人教版初中数学圆的易错题汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学圆的易错题汇编及答案

一、选择题

1.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()

A.2

3

πB.

1

3

πC.

4

3

πD.

4

9

π

【答案】A

【解析】

【分析】

连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.

【详解】

解:连接OE、OC,如图,

∵DE=OB=OE,

∴∠D=∠EOD=20°,

∴∠CEO=∠D+∠EOD=40°,

∵OE=OC,

∴∠C=∠CEO=40°,

∴∠BOC=∠C+∠D=60°,

∴»BC的长度=

2

60?2

360

π⨯

=

2

3

π,

故选A.【点睛】

本题考查了弧长公式:l=

••

180

n R

π

(弧长为l,圆心角度数为n,圆的半径为R),还考查

了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角

形外角性质是关键.

2.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()

A.3B.23C.3

2

D.

23

3

【答案】A

【解析】

连接OC,

∵OA=OC,∠A=30°,

∴∠OCA=∠A=30°,

∴∠COB=∠A+∠ACO=60°,

∵PC是⊙O切线,

∴∠PCO=90°,∠P=30°,

∵PC=3,

∴OC=PC•tan30°=3,

故选A

3.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是()

A.圆形铁片的半径是4cm B.四边形AOBC为正方形

C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2

【答案】C

【解析】

【分析】

【详解】

解:由题意得:BC ,AC 分别是⊙O 的切线,B ,A 为切点,

∴OA ⊥CA ,OB ⊥BC ,

又∵∠C=90°,OA=OB ,

∴四边形AOBC 是正方形,

∴OA=AC=4,故A ,B 正确;

∴»AB 的长度为:904180

π⨯=2π,故C 错误; S 扇形OAB =2

904360

π⨯=4π,故D 正确. 故选C .

【点睛】

本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.

4.已知下列命题:

①若a >b ,则ac >bc ;

②若a=1;

③内错角相等;

④90°的圆周角所对的弦是直径.

其中原命题与逆命题均为真命题的个数是( )

A .1个

B .2个

C .3个

D .4个

【答案】A

【解析】

【分析】

先对原命题进行判断,再判断出逆命题的真假即可.

【详解】

解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;

②若a=1是真命题,逆命题是假命题;

③内错角相等是假命题,逆命题是假命题;

④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;

其中原命题与逆命题均为真命题的个数是1个;

故选A .

点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.

5.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()

A.

9

3

4

π-B.

99

42

π-C.

39

3

24

π-D.

39

22

π-

【答案】B

【解析】

【分析】

连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.

【详解】

连接OD、OC,

∵AB是直径,

∴∠ACB=90°,

∵CE=BC,

∴∠CBD=∠CEB=45°,

∴∠COD =2∠DBC=90°,

∴S阴影=S扇形−S△ODC=

2

903

360

π⋅⋅

1

2

×3×3=

9

4

π

9

2

.

故答案选B.

【点睛】

本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算. 6.如图,O

e的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()

相关文档
最新文档