七年级数学下册期末综合测试三)及答案
2023-2024学年人教版数学七年级下册期末综合试卷(含答案)
2023-2024学年人教版数学七年级下册期末综合试卷一、单选题1.下列各数中,是无理数的为( )A .2019B .4C .3−27D .π2.下列说法不正确的是( )A .125的平方根是±15B .(−0.1)2的平方根是±0.1C .−9是81的算术平方根D .3−27=−33.如图,直线AB,CD 被直线EF 所截,则∠1的同旁内角是( )A .∠2B .∠3C .∠4D .∠54.若a <b ,则下列不等式中一定成立的是( )A .ac <bcB .c−a >c−bC .ac 2<bc 2D .a c <bc 5.为了了解某市参加中考的13000名学生体重情况,抽查了其中1600名学生的体重进行统计分析,下列叙述正确的是( )A .13000名学生是总体B .1600名学生的体重是总体的一个样本C .每名学生的体重是总体的一个样本D .以上调查是普查6.有下列四个命题:①相等的角是对顶角;②两直线被第三条直线所截,同位角相等;③同位角互补两直线平行;④垂直于同一条直线的两条直线互相垂直.其中是假命题的有( )A .4个B .1个C .2个D .3个7.某校举行知识竞赛,共有30道抢答题,答对一题得5分,答错或不答扣3分,要使总得分不少于80分,则至少应该答对几道题?若设答对x 题,可得式子为( )A .5x−3(30−x )>80B .5x−3(30−x )≤80C.5x−3x≥70D.5x−3(30−x)≥808.一副三角尺按如图方式摆放,点D在直线MN上,且MN∥AB,则∠NDE的大小为()A.30°B.25°C.20°D.15°9.不等式组{3x+9<5x+1x>2π+2的解集是x>4,则m的取值范围是( )A.m≤2B.m≥2C.m≤1D.m>110.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3.若图1中,∠DEF=20°,则图3中的∠CFE的度数是( )A.120°B.140°C.150°D.160°二、填空题11.如图,直线AB、CD、EF相交于点O,∠1=20°,∠BOC=80°,则∠2的度数为.12.在平面直角坐标系中,点M(a-3,a+4),点N(5,9),若MN∥y轴,则a= .13.若{x=2y=−1是二元一次方程3x+my=5的解,则m=.14.如图,用吸管吸易拉罐内的饮料时,吸管与易拉罐的上、下底面所形成的角分别是∠1和∠2,若∠1=110°,则∠2=°.15.中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法,若一个正数的平方根分别是2a−3和5−a,则a的值是.16.如图,在平面直角坐标系中,从点P1(0,−1),P2(1,−1),P3(1,1),P4(−1,1),P5(−1,−2),P6(2,−2),……,依次扩展下去,则点P2023的坐标为.17.已知关于x,y的方程组{x+2y=5−2ax−y=4a−1,有下列结论:①不论a取什么实数,x,y不可能互为相反数;②当2x+y=8时,则a=2;③x,y都为非负整数的解有4对;④当a=1时,方程组的解也是x+y=2a−1的解;其中你认为正确的有(把正确的序号填在横线上).18.对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.(注:取英文单词minimum(最少的),maximum(最多的)前三个字母);例如:min{−1,2,3}=−1,max{−1,2,3}=3;min{−1,2,a}={a(a≤−1)−1,若max{2,x+1,2x}=2x,则x的取值范围为.三、解答题19.计算:(1)23−(2−3)+2; (2)16+3125−3.20.(1)解方程组:{x 2−y +13=13x +2y =10;(2)解不等式组{4x−2>2x−625−x ≥−35,然后把解集在数轴上表示出来,并写出不等式组的整数解.21.如图,九年级某班学生外出乘车、步行、骑车人数分布情况的直方图和扇形图如下:请根据以上信息解答下列问题:(1)求该班有多少名学生?(2)在扇形统计图中,求骑车人数所占的圆心角度数;(3)若全年级有500人,请估计该年级步行的人数.22.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株,则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?23.完成说理过程并注明理由:如图,已知AB∥CD,∠B=∠C,求证:∠1=∠2.证明:∵AB∥CD(已知),∴∠B=_________(),∵∠B=∠C(已知),∴∠BFD=∠C(),∴EC∥___________(),∴∠2=____________(两直线平行,同位角相等),∵∠1=(),∴∠1=∠2(等量代换).24.星光橱具店购进电饭堡和电压力锅两种电器进行销售,其进价与售价如表:进价/(元/台)售价/(元/台)电饭煲200250电压力锅160200(1)第一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店共赚了多少元?(2)为了满足市场需求,第二季度橱具店决定用不超过9000元的资金采购电饭煲和电压力锅共50台,且电饭煲的数量不少于电压力锅数量的5,问橱具店有哪几种进货方案?6(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?25.已知关于x ,y 的二元一次方程组{ax−4y =105x +by =42 ,甲由于看错了方程组中的a ,得到的方程组的解为{x =12y =−3 ,乙由于看错了b ,得到方程组的解为{x =2y =−1 .(1)求a ,b 的值.(2)若方程组{ax−4y =105x +by =42 的解与方程组{2mx +ny =6mx +2ny =−6 的解相同,求2m−n 的值.(3)在(2)的条件下,是否存在k 的值,使得关于x 的方程3(kx +2)2−m =−nx +105有无数个解?若存在,求k 的值;若不存在,请说明理由.26.课题学习:平行线的“等角转化”功能.【阅读理解】如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面推理过程:解:过点A 作DE ∥BC ,∴∠B =______,∠C =______.又∵∠EAB +∠BAC +∠DAC =180,∴∠BAC +∠B +∠C =180°.【解题反思】从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决.【方法运用】(2)如图2,已知AB ∥ED ,试说明∠B ,∠BCD ,∠D 之间的关系,并证明.【解决问题】(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =68°,点B 在点A 的左侧,∠ABC =52°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.参考答案1.D2.C3.A4.B5.B6.A7.D8.D9.C10.A11.60°12.813.114.7015.−216.(506,506)17.①②③18.x≥1.19.(1)33(2)620.(1){x=3y=12;(2)−2<x≤1,不等式组的整数解为−1,0,121.(1)40(2)108°(3)100人22.(1)400元;300元;(2)20株23.∠BFD;两直线平行,内错角相等;等量代换;BF;同位角相等,两直线平行;∠CHG;∠CHG24.(1)橱具店共赚了1400元(2)有三种方案.方案一:购买电饭煲23台,购买电压力锅27台;方案二:购买电饭煲24台,购买电压力锅26台;方案三:购买电饭煲25台,购买电压力锅25台(3)购进电饭煲、电压力锅各25台时,橱具店赚钱最多25.(1)a=3;b=6;(2)2m−n=5;(3)k=6.1526.(1)∠EAB,∠DAC;(2)∠B+∠BCD+∠D=360°,(3)60°。
人教版七年级数学下册期末综合素质评价附答案
人教版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【2022·株洲】在0,13,-1,2这四个数中,最小的数是( )A .0 B.13 C .-1 D. 22.在平面直角坐标系中,点A (2,-3)在第几象限?( )A .一B .二C .三D .四3.下列调查中,适宜采用全面调查方式的是( )A .了解一批圆珠笔的使用寿命B .了解全国七年级学生的身高情况C .考察人们保护海洋的意识D .检查一枚用于发射卫星的运载火箭的各零部件4.【2022·郴州】如图,直线a ∥b ,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c ∥d 的是( )A .∠3=∠4B .∠1+∠5=180°C .∠1=∠2D .∠1=∠45.下列命题中,是假命题的是( )A .邻补角一定互补B .平移不改变图形的形状和大小C .两条直线被第三条直线所截,同位角相等D .相等的角不一定是对顶角6.【2022·乌鲁木齐十三中模拟】已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( )A .-1B .2C .3D .47.与3+24最接近的整数是( )A .6B .7C .8D .98.【2022·杭州】已知a ,b ,c ,d 是实数,若a >b ,c =d ,则( )A .a +c >b +dB .a +b >c +dC .a +c >b -dD .a +b >c -d9.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确...的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1210.不等式组⎩⎪⎨⎪⎧x -13-12x <-1,4(x -1)≤2(x -a )有 3.个.整数解,则a 的取值范围是( ) A .-6≤a <-5 B .-6<a ≤-5 C .-6<a <-5 D .-6≤a ≤-5 二、填空题(每题3分,共24分)11.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C向右移动了___________________________格.(第11题) (第16题) (第18题)12.【教材P 130习题T 4变式】【2022·大庆】满足不等式组⎩⎨⎧2x -5≤0,x -1>0的整数解是________.13.【2022·深圳】某工厂一共有1 200人,为选拔人才,提出了一些选拔的条件,并进行了抽样调查,从中抽出400人,发现有300人是符合条件的,那么估计该工厂1 200人中符合选拔条件的人数为________.14.【教材P57习题T6改编】比较大小:5-15________15(填“>”“<”或“=”).15.计算:14+0.01-|3-8|=________.16.【2021·恩施州】如图,已知AE∥BC,∠BAC=100°,∠DAE=50°,则∠C =________.17.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,则A的成本是________元,B的成本是________元.18.【新考法题】如图,在平面内取一个定点O,叫做极点,引一条射线O X,叫做极轴,再选定一个单位长度和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从O X到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标.若ON⊥O X,且点N到极点O的距离为4个单位长度,则点N的极坐标可表示为__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.【2022·连云港】解不等式2x-1>3x-12,并把它的解集在数轴上表示出来.20.【2022·天津南开中学模拟】已知(2x+5y+4)2+|3x-4y-17|=0,求4x-2y的平方根.21.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠GFH+∠BHC=180°.求证:∠1=∠2.22.【2022·绍兴】双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了部分八年级学生进行调查,并将所收集的数据分组整理,绘制了如下所示的不完整的统计图表.请根据图表信息解答下列问题:(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长x满足0.5<x≤1.5的共有多少人.23.【教材P79习题T8变式】如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出三角形A1B1C1;(3)求三角形AOA1的面积.24.【2022·邵阳】2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会吉祥物“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,求购进的“冰墩墩”挂件不能超过多少个.25.【探究应用题】如图①,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,l4和l1,l2分别交于C,D两点,点P在线段AB上(点P和A,B两点不重合),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.(1)若∠1=22°,∠2=33°,则∠3=________.(2)试找出∠1,∠2,∠3之间的数量关系,并说明理由.(3)应用(2)中的结论解答下面的问题:如图②,点A在B的北偏东40°的方向上,在C的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在线段AB外侧运动(点P和A,B两点不重合),其他条件不变,试探究∠1,∠2,∠3之间的关系.答案一、1.C 2.D 3.D 4.C 5.C 6.D 7.C 8.A 9.D 10.B 二、11.5 12.x =2 13.900 14.> 15.-75 16.30° 17.300;200 18.(4,90°)点要点:本题题干较长,看似困难,实则简单.可以转化为“方位角+距离”表示法求解,即“定原点、定方向、定角度、定位置”. 三、19.解:去分母,得4x -2>3x -1.移项,得4x -3x >-1+2. 合并同类项,得x >1.这个不等式的解集在数轴上表示如图所示.20.解:由题意得⎩⎨⎧2x +5y +4=0,3x -4y -17=0,解得⎩⎨⎧x =3,y =-2.∴4x -2y =16=4. ∴4x -2y 的平方根为±2.21.证明:∵∠BHC =∠FHD ,∠GFH +∠BHC =180°,∴∠GFH +∠FHD =180°. ∴FG ∥BD .∴∠1=∠ABD . ∵BD 平分∠ABC , ∴∠2=∠ABD . ∴∠1=∠2.22.解:(1)被调查的总人数为15÷15%=100(人),∴m =100×60%=60,n =100-15-60-5=20.(2)∵当0.5<x ≤1.5时,在被调查的100人中有60+20=80(人),∴估计在该校八年级学生800人中,每日完成书面作业所需时长x 满足0.5<x ≤1.5的共有800×80100=640(人).23.解:(1)点C 1的坐标为(4,-2).(2)三角形A 1B 1C 1如图所示.(3)如图,S 三角形AOA 1=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=6. 24.解:(1)设购进“冰墩墩”摆件x 个,“冰墩墩”挂件y 个.根据题意,得⎩⎨⎧x +y =180,80x +50y =11 400,解得⎩⎨⎧x =80,y =100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m 个,则购进“冰墩墩”摆件(180-m )个. 根据题意,得(60-50)m +(100-80)(180-m )≥2 900,解得m ≤70. 答:购进的“冰墩墩”挂件不能超过70个. 25.解:(1)55°(2)∠1+∠2=∠3.理由如下: ∵l 1∥l 2,∴∠1+∠PCD +∠PDC +∠2=180°.在三角形PCD 中,∠3+∠PCD +∠PDC =180°, ∴∠1+∠2=∠3.(3)由(2)可知∠BAC =∠DBA +∠ACE =40°+45°=85°.(4)当点P 在线段BA 的延长线上时,如图①所示,过P 作PF ∥l 1,交l 4于F ,则∠1=∠FPC . ∵l 1∥l 2, ∴PF ∥l 2. ∴∠2=∠FPD .∵∠3=∠FPD-∠FPC,∴∠3=∠2-∠1.当点P在线段AB的延长线上时,如图②所示,过P作PG∥l2,交l4于G,则∠2=∠GPD.∵l1∥l2,∴PG∥l1.∴∠1=∠CPG.∵∠3=∠CPG-∠GPD,∴∠3=∠1-∠2.。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
人教版七年级数学下册期末测试题及答案(共五套)
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
数学七年级下册 期末试卷综合测试卷(word含答案)
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠和2∠不是同旁内角的是( )A .B .C .D . 2.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬 3.若点P 在第四象限内,则点P 的坐标可能是( ) A .()4,3 B .()3,4- C .()3,4-- D .()3,4- 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∠+∠=︒(已知)∵12180AD EF()∴//∠=∠()∴3D又∵3A∠=∠(已知)∴D A∠=∠()AB CD()∴//∠=∠()∴B C20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y,其中x是一个整数,且0<y<1,求出2x+(y-3)2012的值.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.【详解】解:选项A 、C 、D 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:B .【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A 、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C 、一条直线的垂线可以画无数条,正确,不符合题意;D 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A .【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意;C 、任何实数都有立方根,则此项说法错误,不符题意;D 3333-=3-的立方根是33故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A 9A 10=3×10=30,进而求得A 10的横纵坐标.【详解】解:根据题意可知:OA 1=3,A 1A 2=6,A 2A 3=9,A 3A 4=12,A 4A 5=15,A 5A 6=18•••,A 9A 10=30,∴A 1点坐标为(3,0),A 2点坐标为(3,6),A 3点坐标为(﹣6,6),A 4点坐标为(﹣6,﹣6),A 5点坐标为(9,﹣6),A 6点坐标为(9,12),以此类推,A 9点坐标为(15,﹣12),所以A 10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x=.故答案为:.【点睛【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:1--,1【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴∴点A表示的数为1-1-+.故答案为:1--1【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD ∥EF (同旁内角互补,两直线平行),∴∠3=∠D (两直线平行,同位角相等),又∵∠3=∠A (已知),∴∠D =∠A (等量代换),,∴AB ∥CD (内错角相等,两直线平行),∴∠B =∠C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x,y的值,即可解答.【详解】解:(1)∵132,∴313;(2)解:∵132,∴9<310,∵3x+y,且x是一个整数,0<y<1,∴x=9,y=3931,∴2x+(32012=2×9+332012=18+1=19.【点睛】二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
初中数学人教七年级下册期末试卷(3)(附答案)
期末数学试卷一、选择题1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则=.16.已知点A(﹣1,b+2)不在任何象限,则b=.17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=,b=.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【考点】D1:点的坐标.【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】92:二元一次方程的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角;B、∠1和∠2是对顶角;C、∠1和∠2不是对顶角;D、∠1和∠2不是对顶角.故选:B.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】J9:平行线的判定.【专题】121:几何图形问题.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查【考点】V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;B、对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查,故本选项错误;C、对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;D、对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查,故此选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=1【考点】CB:解一元一次不等式组.【分析】先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.【解答】解:,由①得,x>2﹣a,由②得,x<,故不等式组的解集为;2﹣a<x<,∵原不等式组的解集为0<x<1,∴2﹣a=0,=1,解得a=2,b=1.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个【考点】26:无理数.【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】C6:解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.如图所示,由三角形ABC平移得到的三角形有5个.【考点】Q2:平移的性质.【分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,据此判断出由三角形ABC平移得到的三角形有哪些即可.【解答】解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.【点评】此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第二象限.【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质求出a、b,再根据各象限内点的坐标特征解答.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,点P(﹣a,﹣b)即(﹣2,3)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.满足不等式的非正整数x共有3个.【考点】2B:估算无理数的大小.【分析】根据﹣3<<﹣2和3<<4求出符合条件的非正整数,即可得出答案.【解答】解:不等式的非正整数有﹣2,﹣1,0,共3个,故答案为:3.【点评】本题考查了估算无理数大小,实数的大小比较的应用,关键是确定﹣和的范围.15.如果的平方根是±3,则=4.【考点】24:立方根;21:平方根;22:算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a 的值.16.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.【考点】D1:点的坐标.【分析】根据坐标轴上的点的坐标特征方程求解即可.【解答】解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.17.不等式的解集是x<6.【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质,先去分母,然后把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.已知x满足(x+3)3=27,则x等于0.【考点】24:立方根.【分析】首先根据立方根的定义可求出27的立方根,即可求得x的值.【解答】解:∵27的立方根为3,∴x+3=3,∴x=0.故答案为0.【点评】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=﹣2,b=1.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】把x与y的两对值代入y=kx+b,列出方程组,求出方程组的解得到k与b的值即可.【解答】解:把x=1,y=﹣1;x=3,y=﹣5代入y=kx+b中,得:,解得:k=﹣2,b=1.故答案为:﹣2;1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.三、解答题(60分)21.解方程组:.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解此题时先找出某个未知数系数的最小公倍数,用加减消元法进行解答.【解答】解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.【点评】此题较简单,只要明白二元一次方程及方程组的解法就可.22.计算:﹣|﹣3|+.【考点】2C:实数的运算.【分析】根据立方根、绝对值,算术平方根进行计算即可.【解答】解:原式=4+﹣3+6=7+.【点评】本题考查了实数的运算,用到的知识点为立方根、绝对值,算术平方根.23.(6分)解不等式组:并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.【点评】本题考查解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.24.(6分)已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.【考点】21:平方根.【分析】根据一个正数的两个平方根互为相反数,可知2m﹣3=4m﹣5或2m﹣3=﹣(4m﹣5),解得m的值,继而得出答案.【解答】解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.(6分)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.【考点】JA:平行线的性质.【分析】先根据补角的定义求出∠BAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.(7分)如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为500;(2)把两幅统计图补充完整.【考点】VC:条形统计图;VB:扇形统计图.【专题】27 :图表型.【分析】由统计图可知:(1)根据条形统计图可知电视机是175台,根据扇形图可知电视占总产品的35%,即可求得产品的总数;(2)冰箱的台数为500×10%=50台;电脑的台数为500×5%=25台;则热水器的台数为500﹣50﹣25﹣175﹣150=100台,占的百分比为100÷500=20%;洗衣机占百分比为150÷500=30%.据此即可把两幅统计图补充完整.【解答】解:(1)175÷35%=500(个);(2)图如下面.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(8分)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?【考点】C9:一元一次不等式的应用.【分析】设今年比去年空气质量良好的天数增加了x天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.【解答】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【点评】此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键.28.(9分)如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质知∠DEF=∠EFB=55°,由题意知∠GEF=∠DEF=55°,则可求得∠2=∠GED=110°.由邻补角的性质可求得∠1的值.【解答】解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)【点评】本题考查了翻折的性质,对应角相等及平行线的性质、邻补角的性质.29.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【考点】9A:二元一次方程组的应用.【分析】(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.【解答】解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.【点评】本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。
华师大版数学七年级下册期末复习试题(三)(有答案)
华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。
甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。
人教版七年级数学下册期末综合复习训练试题(三)及答案
期末综合复习训练试题(三)一.选择题1.在数轴上,点A,B分别表示实数a,b,将点A向左平移1个单位长度得到点C,若点C,B关于原点O对称,则下列结论正确的是()A.a+b=1 B.a+b=﹣1 C.a﹣b=1 D.a﹣b=﹣12.若关于x、y的二元一次方程有公共解3x﹣y=7,2x+3y=1,y=﹣kx﹣9,则k的值是()A.﹣3 B.C.2 D.﹣43.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4.关于x的一元一次方程x+m﹣2=0的解是负数,则m的取值范围是()A.m>2 B.m<2 C.m>﹣2 D.m<﹣25.已知△ABC内一点P(a,b)经过平移后对应点P′(c,d),顶点A(﹣2,2)在经过此次平移后对应点A′(5,﹣4),则a﹣b﹣c+d的值为()A.13 B.﹣13 C.1 D.﹣16.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月二.填空题7.已知|x+1|++(x+y﹣z)2=0,x+y+z的立方根是.8.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.9.体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:cm)的最大值为186,最小值为155.若取组距为3,则可以分成组.10.如图,直线AB、CD相交于点O,∠AOE=90°,∠EOD=50°,则∠BOC的度数为.11.若关于x、y的二元一次方程组的解是二元一次方程的2x+3y=18的解,则的平方根.12.不等式组的最小整数解是.13.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是.14.已知点P的坐标为(2m+1,m﹣4)并且满足点P到两坐标轴的距离相等,则点P的坐标是.三.解答题15.计算:16.解下列方程组:(1)(2)17.解不等式组,并把解集在数轴上表示出来.18.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED =22°,∠I=20°,求∠EKD的度数.四.解答题19.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.20.如图,已知∠1+∠2=180°,∠AED=∠C,试判断∠3与∠B的大小关系,并对结论进行说理.(可不写根据)21.已知关于x,y的二元一次方程组的解满足x=y,求m的值.22.元旦期间,前往参观盐城人民公园的人非常多.这期间某一天某一时段,小王随机调查了部分入园游客,统计了进园前等侯检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10mi而小于20min,其他类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a=,b=,并补全频数分布直方图:(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是;时间分段/min频数/人数频率10~20 8 0.20020~30 14 a30~40 10 0.25040~50 b0.12550~60 3 0.075合计40 1.000五.解答题23.已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.24.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.六.解答题25.解不等式组并写出它的正整数解.26.为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?参考答案一.选择题1.A.2.D.3.C.4.A.5.B.6.D.二.填空7.28.﹣1或﹣7.9.11.10.140°.11.±2.12.013..14.(﹣9,﹣9)或(3,﹣3).三.解答题15.解:=﹣3+2+1=16.解:(1)将②代入①得:2x+3(4x﹣5)=﹣1解得:x=1③将③代入②得:y=4×1﹣5=﹣1∴方程组的解为:.(2)①×5+②×2得:15x+8x=100+38∴x=6③将③代入①得:3×6+2y=20∴y=1∴原方程组的解为:.17.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:18.解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.四.解答题19.解:(1)△ABO的面积=×1×3+×(1+3)×2﹣×3×1=4;(2)点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,∴点O的对应点O1的坐标是(2,﹣2),故答案为:(2,﹣2);(3)平移△ABO至△A2B2O2,需要至少向下平移超过3单位,并且至少向左平移超过3个单位,才能使△A2B2O2位于第三象限.故答案为:3,3.20.解:∠3=∠B.理由如下:∵∠1+∠2=180°,∠1+∠4=180°∴∠2=∠4,∴EF∥AB,∠3=∠ADE,又∵∠AED=∠C,∴DE∥BC,∴∠B=∠ADE,∴∠3=∠B.21.解:∵关于x,y的二元一次方程组的解满足x=y,∴,故=2m,解得:m=10.22.解:(1)这里采用的调查方式是抽样调查;样本容量是:8÷0.200=40;故答案为:抽样调查,40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=40×0.125=5;补图如下:故答案为:0.350,5;(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:45°.五.解答23.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.24.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).六.解答题25.解:∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集是:﹣1≤x<3,即不等式组的正整数解是1,2.26.解:(1)设运往C县的物资是a吨,D县的物资是b吨,根据题意得,,解得,答:这批赈灾物资运往C、D两县的数量各是160吨,120吨;(2)设A地运往C县的赈灾物资数量为x吨,则B地运往C县的物资是(160﹣x)吨,A地运往D县的物资是(100﹣x)吨,B地运往D县的物资是120﹣(100﹣x)=(20+x)吨,根据题意得,,解不等式①得,x>40,解不等式②得,x≤43,所以,不等式组的解集是40<x≤43,∵x是整数,∴x取41、42、43,∴方案共有3种,分别为:方案一:A地运往C县的赈灾物资数量为41吨,则B地运往C县的物资是119吨,A地运往D县的物资是59吨,B地运往D县的物资是61吨;方案二:A地运往C县的赈灾物资数量为42吨,则B地运往C县的物资是118吨,A地运往D县的物资是58吨,B地运往D县的物资是62吨;方案三:A地运往C县的赈灾物资数量为43吨,则B地运往C县的物资是117吨,A地运往D县的物资是57吨,B地运往D县的物资是63吨.。
人教版七年级数学下册期末测试题+答案解析(共四套)
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
人教版七年级数学下册期末综合复习试卷(及答案)
人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
2022—2023年部编版七年级数学(下册)期末综合检测卷及答案
2022—2023年部编版七年级数学(下册)期末综合检测卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%3.已知:20n是整数,则满足条件的最小正整数n为( )A.2 B.3 C.4 D.54.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数 的点P应落在()25A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A .8B .9C .10D .116.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折9.用代数式表示:a 的2倍与3 的和.下列表示正确的是( )A .2a -3B .2a +3C .2(a -3)D .2(a +3) 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.因式分解:34a a -=_____________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.(1)求证:DM∥AC;(2)若DE∥BC,∠C =50°,求∠3的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、B5、C6、D7、C8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、90°3、15°4、a >﹣15、(2)(2)a a a +-6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1) x =32;(2) y =3;(3)x =﹣1;(4)a =4.4.2、(1)–2x 2+6;(2)5.3、略4、(1)证明略(2)50°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。
北师大版七年级数学下册期末综合素质评价附答案
北师大版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【2022·重庆】下列北京冬奥会运动标识图案是轴对称图形的是( )2.【2022·齐齐哈尔】下列计算正确的是( )A.ab2÷ab=b B.(a-b)2=a2-b2C.2m4+3m4=5m8D.(-2a)3=-6a33.【2022·本溪】下列事件中,是必然事件的是( )A. 射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球4.【教材P86随堂练习T1变式】如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.8 5.【2022·山西】如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为( )A.100°B.120°C.135°D.150°6.下列说法错误..的是( )A.等腰三角形底边上的高所在的直线是它的对称轴B.△ABC≌△DEF,则△ABC与△DEF一定关于某条直线对称C.连接轴对称图形的对应点的线段必被对称轴垂直平分D.线段和角都是轴对称图形7.【教材P138习题T2改编】【2022·北京】不透明的袋子中装有红,绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.14B.13C.12D.348.【2021·重庆】如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能..判断△ABC≌△DEF的是( )A.AB=DE B.∠A=∠DC.AC=DF D.AC∥FD9.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列结论:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S四边形DBCF.其中正确的结论有( )A.4个B.3个C.2个D.1个10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B 时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为( )二、填空题(每题3分,共24分)11.【2022·广元】石墨烯是目前世界上最薄却最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为____________.12.图书馆现有2 000本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是____________________(要求写出x的取值范围).13.【开放题】如图,BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为____________(只需添一个).(第13题) (第14题) (第16题) (第17题) (第18题) 14.【教材P151议一议变式】如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是________.15.若x<y,x2+y2=3,xy=1,则x-y=________.16.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=21,则DE=________.17.【2022·广州八一实验学校模拟】珠江流域某江段水流方向经过B,C,D三点拐弯后与原来相同,如图所示.若∠ABC=120°,∠BCD=80°,则∠CDE=________.18.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)(0.2x-0.3)(0.2x+0.3);(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).20.【教材P34复习题T7变式】先化简,再求值:(3x+2y)2-(3x-2y)2+2(x+y)(x-y)-2x(x+4y),其中x=1,y=-1.21.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.22.【2022·岳阳】守护好一江碧水,打造长江最美岸线.江豚、麋鹿、天鹅已成为岳阳“吉祥三宝”的新名片.某校生物兴趣小组设计了3张环保宣传卡片,正面图案如图所示,它们除此之外完全相同.(1)将这3张卡片背面朝上,洗匀,从中随机抽取一张,则抽取的卡片正面图案恰好是“麋鹿”的概率为________;(2)将这3张卡片背面朝上,洗匀,从中随机抽取一张,不放回,再从剩余的两张卡片中随机抽取一张,求抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率.23.如图,在△ABC中,AB=AC,D,E,F分别在三边上,且BE=CD,BD=CF,G 为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.24.【教材P73习题T2变式】某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)与时间x(小时)之间的关系如图所示.已知当每毫升血液中的含药量不小于20微克时,这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后大约多长时间药物开始发挥作用?(2)服药后多长时间每毫升血液中含药量最大?最大值是多少?(3)服药后,药物发挥作用的时间大约有几小时?25.【动态探究题】在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD 的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,α与β之间的数量关系是______________,请说明理由;(2)如图②,点D在线段BC的延长线上移动时,α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想α与β之间的数量关系是______________.答案一、1.C 2.A 3.D 4.B 5.B 6.B 7.A 8.C 9.A 10.B 二、11.3.4×10-1012.y =2 000-4x (0≤x ≤500且x 为整数) 13.AC =DC (答案不唯一)14.12 点技巧:通过旋转可以把阴影部分转化为半圆形,进而得解. 15.-1 提示:(x -y )2=x 2+y 2-2xy =3-2×1=1.因为x <y ,所以x -y <0.所以x -y =-1. 16.3 17.20°18.16 提示:根据题意可知∠BAE =∠DAF =90°-∠BAF ,AB =AD ,∠ABE =∠ADF =90°,所以△AEB ≌△AFD (ASA). 所以S 四边形AECF =S 正方形ABCD =42=16.三、19.解:(1)原式=(0.2x )2-0.32=0.04x 2-0.09;(2)原式=2a 3b 2÷(-2a 3b 2)-4a 4b 3÷(-2a 3b 2)+6a 5b 4÷(-2a 3b 2) =-1+2ab -3a 2b 2.20.解:原式=9x 2+12xy +4y 2-9x 2+12xy -4y 2+2x 2-2y 2-2x 2-8xy =16xy -2y 2.当x =1,y =-1时,原式=16xy -2y 2=16×1×(-1)-2×(-1)2=-18. 21 .解:AB 和CD 平行.理由如下:因为∠1=∠2=70°,所以∠D =180°-∠1-∠2=40°, 又因为∠3=40°, 所以∠D =∠3, 所以AB ∥CD .点方法:本题解法不唯一. 还可以利用CE 平分∠BCD 得∠BCE =∠1=70°=∠2,故AD ∥BC ,从而得出∠B =∠3=40°.根据∠BCD +∠B =∠1+∠BCE +∠B =180°,得到AB ∥CD .22.解:(1)13(2)将江豚、麋鹿、天鹅三张卡片分别记作①②③,列出所有可能结果为①②,①③,②①,②③,③①,③②.共有6种等可能的结果,其中抽取的卡片正面图案恰好是“江豚”和“天鹅”的有2种结果,所以抽取的卡片正面图案恰好是“江豚”和“天鹅”的概率为26=13.23.解:(1)因为AB =AC ,所以∠C =∠B .又因为∠A =40°, 所以∠B =180°-40°2=70°. (2)如图,连接DE ,DF .在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,所以△BDE ≌△CFD (SAS). 所以DE =DF .又因为G 为EF 的中点, 所以DG ⊥EF . 所以DG 垂直平分EF .24.解:(1)由图象可知服药后1小时,每毫升血液中含药60微克,则服药后大约20分钟,每毫升血液中含药20微克,所以服药后大约20分钟药物开始发挥作用.(2)由图象得服药后2小时,每毫升血液中含药量最大,最大值是80微克.(3)由图象可知x=7时,y=20,7-2060=203≈6.7(小时).因此服药后,药物发挥作用的时间大约有6.7小时.25.解:(1)α+β=180°理由:因为∠DAE=∠BAC,所以∠DAE-∠CAD=∠BAC-∠CAD,即∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.在△ABC中,∠BAC+∠ABC+∠ACB=180°,∠ABC=∠ACE,所以∠BAC+∠ACB+∠ACE=180°.因为∠ACB+∠ACE=∠DCE=β,所以α+β=180°.(2)α=β理由:因为∠DAE=∠BAC,所以∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.因为∠ABC+∠BAC+∠ACB=180°,∠ACB+∠ACD=180°,所以∠ACD=∠ABC+∠BAC=∠ACE+∠ECD.所以∠BAC=∠ECD.所以α=β.(3)画图略.α=β。
人教版七年级下册数学期末测试卷(含答案解析)
人教版七年级下册数学期末测试卷一.选择题(每小题3分,共36分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.二元一次方程2a+5b=﹣6,用含a的代数式表示b,下列各式正确的是()A.B.C.D.3.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠2=180°4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7、将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于()A.56°B.68°C.62°D.66°8、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40º D.30º9、若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.610、若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣5201511、若关于x的不等式组只有5个整数解,则a的取值范围()A.B.C.D.12、. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(–13,–13)C.(14,14)D.(–14,–14)二、填空题(每小题3分,共18分)13.如图,当剪刀口∠AOB增大21°时,∠COD增大__________度.14.在二元一次方程x+4y=13中,当x=5时,y=__________.15.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是__________位置.16、已知关于的不等式组只有两个整数解,则的取值范围__________.17、如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是__________.18、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是__________.三、解答题(共8小题,共66分)19.(6分)计算:20.(6分)解方程组:21.(8分)解不等式组:22.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.23.(9分)如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.24.(9分)已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.25.(10分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.D.4.D.5.A.6.D.7、B.8、D 9、B.10、B 11、A 12、C 二.填空题(共6小题,满分24分,每小题4分)13.21度.14.215.(9,12).16、17、2∠α=∠β+∠γ.18、(2011,2)三解答题19.答案为:20.答案为:x=2,y=–1.5;21.解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.22.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.23解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。
271 初中数学 七年级(下)期末数学综合测试卷(三)及答案
271 初中数学七年级(下)期末数学综合测试卷 (三)一、选择题(每小题3分,共30分)1.计算:(-3) 0的值是( )A.1 B.0 C.-3 D.32.小马虎在下面的计算中只做对了一道题,他做对的题是( )A.a2·a3 =a6B.(a2)3 =a6C.(-2a3 )2=4a5D.a6÷a2=a33.如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( ) A.40°B.70°C.60°D.50°4.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( )5.已知△ABC≌△DEF,若AB=5,BC=6,AC=8,则△DEF的周长是( ) A.8 B.18 C.19 D.206.下列各组数值是方程x-2y=4的解是( )A.21xy=⎧⎨=⎩B.11xy=-⎧⎨=⎩C.41xy=⎧⎨=⎩D.22xy=⎧⎨=-⎩7.下列图案中可以看成是由图案自身的一部分经平移变换得到的是( )8.小明和小亮a袋里面都放有五张不同的北京奥运会福娃纪念卡,则两人分别在自己口袋里摸出一张福娃都是则则的概率是( )A.1/2 B.1/5 C.1/25 D. 1A .42B .-42C .13D .-l310.某班学生到距学校l 2 km 的烈士陵园扫墓.一部分同学骑自行车先行,经1/2 h 后,其余同学乘汽车出发,由于设自行车的速度为xkm /h ,则可得方程为2131212=-x x .根据此情境和所列方程,上题中 表示被墨水污损不清部分的内容,其内容应该是( )A .汽车速度是自行车速度的3倍,结果同时到达B .汽车速度是自行车速度的3倍,后部分同学比前部分同学迟到21 hC .汽车速度是自行车速度的3倍,前部分同学比后部分同学迟到21hD .汽车速度比自行车速度每小时多3 km ,结果同时到达 二、填空题(每小题3分,共l8分) 11.当x =________时,分式11-+x x 有意义. 12.已知空气的密度是0.00129 g /cm 3,用科学记数法表示为________.13.已知三角形的周长是偶数,其中两边长分别为2 cm 和7 cm ,则第三边长为________. 14.小明用计算器按一个三位数,当数字图像垂直面对镜子时,在镜子里看到的这三位数是“285”,则实际所表示的三位数是________.15.如图,已知∠BAD =∠CAD ,要使△ABD ≌△ACD ,还应添加一个条件是________.16.如下图,由若干盆花组成形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花(图中用“○”表示),每个图案花盆的总数记为S .按此规律摆下去,以S 、n 为未知数的二元一次方程为________.三、解答题(本题有7小题,共52分) 17.(3分+4分,共7分)计算:(1)(-2x 3y ) 2÷(2x 2y ) (2)( xx x x x x 4)2232-⨯+--18.(每小题3分,共6分)(1)分解因式:4a 3—8a 2+4a (2)化简:(3a -2) 2-(3a -2)(3a +2)19.(4分+5分,共9分)解方程组:(1) 213417x y x y +=⎧⎨-=-⎩(2) 5351=++x xx20.(5分)如图,∠CAB=∠DBA,AC=BD,说明下列结果成立的理由.(1)△ABC≌△BAD:(2)BC=AD.21.(7分)有两枚均匀的骰子,各面上的点数分别是l、2、3、4、5、6,抛掷两枚骰子各一次,将朝上一面的两个点数相加.(1)和为6有几种可能?(2)点数之和是7的概率是多少?22.(8分)如图,在正方形ABCD中,点E在BC上.(1)将△ABE沿BC方向平移,使点曰与点C重合,所得的像为△DCF,请画出所得的像.(2)将△ABE绕点A逆时针方向旋转90°,所得的像为△ADG,请画出所得的像.(3)试猜想直线DF与AG的位置关系,并说明理由.23.(10分)七年级(1)班、(2)班班委为庆祝学校艺术节,举办联欢活动.两班分别选派班委成员到集市上购买苹果,苹果的价格如下:七(1)班分两次共购买苹果70kg(第二次多于第一次),共付出255元;七(2)班一次购买苹果70kg.(1)哪个班付出的钱少?少多少元?(2)七(1)班第一次、第二次分别购买多少千克?(3)七(1)班分两次购买苹果70kg,并且第一次购买不少于l0kg,如何购买最省钱?最省的钱是多少?参考答案-、l .A 2.B 3.D 4.B 5.C 6.D 7.C 8.C 9.B l 0.A二、ll .x ≠1 12.1.29×10-3 13.7 14.285 15.AB =AC (或∠B =∠C 或∠ADB =∠ADC )16.S =3(n -l )(或S =3n -3) 三、l 7.(1)原式=4x 6y 2÷2x 2y =2x 4y(2)原式=[)2)(2()2()2)(2()2(3-+---++x x x x x x x x ]×x x x )2)(2(+- =)2)(2(26322-++-+x x x x x x ×x x x )2)(2(+-=xx x x x x )4(2822+=+2=2x +8 18. (1)原式=4a (a 2-2a +1)=4a (a -l )2(2)原式=9a 2-12a +4-(9a 2-4)=9a 2-12a +4-9a 2+4=-12a +8 19.(1) 32x y =-⎧⎨=⎩ (2)x =14320.(1)略 (2)略21.(1)和为6的有5种可能; (2)P (7)=366=6122.(1)如图 (2)如图(3)猜想:DF ⊥AG ,理由如下: 延长FD 交AG 于点H , 如图所示. ∵△DCF ≌△ABE ,△ABE ≌△ADG , ∴∠F =∠AEB =∠G .又∵∠CDF =∠GDH ,∴∠GHD =∠DCF =90°.DF ⊥AG .23.(1)七(2)班付出的钱为70×3=210(元),七(2)班比七(1)班付出的钱少,少了255-210=45(元).704 3.5225x y x y +=⎧⎨+=⎩ 解得2050x y =⎧⎨=⎩即七(1)班第一次、第二次分别购买20 kg 、50 kg .(3)设第一次购买x kg ,则第二次购买(70-x )kg ,共付钱w 元,则 w =4x +3(70-x ), 即w =x +210.∵x ≥10,∴当x =10时,w 最小,最小值为220元.即第-次购买lOkg ,第二次购买60kg 时,最省钱,为220元.。
七年级下册数学期末练习试题(三)华东师大新版(有答案)
七年级下册数学期末练习试题(三)华东师大新版(有答案)一.选择题(共12小题,满分48分,每小题4分)1.下列图形中是轴对称图形的是()A.B.C.D.2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.不等式3x≤6的解集在数轴上表示为()A.B.C.D.4.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.105.如果不等式(a﹣3)x>a﹣3的解集是x<1,那么a的取值范围是()A.a>0B.a<0C.a>3D.a<36.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个B.3个C.2个D.1个7.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20218.已知方程mx+2y=﹣2,当x=3时y=5,那么m为()A .B .﹣C .﹣4D .9.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n 个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A .n 2+4n +2B .6n +1C .n 2+3n +3D .2n +410.如图所示,BD 是△ABC 的角平分线,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,则∠C 的度数是( )A .100°B .105°C .110°D .115°11.某车间56名工人,每人每天能生产螺栓16个或螺母24个,每个螺栓配两个螺母;设安排x 名工人生产螺栓,才能使每天生产出来的螺栓和螺母刚好配套,下列方程中正确的是( )A .2×16x =24(56﹣x )B .2×24x =16(56﹣x )C .16x =24(56﹣x )D .24x =16(56﹣x )12.如图,△ABC 中,∠A 的平分线交BC 于D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足为点E 、F ,下面四个结论中:①∠AEF =∠AFE ;②AD 垂直平分EF ;③S △BFD :S △CED =BF :CE ;④EF ∥BC ,正确的是( )A .①②③B .①③④C .①②④D .②③④二.填空题(共6小题,满分24分,每小题4分)13.已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于.14.如图,E是正方形ABCD中CD边上的中点,AB=4,把△ADE绕点A顺时针旋转90°得到△ABF,若连接EF,则EF=.15.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出十二,盈八;人出十,不足六,问人数、物价各几何?译文:今有人合伙购物,每人出12钱,会多8钱;每人出10钱,又会差6钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.16.不等式组的解是.17.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.18.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于.三.解答题(共7小题,满分78分)19.解方程(组)(1)﹣=1(2).20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)P为x轴上一动点,当AP+CP有最小值时,求这个最小值.21.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°、40°、20°的三角形是“灵动三角形”;三个内角分别为80°、75°、25°的三角形也是“灵动三角形”等等.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为°,△AOB.(填“是”或“不是”)“灵动三角形”;(2)若∠BAC=70°,则△AOC(填“是”或“不是”)“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.22.疫情期间为了满足口罩需求,某学校决定购进A,B两种型号的口罩.若购进A型口罩10盒,B型口罩5盒,共需1000元;若购进A型口罩4盒,B型口罩3盒,共需550元,(1)求A,B两种型号的口罩每盒各需多少元?(2)若该学校决定购进这两种型号的口罩共计200盒,考虑到实际需求,要求购进A型号口罩的盒数不超过B型口罩盒数的6倍,请为该学校设计出最省钱的方案,并说明理由.23.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.24.阅读理解若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.(1)30的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.25.将锐角△ABC放置在一块正方形卡纸DEFG上,使点B,C在正方形的DG和DE边上.(1)如图①,若∠A=35°,则∠ABC+∠ACB=度.∠DBC+∠DCB=度,∠ABD+∠ACD=度.(2)如图②,改变正方形卡纸DEFG的位置,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论(3)如图③,正方形卡纸的顶点D在△ABC外,且在AB边的左侧,请探究∠ABD,∠ACD,∠A三者之间存在怎样的数量关系,直接写出探究结果,不必验证.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:不等式解得:x≤2,表示在数轴上,如图所示,.故选:B.4.解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:B.5.解:∵(a﹣3)x>a﹣3的解集是x<1,∴a﹣3<0,解得a<3,故选:D.6.解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,每一个三角形的内角和是180°,因此,n边形的内角和是(n﹣2)•180°,正确;④n边形共有条对角线,所以六边形的对角线有6×3÷2=9条,错误.故选:B.7.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.8.解:把x=3,y=5代入方程得:3m+10=﹣2,移项合并得:3m=﹣12,解得:m=﹣4,故选:C.9.解:由图形可知图形①的黑色正三角形和白色正六边形的个数总和=4×1+3=7个,图形②的黑色正三角形和白色正六边形的个数总和=4×2+5=13个…依此类推,图形n的黑色正三角形和白色正六边形的个数总和=4n+2n+1=6n+1个.故选:B.10.解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠ABC=2∠ABD=30°,∴∠C=180°﹣∠ABC﹣∠A=180°﹣30°﹣45°=105°.故选:B.11.解:设有x 名工人生产螺栓,根据题意可得,2×16x =24(56﹣x ), 故选:A .12.解:∵∠A 的平分线交BC 于D ,DE ⊥AC ,DF ⊥AB , ∴DE =DF ,∴∠DEF =∠DFE ,又∠AED =∠AFD =90°, ∴∠AEF =∠AFE ,①正确; ∵∠AEF =∠AFE , ∴AE =AF ,又DE =DF , ∴AD 垂直平分EF ,②正确;S △BFD :S △CED =×BF ×DF :×CE ×DE =BF :CE ,③正确; EF 与BC 不一定平行,④错误, 故选:A .二.填空题(共6小题,满分24分,每小题4分) 13.解:根据题意得:(8x ﹣7)+(6﹣2x )=0, 即8x ﹣7+6﹣2x =0, 移项合并得:6x =1, 解得:x =. 故答案为: 14.解:连接EF ,∵把△ADE 绕点A 顺时针旋转90°得到△ABF , ∴AE =AF ,∠EAF =90°, ∵四边形ABCD 是正方形, ∴AB =CD =AD =4, ∵E 是CD 的中点,∴DE=CD=2,∴AE===2,∴EF===2,故答案为:2.15.解:依题意,得:.故答案为:.16.解:解不等式2x≤6,得:x≤3,解不等式3x﹣4>2,得:x>2,则不等式组的解集为2<x≤3.故答案为:2<x≤3.17.解:设这支足球队胜了x场,平了y场,依题意,得:,解得:.故答案为:9.18.解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…∵2020÷3=673 (1)∴AP2020=673(3+)+2=2021+673,故答案为:2021+673三.解答题(共7小题,满分78分)19.解:(1)﹣=1,去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣2﹣1,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2),①+②×4得:9x=63,∴x=7,把x=7代入①得:7﹣4y=﹣1,解得:y=2,∴原方程组的解为.20.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:P点即为所求,当AP+CP有最小值时,这个最小值为:=.21.解:(1)∵AB⊥OM,∴∠BAO=90°,∵∠AOB=60°,∴∠ABO=90°﹣60°=30°,∵90°=3×30°,∴△AOB是“灵动三角形”.故答案为:30,是.(2)∵∠OAB=90°,∠BAC=70°,∴∠OAC=20°,∵∠AOC=60°=3×20°,∴△AOC是“灵动三角形”.故答案为:是.(3:①∠ACB=3∠ABC时,∠CAB=60°,∠OAC=30°;②当∠ABC=3∠CAB时,∠CAB=10°,∠OAC=80°.③当∠ACB=3∠CAB时,∠CAB=37.5°,可得∠OAC=52.5°.综上所述,满足条件的值为30°或52.5°或80°.22.解:(1)设购进A型口罩每盒需x元,B型口罩每盒需y元,依题意,得:,解得:.答:购进A型口罩每盒需25元,B型口罩每盒需150元.(2)设购进m盒A型口罩,则购进(200﹣m)盒B型口罩,依题意,得:m≤6(200﹣m),解得:m≤171.设该学校购进这批口罩共花费w元,则w=25m+150(200﹣m)=﹣125m+30000.∵﹣125<0,∴w随m的增大而减小,又∵m≤171,且m为整数,∴当m=171时,w取得最小值,此时200﹣m=29.∴最省钱的购买方案为:购进171盒A型口罩,29盒B型口罩.23.解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.24.解:(1)30的“至善数”是360;“明德数”是30+6=36故答案为:360;36.(2)证明:设A的十位数字为a,个位数字为b则其“至善数与“明德数”分别为:100a+60+b;10a+b+6它们的差为:100a+60+b﹣(10a+b+6)=90a+54=9(10a+6)∴其“至善数”与“明德数”之差能被9整除.(3)设B的十位数字为a,个位数字为b则B的至善数的各位数字之和是a+6+bB的明德数各位数字之和是a+b+6(当0≤b<4时)或a+1+(6+b﹣10)(当4≤b≤9时)由题意得:0≤b<4时,a+b+6=(a+6+b)∴a+b=﹣6,不符合题意;或者:当4≤b≤9时,a+1+(6+b﹣10)=(a+6+b)∴a+b=12∴当b=4,a=8时,B最大,最大值为84.25.解:(1)∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣35°=145°,∵四边形DEFG为正方形,∴∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=∠ABC+∠ACB﹣(∠DBC+∠DCB)=145°﹣90°=55°.故答案为:145,90,55;(2)∠ABD+∠ACD=90°﹣∠A.证明如下:∵∠ABC+∠ACB=180°﹣∠A,∴∠ABD+∠DBC+∠ACD+∠BCD=180°﹣∠A,∵四边形DEFG为正方形,∴∠BDC=90°,∴∠DBC+∠BCD=90°,∴∠ABD+∠ACD+90°=180°﹣∠A,∴∠ABD+∠ACD=90°﹣∠A.(3)∠ABD=∠A+∠ACD﹣90°.若AB,CD交于点M,∵∠DMB=∠AMC,∠D+∠DBM+∠DMB=180°,∠A+∠ACD+∠AMC=180°,∴∠D+∠ABD=∠A+∠ACD,∵∠D=90°,∴∠ABD=∠A+∠ACD﹣90°.。
人教版2020七年级数学下册期末模拟基础测试题3(附答案)
67
30
108
(1)若在 7:50~8:00 时段,经过的小轿车数量正好是电瓶车数量的 9 ,求这个时段 8
内的电瓶车通过的车辆数; (2)根据上述表格数据,求在 7:50~8:00 和 8:00~8:10 两个时段内电瓶车和货车的 车辆数; (3)据估计,在所调查的 7:50~8:00 时段内,每增加 1 辆公交车,可减少 8 辆小轿车 行驶,为了使该时段内小轿车流量减少到比公交车多 13 辆,则在该路口应再增加几辆 公交车? 22.命题“绝对值相等的两个数互为相反数”. (1)将这命题改写成“如果......那么......的形式; (2)写出这命题的题设和结论; (3)判断该命】 读懂题意,找到捐 40 元和 50 元的总人数和捐 40 元和 50 元的总钱数列出方式是解答本题的 关键. 3.B
【解析】 【分析】 根据无理数的定义即可得出答案. 【详解】 根据无理数的定义,无理数有:-π,0.121221222122221…(每两个 1 之间每次增加一个 2), 共 2 个,故答案选择 B. 【点睛】 本题考查的是无理数的定义:无限不循环小数. 4.C 【解析】 【分析】 先根据平移的性质得到 CF=AD=2cm,AC=DF,而 AB+BC+AC=16cm,则四边形 ABFD 的 周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可. 【详解】 解:∵△ABC 沿 BC 方向平移 2cm 得到△ DEF, ∴CF=AD=2cm,AC=DF, ∵△ABC 的周长为 16cm, ∴AB+BC+AC=16cm, ∴四边形 ABFD 的周长=AB+BC+CF+DF+AD =AB+BC+AC+CF+AD =16cm+2cm+2cm =20cm. 故选 C. 【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图 形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得 到的,这两个点是对应点.连接各组对应点的线段平行且相等. 5.D 【解析】 【分析】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期末综合测试(三)友情提示:亲爱的同学,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩! 一、选择题(每小题3分,共30分)1.如图,已知AB ∥CD ,∠A =70°,则∠1度数是( ) A.70° B.100° C.110° D.130° 2.在平面直角坐标系中,点P (-2,3)的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列调查方式中适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级同学的身高,采用抽样调查方式C.调查全市中学生每天的就寝时间,采用全面调查方式D.环保部门调查沱江某段水域的水质情况,采用抽样调查方式 4.不等式组1024x x ->⎧⎨<⎩的解集是( ).A.x >1B.x <2C.1<x <2D.无解5.一个多边形的内角和与它的一个外角的和为570°.那么这个多边形的边数为( ) A.5B.6C.7D.86.下列四个图形中2∠大于1∠的是( )A. B. C. D. 7.甲、乙、丙三个小组生产帐蓬,已知女工人3人每天共生产4顶帐蓬,男工人2人每天共生产3顶帐蓬.图2是描述三个小组一天生产帐蓬情况的统计图,从中可以得出人数最多的小组是()A.甲组B.乙组C.丙组D.乙、丙两组8.点P(2m-1,3)在第二象限,则m的取值范围是()A.12m<B.12m> C.12m≥ D.12m≤9.如果三角形的两边分别为3和5,那么这个三角形的周长可能是().A.15B.16C.8 D、710.一副三角扳按如图3方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°∠2=y°,则可得到方程组为().A.50,180x yx y=-⎧⎨+=⎩B.50,180x yx y=+⎧⎨+=⎩C.50,90x yx y=-⎧⎨+=⎩D.50,90x yx y=+⎧⎨+=⎩(第10题) (第14题) (第15题)二、填空题(每小题3分,共30分)11.将点(2,4)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.12.已知x、y满足方程组⎩⎨⎧=+=+,20083,20093yxyx则x-y的值为________.13.不等式组⎩⎨⎧<+--≤-122)1(5122xxx的解集是___________14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,D为垂足.在不添加辅助线的情况下,请写出图中一对相等的锐角: .(只需写出一对即可) .15.小明家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为_____元.16.若不等式组⎪⎩⎪⎨⎧-><+)3(21,132xxx的整数解是关于x的方程24x ax-=的根,则a的值为________.17.为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了______本.18.为了解一批节能灯的使用寿命,宜采用 的方式进行调查.(填:“全面调查”或“抽样调查”)19.如图,点C 在线段AB 的延长线上,∠DAC=15°,∠DBC=110°,则∠D 的度数是_____________(第19题) (第20题)20.某电视台为调整栏目设置,使之更适合广大观众的需要,对A 、B 、C 、D 、E 五类节目在18点—22点的收视情况进行了调查,如图是入户调查收视情况得到的频数分布直方图,从统计图中可以看出此次调查家庭的总户数为 ,观众最不喜欢的节目是 类节目.三、解答题(本大题共60分) 21.(8分)(1)解方程组:⎩⎨⎧=+=② 122y 3x ①-5,3y -2x (2)(8分)解不等式组⎩⎪⎨⎪⎧1-2(x -1)≤5,3x -22<x + 1 2,.22.(7分)如图8,已知AB//CD,CD//EF,∠A=125°,∠ACE=33°,求∠E 的度数.23. (7分)如图,已知△ABC ,△ABC 向右平移6个单位,作出平移后的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;24.(本题8分)温州皮鞋畅销世界,享誉全球.某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,并绘制了扇形统计图(如图10).由于三月份开展促销活动,男、女皮鞋的销售收入分别比二月份增长了40%,60%.已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入______________万元,二月份销售收入_____________万元,三月份销售收入__________万元;(2)二月份男、女皮鞋的销售收入各是多少万元?图10一月份25% 二月份 30%三月份 45%第一季度男女皮鞋25.(9分)如图11,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP 平分∠BAC且交BD于P,求∠BPA的度数.26.(10分)网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.图11是用来表示在调查的数据中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占被调查人数的20%.(1)被抽样调查的样本总人数为人.(2)请把统计图中缺失的数据、图形补充完整.27.(14分)为极大地满足人民生活的需求,丰富市场供应,我区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿,单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?参考答案一、1.C 2.B 3.D 4.C 5.A 6.B 7.C 8.A 9.A 10.D二、11.(1,2) 12.0.5 13.1≤x<3 14. ∠A =∠2或 ∠1=∠B 15.750 16.4 17.7 18. 抽样调查 19.95° 20. 100, D.三、 21.(1)①×2+②×3,得13x=26,解得x=2,把x=2代入①,得2×2-3y=-5,解得y=3,所以方程组的解为⎩⎨⎧==.3,2y x (2)解不等式①,得x ≥-1. 解不等式②,得x<3. 所以原不等式组的解集为-1≤x <3.22.因为AB//CD,CD//EF,所以AB//EF,所以∠A+∠ACD=180°(两直线平行,同旁内角互补) 所以∠ACD=180°-∠A=180°-125°=55°, 又EF//CD,∴∠FEC=∠ECD(两直线平行,内错角相等) 又∠ECD=∠ACD -∠ACE=55°-33°=22°, 所以∠E=22°.23.所画的图形如图5所示,此时点A 1(6,4),B 1(4,2),C 1(5,1).24.(1)50;60;90.(2)设二月份男、女皮鞋的销售收入分别为x 万元,y 万元,根据题意,得60(140)(164)90x y x y +=⎧⎨+++=⎩%%,解得3525x y =⎧⎨=⎩.答:二月份男、女皮鞋的销售收入分别为35万元、25万元.25.因为∠C=90°,所以∠B AC +∠ABC=90°,所以 12(∠B AC +∠ABC)=45°.因为 BD 平分∠ABC,AP 平分∠BAC ,所以∠B AP=12∠B AC , ∠ABP=12∠ABC ,即∠B AP +∠ABP=45°,所以∠APB=180°-45°=135°.26.(1)2400.(2)如图.27.(1)根据题意西红柿种了(24-x )垄 15x +30(24-x )≤540 解得 x ≥12 因为x ≤14,且x 是正整数 所以x =12,13,14 共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄 方案二:草莓种植13垄,西红柿种植11垄 方案三:草莓种植14垄,西红柿种植10垄(2)方案一获得的利润:12×50×1.6+12×160×1.1=3072(元);方案二获得的利润:13×50×1.6+11×160×1.1=2976(元); 方案三获得的利润:14×50×1.6+10×160×1.1=2880(元).由计算知,种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元.。