的数叫做负数,如-10,- 3,…3、0既不是正数也不是负数.4、整数和分数统称为有理数.你能用所学过的数表示下列数量关系吗如果自行车车条的的长度比标准长度长2mm ,记作+2mm ,那么比标准长度短3mm 记作什么如果恰好等于标准长度,那么记作什么探索【1】 下列语句:①所有的整数都是正数;②所有的正数都是整数;③分数都是有理数;④奇数都是正数;⑤在有理数中不是负数就是正数,其中哪些语句是正确的探索【2】 把下列各数填在相应的集合内:15,-6,-,21,0,,-411,51,8,-2,27,71,-43,,1358. 正整集:{ };负数集:{ };正分数集:{ };负分数集:{ };整数集:{ };自然数集:{ }.探索【3】 如果规定向南走10米记为+10米,那么-50米表示什么意义轻松练习1、下列关于0的叙述中,不正确的是( )是自然数 既不是正数,也不是负数是偶数 既不是非正数,也不是非负数2、某班数学平均分为88分,88分以上如90分记作+2分,某同学的数学成绩为85分,则应记作( )A.+85分B.+3分C. -3D.-3分3、在有理数中( )A.有最大的数,也有最小的数B.有最大的数,但没有最小的数C.有最小的数,但没有最大的数D.既没有最大的数,也没有最小的数4、下列各数是正有理数的是( )A. -B.32 D. - 16⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧与有理数的关有---画法---单位长度正方向原点定义---数轴5、正整数、_______、________统称正数,_______和______统称分数,_______和_______统称有理数.6、把下列各数填入相应的集合内.整数集合:{ } 分数集合:{ }负数集合:{ } 有理数集合:{ }7、(1)某人向东走5m ,又回头向西走5米,此人实际距离原地多少米若回头向西走了10米呢(以向东为正)(2)世界第一高峰珠穆朗玛峰海拔8848m ,江苏的茅山主峰比它低8438m ,茅山主峰的海拔高度是多少米第二讲 数轴概念图:1、数轴:规定了原点、正方向和单位长度的直线.2、数轴的三要素:原点、正方向、单位长度.3、所有的有理数都可以用数轴上的点表示.4、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.mn 10探索【1】 把数-3,-1,,-21,,212在数轴上表示出来,再用“<”号把它们连接起来. 探索【2】 分别写出下列各数的相反数.213 - 0 +30 探索【3】 某人从A 地出发向东走10m ,然后折回向西走3m ,又折回向东走6m ,问此人 A 地哪个方向,距离多少轻松练习:1、如图所示,数轴上的点M 和N 分别表示有理数m 和n ,那么以下结论正确的是( ) >0,n>0 >0,n<0 <0,n>0 <0,n<02、下列各对数中,互为相反数的是( )A.+(—8)和(—8)B.—(—8)和+8C.—(—8)和+(+8)D.+8和+(—8)3、一个数的相反数是非负数,这个数一定是( )A.非正数B.非负数C.正数D.负数4、914 的相反数是_________,—16与____互为相反数,—(+3)表示______的相反数. 5、化简—[—(+]=________.⎪⎪⎪⎩⎪⎪⎪⎨⎧--⎩⎨⎧有理数大小比较非负性性质代数意义几何意义意义绝对值6、数轴上到原点的距离为5个单位长度的点有_______个,它们表示的数是______,它们的关系是_______.7、(1)写出所有比3小的正整数____________________________.(2)写出两个比—3大的负整数____________________________.8、如图所示,在数轴上有A 、B 、C 三点,请回答:(1) 将点A 向右移动2个单位长度后,点A 表示的有理数是____________.(2) 将点B 向左移动3个单位长度后,点B 表示的有理数是_____________.(3) 将点C 向左移动5个单位长度后,点C 表示的有理数是_____________.9、化简下列各数中的符号.(1))313(-- (2))8(+- (3))75.0(-- (4))31(-+ (5))]2([+-- 10、若2x+1是-9的相反数,求x 的值.第三讲 绝对值概念图:1、在数轴上表示数a 的点与原点的距离叫做数a 的绝对 值,记作|a|.2、一个正数的绝对值是它本身,零的绝对值是零,一个负数的绝对值是它的相反数,可表示为10-1a 探索【一】 求下列各数的绝对值.211- - 0 )213(-- 探索【二】 比较下列有理数大小.(1)—3和0 (2)—3和|—5| (3)-(-)31和|21-| 探索【三】 比较-(-a )与—|a|的大小.探索【四】 若数a 在数轴上对应的点如下图所示,则化简|a+1|的结果是( ) +1 B. -a+1-1 D. -a -1探索【五】已知|a -1|+|b+2|=0,求a 和b 的值.练习:1、在数轴上,一个数所对应的点与__________的距离叫做该数的绝对值.2、21-的绝对值是_______,绝对值为3的数是_______,绝对值等于本身的数是________. 3、绝对值不大于3的整数有________个,它们分别是__________________________.4、52的相反数是______. 5、-|-2|的倒数是( ) B.21 C.21- D. -2n0m 6、如图所示,点A 、B 在数轴上对应的 实数分别为m 、n ,则A 、B 间的距离是________.(用含m 、n 的式子表示)7、与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在北京时间是15:00,那么纽约时间是_________.8、若|x -2|+|y+3|=0,则x=_____,y=_____.当x=_____时,1+|x+1|的最小值是________.9、用“<”连接下列各数.- 1 |-3| —1 0 -(-2)10、 比较6543--和的大小. 11、如果x 与2互为相反数,那么|x —1|等于( )B. -1C.3D. -3第四讲 有理数的加法概念图1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧律合结律换交运算律一个数与零相加异号两数相加同号两数相加则法法加的数理有ab c 03、一个数同0相加,仍得这个数.4、有理数加法的运算律:(1) 加法的交换律:a+b=b+a(2) 加法的结合律:(a+b )+c=a+(b+c ) 探索【1】计算:探索【二】计算:探索【三】有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的有( )① b+c>0 ②a+b>a+c ③a+c<0 ④a+b>0个 个个 个探索【四】一口水井,水面比井口低3m ,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了后又往下滑了;第二次往上爬了,却又下滑了;第三次往上爬了,又下滑了;第四次往上爬了,又下滑了;第五次往上爬了,没有下滑;第六次蜗牛又往上爬了,问蜗牛有没有爬出井口练习:1、下列各式中,运算正确的有( )(1)918)9)(4(;500)50)(3(;6121)31)(2(;0)2()2(=+--=+-=+-+-+-个个个个2、某天股票A开盘价20元,上午11:30跌元,下午收盘时又涨了元,则股票A这天收盘价为()A3、一个数是10,另一个数比10的相反数小2,则这两个数的和为()B.—2C.—184、计算:.-+=11(=+-+++-)(______,131.6_______))2.5(12)13(5、若|a|=3,|b|=2,则a+b=________.6、若a>0,b>0,则a+b_____0;若a<0,b<0,则a+b_____0;若a>0,b<0,|a|>|b|,则a+b____0;若a>0,b<0,|a|<|b|,则a+b_____0;若a,b互为相反数,则a+b____0.7、若|a-3|与|b+2|互为相反数,求a+b+5的值.8、小敏靠勤工俭学维持上大学的费用,下表是小敏一周的收支情况(收入为正,支出为负,单位:元)(1)在这一周内小敏有多少节余(2) 照这样一个月(按30天计算)小敏有多少节余9、用适当的方法计算下列各题:第五讲 有理数的减法概念图探索【一】计算:探索【二】计算:探索【三】设数轴上的点A 、B 、C 分别表示数-3、21、4,利用数轴求A 与B ,B 与C ,A 与C 之间的距离,你能从中发现什么规律吗探索【四】(1)某冷库温度是零下100C ,下降-30C 后又下降50C ,两次变化后冷库温度是多少(2)零下120C 比零上120C 低多少(3)数轴上A 、B 两点表示的有理数分别是437216和-,求A 、B 两点的距离.练习:1、计算87--的值为( )A. -15B.-1C.152、下列说法正确的是( )A.两个有理数的差一定不大于被减少B.两个有理数的差一定小于这两个数的和C.绝对值相等的两个数的差等于零D.零减去一个数等于这个数的相反数3、请看下面的算式:1)1(0;0|3|)3(;0)3()3(;0)2(2=--=---=+--=--其中正确的算式有( )个 个 个 个4、在(—5)—( )= -7中的括号里应填( )A. -2B.+2C. -12 D+125、填空.(1)( )+(-8)=-12 (2)(+8)+( )= -12(3)( )+(-)=8 (4)(-2)-( )= -7(5)(-10)-( )= -8 (5)(+2)-( )=156、计算.(1)(+)-(-) (2)(-)--(3)16983)41(+-- (4)731)72()71(----(5)21614131-++- (6))321()313()1(--+--7、某潜艇从海平面以下27米上升到海平面以下18米,此潜艇上升了多少米28、如图所示: 311-(1)A 、B 两点间的距离是多少(2)B 、C 两点间的距离是多少9、若a+b>a —b ,则a 、b 满足___________;若a+b=a -b ,则a 、b 满足____________;若a+b<a -b ,则a ,b 满足______________.10、若|2x -4|+3|6+2y|=0,求下列各式的值.(1)|x -y|;(2)|x|-|y|11、某市冬季的一天,最高气温为60C ,最低气温为-110C ,这天晚上的天气预报说将有一股冷空气袭击该市,第二天气温将下降10~120C .请你利用以上信息,估计第二天该市的最高气温不会高于多少摄氏度,最低气温不会低于多少摄氏度,以及最高气温与最低气温的差为多少摄氏度.第六讲 有理数的加减(1)探索【1】计算:(1))32()31(-+- (2))7.10()8.10(++-(3)0)6(+- (4))7452(7452-+探索【2】计算:(1))3(6-- (2))2(0-- (3))5()7(--- (4)0)2(--探索【3】计算:(1)563)8.12()52()8.59(+-+--+ (2))313(4183)832()2(++---+-练习:1、计算:2、计算:3、计算:4、计算:第七讲 有理数的加减(2)探索【1】计算:探索【2】在数109,108,107,106,105,104,103,102的前面分别添加“+”或“-”,使它们的和为1. 你能想出多少种方法探索【3】一个水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.1米;第五次往上爬了0.55米,没有下滑;第六次又往上爬了0.48米. 问蜗牛有没有爬出井口练习:1、计算:2、计算:3、潜水艇原来在水下200米处.若它下潜50米,接着又上浮130米,问这时潜水艇在水下多少米处4、数轴上点A表示5,将A点向左移动3个单位后又向右移动8个单位,求此时A点表示的数是多少5、判断题:(1)若两个数的和为负数,则这两个数都是负数. ()(2)若两个数的差为正数,则这两个数都是正数. ()(3)减去一个数,等于加上这个数的相反数. ()(4)零减去一个有理数,差必为负数. ()(5)如果两个数互为相反数,则它们的差为0. ()6、出租车司机小王,某天下午的营运全在东西走向的人民路上.如果规定向东为正,向西为负,这天下午他行车里程(单位:千米)如下:(1)将最后一名乘客送到目的地时,小王距下午出车时的出发点多远在什么方向(2)若汽油耗油量为0.1升/千米,这天下午小王共耗油多少升7、请在数1,2,3,…,2006,2007前适当加上“+”或“-”号,使它们的和的绝对值最小.8、某天早晨的温度为5℃,到中午上升了7℃,晚上又下降了6℃,求晚上的温度.9、要测量A 、B 两地的高度差,但又不能直接测量,找了D 、E 、F 、G 、H 共五个中间点,测量出一些高度差,结果如下表(单位:米).问:A 、B 两地哪处高高多少第八讲 绝对值的进一步介绍(一)探索【1】绝对值为10的整数有哪些绝对值小于10的整数有哪些绝对值小于10的整数共有多少个它们的和为多少探索【2】若0a 2≤≤-,化简|2a ||2a |-++.探索【3】若,0x <化简|x ||3x ||x 2|x ||---.探索【4】设a<0,且||x a a≤,试化简|2x ||1x |--+. 练习:1、判断下列各题是否正确.(1)当b<0时,b |b |-=. ( )(2)若a 是有理数,则|a|一定是正数. ( )(3)当|m|=m 时,m>0. ( )(4)若.|b ||a |b a =-=,则 ( )(5)若a<b ,则|a|<|b|. ( )(6)a+|a|一定是正数. ( )2、若.|a |a 3|||a 3|a 20a --<,试化简3、若.|1x ||1x |1x 1--+<<-,试化简4、绝对值小于100的整数有哪些共多少个它们的和是多少5、已知.b a 311|b |325|a |的值,求,-==6、设a 和b 是有理数,若a>b ,那么|a|>|b|一定正确吗如果正确,请你说出理由;如果不正确,请举出反例.第九讲 绝对值的进一步介绍(二)探索【1】数a 、b 在数轴上对应的点如下图所示,试化简||a |a ||b ||a b ||b a |--+-++.探索【2】化简||x 5|x 2|x3|x |2--.探索【3】化简|3x 2||5x |-++..探索【4】若2002y x |2y ||1x |)互为相反数,试求(与++-.探索【5】.ab b a |b a |b a 的值,试求为有理数,且、-=+练习:1、化简.|51x ||51x |++-2、已知;有理数a 、b 、c 的位置如下图所示,化简.|b a ||c b ||c a |+-+++3、若.b a |b ||a ||b a |应满足的关系,,试求+=-4、|b a ||b a |0|b a ||b a |2005200520052005-++=-++,化简已知.5、.|1x 5||5x 3||3x 2|+--+-化简6、设a 是有理数,求a+|a|的值.第十讲 一元一次方程探索【1】 解下列方程:(1)m m -=-534 (2)x x 11856=-(3))72(65)8(5-=-+x x (4))13(72)21(31+=-x x探索【2】 解方程121312=--+x x 探索【3】小张在解方程1523=-x a (x 为未知数)时,误将x 2-看做+2x ,得方程的解为x =3,请求出常数a 的值和原方程的解.探索【4】解关于x 的方程1242+=-mx x m练习:1、如果式子32+x 与5-x 互为相反数,则x =_______.2、当k=_____时,方程835+=-x k x 的解是2-.3、若代数式61221++-x x 与131+-x 的值相等,则x =______.4、如果03245=--a x 是关于x 的一元一次方程,那么a =_____,此时方程的解为_____.5、解下列方程6、解关于x 的方程.7、若,0)43(|32|2=+-++y x x 求2)1(-y 的值.8、解方程11312-+=-a x x ,小明在去分母时,方程的右边1-没有乘以3,因而他求得方程的解为x =6.求a 的值,并正确地解方程.巩固与加强: 一元一次方程的应用1、利民商店把某种服装按成本价提高50%后标价,又以7折卖出,结果每件仍获利20元,这种服装每件的成本是多少元2、A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时出发,相向而行,已知甲的速度为千米/时,乙的速度为千米/时,求甲、乙两人几小时后相遇3、某中学开展校外植树活动,让七年级学生单独植树,需要小时完成;让八年级学生单独种植,需要5小时完成,现在让七年级和八年级学生先一起种植1小时,再由八年级学生单独完成剩余部分,共需多少小时完成4、丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动,某外贸公司推出品牌“山山牌”香菇、“奇尔”牌慧明茶共10吨前往参展,用6辆骑车装运,每辆汽车规定满载,且只能装运一种产品;因包装限制,每辆汽车满载时能装香菇吨或茶叶2吨,问装运香菇、茶叶的汽车各需要多少辆5、晓晓商店以每支4元的价格进100支钢笔,卖出时每支的标价是6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店盈利188元,其中打9折的钢笔有几支6、某班学生到一景点春游,队伍从学校出发,以每小时4千米的速度前进。

相关文档
最新文档