初中数学易错题集锦及答案(最新整理)
(word完整版)初中数学易错题(含参考答案)
1、 ) 12、 3、 4、 5、 6、 7、 9、 初中数学、选择题(本卷带*号的题目可以不做)A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( A 、互为相反数 B 、绝对值相等C 、是符号不同的数 有理数a 、b 在数轴上的位置如图所示,则化简 |a-b|-|a+b|的结果是(D 、A 、2a 轮船顺流航行时m 千米/小时,逆流航行时 A 、2千米/小时 方程2x+3y=20的正整数解有( A 、1个B 、3个 下列说法错误的是( ) A 、两点确定一条直线C 、一条直线不是平角10、11、 B 、2b B 、3千米/小时 )都是负数 ) -2a+b (m-6)千米/小时,则水流速度( ) 6千米/小时 D 、不能确定 C 、2a-2b■e—bD 、无数个 函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( A 、当m z 3时,图像有一个交点 C 、当m 1时,只有一个交点 如果两圆的半径分别为 A 、内切 在数轴上表示有理数 --------- © ------- 0 -------- O ------------ ABC 线段是直线的一部分 D 、把线段向两边延长即是直线 ) B 、m 1时,肯定有两个交点 D 、图像可能与x 轴没有交点 R 和r ( R>r ),圆心距为d ,且(d-r )2=R 2,则两圆的位置关系是 B 、外切 a 、b 、c 的小点分别是 心 ------- A C 、内切或外切 A 、B 、C 且 b<a<c , ---------- 0 --------- O --------- 0 --------------- CAB有理数中,绝对值最小的数是( A 、-1 1的倒数的相反数是( A 、-2 D 、不能确定 则下列数轴中正确的是 --------- 0 ------- Q B A不存在 若 |x|=x ,贝y -x A 、正数 两个有理数的和除以这两个有理数的积, A 、互为相反数 13、长方形的周长为 A 、2x ) 非负数 12、 B 、互为倒数 x ,宽为2,则这个长方形的面积为( B 、2(x-2)14、 “比x 的相反数大3的数”可表示为( A 、-X-3 B 、-(x+3) 15、 如果0<a<1,那么下列说法正确的是( A 、a 2比a 大 B 、a 2比a 小 16、 数轴上,A 点表示-1,现在A 开始移动, 动5个单位,这时,A 点表示的数是( A 、-1 17、 线段AB=4cm ,延长AB A 、 12cm18、 12的相反数是(A 、1 •、219、 方程 x(x-1)(x-2)=xA 、 X 1=1,X 2=23 <5C 、X 1= —2— , X 2=C 、负数 其商为 0,则这两个有理数为( C 、互为相反数且不为 ) 非正数 ) 有一个为 C 、x-4 ) C 、3-x )C 、a 2与a 相等2 • (x-2)/2 x+3 先向左移动 3个单位,再向右移动 ) C 、1 D 、a 2与a 的大小不能确定 9个单位,又向左移 0 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为() B 、10cm )B 、 -.2 1C 、 8cmD 、 4cm C 、 1 •、2 D-2的根是()B 、 X 1=0,X 2=1,X 3=23 ■ 5D 、C3舅 3 X =0 , X = ,X =511 1解方程3(x 2) 5(x _) 4 0时,若设x _ y ,则原方程可化为() X 2X, XA 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=0方程 X 2+1=2|X |有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4C 、-8D 、8解关于X 的不等式 X a,正确的结论是 X a( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当 a<0时无解反比例函数y 2,X当x w 3时,y 的取值范围是( )2A、y w 32 B 、y > 32 j.C 、y > -或 y<03D 、0<y < |0.4的算术平方根是 ( )A 、0.2B 、土 0.2 10 、-5- D、 ± .105李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽 误时间,于时就加快了车速,在下列给出的四个 S-t 函数示意图象,符合以上情况的是()20、 21、22、23、24、25、26、27、 28、 29、 30、 31、 32、 33、 34、 35、36、 kX 1, kX 2, kX 3,…,kX n 的平均数与方差分别是( ) A 、k X , k 2s 2 若关于X 的方程 B 、X , s 2 12有解,则 C 、k X , ks 2 a 的取值范围是( k 2x, ks 2A 、a H 1 下列图形中既是中心对称图形,又是轴对称图形的是( A 、线段 ” a c已知匚H b da b A 、 rc d B 、正三角形,下列各式中不成立的是( c a 3c d b 3d 一个三角形的三个内角不相等,则它的最小角 A 、 300 B 、 450 已知三角形内的一个点到它的三边距离相等, A 、三角形的外心 B 、三角形的重心 下列三角形中是直角三角形的个数有( ①三边长分别为、3:1:2的三角形 ③三个内角的度数之比为 A 、1个 如图,设AB=1 , C 、平行四边形 等腰梯形C 、b d 2bD 、 ad=bc不大于( )C 、550D 、 600 那么这个点是( )C 、三角形的内心D 、 三角形的垂心 ) 1:2:3的三角形 a c 3a 3:4:5的三角形 B 、2个 S ^OAB = — cm 2,则弧 AB 长为( )4m 2 B 、— cm )②三边长之比为 ④一边上的中线等于该边一半的三角形 C 、3个A 、3 cm 平行四边形的一边长为 5cm ,则它的两条对角线长可以是(A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cm 如图,△ ABC 与厶BDE 都是正三角形,且 AB<BD ,若△ ABC 不动,将△ BDE 绕B 点旋转,则在旋转过程中, AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定C 、二 cm 6A4cm, 8cm顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、 y 1>y 2>y 3B 、 y 1<y 2<y 3C 、 下列根式是最简二次根式的是( ) A 、 .8a B 、 .a 2 b 2C 、 下列计算哪个是正确的( ) A 、 3.2 5B 、2 5 2.5C 、 把a 1 ( a 不限定为正数)化简,结果为(r aA 、 aB 、aC 、若 a+|a|=0,则.(a 2)2.a 2 等于( )A 、2-2aB 、2a-2C 、已知,2x 1 .1 2x 0 「x 2 2x 1 的值( 1A 、1B 、土C 、设a 、b 是方程x 2-12x+9=0的两个根,则.aA 、18B 、 6C 、 下列命题中,正确的个数是( ) ①等边三角形都相似 ②直角三角形都相似 ④锐角三角形都相似 ⑤等腰三角形都全等 ⑦有一个钝角相等的两个等腰三角形相似 A 、2 个 B 、3 个C 、y 2>y 1>y 3D 、 y 3>y 1>y 2 ,0.1xD 、-.a 5••: a 2 b 2 a b1D 、、 22 . 21^22 J21)-■. aD 、■a-2D 、2)1 1―D 、-—A 、矩形B 、梯形C 、两条对角线互相垂直的四边形 在圆O 中,两段弧满足 AB=2CD ,那么弦AB 和弦CD 的关系旦 A 、AB=2CD B 、AB>2CD 在等边三角形ABC 外有一点 A 、 300 B 、 600 △ ABC 的三边a 、b 、c 满足 A 、a w 6 如图,在△ ABC 中, A 、/ B=300D ,满足 b<6/ ACB=Rt 疋v C 、AB<2CD D 、AB AD=AC ,则Z BDC 的度数为C 、1500 △ ABC 的周长为18,则( )D 、两条对角线相等的四边形 )与CD 不可能相等( )D 、300 或 15002,5 5如图,把直角三角形纸片沿过顶点 上,如果折叠后得到等腰三角形 合 (3)点E 到AB 的距离等于 A 、0 B 、1不等式,2x 2 ,3x .、6的解是( A 、 x> …2 B 、 x>- ,2 C 、斜边上的高线长为a wb wc , C 、 c>6 D 、a 、b 、c 中有一个等于 Z, AC=1 , BC=2,则下列说法正确的是( B 、斜边上的中线长为 1D 、 该三角形外接圆的半径为 1)B 的直线BE (BE 交CA 于E )折叠,直角顶点 EBA ,那么下列结论中(1)Z A=300 CE 的长,正确的个数是 已知一元二次方程(m-1)x 2-4mx+4m-2=0 A 、m<1/3 B 、m W 1/3.」k , i函数y=kx+b (b>0)和y= — (k 丰0),在同一坐标系中的 x 图象可能是右图中的( )(注:从左到右依次为 ABCD ) 在一次函数y=2x-1的图象上,到两坐标轴距离相等的 点有( ) A 、1个 B 、2个 若点(-2, y 1)、(-1, y 2 )、(1, y 3) C 、x< 2 没有实数根,则 C 、m > 1/3 C 落在斜边AB (2)点C 与AB 的中点重 C 、3个 在反比例函数yD 、无数个 1-的图像上,则下列结论中正确的是( x 37、 38、 39、 40、 41、42、43、 44、 45、 46、 47、 48、 49、 50、51、52、*53、54、顺次连结四边形各边中点得到一个菱形,则原四边形必是()2 2 •b等于()3.2 D、土 3.2③等腰三角形都相似⑥有一个角相等的等腰三角形相似⑧全等三角形相似4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________________ 。
7年级数学易错题
7年级数学易错题一、有理数运算类。
1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。
- 解析:- 先计算乘方运算。
(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。
- 然后进行除法运算,9÷(-1)= - 9。
- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。
2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。
- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。
- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。
二、整式加减类。
3. 化简:3a + 2b - 5a - b。
- 解析:- 合并同类项,将含有相同字母的项合并。
- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。
- 所以化简结果为-2a + b。
4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。
- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。
- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。
- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。
三、一元一次方程类。
5. 解方程:3x+5 = 2x - 1。
- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。
- 得到3x - 2x=-1 - 5。
- 合并同类项得x=-6。
6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。
- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。
初一数学易错题带答案
初一代数易错练习1.已知数轴上的A 点到原点的距离为2,那么数轴上到A 点距离是3的点暗示的数为 2.一个数的立方等于它自己,这个数是。
3.用代数式暗示:每间上衣a 元,涨价10%后再降价10%以后的售价( 变低,变高,不变 )4.一艘轮船从A 港到B 港的速度为a,从B 港到A 港的速度为b,则此轮船全程的平均速度为 。
5. 青山镇水泥厂以每年产量增长10%的速度发展,如果第一年的产量为a,则第三年的产量为。
6.已知a b =43,x y =12,则代数式374by ax ay by +-的值为7.若|x|=-x,且x=1x,则x= 8.若||x|-1|+|y+2|=0,则xy=。
9.已知a+b+c=0,abc≠0,则x=||a a +||b b +||c c +||abc abc,根据a,b,c 分歧取值,x 的值为。
10.如果a+b<0,且b>0,那么a,b,-a,-b 的大小关系为。
11.已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)12+-y ab 与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值.12.化简-{-[-(+2.4)]}= ;-{+[-(-2.4)]}=13.如果|a-3|-3+a=0,则a 的取值范围是 14.已知-2<x<3,化简|x+2|-|x -3|=15.一个数的相反数的绝对值与这个数的绝对值的相反数的关系式 。
在有理数,绝对值最小的数是,在负整数中,绝对值最小的数是 16.由四舍五入得到的近似数17.0,其真值不成能是( ) A 17.02 B 16.99 C 17.0499 D16.4917.一家商店将某种服装按成本价提高40%后标价,又以8折(即按尺度的80%)优惠卖出,结果每作服装仍可获利15元,则这种服装每件的成本是18.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水19.观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。
初中数学易错题(含参考答案解析)(最新整理)
A、两点确定一条直线
B、线段是直线的一部分
C、一条直线不是平角
D、把线段向两边延长即是直线
6、函数 y=(m2-1)x2-(3m-1)x+2 的图象与 x 轴的交点情况是 ( )
A、当 m≠3 时,图像有一个交点
B、 m 1时,肯定有两个交点
C、当 m 1时,只有一个交点
D、图像可能与 x 轴没有交点
ୄ
A、a≤6
B、b<6
C、c>6
D、a、b、c 中有一个等于 6
41、如图,在△ABC 中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是( )
ୄ ୄ
A、∠B=300 C、斜边上的高线长为 2 5
5
B、斜边上的中线长为 1 D、该三角形外接圆的半径为 1
ୄ
ୄ
42、如图,把直角三角形纸片沿过顶点 B 的直线 BE(BE 交 CA 于 E)折叠,直角顶点 C 落在斜边 AB 上,
范文 范例 指导 学习
初中数学 易错题专题
一、选择题(本卷带*号的题目可以不做)
1、A、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )
A、互为相反数
B、绝对值相等 C、是符号不同的数 D、都是负数
2、有理数 a、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )
A、2a
A、AE=CD
B、AE>CD
C、AE>CD
D、无法确定
B
ୄ ୄ
ୄ
ୄ ୄ
ୄ
word 版本整理分享
范文 范例 指导 学习
37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( )
A、矩形
初中数学:100道中考易错题汇总(附答案),吃透,考试拿高分!
初中数学:100道中考易错题汇总(附答案),吃透,考试拿
高分!
要想提升数学成绩,就少不了练习。
当然练习不是一味地刷题,要结合各类题的特点进行专项性训练,才能提高做题的效率和质量。
众所周知,每一个学霸肯定有一个错题本,这个错题本里面都是学霸经常出错的题。
很多时候孩子会发现,这个题其实他是会做的,可是就是错了!
为此老师特意给同学们整理一份初中数学中考易错题集锦(附答案)都是同学们经常出错的题型,word 版,可下载,有条件的家长收藏、打印给孩子练练,对初中孩子的数学成绩提升有帮助。
(完整版)初中数学易错题集锦及标准答案
初中数学易错题及答案1 .声的平方根是.〔A 〕2 〔B 〕〞〔C 〕 2〔D 〕 弹.解:石=2, 2的平方根为22 2 .假设|x|二x ,那么x 一定是〔 〕A 、正数B 、非负数C 、负数D 、非正数答案:B 〔不要漏掉0〕 3 .当 x时,|3-x|=x-3 .答案:x-3 >0,贝Ux34 .年」数〔填“是〞或“不是〞〕 答案:是无理数,不是分数.5 .质的算术平方根是答案:716 =4, 4的算术平方根=2 6 .当m=时,m m 2有意义答案: m 2 >0 ,并且m 2 >0 ,所以m=0, x 2 x 6 一7分式工■的值为零,那么、= --------------- 22x x 6 0 x 1 2,x 2 39・二x 24 0 x 22(k 1)x k 1 0总有实数根.k 2 0答案:2;k 3且k 22(k 1)4(k 2)(k 1) 0x 2,9 .不等式组 x a.的解集是x a ,那么a 的取值范围是.28.关于x 的一元二次方程〔k 2〕x(A) a 2, (B) a 2 , (C) a 2 , (D) a 2.答案:10 .关于x 的不2 a 3等式4x a 0的正整数解是1和2;那么a 的取值范围是.4答案:2 a 34 11 .假设对于任何实数X,分式 丁」一总有意义,那么C 的值应满足 ________x 4x c答案:分式总有意义,即分母不为0,所以分母x 2 4x c 0无解,「C 〉4 12 .函数y 也?中,自变量x 的取值范围是- x 3 答案:x 1 0 . X >1x 3 013 .假设二次函数y mx 2 3x 2m m 2的图像过原点,那么 m= _______________ . m 0-2. m = 22mm 0b 的自变量的取值范围是 2x6,相应的函数值的范围是11 y 9,求此函数解析式15 .二次函数y=x 2-x+1的图象与坐标轴有 ______ 个交点.答案:1个16 .某旅社有100张床位,每床每晚收费10元时,客床可全部租出.假设每床每晚收费再提升 2元,那么再减少10张床位租出.以每次这种提升2元的方法变化下去,为了投资少而获利大, 每床每晚应提升 ________________ 元. 答案:6元17 .直角三角形的两条边长分别为8和6,那么最小角的正弦等于 _______ .18 .一个等腰三角形的周长为14,且一边长为4,那么它的腰长是 19 .一等腰三角形的一个内角为50度,那么其它两角度数为 答案:50度,80度或65度,65度20 .等腰三角形的一边长为10,面积为25,那么该三角形的顶角等于14 .如果一次函数y kx6 r …… 时,解析式为: 9611时,解析式为 21y答案:90或30或15021 .等腰三角形一腰上的高与腰长之比为1:2 ,那么该三角形的顶角为—答案:30或15022 .假设U 一口k,那么卜= .a b c答案:—1或223 .PA、PB是..的切线,A、B是切点, APB 78,点C是..上异于A、B的任意一点, 那么ACB答案:51度或129度24 .半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm ,那么这两条弦的距离等于答案:1cm或7cm25 .两相交圆的公共弦长为2 ,两圆的半径分别为我、2,那么这两圆的圆心距等于答案:73 1或73 126 .假设两同心圆的半径分别为2和8,第三个圆分别与两圆相切,那么这个圆的半径为答案:3或527 .在Rt^ ABC中, C 90 , AC 3, AB 5 ,以C为圆心,以「为半径的圆,与斜边AB只有一个交点,那么r的取值范围答案:r=2.4 或3<r <428 . 一个圆和一个半径为5的圆相切,两圆的圆心距为3,那么这个圆的半径为29 .在半径为1的..中,弦AB J2, AC .3,那么BAC答案:15度或75度30,两枚相同硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为答案:231 .假设一数组X i, X2, X3,…,X n的平均数为x ,方差为s2,那么另一数组kx 1, kx 2, kx 3,…,kx n的平均数与方差分别是( )A、k x , k2s2B、x, s2C、k x, ks 2D、k2x, ks2答案:A32 .假设关于x的分式方程 1 旦无解,那么m的值为()x 1 x 1A.-2B.-1C.1D.2答案:A33. (2021年鸡西市)假设关于x的分式方程2m+x 1 = 2无解,那么m的值为( )x 3 xA . -1.5 B. 1 C, -1.5 或2 D. -0.5 或-1.5解析:把原分式方程去分母,得(2m+x)x-x(x-3)=2(x-3) ,整理得(2m+1)x=-6.①可以分两种情况讨论:根据方程无解得出x=0或x=3 ,分别把x=0或x=3代入方程①,求出m的值;当2m+1=0 时,方程也无解,即可得出答案.解:方程两边都乘以x(x-3),得(2m+x)x-x(x-3)=2(x-3). 整理,得(2m+1)x=-6. ①(1)当2m+1=0 时,此方程无解,此时m=-0.5 ;(2)当2m+1总由于原分式方程无解,所以整式方程有增根, x-3=0或x=0 ,即x=3或x=0.把x=3代入方程①中,得6m+3=-6.解得m=-1.5 ;把x=0代入方程①中,此方程无解.综上所述,m的值为-0.5或-1.5.应选D.34 . (2021年泰安市)一项工程,甲、乙两公司合作,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每大的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少大?(2)假设让一个公司单独完成这项工程,哪个公司施工费较少?解析:(1)设甲公司单独完成此工程需x大,那么乙公司单独完成此项工程需1.5x天.根据―…1 1 1 ―题意,得1 1.解得x=20.x 1.5x 12经检验,知x=20是方程的解,且符合题意,1.5x=30.答:甲、乙两公司单独完成此工程各需要20天、30天.(2)设甲公司每天的施工费为y元,那么乙公司每天的施工费为(y-1500)元.根据题意,得12(y+y-1500)=102 000. 解得y=5000.甲公司单独完成此工程所需施工费:20 X5000=100 000(元),乙公司单独完成此工程所需施工费:30 X (5000-1500 ) =105 000(元),所以甲公司的施工费较少35 . (2021年达州市)为保证达万高速公路在2021年底全线顺利通车,某路段规定在假设干天内完成修建任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天.如果甲、乙两队合作,可比规定时间提前14天完成任务.假设设规定的时间为x天,A.^ ______x 10 x 40C.^L x 10 x 40由题意列出的方程是〔〕1 B 1 1 1 x 14 x 10 x 40 x 14」 D.,-J _____________ x 14 x 10 x 14 x 40解析:工程问题通常将工程总量视为1,设规定的时间为x天,那么甲、乙单独完成分别需要(x+10)、(x+40)天,两队平均每天完成的工作量为 ,、,;甲、乙合作那么只需要x 10 x 40(x-14)天,两队合作平均每天完成的工作量为',用工作量相等可列出方程得,x 14- --------- 1------- 」.应选B.x 10 x 40 x 1436 .关于x的分式方程——1的解为正数,求m的取值范围.x 1 1 x错解:方程两边同乘x-1 ,得m-3=x-1.解得x=m-2.由于方程的解为正数,所以m-2 >0.所以m >2.剖析:此题是一道由分式方程的解确定待定字母取值范围的题目, 先求出分式方程的解, 再由其解为正数构造一个不等式,从而确定m的取值范围.错解疏忽了原分式方程成立的原始条件.所以还应满足x-1 ^0 ,即m-3 *0 ,得m w3.正解:方程两边同乘x-1 ,得m-3=x-1.解得x=m-2.由于方程的解为正数,所以m-2 >0 ,得m >2.又x-1 w0 ,即m-3 w0 ,得m *3.所以m的取值范围是m >2且m w3.37.为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉, 并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生?(2)将①的条形图补充完整.(3)计算出作业完成时间在0.5〜1小时的局部对应的扇形圆心角.(4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过 1.5小时的有多少人?解跌班共有学生!撮-4翼名上(幻如图.C町作业完成时间在0- 5-1小时的局部对应的圆心角力36bx30% =].8;完成作业时间的中位数落在1〜L 5小时时间段内.(5)九年级完成作业时间超过L 5小时的有工500X(1-4S%-30W) = 125(A).38.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止)(1)请你用画树状图或列表格的方法,求出点x,y落在第二象限内的概率;(2)直接写出点x, y落在函数y 1图象上的概率x解:口)根据题意,画树状图甲转投乙转般由,图可知,点心,了?的坐标具有盘伸等可能的结果:6冬电.£7』>.3-13区一为,⑶孑〕心协其中点仁*3落在第二单限的共有2科乂一2,;〕J-2.Eh 所服网点〔…〕落在第二象跟尸,=春1. £ J或根据题意,画表格y转;1-23一1? - 2. -1)⑶-1)_ 1 3出一不(—2t —4-)(3,-y)1 47〔一2,暴2i (1 ⑵1⑶21由表祜可知共有13种结果r其中点J,力落在第二象限的有2种,2 1所削$〔点〔工.了〕落在第二象限〕"五=手⑵H点Q中落在kT用象上〕=卷=千39如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线2OB在x轴上,顶点A在反比例函数y= x的图像上,那么菱形的面积 2 3为答案:440. (2021 山东烟台,5, 4 分)如果,(2a 1)2 1 2a ,贝(J (A.a<—B. a0-C. a〉—D. a>一3 2 2 2答案:B40. 〔2021山东烟台〕体育课上测量立定跳远,其中一组六个人的成绩〔单位:米〕分别是:1.0, 1.3, 2.2, 2.0 , 1.8 , 1.6 ,,那么这组数据的中位数和极差分别是〔〕A.2.1 , 0.6B. 1.6 , 1.2C.1.8, 1.2D.1.7 , 1.2【答案】D1.6 1.8=1.7 ; 极差为2.2 — 1.0=1.2.应选D.241. 〔2021 南充〕方程x 〔x-2 〕+x-2=0 的解是〔〕A.2B.-2 ,1C.-1D.2 , — 1解析:此题考查了运用因式分解法解一元二次方程的方法:先利用提公因式因式分解, 再化为两个一元一次方程,解方程即可. x (x-2) + (x-2) =0,(x-2 ) (x+1 ) =0 ,• ・x-2=0 ,或x+1=0 , . x1=2 , x2=-1 .应选D.评注:利用因式分解时要注意不要漏解,直接把一个一元二次方程化为两个一元一次方程来进行解决即可.42.关于x的方程(12k)x2 2 Jk1x 10有两个不相等的实数根,求k的取值范围.错解:Qa 1 2k, b 27r7, c 1,••• b2 4ac ( 2*"币2 4(1 2k) ( 1) 4k 8 > 0.二•原方程有两个不相等的实数根,「• 4k 8 0, /.k <2 .剖析:本例错在两个地方一是忽略了一元二次方程的二次项系数 1 2k 0这个隐含条件;二是忽略了一次项系数2/7中k 1>0这个条件.正解:;原方程有两个不相等的实数根,4k 8>0 ,「*<2.1又丁原万程中,12k 0, k 1>0, .,.k> 1且k - 43.增【思路分析】将数据按顺序排列: 1.0, 1.3, 1.6, 1.8, 2.0, 2.2,易判断中位数为1< k<2且k长率问题(2021娄底市)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,那么下面所列方程正确的是(A.289 (1 -x) 2=256B.256 (1 -x) 2=289C.289 (1 -2x) =256D.256 (1 - 2x ) =289解析:此题考查求平均变化率的方法.设变化前的量为a,变化后的量为b,平均变化率 为x,那么经过两次变化后的数量关系为 a (1 ±x) 2=b .设平均每次降价的百分率为 x,那么第 一降价售价为289 (1 -x),那么第二次降价为289 (1 -x)2,由题意得:289 (1 -x) 2=256 .故 选A.评注:对于连续两次增长或降低的问题,可以直接套用式子.假设初始数值为a,连续两次增长 或降低后的数值为b,平均增产率或降低率相同,可建立方程:a(x 1)2=b .44. (2021年内江市)如图2,四边形ABCD 是梯形,BD = 月 月AC 且 BDLAC.假设 AB = 2, CD =4,那么 S 梯形 ABCD =. \ 解析:如图2,过点B 作BE//AC,交DC 的延长线于点E, 4匕 ------------- 白图.一过点 B 作 BFLDC 于点 F,那么 AC = BE, DE = DC + CE=DC +AB = 6.由于BD=AC 且BDXAC,所以ABDE 是等腰直角三角形.所以 BF=1D E = 3,所以 S 梯形 ABCD = 1 (AB+CD) XBF=9. 2 2点评:作梯形的高,平移一条对角线是解决梯形问题经常用到的辅助线453a-22与2a-3都是实数m 的平方根,求m 的值.答案:49或1225答案:1 47 .我市为了增强学生体质,开展了乒乓球比赛活动. 局部同学进入了半决赛,赛制为单循环 式(即每两个选手之间都赛一场),半决赛共进行了 6场,那么共有 人进入半决赛.一,1 1 46.一一 a b 4,那么 a 3ab b 2a 2b 7ab48 .在参加足球世界杯预选赛的球队中, 每两个队都要进行两次比赛,共要比赛60场,假设参赛队有x支队,那么可得方程答案:x(x 1) 6049 .如果不等式组2x 1>3 x 1,的解集是x< 2,那么m的取值范围是〔x< mA.m=2B.m>2C.m <2D. m >2答案:D50 .假设不等式组5 3x 0,有实数解,那么实数m的取值范围是〔〕x m 0A. m <5B. m < 5C. m > 5D. m >-3 3 3 3答案:A51.假设关于x的不等式组x m 0的整数解共有4个,那么m的取值范围是〔〕 A.67 2x< 1B.6<m<7C.6<m <7D.6 < m<7答案:D。
初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、8O17、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B )A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
中考数学易错题集锦及答案 [整理版]
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
初三数学易错题100道
初三数学易错题100道初三是初中学习的关键阶段,数学作为重要学科,同学们在学习过程中难免会遇到各种易错题。
下面为大家整理了 100 道初三数学易错题,希望能帮助大家查漏补缺,提高数学成绩。
一、函数部分1、已知函数 y =(m 1)x + m² 1 是正比例函数,则 m 的值为()A 1B -1C ±1D 0【易错点】忽略正比例函数的定义,即形如 y = kx(k 为常数,k ≠ 0)的函数。
【答案】B【解析】因为函数 y =(m 1)x + m² 1 是正比例函数,所以 m² 1 = 0 且m 1 ≠ 0,解得 m =-1。
2、对于二次函数 y = x² 2x + 2,当 x ()时,y 随 x 的增大而增大。
A < 1B > 1C <-1D >-1【易错点】对二次函数的对称轴和单调性理解不清。
【答案】B【解析】二次函数 y = x² 2x + 2 的对称轴为 x = 1,且开口向上,所以当 x > 1 时,y 随 x 的增大而增大。
3、函数 y =中,自变量 x 的取值范围是()A x ≠ 0B x >-2C x ≠ -2D x ≠ 2【易错点】忽略分母不能为 0 的条件。
【答案】C【解析】要使函数有意义,分母 x +2 ≠ 0,即x ≠ -2。
二、几何部分1、一个三角形的两边长分别为 3 和 7,第三边长为整数,则第三边的长度可能是()A 4B 5C 6D 9【易错点】未考虑三角形三边关系:两边之和大于第三边,两边之差小于第三边。
【答案】C【解析】设第三边为 x,根据三角形三边关系可得 7 3 < x < 7 +3,即 4 < x < 10,因为 x 为整数,所以 x 可能是 5、6、7、8、9,故选 C。
2、在平行四边形 ABCD 中,∠A :∠B :∠C :∠D 的值可能是()A 1 : 2 : 3 : 4B 1 : 2 : 2 : 1C 2 : 1 : 2 : 1D 2 : 2 :1 : 1【易错点】不清楚平行四边形的对角相等。
七年级数学下册第六章实数易错题集锦(带答案)
七年级数学下册第六章实数易错题集锦单选题1、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.故选:D.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.2、已知a为整数,且满足√8<a<√12,则a等于()A.2B.3C.4D.5答案:B分析:估算无理数√8和√12的大小,进而确定a的值即可.解:∵2<√8<3,3<√12<4,a为整数,且满足√8<a<√12,∴a=3.故选:B.小提示:本题主要考查了估算无理数的大小,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.3、实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点答案:D分析:分①若原点的位置为A点时,②若原点的位置为B点或C点时,③若原点的位置为D点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.解:根据数轴可知x<y<z,①若原点的位置为A点时,x>0,则|z+y|=z+y,|x+y|=x+y,x+y<z+y,∴|z+y|>|x+y|,舍去;②若原点的位置为B点或C点时,x<0,y>0,z>0,|z|>|x|,|z|>|y|,则|x+y|<|y|或|x+y|<|x|,|z+y|=|z|+|y|,∴|z+y|>|x+y|,舍去;③若原点的位置为D点时,x<0,y<0,z>0,|y|>|z|则|x+y|<|y|+|x||z+y|<|y|,∴|z+y|<|x+y|,符合条件,∴最有可能是原点的是D点,故选:D.小提示:本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.4、下列说法正确的是()A.4的平方根是2B.√16的平方根是±4C.25的平方根是±5D.﹣36的算术平方根是6答案:C分析:根据平方根和算术平方根的定义判断即可.解:A.4的平方根是±2,故错误,不符合题意;B.√16的平方根是±2,故错误,不符合题意;C .25的平方根是±5,故正确,符合题意;D .-36没有算术平方根,故错误,不符合题意;故选:C .小提示:本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.5、下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有±1答案:C分析:根据立方根的定义分别判断即可.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 解:A 负数有一个立方根,故该选项错误,不符合题意;B 选项,8的立方根是2,故该选项错误,不符合题意;C 选项,√−83=−√83,故该选项正确,符合题意;D 选项,立方根等于本身的数只有±1和0,故该选项错误,不符合题意.故选:C .小提示:本题考查了立方根的应用,掌握立方根的定义是解题的关键.6、下列四种叙述中,正确的是( )A .带根号的数是无理数B .无理数都是带根号的数C .无理数是无限小数D .无限小数是无理数答案:C分析:根据无理数的概念逐个判断即可.无理数:无限不循环小数.解:A .√4=2,是有理数,故本选项不合题意;B .π是无理数,故本选项不合题意;C .无理数是无限不循环小数,原说法正确,故本选项符合题意;D .无限循环小数是有理数,故本选项不合题意.故选:C .小提示:此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、如图,在数轴上表示实数√15的点可能().A.点P B.点Q C.点M D.点N答案:C分析:确定√15是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵9<15<16,∴3<√15<4,∴√15对应的点是M.故选:C.小提示:本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.8、如图,数轴上点E对应的实数是()A.−2B.−1C.1D.2答案:A分析:根据数轴上点E所在位置,判断出点E所对应的值即可;解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.小提示:本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.9、计算下列各式,值最小的是()A.2×0+1−9B.2+0×1−9C.2+0−1×9D.2+0+1−9答案:A分析:根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.根据实数的运算法则可得:A.2×0+1−9=−8; B.2+0×1−9=-7;C.2+0−1×9=-7; D.2+0+1−9=-6;故选A.小提示:本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..10、把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形(长为√21,宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4√21B .16C .2(√21+4)D .4(√21−4)答案:B分析:分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案.较大阴影的周长为:(4−2b)×2+a ×2,较小阴影的周长为:(4−a)×2+2b ×2,两块阴影部分的周长和为:[(4−2b)×2+a ×2]+[(4−a)×2+2b ×2]= 16,故两块阴影部分的周长和为16.故选B .小提示:本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.填空题11、计算:(1)√273=______; (2)√−27643=_______; (3)−√−183=_______;(4)√1+911253=______; (5)√24×45×253=______; (6)√0.25+√−273=______;(7)√0.09−√−83=______.答案: 3 −34 12 65 30 −2.5 2.3 分析:(1)直接利用立方根的定义即可求解;(2)直接利用立方根的定义即可求解;(3)直接利用立方根的定义即可求解;(4)直接利用立方根的定义即可求解;(5)直接利用立方根的定义即可求解;(6)利用算术平方根和立方根的定义即可求解;(7)利用算术平方根和立方根的定义即可求解.解:(1)∵33=27,∴√273=3; (2)∵(−34)3=−2764,∴√−27643=−34; (3)∵(−12)3=−18,∴√−183=−12,即−√−183=12;(4)√1+911253=√2161253∵(65)3=216125,∴√2161253=65,即√1+911253=65; (5)√24×45×253=27000,∵303=27000,∴√270003=30; (6)√0.25+√−273=0.5+(−3)=−2.5;(7)√0.09−√−83=0.3−(−2)=0.3+2=2.3.所以答案是:3,−34,12,65,30,−2.5,2.3.小提示:本题考查立方根和算术平方根.熟练掌握立方根和算术平方根的定义是解题关键.12、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 分析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x , 712x =56, 解得:x =107,故答案为x =107. 小提示:此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.13、已知√a −b +|b −1|=0,则a +1=__.答案:2.分析:利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.∵√a −b +|b ﹣1|=0,又∵√a −b ≥0,|b −1|≥0,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.14、如果√a 的平方根是±3,则a =_________答案:81分析:根据平方根的定义即可求解.∵9的平方根为±3,∴√a =9,所以a=81小提示:此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有_____个. 答案:3分析:根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,所以答案是:3.小提示:本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.解答题16、已知4a +7的立方根是3,2a +2b +2的算术平方根是4(1)求a ,b 的值.(2)求6a +3b 的平方根.答案:(1)a =5,b =2;(2)6a +3b 的平方根为±6.分析:(1)运用立方根和算术平方根的定义求解;(2)根据平方根,即可解答.(1)解:∵4a +7的立方根是3,2a +2b +2的算术平方根是4,∴4a +7=27,2a +2b +2=16,∴a =5,b =2;(2)解:由(1)知a =5,b =2,∴6a +3b =6×5+3×2=36,∴6a +3b 的平方根为±6.小提示:本题考查了平方根、立方根、算术平方根.掌握一个正数的平方根有2个是解题的关键,不要漏解.17、我们知道,√2是一个无理数,将这个数减去整数部分,差就是小数部分,即√2的整数部分是1,小数部分是√2−1,请回答以下问题:(1)√10的小数部分是________,5−√13的小数部分是________.(2)若a是√90的整数部分,b是√3的小数部分,求a+b−√3+1的平方根.(3)若7+√5=x+y,其中x是整数,且0<y<1,求x−y+√5的值.答案:(1)√10−3,4−√13;(2)±3;(3)11.分析:(1)确定√10的整数部分,即可确定它的小数部分;确定√13的整数部分,即可确定5−√13的整数部分,从而确定5−√13的小数部分;(2)确定√90的整数部分,即知a的值,同理可确定√3的整数部分,从而求得它的小数部分,即b的值,则可以求得代数式a+b−√3+1的值,从而求得其平方根;(3)由2<√5<3得即9<7+√5<10,从而得x=9,y=√5−2,将x、y的值代入原式即可求解.(1)解:∵3<√10<4,∴√10的整数部分为3,∴√10的小数部分为√10−3,∵3<√13<4,∴−3>−√13>−4,∴5−3>5−√13>5−4即1<5−√13<2,∴5−√13的整数部分为1,∴5−√13的小数部分为4−√13,所以答案是:√10−3,4−√13;(2)解:∵9<√90<10,a是√90的整数部分,∴a=9,∵1<√3<2,∴√3的整数部分为1,∵b是√3的小数部分,∴b=√3−1,∴a+b−√3+1=9+√3−1−√3+1=9∵9的平方根等于±3,∴a+b−√3+1的平方根等于±3;(3)解:∵2<√5<3,∴7+2<7+√5<7+3即9<7+√5<10,∵7+√5=x+y,其中x是整数,且0<y<1,∴x=9,y=7+√5−9=√5−2,∴x−y+√5=9−(√5−2)+√5=11.小提示:本题考查了无理数的估算、求平方根以及求代数式的值,关键是掌握二次根式的大小估算方法.18、把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V=43πR3,其中R是球的半径.)答案:大铅球的半径是6.分析:求出半径分别是3,4,5的铅球的体积之和,再根据立方根的定义计算出结果即可.解:设这个大铅球的半径为r,由题意可得4 3πr3=43π(33+43+53),即r3=216,所以r=√2163=6.大铅球的半径是6.小提示:本题考查了立方根的应用,熟记立方根的定义是解答本题的关键.。
七年级下册数学易错题集含解答过程
七年级下册数学易错题集含解答过程一、有理数运算易错点 1:符号问题例:计算-5 + 3错误解答:-5 + 3 =-8正确解答:-5 + 3 =-2分析:在进行有理数加法运算时,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
易错点 2:乘法运算中的符号例:计算-2 × 3错误解答:-2 × 3 = 6正确解答:-2 × 3 =-6分析:两数相乘,同号得正,异号得负。
易错点 3:运算顺序例:计算 12 ÷(-3 + 2)错误解答:12 ÷(-3 + 2)= 12 ÷(-1) =-12正确解答:12 ÷(-3 + 2)= 12 ÷(-1) =-12分析:先计算括号内的式子,再进行除法运算。
二、整式的运算易错点 1:合并同类项例:合并同类项 3x + 2y 5x + 6y错误解答:3x + 2y 5x + 6y =-2x + 8y正确解答:3x + 2y 5x + 6y =(3 5)x +(2 + 6)y =-2x + 8y 分析:合并同类项时,系数相加,字母和字母的指数不变。
易错点 2:幂的运算例:计算(-2a²)³错误解答:(-2a²)³=-6a^6正确解答:(-2a²)³=(-2)³ ×(a²)³=-8a^6分析:幂的乘方,底数不变,指数相乘。
易错点 3:整式的乘法例:计算(2x 3)(x + 5)错误解答:(2x 3)(x + 5) = 2x²+ 10x 3x 15 = 2x²+ 7x 15正确解答:(2x 3)(x + 5) = 2x²+ 10x 3x 15 = 2x²+ 7x 15分析:使用多项式乘以多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
初三数学易错题整理汇编及规范标准答案
天。
9、因式分解:-4x2+y2= (2x y)(2x y) , x2-x-6= (x 3)(x 2)
10、计算:a6÷a2=__ a4 ____,(-2)-4=__ 1 ____,-22=__-4____
16
11、如果某商品降价 x%后的售价为 a 元,那么该商品的原价为 a 1 0.01x
A、三角形的外心 B、三角形的重心
C、三角形的内心
D、三角形的垂心
33、下列三角形中是直角三角形的个数有( B )
①三边长分别为 3 :1:2 的三角形 ②三边长之比为 1:2:3 的三角形 ③三个内角的度数之比
为 3:4:5 的三角形 ④一边上的中线等于该边一半的三角形
A、1 个 B、2 个 C、3 个 D、4 个
15、P 点表示有理数 2,那么在数轴上到 P 点的距离等于 3 个单位长度的点所表示的数是_5 或 1_。
16、a、b 为实数,且满足 ab+a+b-1=0,a2b+ab2+6=0,则 a2-b2=___ 6 17 _____。 17、已知一次函数 y=(m2-4)x+1-m 的图象在 y 轴上的截距与一次函数 y=(m2-2)x+m2-3 的图象
A、两点确定一条直线
B、线段是直线的一部分
C、一条直线是一个平角
D、把线段向两边延长即是直线
6、函数 y=(m2-1)x2-(3m-1)x+2 的图象与 x 轴的交点情况是 ( C )
A、当 m≠3 时,有一个交点
B、 m 1时,有两个交
C、当 m 1时,有一个交点
D、不论 m 为何值,均无交点
34、如图,设 AB=1,S△OAB= 3 cm2源自则弧 AB 长为( A )4
初中数学易错题(含参考答案解析)(可编辑修改word版)
2 2初中数学 易错题专题一、选择题(本卷带*号的题目可以不做) 1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( ) A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数 2、有理数 a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( )A 、2aB 、2bC 、2a-2bD 、2a+b ୄ ୄ ୄ3、轮船顺流航行时 m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( ) A 、2 千米/小时 B 、3 千米/小时 C 、6 千米/小时 D 、不能确定4、方程 2x+3y=20 的正整数解有( ) A 、1 个 B 、3 个 C 、4 个 D 、无数个5、下列说法错误的是( ) A 、两点确定一条直线 B 、线段是直线的一部分 C 、一条直线不是平角 D 、把线段向两边延长即是直线6、函数 y=(m 2-1)x 2-(3m-1)x+2 的图象与 x 轴的交点情况是 ( ) A 、当 m≠3 时,图像有一个交点 B 、 m ≠ ±1时,肯定有两个交点 C 、当 m = ±1时,只有一个交点 D 、图像可能与 x 轴没有交点7、如果两圆的半径分别为 R 和 r (R>r ),圆心距为 d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定 8、在数轴上表示有理数 a 、b 、c 的小点分别是 A 、B 、C 且 b<a<c ,则下列数轴中正确的是( )9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在 10、 1 的倒数的相反数是( )2A 、-2B 、2C 、- 12D 、 1211、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数 12、两个有理数的和除以这两个有理数的积,其商为 0,则这两个有理数为( )A 、互为相反数B 、互为倒数C 、互为相反数且不为 0D 、有一个为 0 13、长方形的周长为 x ,宽为 2,则这个长方形的面积为( )A 、2xB 、2(x-2)C 、x-4D 、2·(x -2)/2 14、“比 x 的相反数大 3 的数”可表示为( )A 、-x-3B 、-(x+3)C 、3-xD 、x+3 15、如果 0<a<1,那么下列说法正确的是( )A 、a 2 比 a 大B 、a 2 比 a 小C 、a 2 与 a 相等D 、a 2与 a 的大小不能确定 16、数轴上,A 点表示-1,现在 A 开始移动,先向左移动 3 个单位,再向右移动 9 个单位,又向左移动 5个单位,这时,A 点表示的数是( ) A 、-1 B 、0 C 、1 D 、8 17、线段 AB=4cm ,延长 AB 到 C ,使 BC=AB 再延长 BA 到 D ,使 AD=AB ,则线段 CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm 18、1 - 2 的相反数是( )A 、1 +B 、 - 1C 、 - 1 -D 、 - + 1 19、方程 x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1= 3 +25 , x 2= 3 - 52D 、x 1=0,x 2= 3 +25 , x 3= 3 - 522 23 Oୄୄ⎨x < -a4ୄୄ ୄ ୄ20、解方程3(x 2 +1) + 5(x + 1 ) - 4 = 0 时,若设 x + 1= y ,则原方程可化为()x 2x x A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程 x 2+1=2|x|有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、一次函数 y=2(x-4)在 y 轴上的截距为( )A 、-4B 、4C 、-8D 、8 23、解关于 x 的不等式⎧x > a⎩ ,正确的结论是( )A 、无解B 、解为全体实数C 、当 a>0 时无解D 、当 a<0 时无解24、反比例函数 y = 2,当 x≤3 时,y 的取值范围是( )xA 、y≤ 2B 、y≥ 2C 、y≥ 2 或 y<0D 、0<y≤2 333 325、0.4 的算术平方根是( )A 、0.2B 、±0.2C 、10 5D 、± 10526、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个 S-t 函数示意图象,符合以上情况的是( )27、若一数组 x 1, x 2, x 3, …, x n 的平均数为 x ,方差为 s 2,则另一数组 kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、 x , s 2C 、k x , ks 2D 、k 2 x , ks 228、若关于 x 的方程 x - 1 = 2 有解,则 a 的取值范围是( )x + aA 、a≠1B 、a≠-1C 、a≠2D 、a≠±1 29、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知 a = c,下列各式中不成立的是( )b dA 、 a - b = a + bB 、 c = a + 3cC 、 a = c + 3aD 、ad=bcc -d c + dd b + 3db d + 2b31、一个三角形的三个内角不相等,则它的最小角不大于( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( )①三边长分别为 :1:2 的三角形 ②三边长之比为 1:2:3 的三角形 ③三个内角的度数之比为 3:4:5 的三角形 ④一边上的中线等于该边一半的三角形 A 、1 个 B 、2 个 C 、3 个 D 、4 个34、如图,设 AB=1,S △OAB= 3 cm 2,则弧 AB 长为( )BୄA 、 cmB 、 2cmC 、 cmD 、 cm336235、平行四边形的一边长为 5cm ,则它的两条对角线长可以是( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且 AB<BD ,若△ABC 不动,将△BDE 绕 B 点旋转,则在旋转过程中,AE 与 CD 的大小关系是( )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定ୄ ୄ6 2 2 2 28a a 2 + b 2 0.1x 3 2 5 a 2 + b 2 1 22 - 2122 - aa(a - 2)2 a 2 2x - 1 1 - 2x x 2 - 2x + 1 a b 6 ୄୄ37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形 38、在圆 O 中,两段弧满足 AB=2CD ,那么弦 AB 和弦 CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与 CD 不可能相等 39、在等边三角形 ABC 外有一点 D ,满足 AD=AC ,则∠BDC 的度数为( )A 、300B 、600C 、1500D 、300 或 150040、△ABC 的三边 a 、b 、c 满足 a≤b≤c,△ABC 的周长为 18,则( ) ୄ A 、a≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于 641、如图,在△ABC 中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=300B 、斜边上的中线长为 1C 、斜边上的高线长为 2 55D 、该三角形外接圆的半径为 1ୄୄ42、如图,把直角三角形纸片沿过顶点 B 的直线 BE (BE 交 CA 于 E )折叠,直角顶点 C 落在斜边 AB 上,如果折叠后得到等腰三角形 EBA ,那么下列结论中(1)∠A=300(2)点 C 与 AB 的中点重合 (3) 点 E 到 AB 的距离等于 CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 ୄ 43、不等式 2 x + 2 > 3x + 的解是( ) ୄୄA 、x>B 、x>-C 、x<D 、x<- 44、已知一元二次方程(m-1)x 2-4mx+4m-2=0 没有实数根,则 m 的取值范围是( )ୄA 、m<1/3B 、m≤1/3C 、m≥1/3D 、m≥1/3 且 m≠1 45、函数 y=kx+b(b>0)和 y= -k (k≠0),在同一坐标系中的x图象可能是右图中的( ) (注:从左到右依次为 ABCD) 46、在一次函数 y=2x-1 的图象上,到两坐标轴距离相等的点有( ) A 、1 个 B 、2 个 C 、3 个D 、无数个47、若点( -2, y 1)、( -1, y 2)、( 1, y 3) 在反比例函数 y = 1 的图像上, 则下列结论中正确的是 x( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( )A 、B 、C 、D 、 49、下列计算哪个是正确的( ) A 、 + = B 、 2 + = 2C 、 = a + bD 、= +50、把- aA 、 (a 不限定为正数)化简,结果为()B 、C 、-D 、- 51、若 a+|a|=0,则 + 等于( )A 、2-2aB 、2a-2C 、-2D 、2 52、已知 += 0 ,则 的值( )A 、1B 、± 12 C 、 12D 、- 1253*、设 a 、b 是方程 x 2-12x+9=0 的两个根,则 +等于( )A 、18B 、C 、354、下列命题中,正确的个数是( )D 、± 3 ①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似 ⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2 个 B 、3 个 C 、4 个 D 、5 个a 55 521-1aa- a 22k - 1 2 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.等腰三角形一腰上的高与腰长之比为1: 2 ,则该三角形的顶角为____
答案:30或150 22.若 b c c a a b k ,则 k =________.
ab c
答案:-1或2 23.PA、PB是⊙O的切线,A、B是切点, APB 78 ,点 C 是⊙O上异于 A 、 B 的任意一点,那 么 ACB ______. 答案:51度或129度 24. 半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离等于________ 答案:1cm或7cm
25.两相交圆的公共弦长为2,两圆的半径分别为 2 、2,则这两圆的圆心距等于________.
答案: 3 1或 3 1
26.若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________. 答案:3或5
27.在 Rt△ABC 中, C 90 , AC 3 , AB 5 ,以 C 为圆心,以 r 为半径的圆,与斜边
31.若一数组 x1, x2, x3, …, xn 的平均数为 x ,方差为 s2,则另一数组 kx1, kx2, kx3, …,
kxn 的平均数与方差分别是( ) A、k x , k2s2 B、 x , s2
C、k x , ks2
D、k2 x , ks2
答案:A
32.若关于 x 的分式方程 x 3 m 无解,则 m 的值为( ) x 1 x 1
的解集是 x a ,则 a 的取值范围是.
(A) a 2 ,(B) a 2 ,(C) a 2 ,(D) a 2 . 答案:D
10.关于 x 的不 2 a 3 等式 4x a 0 的正整数解是 1 和 2;则 a 的取值范围是_________。
4 答案: 2 a 3
4
11.若对于任何实数 x ,分式 1 总有意义,则 c 的值应满足______. x2 4x c
初中数学易错题及答案 1. 4 的平方根是.(A)2 (B) 2 (C) 2 (D) 2 .
解: 4 =2,2 的平方根为 2
2.若|x|=x,则 x 一定是( )
A、正数 B、非负数
C、负数
答案:B(不要漏掉 0)
3.当 x_________时,|3-x|=x-3。答案:x-3≥0,则 x3
2
答案:
x2 x 6 0
x2
4
0
∴
x1 2, x 2
x2
3 ∴
x
3
8.关于 x 的一元二次方程 (k 2)x2 2(k 1)x k 1 0 总有实数根.则 K_______
Hale Waihona Puke 答案:k 2 02(k 1)2
4(k
2)(k
1)
0
∴k
3且k
2
x 2,
9.不等式组
x
a.
答案:分式总有意义,即分母不为0,所以分母 x2 4x c 0 无解,∴C 〉4
12.函数 y x 1 中,自变量 x 的取值范围是_______________.
x3
x 1 0
答案:
x
3
0
∴X≥1
13.若二次函数 y mx2 3x 2m m2 的图像过原点,则 m =______________.
A.-2
B.-1 C.1
D.2
答案:A
33.(2012 年鸡西市)若关于 x 的分式方程 2m+x 1= 2 无解,则 m 的值为( ) x3 x
A.-1.5
B.1
C.-1.5 或 2
D.-0.5 或-1.5
解析:把原分式方程去分母,得(2m+x)x-x(x-3)=2(x-3),整理得(2m+1)x=-6.① 可以分两种情况讨论:根据方程无解得出 x=0 或 x=3,分别把 x=0 或 x=3 代入方程①,求出 m 的值;当 2m+1=0 时,方程也无解,即可得出答案. 解:方程两边都乘以 x(x-3),得(2m+x)x-x(x-3)=2(x-3).整理,得(2m+1)x=-6.① (1)当 2m+1=0 时,此方程无解,此时 m=-0.5; (2) 当 2m+1≠0 因为原分式方程无解,所以整式方程有增根,x-3=0 或 x=0,即 x=3 或 x=0. 把 x=3 代入方程①中,得 6m+3=-6.解得 m=-1.5; 把 x=0 代入方程①中,此方程无解. 综上所述,m 的值为-0.5 或-1.5. 故选 D.
AB 只有一个交点,则 r 的取值范围____________. 答案:r=2.4或3<r≤4 28.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为____________ 答案:2或8
29.在半径为1的⊙O中,弦 AB 2 , AC 3 ,那么 BAC ________.
答案:15度或75度 30.两枚相同硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿 固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______. 答案:2
15.二次函数 y=x2-x+1 的图象与坐标轴有______个交点。 答案:1个 16.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2 元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大, 每床每晚应提高_________元. 答案:6元 17.直角三角形的两条边长分别为8和6,则最小角的正弦等于________.
答案: 3 或 7 54
18.一个等腰三角形的周长为14,且一边长为4,则它的腰长是 答案:4或5 19.已知一等腰三角形的一个内角为 50 度,则其它两角度数为 答案:50 度,80 度或 65 度,65 度 20.等腰三角形的一边长为10,面积为25,则该三角形的顶角等于________度 答案:90或30或150
m 0
2m
m2
0
∴m=2
14.如果一次函数 y kx b 的自变量的取值范围是 2 x 6 ,相应的函数值的范围是
11 y 9 ,求此函数解析式________________________.
x 2 x 6
x 2 x 6
答案:当
y
11
y
9
时,解析式为:
y
9
y
时,解析式为 11
4. 2 ___分数(填“是”或“不是”)
2
答案: 是无理数,不是分数。
2
5. 16 的算术平方根是______。
D、非正数
答案: 16 =4,4 的算术平方根=2 6.当 m=______时, m2 有意义
答案: m2 ≥0,并且 m2 ≥0,所以 m=0
x2 x 6
7 分式 x2 4 的值为零,则 x=__________。