数据挖掘论文选题
计算机专业毕业论文选题指南如何选择一个具有研究价值的课题
计算机专业毕业论文选题指南如何选择一个具有研究价值的课题计算机专业毕业论文的选题对于每位学生来说都是一项重要的任务。
选一个具有研究价值的课题对于毕业论文的质量和学术价值具有至关重要的影响。
本文将介绍几个步骤,帮助学生们选择一个具有研究价值的计算机专业毕业论文课题。
第一步:研究领域的选择选择一个合适的研究领域是选择研究课题的第一步。
计算机专业涉及众多领域,例如人工智能、数据挖掘、网络安全等。
学生可以根据自己的兴趣和专业知识选择一个研究领域。
此外,还可以通过阅读相关文献和参加学术研讨会了解不同领域的最新研究进展,从而找到感兴趣的课题。
第二步:查阅文献和调研在确定研究领域后,需要进行广泛的文献调研。
查阅相关的学术论文和期刊,了解当前该领域的研究热点和已有的成果。
通过对文献的分析,可以找到尚未解决的问题或需要改进的方法。
此外,还可以了解当前业界对该领域的需求和未来的发展方向,以此来确定一个有实际应用价值的课题。
第三步:明确研究目标和问题在进行调研的基础上,需要明确自己研究的目标和问题。
一个具有研究价值的课题应该有明确的研究目标,并且能够提出具体的问题。
研究目标可以是解决一个现实世界中的问题,也可以是改进已有的方法或算法。
问题的提出应该能够激发学术界和业界的兴趣,并具有一定的挑战性和创新性。
第四步:可行性分析和资源评估在确定了研究目标和问题后,需要进行可行性分析和资源评估。
课题的可行性分析包括技术可行性和时间可行性。
学生应该具有实现研究目标所需的技术能力和资源,同时需要考虑时间上的限制,确保在规定的时间内完成研究工作。
此外,还需要评估课题所需的资源,例如实验设备、数据集和研究经费等。
第五步:导师指导和意见征询在确定了一个具有研究价值的课题后,建议学生与导师进行讨论和意见征询。
导师作为学术研究领域的专家,能够提供宝贵的指导和建议。
学生可以向导师介绍自己的选题思路和研究目标,并听取导师对于课题的意见和建议。
在导师的指导下,学生可以进一步完善和细化自己的选题方案,使其更具研究价值。
数据挖掘毕业论文题目
数据挖掘毕业论文题目数据挖掘毕业论文题目本文简介:数据挖掘技术已成为计算机领域的一个新的研究热点,其应用也渗透到了其他各大领域。
以下是我们整理的数据挖掘毕业论文题目,希望对你有用。
数据挖掘毕业论文题目一: 1、基于数据挖掘的方剂配伍规律研究方法探讨 2、海量流数据挖掘相关问题研究 3、基于MapReduce 的大规模数据挖掘数据挖掘毕业论文题目本文内容:数据挖掘技术已成为计算机领域的一个新的研究热点,其应用也渗透到了其他各大领域。
以下是我们整理的数据挖掘毕业论文题目,希望对你有用。
数据挖掘毕业论文题目一: 1、基于数据挖掘的方剂配伍规律研究方法探讨 2、海量流数据挖掘相关问题研究 3、基于MapReduce的大规模数据挖掘技术研究 4、地质环境数据仓库联机分析处理与数据挖掘研究 5、面向属性与关系的隐私保护数据挖掘理论研究 6、基于多目标决策的数据挖掘方法评估与应用 7、基于数据挖掘的煤矿安全可视化管理研究 8、基于大数据挖掘的药品不良反应知识整合与利用研究 9、基于动态数据挖掘的电站热力系统运行优化方法研究 10、基于支持向量机的空间数据挖掘方法及其在旅游地理经济分析中的应用 11、移动对象轨迹数据挖掘方法研究 12、基于数据挖掘的成本管理方法研究 13、基于数据挖掘技术的财务风险分析与预警研究 14、面向交通服务的多源移动轨迹数据挖掘与多尺度居民活动的知识发现 15、面向电信领域的数据挖掘关键技术研究 16、面向精确营销基于数据挖掘的3G用户行为模型及实证研究 17、隐私保护的数据挖掘算法研究 18、造纸过程能源管理系统中数据挖掘与能耗预测方法的研究 19、基于数据挖掘的甲肝医疗费用影响因素与控制策略研究 20、基于特征加权与特征选择的数据挖掘算法研究 21、基于数据挖掘的单纯冠心病与冠心病合并糖尿病的证治规律对比研究 22、基于数理统计与数据挖掘的《伤寒论》温里法类方方证辨治规律研究 23、大规模数据集高效数据挖掘算法研究24、半结构化数据挖掘若干问题研究 25、基于数据挖掘与信息融合的瓦斯灾害预测方法研究 26、基于数据挖掘技术的模糊推理系统 27、基于CER模式的针灸干预颈椎病颈痛疗效数据挖掘研究 28、时间序列数据挖掘中的特征表示与相似性度量方法研究 29、可视化数据挖掘技术在城市地下空间GIS中的应用研究30、基于多目标决策的数据挖掘模型选择研究 31、银行数据挖掘的运用及效用研究 32、基于用户特征的社交网络数据挖掘研究 33、中医补益方数据库的构建及其数据挖掘 34、时间序列数据挖掘若干关键问题研究 35、药物不良事件信息资源整合与数据挖掘研究数据挖掘毕业题目二: 36、基于数据挖掘的火灾分析模型及应用研究 37、道路运输信息系统的数据挖掘方法研究与应用38、基于数据挖掘的道路交通事故分析研究 39、基于RFID的物流大数据资产管理及数据挖掘研究 40、基于数据挖掘的金融时间序列预测研究与应用 41、基于数据挖掘的战略管理会计若干问题研究 42、基于数据挖掘技术构建电信4G客户预测模型的研究 43、大数据挖掘中的并行算法研究及应用 44、数据挖掘技术在个性化网络教学平台中的应用研究 45、基于数据挖掘技术的金融数据分析系统设计与实现 46、基于数据挖掘的花旗银行国内零售业务营销策略研究 47、数据挖掘在零售银行精准营销中的应用研究 48、基于贝叶斯网络的数据挖掘应用研究 49、Web数据挖掘及其在电子商务中的应用研究 50、一种基于云计算的数据挖掘平台架构设计与实现 51、基于灰色系统理论的数据挖掘及其模型研究 52、时间序列数据挖掘研究 53、数据挖掘技术与关联规则挖掘算法研究 54、空间数据挖掘的研究 55、海量数据挖掘技术研究 56、基于关联规则数据挖掘算法的研究 57、数据挖掘相关算法的研究与平台实现 58、基于形式概念分析的图像数据挖掘研究 59、数据挖掘中聚类方法的研究 60、基于粗糙集的数据挖掘方法研究 61、数据库中数据挖掘理论方法及应用研究 62、基于地理信息系统空间数据挖掘若干关键技术的研究 63、基于支持向量机的过程工业数据挖掘技术研究 64、隐私保护的数据挖掘 65、基于粗糙集的数据挖掘方法研究 66、数据挖掘技术与分类算法研究 67、高光谱数据库及数据挖掘研究 68、数据挖掘中聚类若干问题研究 69、基于数据挖掘的电站运行优化理论研究与应用 70、面向电信CRM的数据挖掘应用研究数据挖掘毕业论文题目三: 71、基于数据挖掘与信息融合的故障诊断方法研究 72、基于数据挖掘的基坑工程安全评估与变形预测研究 73、面向服务的数据挖掘关键技术研究74、道路交通流数据挖掘研究 75、基于消错理论的数据挖掘错误系统优化方法及应用研究 76、基于数据挖掘的当代不孕症医案证治规律研究 77、时间序列数据挖掘中的维数约简与预测方法研究 78、基于物联网的小麦生长环境数据采集与数据挖掘技术研究 79、基于数据挖掘的网络入侵检测关键技术研究 80、基于方剂数据挖掘的痹证证治规律研究 81、数据挖掘中数据预处理的方法研究82、云计算及若干数据挖掘算法的MapReduce化研究 83、基于HADOOP的数据挖掘研究 84、基于云计算的海量数据挖掘分类算法研究 85、基于大数据的数据挖掘引擎 86、基于Hadoop的数据挖掘算法研究与实现 87、基于YARN的数据挖掘系统的设计与实现 88、机器学习算法在数据挖掘中的应用 89、数据挖掘中关联规则算法的研究与改进 90、数据挖掘在股票曲线趋势预测中的研究及应用 91、基于云计算的数据挖掘平台研究 92、基于数据挖掘技术的联网审计风险控制研究 93、数据挖掘技术在P2P网络金融中的应用研究 94、基于数据挖掘和网络药理学的清热类中成药组方规律研究 95、聚类分析数据挖掘方法的研究与应用 96、基于RBF神经网络的数据挖掘研究 97、面向电子商务的web 数据挖掘的研究与设计 98、数据挖掘分类算法研究 99、Web数据挖掘在电子商务中的应用研究 100、基于决策树的数据挖掘算法研究与应用 101、数据挖掘中的聚类算法研究 102、基于多结构数据挖掘的滑坡灾害预测模型研究103、渐进式滑坡多场信息演化特征与数据挖掘研究 104、基于数据挖掘的《临证指南医案》脾胃病证治规律研究 105、基于数据挖掘从经验方和医案探析岭南名医治疗妇科疾病的诊疗和用药规律数据挖掘毕业论文题目四: 106、基于数据挖掘技术分析当代中医名家湿疹验方经验研究 107、基于数据挖掘技术分析当代中医名家银屑病验方经验研究 108、基于数据挖掘技术分析当代中医名家痤疮验方经验研究 109、数据挖掘中的聚类方法及其应用 110、面向数据挖掘的隐私保护方法研究 111、CRM中模糊数据挖掘及客户生命周期价值与客户满意度研究 112、基于数据挖掘的图书馆书目推荐服务的研究 113、数据挖掘算法优化研究与应用 114、在电子商务中应用Web数据挖掘的研究 115、基于数据挖掘的微博用户兴趣群体发现与分类 116、基于神经网络的数据挖掘分类算法比较和分析研究 117、数据挖掘在股票分析中的应用研究 118、数据挖掘在淘宝客户评价方面的研究与应用 119、数据挖掘在银行客户关系管理中的应用研究 120、数据挖掘中的统计方法及其应用研究 121、基于数据挖掘的客户价值管理研究 122、数据挖掘中聚类分析的研究 123、数据挖掘算法研究与应用 124、基于大数据挖掘的精准营销策略研究 125、基于k-means算法在微博数据挖掘中的应用 126、基于Hadoop的大数据平台数据挖掘云服务研究127、基于数据挖掘的管理会计的分析研究 128、基于粗糙集的数据挖掘改进的属性约简算法研究 129、应用Apriori关联规则算法的数据挖掘技术挖掘电子商务潜在客户 130、数据挖掘算法及其应用研究 131、基于云平台的数据挖掘算法的研究与实现 132、基于web的数据挖掘系统设计与实现 133、基于Hadoop平台的数据挖掘技术研究 134、基于数据挖掘的商业银行客户关系管理研究 135、数据挖掘技术在公安警务信息管理系统中的应用 136、基于高校人力资源的数据挖掘技术研究 137、数据挖掘聚类算法研究 138、数据挖掘技术与应用研究 139、数据挖掘中关联规则算法的研究及应用。
《数据挖掘的算法》论文
写一篇《数据挖掘的算法》论文
数据挖掘是一种采用计算机技术来从大量数据中发掘有用信息的过程。
它的目的是为了从海量的数据中发现新的信息、规律,并将其应用于商业、管理、工程和社会等领域,从而进行决策和控制。
数据挖掘的算法是数据挖掘的核心,它们具有非常重要的意义。
现在,有三种常见的数据挖掘算法,即关联法、分类法和聚类法。
关联法是指利用统计技术,从大量数据中发现不同事物之间的关联性,从而进行复杂数据集的分析和探索。
它具有快速、精准、可靠等优点,可以帮助我们找出特定的数据属性之间的关联关系,帮助决策者做出正确的判断。
分类法是指基于特征值,将目标对象归类到特定的类别或群体中,常见的分类算法包括逻辑回归、决策树和支持向量机等。
它可以帮助我们快速地划分类别和数据,使我们了解特定类别数据的分布情况,以便进行更好的分析和挖掘。
聚类法是指根据目标对象的特征值,将其分为不同的聚类,从而获得聚类之间的相似性和差异性。
层次聚类分析、K-均值
聚类等是常见的聚类方法。
通过这种方式,我们可以有效地发现数据集中的隐藏规律和特征,它有助于我们掌握数据的空间构成和特征分布,从而为后续的操作提供备选方案或策略。
以上就是数据挖掘的三种算法的基本介绍。
它们在数据挖掘中
扮演着重要的角色,我们可以根据实际需要,利用合适的方法,从海量数据中获取有用的信息,为后续决策提供可靠的支持。
基于R语言数据挖掘课程期末论文
西安欧亚学院数据挖掘技术与实验课程论文题目全国近20年来人口增长原因分析学生姓名王川学生学号**************所在分院金融学院专业经济统计学班级统本统计13级管理统计方向提交日期二〇一六年6月25日摘要在“二胎政策”全面实施的背景下,我国人口增长形势将继续持续下去。
而影响人口的增长的因素有人口出生率、婚姻登记数量、居民消费水平、参加生育保险人数和医疗发展程度有关。
对这些数据进行相关分析,结果显示这些因素和人口数量的增长可用多元线性回归方程表示,同时可用多因素方差分析,研究这些因素的不同水平是否对人口的增长产生显著影响。
R软件是一种开源的免费数据分析软件,功能强大,是数据分析工作者的首选软件之一。
关键词:R语言;多元线性回归分析;方差分析。
目录引言 (1)1.1 选题的背景和意义 (1)1.2 研究方法与思路 (1)正文 (2)2.1 前言 (2)2.2 数据分析 (2)2.2.1 数据预处理 (2)2.2.2回归分析 (4)2.2.3方差分析 (8)结论 (13)参考文献 (13)引言1.1 选题的背景和意义二孩政策,是中国实行的一种计划生育政策,规定符合条件的夫妇允许生育“二胎”。
因为是二孩政策,故第一胎为多孩时,不可生第二胎。
2011年11月,中国各地全面实施双独二孩政策;2013年12月,中国实施单独二孩政策;2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策。
在经历了迅速从高生育率到低生育率的转变之后,我国人口的主要矛盾已经不再是增长过快,而是人口红利消失、临近超低生育率水平、人口老龄化、出生性别比失调等问题。
国内20多位顶尖人口学者历经两年的研究指出,我国的人口政策亟待转向,尤其是生育政策应该调整。
1.2 研究方法与思路人口增长的原因大体与人口出生率、婚姻登记数量、居民消费水平、参加生育保险人数和医疗发展程度有关。
论文数据分析法开题报告(3篇)
第1篇一、选题背景与意义随着互联网技术的飞速发展,大数据时代已经到来。
在这样一个信息爆炸的时代,如何有效挖掘和利用海量数据,成为企业和研究机构面临的重要课题。
消费者行为分析作为市场营销的重要组成部分,对于企业制定精准的营销策略、提高市场竞争力具有重要意义。
本论文旨在探讨基于大数据的消费者行为分析方法,并分析其对营销策略的影响。
二、文献综述1. 消费者行为分析研究现状近年来,消费者行为分析已成为市场营销领域的研究热点。
学者们从心理学、社会学、经济学等多个角度对消费者行为进行了深入研究。
例如,Kotler和Armstrong (2010)在《市场营销管理》中提出,消费者行为分析应从需求、动机、购买过程、使用与满足、影响五个方面展开。
2. 大数据在消费者行为分析中的应用随着大数据技术的兴起,学者们开始将大数据应用于消费者行为分析。
例如,Brynjolfsson和Smith(2013)在《哈佛商业评论》中提出,大数据可以帮助企业更好地理解消费者行为,从而制定更有效的营销策略。
3. 消费者行为分析与营销策略消费者行为分析对于营销策略的制定具有重要作用。
例如,Kumar等(2016)在《市场营销学杂志》中提出,通过分析消费者行为,企业可以了解目标市场的需求,从而调整产品、价格、渠道和促销策略。
三、研究内容与方法1. 研究内容(1)消费者行为分析的理论框架:从需求、动机、购买过程、使用与满足、影响等方面构建消费者行为分析的理论框架。
(2)大数据在消费者行为分析中的应用:探讨大数据技术如何应用于消费者行为分析,包括数据采集、处理、分析和可视化等方面。
(3)消费者行为分析与营销策略:分析消费者行为分析对营销策略的影响,包括产品策略、价格策略、渠道策略和促销策略。
2. 研究方法(1)文献分析法:通过查阅相关文献,了解消费者行为分析、大数据技术和营销策略的研究现状。
(2)案例分析法:选取具有代表性的企业案例,分析其消费者行为分析方法和营销策略。
数据挖掘毕业论文题目
数据挖掘毕业论文题目数据挖掘毕业论文题目本文简介:数据挖掘技术已成为计算机领域的一个新的研究热点,其应用也渗透到了其他各大领域。
以下是我们整理的数据挖掘毕业论文题目,希望对你有用。
数据挖掘毕业论文题目一: 1、基于数据挖掘的方剂配伍规律研究方法探讨 2、海量流数据挖掘相关问题研究 3、基于MapReduce 的大规模数据挖掘数据挖掘毕业论文题目本文内容:数据挖掘技术已成为计算机领域的一个新的研究热点,其应用也渗透到了其他各大领域。
以下是我们整理的数据挖掘毕业论文题目,希望对你有用。
数据挖掘毕业论文题目一: 1、基于数据挖掘的方剂配伍规律研究方法探讨 2、海量流数据挖掘相关问题研究 3、基于MapReduce的大规模数据挖掘技术研究 4、地质环境数据仓库联机分析处理与数据挖掘研究 5、面向属性与关系的隐私保护数据挖掘理论研究 6、基于多目标决策的数据挖掘方法评估与应用 7、基于数据挖掘的煤矿安全可视化管理研究 8、基于大数据挖掘的药品不良反应知识整合与利用研究 9、基于动态数据挖掘的电站热力系统运行优化方法研究 10、基于支持向量机的空间数据挖掘方法及其在旅游地理经济分析中的应用 11、移动对象轨迹数据挖掘方法研究 12、基于数据挖掘的成本管理方法研究 13、基于数据挖掘技术的财务风险分析与预警研究 14、面向交通服务的多源移动轨迹数据挖掘与多尺度居民活动的知识发现 15、面向电信领域的数据挖掘关键技术研究 16、面向精确营销基于数据挖掘的3G用户行为模型及实证研究 17、隐私保护的数据挖掘算法研究 18、造纸过程能源管理系统中数据挖掘与能耗预测方法的研究 19、基于数据挖掘的甲肝医疗费用影响因素与控制策略研究 20、基于特征加权与特征选择的数据挖掘算法研究 21、基于数据挖掘的单纯冠心病与冠心病合并糖尿病的证治规律对比研究 22、基于数理统计与数据挖掘的《伤寒论》温里法类方方证辨治规律研究 23、大规模数据集高效数据挖掘算法研究24、半结构化数据挖掘若干问题研究 25、基于数据挖掘与信息融合的瓦斯灾害预测方法研究 26、基于数据挖掘技术的模糊推理系统 27、基于CER模式的针灸干预颈椎病颈痛疗效数据挖掘研究 28、时间序列数据挖掘中的特征表示与相似性度量方法研究 29、可视化数据挖掘技术在城市地下空间GIS中的应用研究30、基于多目标决策的数据挖掘模型选择研究 31、银行数据挖掘的运用及效用研究 32、基于用户特征的社交网络数据挖掘研究 33、中医补益方数据库的构建及其数据挖掘 34、时间序列数据挖掘若干关键问题研究 35、药物不良事件信息资源整合与数据挖掘研究数据挖掘毕业题目二: 36、基于数据挖掘的火灾分析模型及应用研究 37、道路运输信息系统的数据挖掘方法研究与应用38、基于数据挖掘的道路交通事故分析研究 39、基于RFID的物流大数据资产管理及数据挖掘研究 40、基于数据挖掘的金融时间序列预测研究与应用 41、基于数据挖掘的战略管理会计若干问题研究 42、基于数据挖掘技术构建电信4G客户预测模型的研究 43、大数据挖掘中的并行算法研究及应用 44、数据挖掘技术在个性化网络教学平台中的应用研究 45、基于数据挖掘技术的金融数据分析系统设计与实现 46、基于数据挖掘的花旗银行国内零售业务营销策略研究 47、数据挖掘在零售银行精准营销中的应用研究 48、基于贝叶斯网络的数据挖掘应用研究 49、Web数据挖掘及其在电子商务中的应用研究 50、一种基于云计算的数据挖掘平台架构设计与实现 51、基于灰色系统理论的数据挖掘及其模型研究 52、时间序列数据挖掘研究 53、数据挖掘技术与关联规则挖掘算法研究 54、空间数据挖掘的研究 55、海量数据挖掘技术研究 56、基于关联规则数据挖掘算法的研究 57、数据挖掘相关算法的研究与平台实现 58、基于形式概念分析的图像数据挖掘研究 59、数据挖掘中聚类方法的研究 60、基于粗糙集的数据挖掘方法研究 61、数据库中数据挖掘理论方法及应用研究 62、基于地理信息系统空间数据挖掘若干关键技术的研究 63、基于支持向量机的过程工业数据挖掘技术研究 64、隐私保护的数据挖掘 65、基于粗糙集的数据挖掘方法研究 66、数据挖掘技术与分类算法研究 67、高光谱数据库及数据挖掘研究 68、数据挖掘中聚类若干问题研究 69、基于数据挖掘的电站运行优化理论研究与应用 70、面向电信CRM的数据挖掘应用研究数据挖掘毕业论文题目三: 71、基于数据挖掘与信息融合的故障诊断方法研究 72、基于数据挖掘的基坑工程安全评估与变形预测研究 73、面向服务的数据挖掘关键技术研究74、道路交通流数据挖掘研究 75、基于消错理论的数据挖掘错误系统优化方法及应用研究 76、基于数据挖掘的当代不孕症医案证治规律研究 77、时间序列数据挖掘中的维数约简与预测方法研究 78、基于物联网的小麦生长环境数据采集与数据挖掘技术研究 79、基于数据挖掘的网络入侵检测关键技术研究 80、基于方剂数据挖掘的痹证证治规律研究 81、数据挖掘中数据预处理的方法研究82、云计算及若干数据挖掘算法的MapReduce化研究 83、基于HADOOP的数据挖掘研究 84、基于云计算的海量数据挖掘分类算法研究 85、基于大数据的数据挖掘引擎 86、基于Hadoop的数据挖掘算法研究与实现 87、基于YARN的数据挖掘系统的设计与实现 88、机器学习算法在数据挖掘中的应用 89、数据挖掘中关联规则算法的研究与改进 90、数据挖掘在股票曲线趋势预测中的研究及应用 91、基于云计算的数据挖掘平台研究 92、基于数据挖掘技术的联网审计风险控制研究 93、数据挖掘技术在P2P网络金融中的应用研究 94、基于数据挖掘和网络药理学的清热类中成药组方规律研究 95、聚类分析数据挖掘方法的研究与应用 96、基于RBF神经网络的数据挖掘研究 97、面向电子商务的web 数据挖掘的研究与设计 98、数据挖掘分类算法研究 99、Web数据挖掘在电子商务中的应用研究 100、基于决策树的数据挖掘算法研究与应用 101、数据挖掘中的聚类算法研究 102、基于多结构数据挖掘的滑坡灾害预测模型研究103、渐进式滑坡多场信息演化特征与数据挖掘研究 104、基于数据挖掘的《临证指南医案》脾胃病证治规律研究 105、基于数据挖掘从经验方和医案探析岭南名医治疗妇科疾病的诊疗和用药规律数据挖掘毕业论文题目四: 106、基于数据挖掘技术分析当代中医名家湿疹验方经验研究 107、基于数据挖掘技术分析当代中医名家银屑病验方经验研究 108、基于数据挖掘技术分析当代中医名家痤疮验方经验研究 109、数据挖掘中的聚类方法及其应用 110、面向数据挖掘的隐私保护方法研究 111、CRM中模糊数据挖掘及客户生命周期价值与客户满意度研究 112、基于数据挖掘的图书馆书目推荐服务的研究 113、数据挖掘算法优化研究与应用 114、在电子商务中应用Web数据挖掘的研究 115、基于数据挖掘的微博用户兴趣群体发现与分类 116、基于神经网络的数据挖掘分类算法比较和分析研究 117、数据挖掘在股票分析中的应用研究 118、数据挖掘在淘宝客户评价方面的研究与应用 119、数据挖掘在银行客户关系管理中的应用研究 120、数据挖掘中的统计方法及其应用研究 121、基于数据挖掘的客户价值管理研究 122、数据挖掘中聚类分析的研究 123、数据挖掘算法研究与应用 124、基于大数据挖掘的精准营销策略研究 125、基于k-means算法在微博数据挖掘中的应用 126、基于Hadoop的大数据平台数据挖掘云服务研究127、基于数据挖掘的管理会计的分析研究 128、基于粗糙集的数据挖掘改进的属性约简算法研究 129、应用Apriori关联规则算法的数据挖掘技术挖掘电子商务潜在客户 130、数据挖掘算法及其应用研究 131、基于云平台的数据挖掘算法的研究与实现 132、基于web的数据挖掘系统设计与实现 133、基于Hadoop平台的数据挖掘技术研究 134、基于数据挖掘的商业银行客户关系管理研究 135、数据挖掘技术在公安警务信息管理系统中的应用 136、基于高校人力资源的数据挖掘技术研究 137、数据挖掘聚类算法研究 138、数据挖掘技术与应用研究 139、数据挖掘中关联规则算法的研究及应用。
数据挖掘结课论文_袁博
数据挖掘课程论文题目:数据挖掘中 神经网络方法综述学 号:专 业: 工业工程名:目录一、引言 (3)(一)数据挖掘的定义 (3)(二)神经网络简述 (3)二、神经网络技术基础理论 (3)(一)神经元节点模型 (3)(二)神经网络的拓扑结构 (4)(三)神经网络学习算法 (4)(四)典型神经网络模型 (5)三、基于神经网络的数据挖掘过程 (6)(一)数据准备 (6)(二)规则提取 (7)(三)规则评估 (8)四、总结 (8)一、引言(一)数据挖掘的定义关于数据挖掘的定义不少,其中被广泛接受的定义是:数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声,具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在实用的知识或者模式的过程。
该定义包含了一下几个含义: (1)数据源必须为大量的、真正的并且包含噪声的;(2) 挖掘到的新知识必须为用户需求的、感兴趣的; (3)挖掘到的知识为易理解的、可接受的、有效并且可运用的; (4)挖掘出的知识并不要求合用于所有领域,可以仅支持某个特定的应用发现问题。
[1]这个定义准确的叙述了数据挖掘的作用,即对海量、杂乱无章的数据进行处理和分析,并发现隐藏在这些数据中的实用的知识,为决策提供支持。
(二)神经网络简述神经网络是摹拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身的结构来表达输入和输出的关联知识。
[2]起初,神经网络在数据挖掘中的应用并未被看好,其主要原因是神经网络具有结构复杂、可解释性差、训练时间长等缺陷。
但其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法的陆续提出与优化,特别是各种网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为泛博使用者所青睐。
二、神经网络技术基础理论(一) 神经元节点模型生物神经元,也成神经细胞,是构成神经系统的基本单元。
开题报告选题依据
开题报告选题依据一、选题背景和意义随着社会的不断发展,人们对于信息的需求量越来越大,而信息技术的快速发展也使得我们能够更加方便地获取和利用信息。
然而,随着信息量的不断增加,我们面临着信息过载的问题,即无法有效地筛选和利用有用的信息。
因此,如何从大量的信息中筛选出有用的信息,成为了当前亟待解决的问题。
在当前的信息化时代,数据挖掘技术的出现为解决这一问题提供了有效的手段。
数据挖掘技术能够从大量的数据中挖掘出有用的信息,帮助人们更好地理解和利用数据。
因此,本文选取“基于数据挖掘的个性化推荐系统”这一课题进行研究,具有重要的现实意义和理论价值。
二、相关文献综述在国内外学者的研究中,数据挖掘技术已经被广泛应用于各个领域,如商业智能、金融、医疗等。
其中,个性化推荐系统是数据挖掘技术的一个重要应用领域。
个性化推荐系统通过分析用户的历史行为和偏好,向用户推荐他们可能感兴趣的产品或服务。
国内外学者已经提出了多种不同的个性化推荐算法,如协同过滤、基于内容的推荐等。
然而,当前的研究还存在一些问题,如推荐准确度不高、无法处理大规模数据等。
因此,本文选取“基于数据挖掘的个性化推荐系统”这一课题进行研究,旨在进一步优化个性化推荐算法,提高推荐准确度。
三、研究内容和目标本文的研究内容主要包括:1)分析和总结现有的个性化推荐算法的优缺点;2)结合实际情况,设计一种基于数据挖掘的个性化推荐算法;3)实现一个个性化的推荐系统,并进行实验验证其可行性和有效性。
本文的研究目标包括:1)提出一种基于数据挖掘的个性化推荐算法,提高推荐准确度和用户满意度;2)实现一个可扩展、高效的个性化推荐系统,为实际应用提供支持;3)为相关领域的研究提供参考和借鉴。
四、研究方法和实验设计本文将采用理论分析和实验验证相结合的方法进行研究。
首先,对现有的个性化推荐算法进行深入的分析和总结;其次,结合实际需求和数据特点,设计一种基于数据挖掘的个性化推荐算法;最后,通过实验验证该算法的可行性和有效性。
数据挖掘技术论文(2)
数据挖掘技术论文(2)数据挖掘技术论文篇二数据挖掘技术研究[摘要] 本文主要介绍了数据挖掘的基本概念,以及数据挖掘的方法。
[关键词] 数据挖掘数据挖掘方法随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。
但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。
因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(Data Mining)技术由此应运而生。
一、数据挖掘的定义数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。
它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。
数据挖掘的过程也叫知识发现的过程。
二、数据挖掘的方法1.统计方法。
传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。
贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。
2.关联规则。
关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。
关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。
大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。
数据采集自动化处理与数据挖掘毕业设计(论文)
HUNAN UNIVERSITY毕业设计(论文)设计(论文)题目:数据采集自动化处理与数据挖掘数据采集自动化处理与数据挖掘摘要目前,随着社会经济的发展,金融市场变的异常庞大和复杂,而基金作为一种金融衍生产品,在金融市场中占有一席之地。
随着基金产业的不断发展,各种类型的基金进入金融市场,作为一种理财产品,就是要为大众服务,帮助大家理财,然而当投资者面对大量的基金产品,不知应该怎样选择,所以我们的目标就是帮助普通的投资者和金融机构做出判断,指引他们选择适合自己的基金。
为了达到上面的目的,我们就需要大量的数据来做支撑,所以采集这些基金产品的数据是十分重要的,每天有来自世界各地的金融机构为我们提供这些数据,而我们的目的就是要采集这些数据,保持数据的完整性和正确性就是我们这套系统的主要功能。
我们采用程序的方式来实现这样的数据采集,并且不需要人工干预,本套系统采用了c#语言,以及三层结构本身的一些设计上特点做了较为详细的分析,以及大量采用了XML技术, 三层架构的设计实现了一套功能相对完备并具有良好用户界面和可扩展性的系统。
在本中也对本文中的创新点进行阐述,同时展望了采集数据的自动化和数据挖掘的发展方向以及前景。
关键词:基金,XML,数据挖掘Automation of Data Collection and Data MiningABSTRACTAuthor: Wu xiang binTutor:Li Wei At present, as the social and economic development, financial markets become unusually large and complex, and the fund as a financial derivative products, financial markets in a place. With the continuous development of the industry, various types of funds into the financial markets, financial products as a means for the public services, financial management help people, but when investors face a lot of fund products, they do not know what to choose, Our goal is to help ordinary investors and financial institutions to make a judgement, the guidelines they choose to suit their own funds.To achieve the above objectives, we need to do a lot of data support, the collection of data products of these funds is very important, every day from all over the world financial institutions to provide us with these data, and our goal is to acquisition of these data, and maintain data integrity and accuracy of this system is our main function.We adopt a program approach to achieve such a data collection, and does not require manual intervention, this set of systems used c # language, and the three-tier structure itself to do some design features a more detailed analysis, and a large number of XML technology, The three-tier system designed to achieve a relatively complete set of features and has a good user interface and scalability of the system. In this paper also on the point on innovation, and the prospect of automated data collection and data mining direction for the development and prospects.Key words: fund, XML, data mining.目录1绪论 (6)1.1本课题的简介 (6)1.2 本课题的目的和意义 (7)2技术背景 (8)2.1W EB服务的概念 (8) WEB服务的优势 (8)2.3XML (9)2.4系统的体系结构 (11)2.4.1 传统的两层结构 (11)2.4.2 三层结构简介 (11)2.4.3 用部署三层架构 (12)2.4.4IIS (13)2.4.5 体系结构建立的几个原则 (14)2.5数据挖掘 (15)2.5.1 什么是数据挖掘 (15)2.5.2 数据挖掘能做什么 (16)2.5.3 数据挖掘的实现 (17)3系统功能设计 (18)3.1概要说明 (18)3.2D OWNLOADER模块 (19)3.2.1 主要处理流程 (19)3.2.2 类图 (20)3.2.3 功能实现 (21)3.3P ARSER模块 (22)3.3.1 主要处理文件流程 (22)3.3.2 类图 (24)3.3.3 功能实现 (25)3.4I MPORTER模块 (27)3.4.1 主要处理流程 (27)3.4.2 类图 (28)3.4.3 功能实现 (29)3.5基金数据点定义表格 (29)3.6数据库设计 (32)3.6.1 系统要求 (32)3.6.2 数据库逻辑结构图 (32)3.7系统界面设计 (35)4系统测试 (39)4.1D OWNLOADER测试 (39)4.1.1 Email下载文件测试 (39)4.1.2 Ftp下载文件测试 (40)4.1.3 Ssh下载文件测试 (41)4.1.4 Local下载文件测试(Copy) (41)4.1.5Local下载文件测试(Move) (42)4.2P ARSER测试 (42)4.3I MPORTER测试 (43)4.3.1 导入文件到数据库中 (43)4.3.2 以固定优先级打开importer (44)5结论 (44)5.1 本文总结 (44)5.2 系统的前景展望 (45)5.3 下一步工作 (45)致谢 (46)参考文献 (47)1绪论1.1本课题的简介数据采集自动化处理其实就是一个系统,此系统主要任务就是自动化的采集数据。
数据挖掘论文_优选10篇)
数据挖掘论文 (优选10篇)[标签:粗体:【导语】数据挖掘论文 (优选10篇)]由***会员“[标签:粗体:zhangjun]”收拾投稿精心举荐,但愿对你的学习工作能带来参考鉴戒作用。
[标签:粗体:【目录】篇1:数据挖掘论文篇2:数据挖掘论文篇3:数据挖掘论文篇4:数据挖掘论文篇5:数据挖掘论文篇6:数据挖掘论文篇7:数据挖掘论文篇8:数据挖掘论文篇9:数据挖掘论文篇10:数据挖掘论文【正文】篇1:数据挖掘论文题目:档案信息管理系统中的计算机数据挖掘技术探讨摘要:伴跟着计算机技术的不断进步和发展,数据挖掘技术成为数据处理工作中的重点技术,能借助相干算法搜索相干信息,在节省人力资本的同时,提高数据检索的实际效力,基于此,被广泛利用在数据密集型行业中。
笔者扼要分析了计算机数据挖掘技术,并集中阐释了档案信息管理系统计算机数据仓库的树立和技术实现进程,以供参考。
症结词:档案信息管理系统;计算机;数据挖掘技术;1数据挖掘技术概述数据挖掘技术就是指在超多随机数据中提取隐含信息,并且将其整合后利用在知识处理体系的技术进程。
若是从技术层面断定数据挖掘技术,则需要将其划分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化的分析模型和处理机制,从根本上优化商业决策。
借助数据挖掘技术能建构完全的数据仓库,知足集成性、时变性和非易失性等需求,整和数据处理和冗余参数,确保技术框架结构的完全性。
目前,数据挖掘技术经常使用的工具,如SAS企业的EnterpriseMiner、IBM企业的IntellientMiner和SPSS企业的Clementine等利用都十分广泛。
企业在实际工作进程中,常常会利用数据源和数据预处理工具进行数据定型和更新管理,并且利用聚类分析模块、决策树分析模块和关联分析算法等,借助数据挖掘技术对相干数据进行处理。
2档案信息管理系统计算机数据仓库的树立2.1客户需求单元为了充沛施展档案信息管理系统的优势,要结合客户的实际需求树立完全的处理框架体系。
统计学毕业论文选题
统计学毕业论文选题统计学毕业论文选题700字1. "基于数据挖掘的商品销售预测研究":通过采集历史销售数据,利用数据挖掘算法进行分析,预测商品的销售趋势,并提出相关的销售策略。
2. "基于统计模型的健康风险评估研究":通过统计模型分析个人的生活习惯、基因信息等相关因素,评估个体的健康风险,并提出相应的预防措施。
3. "金融市场波动性的统计分析":通过对金融市场的历史数据进行统计分析,探讨金融市场的波动性,并提出相应的风险管控策略。
4. "社交媒体数据的情感分析研究":通过对社交媒体上用户的言论、评论等进行情感分析,了解用户的情绪变化,并对社交媒体的发展趋势进行预测。
5. "医疗数据隐私保护研究":通过研究医疗数据隐私的保护方法,设计有效的数据隐私保护策略,保障个人医疗数据的安全和隐私。
6. "基于大数据的航空公司航班延误分析":通过收集航空公司的航班数据,利用大数据技术进行分析,研究航班延误的原因和影响因素,提出相应的改善措施。
7. "网络用户行为的统计建模研究":通过对网络用户的行为数据进行统计建模,分析用户的偏好和行为规律,为网络平台的运营决策提供参考。
8. "基于统计分析的广告推荐算法研究":通过对用户的行为数据和广告数据进行统计分析,研究广告的推荐算法,提高广告的准确性和点击率。
9. "基于统计学习的人脸识别算法研究":通过对人脸图像数据进行统计学习,研究人脸识别算法的性能和效果,提高人脸识别系统的准确率和鲁棒性。
10. "社会网络数据的统计分析和建模":通过对社会网络数据进行统计分析和建模,研究社会网络的形成和演化过程,揭示社会网络的规律和特性。
以上是一些统计学毕业论文选题的建议,希望能对您有所帮助。
数据科学与大数据技术毕业设计选题
数据科学与大数据技术毕业设计选题
以下是一些数据科学与大数据技术的毕业设计选题:
1. 分析电子商务平台的用户行为数据,探索用户购买行为的模式以及影响购买决策的因素。
2. 使用机器学习算法对医疗数据进行预测性分析,例如预测患者的病情发展、预测药物的副作用等。
3. 构建一个大数据平台,对社交媒体上的大规模文本数据进行情感分析和舆情监测。
4. 利用大数据技术分析城市交通数据,优化交通流量控制和拥堵预测。
5. 使用数据挖掘技术对金融市场的数据进行分析,发现股票价格的波动模式和投资机会。
6. 基于物联网设备的数据,构建一个智能家居系统,实现对家庭环境的自动监测与控制。
7. 分析电影评分数据,构建一个个性化的电影推荐系统,根据用户的喜好推荐适合的电影。
8. 使用文本挖掘技术对社交媒体上的假新闻进行自动识别和分类。
9. 基于大数据技术,对脑电波数据进行分析,研究人类认知和情绪的神经机制。
10. 使用机器学习算法预测股市走势,探索股市与宏观经济数据之间的关联。
选题时可以根据自己的兴趣与专业方向来选择,同时也要考虑选题的可行性和数据的可获取性。
数据挖掘论文选题
数据挖掘选题
数据挖掘技术与应用
企业WEB数据挖掘
预测分析
数据挖掘工具
关联规则
空间数据挖掘
分类算法
多媒体数据挖掘
异类
时序模式
文本挖掘
粗糙集
聚类算法
可以从以上方面的方法、算法及已有算法在具体领域中的应用进行选题,但不限于此。
模式识别与机器学习选题
机器学习的新理论、新技术与新应用
计算学习理论
监督学习
非监督学习
半监督学习
强化学习
多示例学习
神经网络
集成学习
特征选择
流形学习与降维
基于案例的推理
增量学习与在线学习
对复杂结构数据的学习
增强学习系统可理解性
聚类
生物特征识别
进化计算
人工生命
模糊集与粗糙集
模式识别
生物信息学
语音、图像处理与理解
自然语言理解
图像、视频篡改识别
图像、视频版本检测
可以从以上方面的方法、算法及已有算法在具体领域中的应用进行选题,但不限于此。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据挖掘选题
数据挖掘技术与应用
企业WEB数据挖掘
预测分析
数据挖掘工具
关联规则
空间数据挖掘
分类算法
多媒体数据挖掘
异类
时序模式
文本挖掘
粗糙集
聚类算法
可以从以上方面的方法、算法及已有算法在具体领域中的应用进行选题,但不限于此。
模式识别与机器学习选题
机器学习的新理论、新技术与新应用
计算学习理论
监督学习
非监督学习
半监督学习
强化学习
多示例学习
神经网络
集成学习
特征选择
流形学习与降维
基于案例的推理
增量学习与在线学习
对复杂结构数据的学习
增强学习系统可理解性
聚类
生物特征识别
进化计算
人工生命
模糊集与粗糙集
模式识别
生物信息学
语音、图像处理与理解
自然语言理解
图像、视频篡改识别
图像、视频版本检测
可以从以上方面的方法、算法及已有算法在具体领域中的应用进行选题,但不限于此。