八年级初二数学 勾股定理单元测试及答案

合集下载

人教版数学八年级第十七章勾股定理单元测试精选(含答案)4

人教版数学八年级第十七章勾股定理单元测试精选(含答案)4

人教版数学八年级第十七章勾股定理单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、单选题1.如图所示:已知两个正方形的面积,则字母A 所代表的正方形的面积为( )A .4B .8C .64D .16【答案】C 2.如图,在Rt ABC ∆中, 90ACB ︒∠=,以AB ,AC ,BC 为边作等边ABD ∆,等边ACE ∆.等边CBF ∆.设AEH ∆的面积为1S ,ABC ∆的面积为2S ,BFG ∆的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )A .2143S S S S =++B .1234S S S S +=+C .1423S S S S +=+D .1324S S S S+=+【答案】D 3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是5、7、3、5,则最大的正方形E 的面积是( )试卷第2页,总15页A .108B .50C .20D .12【答案】C 4.下列命题中,是假命题的是( )A .在△ABC 中,若∠A :∠B :∠C =1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形【答案】C5.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′.则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺【答案】D 6.下列命题中正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形【答案】C7.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1, 3【答案】B8.如图,在Rt ABC ∆中,其中90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.已知5,2DC AD ==21有( )A .1条B .2条C .3条D .4条【答案】C 9.如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端的滑动距离( )A .等于1米B .大于1米C .小于1米D .不能确定【答案】B 10.如图,在四边形ABCD 中,AB =BC =2,CD =1,AD =3,∠ABC =90°,则四边形ABCD 的面积为( )A .72B .4C .122+D .22+【答案】D11.已知以下三个数, 不能组成直角三角形的是 ( )A .9、12、15B 33、3C .0.3、0.4、0.5;D .222345、、【答案】D12.如果a b c 、、是直角三角形的三边长,那么222a b c 、、为边长的三角形是( )试卷第4页,总15页A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A 13.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 在AB 上,AD =AC ,AF ⊥CD 交CD 于点E ,交CB 于点F ,则CF 的长是( )A .1.5B .1.8C .2D .2.5【答案】A 14.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成( )A .13、14、15B .5、12、13C .4、5、6D .1、2【答案】B15.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A 到顶点A ′镶有一圈金属丝,已知此三棱镜的高为5cm ,底面边长为4cm ,则这圈金属丝的长度至少为( )A .8cmB .13cmC .12cmD .15cm【答案】B 16.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m 【答案】D二、填空题17.如图,D 为△ABC 外一点,BD ⊥AD ,BD 平分△ABC 的一个外角,∠C=∠CAD ,若AB=5,BC=3,则BD 的长为_______.【答案】318.满足下列条件时,ABC V 不是直角三角形的是( )A .41AB =4BC =,5AC = B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .22A B C ∠=∠=∠ 【答案】C19.如图,等边OAB V 的边长为3B 的坐标为__________.【答案】)3,3 20.如图,在ABC V 中,90ACB ∠=︒,以点B 为圆心,BC 为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E .设BC a =,AC b =,若AD EC =,则a =__________(用含b 的式子表示).【答案】34b 21.已知等腰△ABC 中,底边BC =20,D 为AB 上一点,且CD =16,BD =12,则△ABC 的周长为____.【答案】160322.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为试卷第6页,总15页直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.【答案】15.523.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长,如果设AC =x ,则可列方程求出AC 的长为____________.【答案】9120. 24.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.【答案】1.525.如图,在△ABC 中,线段AE ,BF ,CG 分别为中线,且相交于点M ,若AM =15,BM =9,GM =6,则△ABM 的面积为_____.【答案】5426.如图,等腰△ABC 底边上的高AD =12BC ,AB =2,那么△ABC 的周长为_____.【答案】227.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A 沿盒的表面爬到盒顶的点B ,经过计算发现,它的最短路径是20cm ,则这个正方体的棱长为_____cm .【答案】528.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 【答案】6029.在平面直角坐标系中,点A (1,4)与点B (4,0)的距离是_________.【答案】530.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为______. 344031.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,DE 的长=________________.【答案】5试卷第8页,总15页三、解答题32.为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离为800米,假使宣讲车P 周围1000米以内能听到广播宣传,宣讲车P 在公路MN 上沿PN 方向行驶时:(1)请问村庄能否听到宣传,并说明理由;(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?【答案】(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传. 33.在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M 在线段AD 的延长线上,点N 在线段AC 上,(1)中其他条件不变.①线段AM 的长为 ;②求线段AN 的长.【答案】(162;(2)62,23 34.如图,在△ABC 中,AC =21,BC =13,D 是AC 边上一点,BD =12,AD =16.(1)求证:BD ⊥AC .(2)若E 是边AB 上的动点,求线段DE 的最小值.【答案】(1)证明见解析;(2)线段DE 使得最小值为9.6.35.已知:如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动. (1)若P 、Q 分别从A 、B 同时出发,那么几秒后△PBQ 的面积等于4cm 2? (2)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PQ 的长度等于5cm ? (3)在(1)中,△PBQ 的面积能否等于7cm 2? 请说明理由.【答案】(1)1s ;(2)2s;(3)△POB 的面积不能等于7cm 2.36.如图,AD 是△ABC 的中线,DE 是△ADC 的高,DF 是△ABD 的中线,且CE =1,DE =2,AE =4.(1)∠ADC 是直角吗?请说明理由.试卷第10页,总15页 (2)求DF 的长.【答案】(1)∠ADC 是直角,理由详见解析;(2)52. 37.如图,小区有一块四边形空地ABCD ,其中AB AC ⊥.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A 作了垂直于BC 的小路AE .经测量,4AB CD m ==,9BC m =,7AD m =.(1)求这块空地ABCD 的面积;(2)求小路AE 的长.(答案可含根号)【答案】(1)()m 2;(2)938.(1)已知:如图1,ABC ∆为等边三角形,点D 为BC 边上的一动点(点D 不与B 、C 重合),以AD 为边作等边ADE ∆,连接CE .求证:①BD CE =,②120DCE ∠=o ;(2)如图2,在ABC ∆中,90BAC ∠=o ,AC AB =,点D 为BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等腰Rt ADE ∆,90DAE ∠=o (顶点A 、D 、E 按逆时针方向排列),连接CE ,类比题(1),请你猜想:①DCE ∠的度数;②线段BD、CD 、DE 之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt ADE ∆,90DAE ∠=o (顶点A 、D 、E 按逆时针方向排列),连接CE . ①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE ,若10BE =,6BC =,直接写出AE 的长.【答案】(1)①见解析;②∠DCE =120°;(2)∠DCE =90°, BD 2+CD 2=DE 2.证明见解析;(3)①(2)中的结论还成立,②AE 3439510的大小,小伍和小陆两名同学对这个问题分别进行了研究. (15 2.236≈10 3.162≈5+1 10 (填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D 在BC 上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同510的大小做出准确的判断.【答案】(1)> ;(2)见解析.40.如图,已知ABC ∆与EFC ∆都是等腰直角三角形,其中90ACB ECF ∠=∠=︒,E 为AB 边上一点.(1)试判断AE 与BF 的大小关系,并说明理由;(2)求证:222AE BE EF +=.【答案】(1)AE BF =,理由见解析;(2)见解析.41.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】作图见解析.42.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ; (3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .【答案】(1)详见解析;1A 的坐标(-1,3);(2)(3)1<m≤1.2543.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.【答案】(1)详见解析;(2)185. 44.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=o ,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=o ,连接AD ,若45CAB ∠=o ,求AD AB的值.【答案】(1)详见解析;(241(33.45.如图,△ABC 中,A 90∠=︒,C 30∠=︒,AB=4,BD=5,求AD 和BC 的长.【答案】846.在正方形网格中,四边形ABCD的每个顶点都在格点上,已知小正方形的边长为1,求这个四边形ABCD的周长和面积.【答案】7.5.47.如图,在四边形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.(1)求BD的长;(2)当CD为何值时,△BDC是以CD为斜边的直角三角形?(3)在(2)的条件下,求四边形ABCD的面积.【答案】(1)BD的长度是5;(2)CD为13时△BDC为直角三角形;(3)四边形ABCD 的面积是36.48.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m (踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.【答案】秋千支柱AD的高为3m.49.如图,在Rt△ABC中,∠ACB=90°,AC=16,AB=20,CD⊥AB于点D.(1)求BC的长;(2)求CD的长.【答案】(1)12;(2)9.6.50.如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由.【答案】△ABC是直角三角形,理由见解析.。

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

人教版数学八年级下册 第17章 勾股定理 单元复习试题 含答案

人教版数学八年级下册 第17章 勾股定理 单元复习试题  含答案

第17章勾股定理一.选择题(共10小题)1.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个2.如图,将一副三角板如图放置,如果DB=2,那么点E到BC的距离为()A.﹣1 B.3﹣C.2﹣2 D.+13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A.B.2 C.D.34.如图,将△ABC放在正方形网格中(图巾每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图,已知数轴上点P表示的数为﹣1,点A表示的数为1,过点A作直线l垂直于PA,在l上取点B,使AB=1,以点P为圆心,以PB为半径作弧,弧与数轴的交点C所表示的数为()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.67.如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条8.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=(S1+S3)9.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺10.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米二.填空题(共6小题)11.若△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的是(填序号).12.已知,△ABC的三边长分别为:2,,,则△ABC的面积是.13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.若8,a,17是一组勾股数,则a=.15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.16.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q 从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向C点运动,P、Q两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ,当t=s 时,△DPQ是等腰三角形.三.解答题(共6小题)17.如图,在Rt△ABC中,∠B=90°.点D为BC边上一点,线段AD将Rt△ABC分为两个周长相等的三角形.若CD=2,BD=6,求△ABC的面积.18.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.19.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.20.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),则A、B两点之间的距离可表示为|AB|=;在平面直角坐标系中.(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为.(2)若点E(﹣2,3)、F(4,﹣5),求E、F两点之间的距离.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.参考答案一.选择题(共10小题)1.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.2.解:作EF⊥BC于F,设EF=x,则BF=x,BE=x,CE=2x,则AC=,AE=﹣x,则(﹣x)2+()2=(2x)2,x2+2x﹣6=0,解得x1=3﹣,x2=﹣3﹣(舍去).故点E到BC的距离为3﹣.故选:B.3.解:在Rt△ABC中,AC=2,BC=,根据勾股定理得:AB==3,∵△ABC中,∠C=90°,CD⊥AB,∴S△ABC=AC•BC=AB•CD,即AC•BC=AB•CD,∴CD==2,故选:B.4.解:由勾股定理得:AC2=12+22=5,BC2=12+32=10,AB2=12+22=5,∴AB=AC,AC2+AB2=BC2,∴△ACB是等腰直角三角形,∴∠ABC=45°,故选:C.5.解:PB=,∴PB=PC,∴OC=PC﹣1=﹣1,∴点C的数为﹣1,故选:B.6.解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.7.解:∵=,∴是直角边长为2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF的长都等于;故选:C.8.解:∵在Rt△ABC中,AE=AB,AF=AC,∴AE=BE,AF=CF,EF2=AE2+AF2,∴EF2=BE2+CF2.∴π•EF2=π•(BE2+CF2),即S2=(S1+S3).∴S1+S3=4S2.故选:B.9.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.10.解:由题意可得:AB=25m,OB=7m,则OA==24(m),当云梯的顶端下滑了4米,则A′O=24﹣4=20(m),故OB′==15(m),则BB′=CB′﹣BC=(15﹣7)m=8m.答:它的底部在水平方向滑动了8米,故选:B.二.填空题(共6小题)11.解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.12.解:∵△ABC的三边长分别为:2,,,∴22+()2=()2,∴△ABC是直角三角形,斜边为,∴△ABC的面积为=,故答案为:.13.解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.解:①a为最长边,a==,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.15.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.16.解:由运动知,AQ=t,BP=2t,∵AD=8,BC=10,∴DQ=AD﹣AQ=(8﹣t)(cm),PC=BC﹣BP=(10﹣2t)(cm),∵△DPQ是等腰三角形,且DQ≠DP,∴①当DP=QP时,∴点P在DQ的垂直平分线上,∴AQ+DQ=BP,∴t+(8﹣t)=2t,∴t=,②当DQ=PQ时,如图,Ⅰ、过点Q作QE⊥BC于E,∴∠BEQ=∠OEQ=90°,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ是矩形,∴EQ=AB=6,BE=AQ=t,∴PE=BP﹣BE=t,在Rt△PEQ中,PQ==,∵DQ=8﹣t∴=8﹣t,∴t=,∵点P在边BC上,不和C重合,∴0≤2t<10,∴0≤t<5,∴此种情况符合题意,即t=或s时,△DPQ是等腰三角形.故答案为:或.三.解答题(共6小题)17.解:根据题意可知,△ACD与△ADB的周长相等,∴AC+CD+AD=AD+BD+AB.∴AC+CD=BD+AB.∵CD=2,BD=6,∴AC+2=6+AB,BC=CD+BD=8,∴AC=AB+4,设AB=x,则AC=4+x.在Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2.∴x2+64=16+x2+8x.∴x=6.∵经检验,x=6为原方程的解,∴原方程的解为x=6.∴.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.19.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.20.解:(1)∵O为原点,∴O坐标为(0,0),∵点C的坐标为(3,4),∴CO==5,故答案为:5;(2)∵点E(﹣2,3)、F(4,﹣5),E、F两点之间的距离可表示为|EF|=,∴EF===10.21.解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.解:(1)①如图所示:②△DEF的面积为4×5﹣×2×3﹣×2×4﹣×2×5=8;(2)①如图3,△PEF的面积为6×2﹣×1×6﹣×1×3﹣×3×2=,△PQR的面积为×3×3=,∴△PQR与△PEF面积相等;②六边形AQRDEF的面积为()2+++()2=13+9+10=32.故答案为:8;32.。

八年级数学-勾股定理-经典单元测试题(含答案)

八年级数学-勾股定理-经典单元测试题(含答案)

八年级数学-勾股定理-经典单元测试题
(含答案)
1、能构成直角三角形的组合是A:4,5,6和C:6,8,11.
2、根据勾股定理,c的长为20,选项C。

3、根据勾股定理,OP的长为5,选项C。

4、根据正切函数,tanB=b/a=1,可得a=c/√2=5,选项A。

5、根据正弦函数,h=5*sin30°+5=7.5,选项B。

6、根据勾股定理,斜边长为√1800=30√2,选项B。

7、将长方形折叠成三角形ABE和ADE,根据勾股定理
可得AE=√90=3√10,△ABE的面积为1/2*3*3√10=4.5√10,选项B。

8、等边三角形的面积为√3/4*a^2,代入a=2可得面积为
√3,选项B。

9、根据勾股定理,BC的长为√(15^2-12^2)=9,三角形的
周长为15+13+9=37,选项D。

10、等腰三角形的底边上的高等于底边长的一半,即6,
选项A。

11、根据勾股定理,BC的长为√(15^2-12^2)=9,选项A。

12、设另一直角边为b,则斜边长为√(11^2+b^2),周长为11+b+√(11^2+b^2),因为周长为整数,所以b为60,周长为121,选项A。

二、填空题
1、等腰三角形。

因为c-a=b,根据等腰三角形的定义可知,a=b。

八年级初二数学勾股定理测试试题含答案

八年级初二数学勾股定理测试试题含答案

八年级初二数学勾股定理测试试题含答案一、选择题1.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm 2.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm3.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B 2C .32D 34.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 30=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( )A.6 B.8 C.10 D.125.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1226.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A.(-2,23)B.(-2,-23)C.(-2,-2)D.(-2,2)7.下列各组线段能构成直角三角形的一组是()A.30,40,60B.7,12,13C.6,8,10D.3,4,68.下列命题中,是假命题的是( )A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形9.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或5110.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C34D.434二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.12.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.13.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.14.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.15.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD 的值为____________.16.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.22.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)23.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.24.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.=成立,求v关于t的函数表达式,并写出自②若在运动过程中存在某一时刻,使CP BQ变量t的取值范围.26.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)27.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图28.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系.(2)把图1中的正方形DEFG绕点D顺时针旋转45︒,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.2.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.3.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=2BE.又B′E是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD是平行四边形,BD=2,∴BE=12BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=2BE=2,又∵BE=DE,B′E⊥BD,∴DB′=BB′=2.故选B.【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.B解析:B【解析】【分析】MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.【详解】过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB230=,∴BE2239=-=.AB AE∵A′E=AE﹣AA′=9﹣4=5,∴A′B22=+=8.'A E BE所以AM+NB的最小值为8.故选B.【点睛】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.5.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2222'++ (cm)A D BD=1216故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=3A(-2,-3,故选B.7.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.8.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC 中,若∠B=∠C -∠A ,则∠C =∠A+∠B ,则△ABC 是直角三角形,本选项正确;B. △ABC 中,若a 2=(b+c)(b -c),则a 2=b 2-c 2,b 2= a 2+c 2,则△ABC 是直角三角形,本选项正确;C. △ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则∠,故本选项错误; D. △ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形. 9.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.10.D解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x故选:D二、填空题11.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.12.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.13.71-【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--, ∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索. 14.258【分析】先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA ,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.2【解析】【分析】过A点作BC的垂线,E点作AC的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM上截取AG=DG,则∠DGM=30°,设DM=a,通过勾股定理可得到DG=AG=2a,2)a,1)a,1)a,代入计算即可.【详解】过A点作AM⊥BC于M点,过E点EN⊥AC于N点.∵∠BCA=30°,AE=EC∴AM=12AC,AN=12AC∴AM=AN又∵AD=AE∴R t∆ADM≅ R t∆AEN(HL)∴∠DAM=∠EAN又∵∠MAC=60°,AD⊥AE∴∠DAM=∠EAN=15°在AM上截取AG=DG,则∠DGM=30°设DM=a,则 DG=AG=2a,根据勾股定理得:∵∠ABC=45°∴2)a∴1)a,2)a,∴2aABBD==【点睛】本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.16.7【解析】【分析】通过作辅助线转化BM,MN的值,从而找出其最小值求解.【详解】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD33,∴CM2237 2CD MD+=∴CN=43727 32=.∵BM +MN =CN ,∴BM +MN 的最小值为27. 故答案是:27.【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得=,所以MN 2=()()222312x x x +-=,BM 2=()()2223x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点GAD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅即1110121322CF⨯⨯=⨯⋅,解得12013CF=12049131313EF CE CF∴=-=-=故答案为:49 13.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.【详解】(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,∴∠ACB=∠ABC,∴AB=AC.∵∠ACD=∠ADC,∴AC=AD,∴AB=AC=AD.∴四边形ABCD是邻和四边形;(2)如图,格点D、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒,∴12BE BD ==3DE ===,∴S △BDC =132⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12S △ADB =122⨯=,∴S 四边形ABCD =S △BDC +S △ADB =;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)见解析;(2)CD AD +BD ,理由见解析;(3)CD +BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH ,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.23.(1)①见解析;②DE=297;(2)DE的值为517【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE 的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.24.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =,∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.25.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.26.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

八年级下册 数学 第 17 章《勾股定理》单元测试题(含答案)

八年级下册 数学 第 17 章《勾股定理》单元测试题(含答案)

八年级下册 数学第17章《勾股定理》单元测试题(含答案)一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。

八年级数学上册第一章勾股定理单元测试卷(含答案)

八年级数学上册第一章勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.4(第1题) (第4题) (第5题) 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题) 12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.(第13题) (第14题) (第15题)14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为()A.3B.4C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯 2 米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.=24﹣12=12cm.【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为 5 cm. 【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 2.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .22D .32 3.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10C .1.5、2、2.5D .3、2、7 4.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC=∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .96.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .77.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .418.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .15 9.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.15.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.16.如图,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= __________.17.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.18.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.23.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.在等腰直角△ABC中,AB= AC, BAC=90°,过点B作BC的垂线l.点P为直线AB 上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l于点D.(1)如图1,点P在线段AB上,依题意补全图形;①求证:∠BDP =∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.D解析:D【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32方程求出PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6, ∴22226662EF DE DF =++=过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =26x =-即PM 6,∴PE =PF =26故DP =DM -PM =326,则PD +PE +PF =326463236326. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.6.D解析:D【分析】根据“AAS”可得到△ABC ≌△CDE ,由勾股定理可得到b 的面积=a 的面积+c 的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,∵∠ABC=∠CDE ,AC=CE ,∴△ABC ≌△CDE ,∴BC=DE ,∵AC 2=AB 2+BC 2,∴AC 2=AB 2+DE 2,∴b 的面积=a 的面积+c 的面积=3+4=7.故答案为:D .【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.7.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.8.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 9.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵25∴125故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键 解析:589+【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =, 作PM FG ⊥,∵PFG △是等腰三角形,∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===,∴89BF CG ==∴589BC BF FG CF =++=+;故答案是589+.【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则22232⎛⎫- ⎪⎝⎭2 ∴此等腰三角形的面积为12222⨯⨯=22或综上:此等腰三角形的面积为4故答案为:或4【点睛】本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a,b的值是解题的关键,要注意分情况讨论.15.【分析】根据ACDC解直角△ACD可以求得AD根据求得的AD和BD解直角△ABD可以计算AB【详解】∵AD⊥BC于D∴△ACD△ABD为直角三角形∴AC2=AD2+DC2∴AD===∵△ABD为直角解析:【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵AD⊥BC于D,∴△ACD、△ABD为直角三角形,∴AC2=AD2+DC2,∴AD,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.16.8【分析】设AB=5x则BC=3x根据勾股定理可求出AC=4x由周长为24列方程求出x的值即可求出AC的长【详解】设AB=5x∵AB:BC=5:3∴BC=3x∴AC=4x∵直角三角形ABC的周长为2解析:8【分析】设AB=5x,则BC=3x,根据勾股定理可求出AC=4x,由周长为24列方程求出x的值,即可求出AC的长.【详解】设AB=5x,∵AB:BC=5:3,∴BC=3x,∴AC=4x,∵直角三角形ABC的周长为24,∴3x+4x+5x=24,解得:x=2,∴AC=4x=8.故答案为8【点睛】本题主要考查了勾股定理的运用,用含有x的式子分别表示出三边的值,代入周长公式求解是解题关键.17.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴==;∴以点O为圆心,OB为半径与正半轴交点P【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB的长度,注意以点O交点即可得解.18.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x 则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x 即可【详解】解:设DC=CE=x 则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=2222AB AD-=-=,8443在Rt△ACD中,CD=2222AC AD-=-=3,54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3;综上所述,BC的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22AA'=+=(m).435答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)见解析;①见解析;②BC -BD;见解析;(2)BD -BCBP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)

第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。

当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下册《第十七章勾股定理》单元测试题一.选择题(共10小题,满分40分,每小题4分)1.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.1442.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3244.如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.5.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)6.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,77.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,98.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:159.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.810.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.2D.4二.填空题(共4小题,满分20分,每小题5分)11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为.12.一个直角三角形的两条直角边长分别为3,4,则第三边为.13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.14.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形三.解答题(共9小题,满分90分)15.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.16.如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.19.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.22.如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m .(1)求证:BD ⊥CB ; (2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S△PBD=S 四边形ABCD ,求P 的坐标.23.如图,一艘轮船以30km /h 的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km /h 的途度由南向北移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC =500km ,此时台风中心与轮船既定航线的最近距离BA =300km . (1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?人教版八年级数学下册《第十七章勾股定理》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:第三边长的平方是52+122=169.故选:A.2.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.4.【解答】解:∵x==,故选:B.5.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.6.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.7.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.8.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.9.【解答】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.10.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S=102﹣4×24=4,△ABE∴正方形EFGH的边长=2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.【解答】解:由勾股定理得:第三边为:=5,故答案为:5.13.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.14.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.三.解答题(共9小题,满分90分)15.【解答】解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S=•AC•BC=×5×12=30.△ABC16.【解答】解:在Rt△ABC中,∠C=90°,∠BAC=30°,AB=6,∴BC=AB=3,在Rt△ABC中,AC==3,∵AB是DC边上的中线,∴DB=BC=3,所以CD=6,在Rt△ACD中,AD===3.答:AD的长是317.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米.18.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.19.【解答】解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21﹣x)cm,依题意有x2+(21﹣x)2=152,解得x1=9,x2=12.故运动9秒或12秒时,它们相距15cm.20.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,=AB+BD+CD+AC=24+6.∴C△ABC21.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.22.【解答】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC =12m ,CD =13m , ∴BD 2+BC 2=CD 2. ∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=×3×4+×12×5 =6+30 =36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD ,∴•PD •AB =×36,∴•PD ×3=9, ∴PD =6,∵D (0,4),点P 在y 轴上, ∴P 的坐标为(0,﹣2)或(0,10).23.【解答】解:(1)根据题意得:轮船不改变航向,轮船会进入台风影响区; (2)如图所示:设x 小时后,就进入台风影响区,根据题意得出: CE =30x 千米,BB ′=20x 千米, ∵BC =500km ,AB =300km ,∴AC ===400(km ),∴AE =400﹣30x ,AB ′=300﹣20x , ∴AE 2+AB ′2=EB ′2,即(400﹣30x )2+(300﹣20x )2=2002,解得:x 1=≈8.3,x 2=≈19.3,∴轮船经8.3小时就进入台风影响区;(3)由(2)知,从8.3小时到19.3小时轮船受到台风影响, ∴轮船受台风影响的时间=19.3﹣8.3=11(小时),答:轮船受到台风影响一共经历了11小时.。

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。

初中数学八年级下册《勾股定理》单元测试卷(整理含答案)

初中数学八年级下册《勾股定理》单元测试卷(整理含答案)

初中数学八年级下册《勾股定理》单元测试卷一(时间90分钟满分100分)一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .A B C D13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.第19题②第19题①二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是 ( )A .1,2,5B .1,2,3C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于 ( )A .6B .6C . 5D .417.已知三角形的三边长之比为1∶1∶2,则此三角形一定是 ( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形 18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1.①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.第13题 第16题20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 k m,请根据上述数据,求出隧道BC的长(精确到0.1 k m).22.(6分)如图,△ABC中,AB=15 cm,AC=24 cm,∠A=60°.求BC的长.2.8米9.6米23.(6分)如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.B CAD24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A正前方30米B处,过了2秒后,测得小汽车C与车速检测仪A间距离为50米,这辆小汽车超速了吗?25.(6分)如图,△ABC中,CD⊥AB于D.(1)图中有__________个直角三角形;A.0 B.1 C.2 D.3(2)若AD=12,AC=13则CD=__________.(3)若CD2=AD·DB,求证:△ABC是直角三角形.26.(6分)小明把一根长为160 cm的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40 cm,你知道小明是怎样弯折铁丝的吗?27.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c = mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.(1)(2)参考答案 一、填空题1.15 2.10 3.33cm 4.1∶3∶2 5.13606.12+63 7. 96 8.159 10.30cm 2 11.直角 12.A A 不是直角三角形,B 、C 、D 是直角三角形 13.2+23 14. 5或7 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²初中数学八年级下册《勾股定理》单元测试卷二(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt △ABC 的周长为4+23,斜边AB 的长为23,则Rt △ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.6.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.第2题 第3题第4题3220A第7题8.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是 ( ) A .5B .25C .7D .5或716.已知Rt △ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是 ( )A .24cm 2B .36cm 2C .48cm 2D .60cm 260 12014060BAC第8题第11题第12题第13题图17.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定三、解答题(共60分)19.(5分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和3是多少?AB41.524.50.524.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.AB小河北牧童小屋ACB 27.(7分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A市气象站测得台风中心在A市正东方向300千米的B处,以107千米/时的速度向北偏西60°的BF方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?参考答案一、填空题601.5..1 4.2 5.50 6.直角 7.25 8.10 9.13 10.6,8,10 11.24 12.100mm 13.③ 14.2m二、选择题15.D 16.A 17.C 18.C三、解答题19.15米 20.5米 21.3cm 22.AB=6.5km 23.5cm 24.64米处,最低造价为480元 25.17km 26.22. 3.75尺 27.12海里/时 28.(1)会受影响;(2)10小时。

人教版数学八年级第十七章勾股定理单元测试精选(含答案)2

人教版数学八年级第十七章勾股定理单元测试精选(含答案)2
试卷第 6页,总 13页
(1)若∠BAC=50°,求∠AEB 的度数;
(2)求证:∠AEB=∠ACF;
(3)试判断线段 EF、BF 与 AC 三者之间的等量关系,并证明你的结论.
【答案】(1)20°;(2)证明见解析;(3)EF2+BF2=2AC2.理由见解析.
31.如图 1,在△ABC 中,∠ACB=90°,AC=BC,E 为∠ACB 平分线 CD 上一动点
C.∠C=90°
D.∠A=∠B
【答案】A
6.如图,已知点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是
()
A.48
B.60
C.76
D.80
【答案】C
7.在 Rt△ABC 中,∠B=90°,BC=1,AC=2,则 AB 的长是( )
A.1B. 3C来自2D. 5【答案】(1) 3+1 (2)证明见解析
39.如图,在正方形 ABCD 中,点 E 是 BC 的中点,连接 DE ,过点 A 作 AG ED 交 DE 于点 F ,交 CD 于点 G . (1)证明: ADG≌DCE ; (2)连接 BF ,证明: AB=FB .
【答案】(1)见解析;(2)见解析.
A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣
n2=0
【答案】C
14.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( )
A.7、24、25
B.5、12、13
C.3、4、5
D.2、3、 7
【答案】D
15.下列各组数,可以作为直角三角形的三边长的是( )

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)1.下列四组数据,不是勾股数的是()A.3,4,5 B.5,6,7 C.6,8,10 D.9,40,41 2.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,BE平分∠ABC,CD⊥AB于D,BE 与CD相交于F,则CF的长是()A.1 B.C.D.23.等腰三角形的周长为36,其底边上的高为6,则其面积为()A.216 B.96 C.48 D.324.下列命题中真命题的个数()(1)已知直角三角形面积为4,两直角边的比为1:2,则它的斜边为5;(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;(3)在直角三角形中,两条直角边长为n2﹣1和2n,则斜边长为n2+1;(4)等腰三角形面积为12,底边上的底为4,则腰长为5.A.1个B.2个C.3个D.4个5.已知锐角△ABC的三边长恰为三个连续整数,AB>BC>CA,若边BC上的高为AD,则BD ﹣DC=()A.3 B.4 C.5 D.66.已知直角三角形的周长是2+,斜边是2,则该三角形的面积是()A.B.C.D.17.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对8.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB =3,AE=4,则BC+AC的长是()A.7 B.8 C.D.9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.510.已知一个直角三角形的三边的平方和为1800cm2,则斜边长为()A.30 cm B.80 cm C.90 cm D.120 cm11.如图,△ABC三条边AC=20cm,BC=15cm,AB=25cm,CD⊥AB,则CD=cm.12.如图,已知CD=3,AD=4,∠ADC=90°,BC=12,AB=13.则图中阴影部分的面积=.13.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为.14.如图所示,△ABC的顶点A、B、C在边长均为1的正方形网格的格点上,BD⊥AC于D,则BD的长=.15.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为.16.已知△ABC是边长为6的等边三角形,点E在直线AB上,AB=AE,在直线BC上取点D,若ED=EC,则CD的长为.17.如图△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AC=10,则DC的长是,AD=.18.如图,在四边形ABCD中,AD∥BC,∠B=60°,E为AB的中点,EC⊥AB,若AD=2,AB =6.则CD的长度为.19.在平面直角坐标系中,已知A(﹣3,0),B(0,4),C(1,m),当△ABC是直角三角形时,m的值为.20.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.21.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.22.如图,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D 从点C出发,沿边CA往A运动,当运动点A时停止,若设点D运动的时间为t秒,点D 运动的速度为每秒2个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当t=时,△CBD是直角三角形;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.23.已知△ABC中,AB=AC,CD⊥AB于点D.(1)若∠A=36°,求∠DCB的度数;(2)若AB=10,CD=6,求BC的长.24.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)若每平方米草皮需要200元,问要多少投入?(2)若BE⊥DC,垂足为E,求BE的长.26.如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.27.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B →C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?参考答案1.解:A、因为32+42=52,属于勾股数;B、因为52+62≠72,不属于勾股数;C、因为62+82=102,属于勾股数;D、因为92+402=412,属于勾股数;故选:B.2.解:过点E作EG⊥AB于点G,如图:∵CD⊥AB于D,∴EG∥CD,∴∠GEB=∠EFC,∵在Rt△ABC中,∠ACB=90°,∴EC⊥CB,又∵BE平分∠ABC,EG⊥AB,∴EG=EC.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5.在Rt△EBC和Rt△EBG中,,∴Rt△EBC≌Rt△EBG(HL),∠CEB=∠GEB,BG=BC=4,∴∠CEB=∠EFC,AG=AB﹣BG=5﹣4=1,∴CF=CE.设CF=EG=EC=x,则AE=3﹣x,在Rt△AEG中,由勾股定理得:(3﹣x)2=x2+12,解得x=∴CF的长是.故选:B.3.解:设等腰三角形的腰长是x,根据周长可以表示出其底边是(36﹣2x).根据等腰三角形的三线合一,得底边的一半是(18﹣x),根据勾股定理得:x2=62+(18﹣x)2,解得:x=10,则底边=36﹣2x=16,根据三角形的面积公式即可计算:×6×16=48.故选:C.4.解:(1)设两直角边的长分别为x,2x,∵x•2x=4,解得x=2,∴直角三角形两直角边的长分别为2,4,∴斜边长==2,故本小题错误;(2)∵直角三角形的最大边长为26,最短边长为10,∴另一边长==24,故本小题正确;(3)∵在直角三角形中,两条直角边长为n2﹣1和2n,∴斜边长==n2+1,故本小题正确;(4)设等腰三角形底边上的高为h,∵等腰三角形面积为12,底边上的底为4,∴×4h=12,解得h=6,∴腰长==2,故本小题错误.故选:B.5.解:设BC=n,则有AB=n+1,AC=n﹣1,因为AB2﹣BD2=AC2﹣CD2,所以(n+1)2﹣(n﹣1)2=(BD﹣CD)n,所以BD﹣CD=4,故选:B.6.解:设直角三角形的两直角边分别为a、b(a>b),则满足,解得2ab=2,则ab=1,所以这个三角形的面积为S=ab=.故选:C.7.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.8.解:∵AD⊥BC,CE⊥AB,∠AHE=∠CHD,∴∠EAH=∠ECB,又EH=EB,∴△AEH≌△CEB.∴BC=AH=5,EC=AE=4,∴AC=4,∴BC+AC=5+4.故选:C.9.解:过A点作AF⊥BC于F,连接AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.10.解:设直角三角形的两直角边分别为acm,bcm,斜边为ccm,根据勾股定理得:a2+b2=c2,∵a2+b2+c2=1800,∴2c2=1800,即c2=900,则c=30cm.故选:A.11.解:∵202+152=252,∵AC2+BC2=AB2,∴△ACB是直角三角形,∵S△ACB=AC•BC=AB•CD,∴AC•BC=AB•CD,20×15=25•CD,CD=12.故答案为:12.12.解:由勾股定理可知:AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形故所求面积=S△ABC﹣S△ACD=×5×12﹣×3×4=30﹣6=24,故答案为:24.13.解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.14.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=.故答案为:.15.解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.∴△ABC的面积=AC•BC=+1;故答案为:+1.16.解:分两种情况:①当点E在BA延长线上时,过点E作EF⊥BC于F,则Rt△BEF中,∠BEF=30°,∵AB=AE=6,∴AE=4,∴BF=BE=(4+6)=5,∵BC=6,∴CF=6﹣5=1,∵ED=EC,EF⊥CD,∴CD=2CF=2;②当点E在线段AB上时,过E作EF⊥BC于F,则Rt△BEF中,∠BEF=30°,∴BF=BE=(AB﹣AE)=1,∵BC=6,∴CF=6﹣1=5,∵ED=EC,EF⊥CD,∴CD=2CF=10.综上所述,CD的长为2或10.故答案为:2或10.17.解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得:x=6,即CD=6,∴AD2=102﹣62=64,∴AD=8.故答案为:6,8.18.解:过A点作AF⊥BC于F,过D点作DG⊥BC于G,则四边形AFGD是矩形,∵在Rt△AFB中,∠B=60°,AB=6,∴∠BAF=30°,∴BF=×6=3,∴AF==3,∴DG=3,∵AD=2,∴FG=2,∴CG=BC﹣BF﹣FG=1,∴在Rt△CGD中,CD==2.故答案为:2.19.解:①A是直角顶点,(﹣3﹣0)2+(0﹣4)2+(﹣3﹣1)2+(0﹣m)2=(0﹣1)2+(m﹣4)2,解得m=﹣3;②B是直角顶点,(﹣3﹣0)2+(0﹣4)2+(0﹣1)2+(m﹣4)2=(﹣3﹣1)2+(0﹣m)2,解得m=;③C是直角顶点,(﹣3﹣1)2+(0﹣m)2+(0﹣1)2+(m﹣4)2=(﹣3﹣0)2+(0﹣4)2,解得m=2.故当△ABC是直角三角形时,m的值为﹣3或或2.故答案为:﹣3或或2.20.解:∵∠ACB=90°,AC=3cm,AB=5cm,∴BC==4,∴Rt△ABC的面积为:×3×4=6,∵AD平分∠BAC,DE⊥AB,∠ACB=90°,∴DE=DC,∴×AC×CD+×AB×DE=6,解得,DE=cm,故答案为:.21.解:(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形,∵∠ADC=150°∴∠BDC=150°﹣60°=90°;(2)∵△ABD为正三角形,AB=8cm,∴其面积为××AB×AD=16,∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.22.解:(1)t=2时,CD=2×2=4,∵∠ABC=90°,AB=20,BC=15,AD=AC﹣CD=25﹣4=21;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×25•BD=×20×15,解得BD=12,所以CD===9,t=9÷2=4.5(秒);②∠CBD=90°时,点D和点A重合,t=25÷2=12.5(秒),综上所述,t=4.5或12.5秒;故答案为:(1)4,21;(2)4.5或12.5秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,CD=AD=AC=×25=12.5,t=12.5÷2=6.25;②CD=BC时,CD=15,t=15÷2=7.5;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=9,CD=2CF=9×2=18,t=18÷2=9,综上所述,t=6.25或7.5或9秒时,△CBD是等腰三角形.23.解:(1)在△ABC中,∵AB=AC,∠A=36°,∵CD⊥AB于点D,∴∠DCB=90°﹣72°=18°;(2)∵△ABC中,AB=AC,CD⊥AB于点D,AB=10,CD=6,∴AC=AB=10.设BD=x,则AD=10﹣x,在Rt△ACD中,∵AC2=CD2+AD2,即102=62+(10﹣x)2,解得x=2.在Rt△BCD中,∵BC2=CD2+BD2,即BC2=62+22=40,∴BC==2.24.解:(1)根据勾股定理:梯子距离地面的高度为:=24米;(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20,根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.25.(1)解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,即∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).(2)作BE⊥CD,垂足为E,在Rt△DBC中,由于BD•BC=CD•BE,即BE==.26.解:(1)△ABC的面积=4×4﹣×4×2﹣×2×1﹣×3×4=5;(2)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(3)∵AC==2,BC=,△ABC是直角三角形,∴AB边上的高===2.27.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s时△BCP为等腰三角形.。

数学八年级上期勾股定理单元测试题12套参考答案

数学八年级上期勾股定理单元测试题12套参考答案

数学八年级上期勾股定理单元测试题12套参考答案数学八年级上期【勾股定理】单元测试题01一、选择题:1、B 2、C 3、C 4、C 5、B 6、C 7、C 8、C 二、填空题:1、直角三角形 2、合格 3、5124、25 5、6 6、74 7、2≤h≤3 三、解答题:1、解:在Rt △ABC 中,BC=6,AC=8AB2=AC2+BC2,AB=8436+=100=10, CD=ABBC AC ⋅=1086⨯=4.82、解:连接AC∵在Rt △ABC 中,AC2=AB2+BC2,AC=169+=5cm ∴S △ABC=2BC AB ⋅=243⨯=6cm 2在△ACD 中,AC2+CD 2=25+144=169,DA 2=132=169,∴DA 2=AC2+CD 2∴△ACD 是Rt △∴S △ACD=2DC AC ⋅=2125⨯=30 cm 2,∴S 四边形ABCD= S △ABC+ S △ACD=6+30=36 cm 23、解:由题意得:设城门高为x,(x+1)2=x2+32,x2+2x+1=x2+9, 2x=8, x=4,竹竿长为4+1=5米。

答:竹竿长为5米。

4、解:由题意得:(x+1)2=x2+25,x2+2x+1=x2+25,2x=24, x=12。

答:旗杆的高度为12米。

5、(1)A:(kb-,0)(3,0) B:(0,4) (2)AB=169+=5 (3)存在。

C:(-3,0) 6、解:设EC为x,∵△ADE与△AFE对折 ∴EF=DE=8-x在Rt △AB F中,BF2=AF2-AB2, BF=64100-=6∴FC=BC-BF=10-6=4在Rt △FCE中,EC=x,EF=8-x,FC=4,(8-x)2=x2+42 ,64-16x+x2=x2+16 ,16x=48,x=3 ∴EC=3数学八年级上期【勾股定理】单元测试题02一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D二11、勾股定理,222a b c += ;12、10;13、480; 14、15;15、直角;16、合格;17、30;18、25.三19、13米20、AC 2=621、20=v 米/秒=72千米/时>70千米/时,超速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0) 2.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或333.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形4.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .45.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()的值为( )A .13B .19C .25D .1696.三个正方形的面积如图,正方形A 的面积为( )A.6 B.36 C.64 D.87.下列长度的三条线段能组成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2,3D.5,11,128.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或519.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米10.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A.32B.2 C.22D.10二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.13.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.15.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.16.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线lAB ,F 是l 上的一点,且AB AF =,则FC =__________.17.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.18.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.19.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM 7EF ,则正方形ABCD 的面积为_______.三、解答题21.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______. (2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.22.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.23.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________? (3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.24.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 25.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长.28.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.29.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22,∴OA=AP=22∴P的坐标是(-22,0).故选D.2.C解析:C【分析】存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部【详解】情况一:如下图,△ABC是锐角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周长为:15+12+9+5=42情况二:如下图,△ABC是钝角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.3.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.4.C解析:C【分析】作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.【详解】解:作DE ⊥AB 于E ,如图,在Rt △ABC 中,BC 22106-8,∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,∴DE =DC ,设DE =DC =x ,S △ABD =12DE •AB =12AC •BD , 即10x =6(8﹣x ),解得x =3,即点D 到AB 边的距离为3.故答案为C .【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..5.C解析:C 【解析】试题分析:根据题意得:222c a b=+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b+=222a ab b++=13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.6.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.7.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为92+72≠122,所以三条线段不能组成直角三角形;B、因为22+32≠42,所以三条线段不能组成直角三角形;C、因为12= 22,所以三条线段能组成直角三角形;D、因为52+112≠122,所以三条线段不能组成直角三角形.故选C.【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.8.C解析:C【分析】设AB=x,则BC=9-x,根据三角形两边之和大于第三边,得到x的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC中,AC=AM=3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.9.A解析:A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:12×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键. 10.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB≌△ADC(AAS),∴CE=AD=3,在Rt△BEC中,2222BC=BE+CE=1+3=10,故选D.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴∠90°.根据勾股定理可得.12.(21009,0).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=12,OA3=22,OA4=32,…OA2019=20182,再利用1A、2A、3A…,每8个一循环,再回到y轴的正半轴的特点可得到点A2019在x轴的正半轴上,即可确定点A2019的坐标.【详解】∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA22,OA3=2)2,…,OA2019=2)2018,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,∴2019÷8=252…3,∴点A2019在x轴正半轴上.∵OA2019=2)2018,∴点A2019的坐标为(20182,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 13.5cm【分析】连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.14.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+= 所以AB=BE-AE=20-8=12故答案为:12【点睛】 考核知识点:全等三角形,勾股定理.构造全等三角形是关键.15.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C 所在顶点为直角时.∵AC =CD =4,BC =3,∴BD =CD +BC =7;(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .在Rt △BDE 中DE =2,BE =5,∴BD 2229DE BE +(3)如图3中,以点A 所在顶点为直角时,作DE ⊥BC 于E , 在Rt △BDE 中,DE =4.BE =7,∴BD 2265DE BE + 故答案为:72965【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.16.31+或31-【解析】 如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =, ∵222AF AB ===,且F 有2个, ∴2212213DF DF ==-=∵1DC AD ==,∴1113CF CD DF =+= 2231CF DF CD =-=.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.17355【详解】四边形DEFA是正方形,面积是4;△ABF,△ACD的面积相等,且都是×1×2=1.△BCE的面积是:12×1×1=12.则△ABC的面积是:4﹣1﹣1﹣12=32.在直角△ADC中根据勾股定理得到:AC=222+1=5.设AC边上的高线长是x.则12AC•x=52x=32,解得:x=355.故答案为35 5.18.25【分析】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N,先证明△ANP≌△MNG(AAS),再根据勾股定理求出PN的值,即可得到线段PG的长度.【详解】如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N.∵P(1,2),G(7.﹣2),∴OA=1,PA=GM=2,OM=7,AM=6,∵PA∥GM,∴∠PAN=∠GMN,∵∠ANP=∠MNG,∴△ANP≌△MNG(AAS),∴AN=MN=3,PN=NG,∵∠PAH=45°,∴PH=AH=2,∴HN=1,∴2222=+=+=,215PN PH NH∴PG=2PN=25.故答案为25.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.19.23或2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形, ∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB ,∵23BC =,∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=,即222()AC PC AB PC -+=,即222(3)(3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴12BP PC =在Rt △BCP 中,根据勾股定理222BP BC PC +=,即2221()2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为2或4.故答案为:2或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM EF ,2,,a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.22.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,∴2881||7(15)a a c b -+-+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.23.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.24.(1)2,2)证明见解析(3)7(4)3或3 【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴AC = (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,DE =∴BD =,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,AC ,AD=4,∴CD =∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯,∴7BF =(4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1, ∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上, 则23=3333PQ CQ CP =-=, ∴22233PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则2533333PQ CQ CP =+=, ∴22221=3PE PQ EQ =+; 综上,PE 23221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.25.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中, ∴22224(23)27BC BO OC =+=+=【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.26.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB =AB ﹣AD =c ﹣a ,∵CG ⊥AB ,∴DG =BG =12(c ﹣a ), ∴AG =AD +DG =a +12(c ﹣a )=12(a +c ), 在Rt △ACG 中,CG 2=AC 2﹣AG 2=b 2﹣[12(c +a )]2, 在Rt △BCG 中,CG 2=BC 2﹣BG 2=a 2﹣[12(c ﹣a )]2, ∴b 2﹣[12(a +c )]2=a 2﹣[12(c ﹣a )]2, ∴b 2=ac +a 2,∴△ABC 是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.27.(1)(0,;(2)DF OE =;(3)9+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出OA ==A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得12DG OF ==即可得出答案.【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,OA ===∴点A 的坐标为(0,;(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 609AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯= ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.28.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=12•BF•BG=6.②设正方形边长为x,∵AG=a,CF=b,∴BF=x-b,BG=x-a,GF=a+b,则有(x-a)2+(x-b)2=(a+b)2,化简得到:x2-ax-bx=ab,∴S=12(x-a)(x-b)=12(x2-ax-bx+ab)=12×2ab=ab.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.29.(1)见解析(2) 见解析(3) 见解析(4)5【解析】【分析】(1)由D是AB中点知AD=BD,结合DG=DF,∠ADG=∠BDF即可得证;(2)连接EG.根据垂直平分线的判定定理即可证明.(3)由△ADG≌△BDF,推出∠GAB=∠B,推出∠EAG=90°,可得EF2=(8-x)2+y2,EG2=x2+(6-y)2,根据EF=EG,可得(8-x)2+y2=x2+(6-y)2,由此即可解决问题.(4)由EF知x=4时,取得最小值.【详解】解:(1)∵D是边AB的中点,∴AD=BD,在△ADG和△BDF中,∵AD BDADG BDF DG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADG≌△BDF(SAS);。

相关文档
最新文档