材料物理性能-第6章-磁学性能

合集下载

磁学性能 磁52020

磁学性能 磁52020

• H=Hmsin(t); B=Bm sin(t- )=Bmcos sin(t)+ Bmsin sin(t-π/2) 第一项与Hm同相位,定义磁导率的实部:
Bm cos
Hm
第二项比Hm落后π/2,定义磁导率的实部:
Bm sin
Hm
• 磁导率=B/H表现为复数。
可以算出,材料磁化一个时间周期内单位时间、单位体积的平均 能量损耗为:
由此感应电压信号将发生畸变(即失真)。实 际工作中往往提出如何减小高次谐波的问题 。
• 在弱交变磁场合高频情况下,B的变化比较 简单,对于正弦变化的交变磁场Hmsint, 磁感应强度B也是正弦变化的,但是在时间 上有相位差,可以表示为:
• B=Bm sin(t- )=Bmcos sin(t)+ Bmsin sin(t-π/2)
振、畴壁共振或驰豫过程。在自然共振, ’’达到极值,自然共 振频率fr表示材料使用的上限频率。
3。动态磁化过程交流损耗除了磁滞损耗,还 有涡流损耗和磁后效,畴壁共振,自然共 振产生的能量损耗.
•在交变磁场下使用的磁性材料希望:高磁导率和低损耗。 •评价参数:’, tan= ’’ /’ 。
W耗能 f0'' Hm2 •降低(或者增加)材料的能 量损耗是铁磁性材料在交 流磁场应用时最关心的问 题。 •理解: 交流磁化时磁滞回 线的面积增大,损耗增加
在烧结的NdFeB和SmCo5磁体中, 矫顽力是由反磁化核的形核控制的 。
• 材料的磁晶各向异性常数很大,在反磁化的过 程中形成一个临界大小的反磁化畴十分困难, 例如单轴各向异性材料磁晶各向异性能:
E K Ku1 sin2 Ku2 sin4
磁晶各向异性常数大, Hc大

材料物理性能 课件 第六部分 材料的磁性能

材料物理性能 课件 第六部分 材料的磁性能

有交换相互作用
1、磁性的起源
磁畴:每个区域内部包含大量原子,这些原子的 磁矩都像一个个小磁铁那样整齐排列,但相邻的 不同区域之间原子磁矩排列的方向不同
单晶磁畴结构示意图
多晶磁畴结构示意图
1、磁性的起源
磁光效应:线偏振光透过放置磁场中的物 质,沿着磁场方向传播时,光的偏振面发 生旋转的现象。 对磁畴进行可视化
4、磁性材料的应用
由于软磁材料磁滞损耗小,适合用在交变磁场中,如 变压器铁芯、继电器、电动机转子、定子都是用软磁 材料制成。 常见的软磁材料有:铁、坡莫合金、硅钢片、铁铝合 金、铁镍合金等。
变压器
磁性传感器
4、磁性材料的应用
硬磁材料 I、具有较大的矫顽力, 典型值Hc=104~106A/m; II、剩磁很大; III、充磁后不易退磁。 IV、高的稳定性 对外加干扰磁场和温度、 震动等环境因素变化的高 稳定性。
• 1991年,英国航空公司一架波音767,从曼谷起飞后不久 失事,造成233人遇难:经查实是笔记本电脑导致了机上 一台计算机失控;
• 1996年巴西空难、1998年台湾空难:乘客违规使用了手 机;
• 2000年1月,某航班从湛江起飞后航线偏离了10海里:发 现有乘客在起飞过程中使用手机;
• 2000年2月,某航班在郑州机场降落时,导航信号不正常: 发现有乘客在降落过程中使用手机,干扰了导航系统,使 飞机无法降落。
晶粒度与矫顽力
进一步减小, 各单畴晶粒发 生转动的可能 性将越来越大 (更容易转 动)。所以矫 顽力反而减小。
晶粒度与矫顽力
4、磁性材料的应用
磁滞回线围成的面积,可以简单理解为外磁场对磁性材料做的功 对于交流环境,温度累计会使得材料的温度急剧上升。

材料的磁学性能PPT课件

材料的磁学性能PPT课件
原子的磁矩来源于电子的运动和原子核的自旋。
原子的磁矩
电子轨道磁矩 电子自旋磁矩 原子核自旋磁矩
第15页/共105页
1. 磁 矩
与电荷类似,将磁荷定义成磁的基本单位。两磁极若分别有q1和q2磁荷的磁极强度,则其
作用力
F
k
q1q2 r2
其中r为磁极间距,k为比例常数。 磁极q在外磁场中要受到力的作用,且有该力
第21页/共105页
3. 电子自旋磁 矩 电 子 自 旋 角 动 量 L s 和 自 旋 磁 矩 m s 取 决 于 自 旋 量 子 数 s , s = 1 / 2 ,
Ls
s(s 1) 3 2
ms 2 s(s 1)B 3B
他们在外磁场z方向的分量取决于自旋磁量子数mss=1/2,即
Lsz
F=qH 其中H为外磁场的强度。
第16页/共105页
实际上磁极总是以正负对的形式存在,目前 尚未发现单独存在的磁极。 (此句要修正——《Science, 2009,9,3》)
将相互接近的一对磁极+q和-q称为磁偶极子 真空中,单位外磁场作用在相距d的磁偶极子上的最大的力矩
Pm=qd 称为该磁偶极子的磁偶极矩(磁动量)。 磁偶极矩与真空磁导率0的比值称为磁矩,用m表示,即
磁介质在磁场中发生磁化而影响磁场,所以磁介质中的磁感应强度B等于真空中的磁 感应强度B0和由于磁介质磁化而产生的附加磁感应强度B之和,即
B=B0+B
第4页/共105页
——磁感应强度B描述的是传导电流的磁场和 磁介质中磁化电流的磁场的综合场的特性。
电介质中的电场强度E为真空中的电场强度E0和由于电极化而产生的附加电场强度E之 和
B=H 其中称为材料的磁导率或绝对磁导率。

磁学性能课件

磁学性能课件

二、材料的磁学性能内容:材料磁性的本质、抗磁性、顺磁性及铁磁性):(一)基本磁学性能材料所在空间的磁场强度是外加磁场强度H和材料磁化强度M之和:H总= H + M = H (1+χ)。

磁化率:χ,表示材料在磁场中磁化的难易程度。

Μ=χΗ。

根据磁化率的符号和大小,可将材料的磁性分为铁磁性、亚铁磁性、反铁磁性、顺磁性和抗磁性。

磁感应强度Β:通过磁场中某点,垂直于磁场方向单位面积的磁力线数。

Β = μΗ,μ:磁导率。

Β = μ0Η总=μ0 (1+χ) H。

μ0 (1+χ) =μ。

相对磁导率: μr= μ/μ0 = 1 + χ(一)基本磁学性能磁偶极子:强度相等、极性相反且其距离无限接近的一对“磁荷”。

p m = ml 。

磁极化强度:单位体积内磁偶极矩矢量和。

J=∑p m /∆V, J = μ0M对磁偶极子外加一夹角为θ的恒磁场,磁偶极子受到的作用力矩为Τ = pm ×H 。

当θ为0时,力矩为0,磁偶极子处于稳定状态。

在磁场作用下,磁偶极子将转向与磁场平行的方向,该过程中磁场对磁矩所做的功为:E = ∫Td θ= p m H cos θ。

静磁能:原子磁矩与外加磁场的相互作用能。

(二)抗磁性与顺磁性材料分类:抗磁性、顺磁性与铁磁性抗磁性:材料受外磁场H 作用后,感生出和H 相反的磁化强度,使磁场减弱。

磁化率χ<0,抗磁性的磁化率约10-4–10-6,且和温度、磁场无关。

材料的抗磁性来源于将材料放入外磁场中时,外磁场对电子轨道运动产生洛仑兹力,附加磁矩方向与外磁场方向相反。

抗磁矩为外磁场对电子轨道运动的作用结果,任何材料在磁场作用下都产生抗磁性。

抗磁磁化率绝对值很小,只有在材料的原子、离子或分子固有磁矩为0时,才能观察出抗磁性。

Cu, Au, Ag 及大多数有机材料在室温下是抗磁性材料,超导态的超导体也是抗磁性材料。

形成抗磁矩的示意图(二)抗磁性与顺磁性 顺磁性:材料在外磁场中感生出和H 相同方向的磁化强度,使磁场略有增强。

第六章 材料的磁学性能

第六章 材料的磁学性能
2012-10-25 10
5、亚铁磁体 • μr>>1,χ>0。 • 它是反铁磁体的一个变种,其内部的原子磁 矩之间存在着反铁磁相互作用,只是两种相 反平行排列的磁矩大小不同,导致了一定的 自发磁化。所以在外加磁场中的表现与铁磁 体相似。 • 亚铁磁体多为金属氧化物。Χ比铁磁体小。 • 例如:铁氧体(磁铁矿,Fe3O4)、V、Cr、 Mn、Fe、Co等与O、S、Te、P、As、Sb 等的化合物,钕铁硼磁体,稀土与金属间的
2012-10-25 24
三、正离子的顺磁性 • 正原子的顺磁性来源于原子的固有磁矩。 • 原子的固有磁矩就是电子轨道磁矩和电子自旋磁矩的 矢量和,又称本征磁矩,Pm。 • 如果原子中所有电子壳层都是填满的,由于形成一个 球形对称的集体,则电子轨道磁矩和自旋磁矩各自相 抵消,Pm=0,不产生顺磁性。 • 因此,产生顺磁性的条件就是: Pm≠0。在如下情况下, Pm≠0: 1. 具有奇数个电子的原子或点阵缺陷; 2. 内壳层未被填满的原子或离子。如过渡族金属(d壳层 没有填满电子)和稀土金属(f壳层未填满电子)。
2012-10-25 25
• 在B0=0时,由于原子的热运动,各原子的磁矩倾 向于混乱分布,此时原子的动能Ek∝kT。对外表 现出宏观磁特性H’=0。 • 当加上外加磁场时,外磁场要使原子磁矩Pm与 B0的夹角θ 减小。使原子磁矩转向外加磁场方向。 • 当外磁场逐渐增加到使能量U=-PmB0cosθ 的减 少能补偿热运动能量时,原子磁矩就一致排列了。 此时有kT=PmB0。
2
rj
22
2012-10-25
则可得:
2

Ne 0
2
6m

j1
z
rj

材料物理性能-第6章-磁学性能

材料物理性能-第6章-磁学性能
1) 正常顺磁体,其 随温度变化符合 l/T关系,
如,金属铂、钯、奥氏体不锈钢、稀土金属等。
2) 与温度无关的顺磁体,例如锂、钠、钾、铷
等金属。
铁磁体 在较弱的磁场作用下,就能产生很大的磁化强度。
是很大的正数,且与外磁场呈非线性关系变化。
具体金属有铁、钴、镍等。 铁磁体在温度高于某临界温度后变成顺磁体。 此临界温度称为居里温度或居里点,常用Tc表示。
式中 m 称为磁化率。
2. 磁学物理量和电学物理量的对比记忆
一、电极化:在外电场作用下,介质内的质点(原子、分子、 离子)正负电荷重心的分离,使其转变成偶极子的过程。
或在外电场作用下,正、负电荷尽管可以逆向移动,但它们 并不能挣脱彼此的束缚而形成电流,只能产生微观尺度的相 对位移并使其转变成偶极子的过程。
设铁磁体原来的尺寸为l0 ,放在磁场中磁化时,其尺寸变 为 l ,长度的相对变化为,
原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
《材料物理性能》——材料的磁性能
抗磁性来源 理论研究证明,在外磁场作用下,一个电子的轨
道运动和自旋运动以及原子核的自旋运动都会发生变 化,产生一附加磁矩m。
二、磁化:是指在物质中形成了成对的N、S磁极。
三、电荷——磁极,电荷量——磁极强度
两个磁极间的相互作用力与两个电荷间的相互作用力表达式 相似。所不同的是公式中一个有真空介电常数o ,一个为真 空磁导率 o
偶极子:构成质点的正负电荷沿 电场方向在有限范围内短程移动, 形成一个偶极子
E -q
电偶极矩 :=ql

铁磁学性能材料物理性能

铁磁学性能材料物理性能
在外加磁场的作用下,铁磁材料的磁化强度会发生变化, 呈现出不同的磁化曲线和磁滞回线。
磁化强度与材料的微观结构、晶体取向、杂质和缺陷等 有关。
磁化强度的测量通常采用磁强计或霍尔效应测量仪等设 备进行。
磁化曲线和磁滞回线
磁化曲线是描述铁磁材料在 磁场中被磁化的过程中,磁 感应强度随磁场强度变化的
曲线。
铁磁学涉及到材料的磁化、磁滞、磁畴结构等基本概念,以及与材料内部结构和电 子状态相关的物理机制。
铁磁学的重要性
01
铁磁材料在现代工业和科技领域 中具有广泛的应用,如电机、发 电机、变压器、磁记录、磁悬浮 等。
02
铁磁学的发展对于推动相关领域 的技术进步和产业升级具有重要 意义,同时也为新材料和新能源 的开发提供了理论基础。
铁磁材料的磁性能对磁记录和磁头的性能有着重要影响。高剩磁比和矫顽力使得铁磁材料能够在磁场 中保持稳定的磁化状态,从而提高了数据的存储密度和可靠性。此外,铁磁材料的耐腐蚀性和温度稳 定性也是选择和应用时需要考虑的因素。
磁流体和磁性分离
磁流体和磁性分离是利用铁磁材料的 磁性来实现物质分离的物理方法。在 磁流体中,铁磁颗粒被用来传递磁场; 在磁性分离中,铁磁颗粒被用来吸附 目标物质。
详细描述
铁磁材料的电导率受到多种因素的影响,如 温度、磁场、金属杂质等。在一定温度下, 随着磁场强度的增加,铁磁材料的电导率通 常会降低。金属杂质对铁磁材料的电导率也 有显著影响,通常会引入额外的散射机制, 降低电导率。
介电常数和介电损耗
总结词
介电常数衡量了电场作用下材料的极化程度,而介电损耗则反映了材料在电场作 用下的能量耗散。
数来表示。
铁磁材料的热膨胀系数随温 度的升高而增大,这是因为 材料内部的原子或分子的振 动幅度增大,使得原子之间

无机材料磁学性能资料

无机材料磁学性能资料

纳米非金属磁性材料
纳米铁氧体
通过纳米技术制备的铁氧体材料,具有更高的磁 导率和更低的损耗。
纳米氧化铝陶瓷
采用纳米技术制备的氧化铝陶瓷,具有更好的绝 缘性能和机械强度。
纳米复合磁性材料
将纳米磁性粉末与其他非金属材料复合制备而成, 具有优异的综合性能。
复合非金属磁性材料
金属/非金属复合磁性材料
将金属磁性粉末与非金属基体复合制备而成,兼具金属和非金属 的优点。
磁化过程与磁畴理论
磁化过程
磁化是指原来没有磁性的物体获得磁性的过程。磁化过程包括畴壁移动和磁矩转 动两个过程。
磁畴理论
磁畴是指铁磁体内部存在的大量微小区域,每个区域内部的原子磁矩都像一个个 小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同。这些微 小区域就是所谓的磁畴。
磁滞回线和磁化曲线
无机材料磁学性能资料
目 录
• 磁学基础概念 • 无机材料磁学性能概述 • 金属磁性材料 • 非金属磁性材料 • 无机材料磁学性能应用 • 无机材料磁学性能研究进展与趋势
01 磁学基础概念
磁性定义与分类
磁性定义
磁性是物质放在不均匀的磁场中会受 到磁力的作用,产生磁性的原因有电 子的自旋磁矩和轨道磁矩。
磁学性能参数及表征方法
磁导率
表示材料在外磁场作用下的磁化能力,与 材料的成分、结构和温度等因素有关。
A 磁化曲线和磁滞回线
描述材料在外磁场作用下的磁化过 程和磁滞现象,可得到饱和磁化强
度、剩磁和矫顽力等参数。
B
C
D
磁学性能表征方法
包括振动样品磁强计、超导量子干涉仪、 电子自旋共振等实验手段,可获得材料的 磁学性能参数和微观磁结构信息。

磁学性能

磁学性能

3. 物质的顺磁性
来源:原子(离子)的固有磁矩。 无外H时:由于热运动的影响,固有磁矩取向无序,宏观上无磁性。 外H作用下:固有磁矩与H作用,有较高的静磁能,为降低静磁能,固 有磁矩改变与H的夹角,趋于排向外H方向,表现为正向磁化。在常温和 H不是很高的情况下,M与H成正比,磁化要克服热运动的干扰,磁矩难 以有序排列,故顺磁化进行十分困难,磁化率较小。 常温下顺磁体达到饱和磁化所需的H非常大,技术上难以达到,但温度 降至接近0K时,就容易了。 根据顺磁磁化率与温度的关系,可把顺磁体分为三类: 正常顺磁体:磁化率随温度升高而降低的顺磁体。 符合居里定律: 或居里-外斯定律:
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料 反铁磁性材料
0
抗磁性材料
H
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱, 受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体 χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为: (l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。 (2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体 χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体 χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体 类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁磁体是我们要重点介绍的磁性物质。
亚铁磁体
这类磁体有些像铁磁体,但 值没有铁磁体那
样大通常所说的磁铁矿、铁氧体等属于亚铁磁体。
反铁磁体
这类磁体的 是小的正数,在温度低于某温度
时,它的磁化率同磁场的取向有关;高于这个温 度,其行为像顺磁体。
具体材料有一Mn、铬,还有如氧化镍、氧化 锰等。
U m B
磁场在真空中的磁感应强度为B0,其磁场强度H与B0的 关系是,
B0 0H
式中 0 4 107 H / m ,称为真空磁导率。
任何材料在外磁场作用下都会或大或小地显示出磁性, 这种现象称为材料被磁化。
一个物体在外磁场中被磁化的程度,用单位体积内磁 矩多少来衡量,称之为磁化强度M,
也可用环行电流描述磁矩M
的定义 :M=IS
磁矩
( I:为环形电流, S: 封闭环形的面积)
极化强度P: P= o eE ( e:电极化率) 磁化强度M= m/V= H (:磁化率) 如图:有F=BI,
外磁场H y
x
电流 z
力F(罗仑兹力)
真空中有B= 0H( o :真空磁导率)(相对应电流 密度与外加电场的关系: =1/ =J/E) 磁性体对外部磁场的反应强度可通过下式表示: 对于厘米克秒制单位:
磁场中受微弱斥力。金属中约有一半简单金属是抗磁
体。根据 与温度的关系,抗磁体又可分为:①“经 典”抗磁体,它的 不随温度变化,如铜、银、金、 汞、锌等。反常抗磁体,它 的 随温度变化,且其
大小是前者的10一100倍,如铋、镓、锑、锡、铟、
铜一锆合金中的 相等。
顺磁体
磁化率 为正值,大约在10-3 ~10-6数量级。 根据 与温度的关系可分为:
环形电流在其运动中心处产生一个磁矩m(或称磁偶极矩) 一个环形电流的磁矩定义为:
m IS
式中:I为环形电流的强度,S为环流所包围的面积,m 的方向可用右手定则来确定。
将磁矩m放入磁感应强度为B的磁场中,它将受到磁 场力的作用而产生转矩,其所受转矩为:
T mB
磁矩与外磁场的作用能称为静磁能。处于磁场中某方向 的磁矩所具有的静磁能为,
M m/V
将材料放入磁场强度为H的自由空间,材料中的磁感应 强度为,
B B0 B
式中 B 称为束缚电流的磁感应强度。
B 0M
B 0H 0M 0 H M 0rH
式中 r 称为相对磁导率。 绝对磁导率为: 0r
M r 1 H mH
式中 m 称为磁化率。
2. 磁学物理量和电学物理量的对比记忆
一、电极化:在外电场作用下,介质内的质点(原子、分子、 离子)正负电荷重心的分离,使其转变成偶极子的过程。
或在外电场作用下,正、负电荷尽管可以逆向移动,但它们 并不能挣脱彼此的束缚而形成电流,只能产生微观尺度的相 对位移并使其转变成偶极子的过程。

8.8
岩盐
12.6

176
常用铁磁性物质、铁氧体的磁性能
物质
μ0(起始)
居里温度
Fe
150
1043
Ni
110
627
Fe3O4
70
858
NiFe2O4
10
858
Mn0.65Zn0.35Fe2O4
1500
400
3. 物质磁性分类:
根据物质的磁化率,可以把物质的磁性大致分为五类:
抗磁体
磁化率 为很小的负数,大约在10-6数量级。它们在
1) 正常顺磁体,其 随温度变化符合 l/T关系,
如,金属铂、钯、奥氏体不锈钢、稀土金属等。
2) 与温度无关的顺磁体,例如锂、钠、钾、铷
等金属。
铁磁体 在较弱的磁场作用下,就能产生很大的磁化强度。
是很大的正数,且与外磁场呈非线性关系变化。
具体金属有铁、钴、镍等。 铁磁体在温度高于某临界温度后变成顺磁体。 此临界温度称为居里温度或居里点,常用Tc表示。
五类磁体的磁化曲线示意图
Hale Waihona Puke 6.2 磁性的本质原子本征磁矩、抗磁性和顺磁性
材料的磁性来源于原子磁矩。 原子磁矩包括:电子轨道磁矩、电子自旋磁矩和原子 核磁矩。
电子轨道磁矩 电子绕原子核运动,犹如一环形电流,此环流也应
在其运动中心处产生磁矩,称为电子轨道磁矩。
B= 0H+M=(0+ ) H= H = 0+
引入无量刚r= / 0 r = / 0 = r +1
r 、 r分别为相对磁化率和相对磁导率。
磁介质的磁导率
顺磁性
物质
(μr -1)/10
-6
氧(1大气压)
1.9

23

360
抗磁性
物质 氢
(1-μr) /10-6
0.063
磁矩:将磁极强度为qm、相距为L 的磁极对置于磁场强度H中,为达 到与磁场平行,该磁极对要受到 磁场力F的作用,在转矩 T=LqmHsin的作用下,发生旋转, 该式中的系数qmL定义为磁矩。
l
偶极子
Mi= qmL 磁偶:具有磁矩的磁极对
S -qmH
+q
N qmH
极化强度P——磁化强度M (单位体积中的偶极矩或磁 偶矩,表征材料被极化或磁 化的能力。)
第 6 章 材料的磁学性能
6.1 磁学现象及磁性分类 6.2 磁性的本质 6.3铁磁性和亚铁磁性材料的特性 6.4磁性材料的物理效应
6.1 磁学现象及磁性
6.1 磁学现象及磁性
引言
我们都接触过磁现象:磁铁吸引铁片,同极相斥、异 极相吸,接触过磁铁的大头针用细线吊起会自动南北指向, 磁铁上的铁屑会形成毛刺并构成连线等等。
磁性是物质的基本属性之一。
外磁场发生改变时,系统的能量也随之改变,这时就表现 出系统的宏观磁性。
磁性不只是一个宏观的物理量,而且与物质的微观结构 密切相关。它不仅取决于物质的原子结构,还取决于原子 间的相互作用——键合情况、晶体结构。因此,研究磁性 是研究物质内部结构的重要方法之一。
1. 磁学基本量
二、磁化:是指在物质中形成了成对的N、S磁极。
三、电荷——磁极,电荷量——磁极强度
两个磁极间的相互作用力与两个电荷间的相互作用力表达式 相似。所不同的是公式中一个有真空介电常数o ,一个为真 空磁导率 o
偶极子:构成质点的正负电荷沿 电场方向在有限范围内短程移动, 形成一个偶极子
E -q
电偶极矩 :=ql
相关文档
最新文档