2020-2021上海进才中学北校初三数学上期中试题附答案
2020-2021学年第一学期九年级数学期中测试参考答案
2020-2021学年第一学期九年级期中测试-数学试题卷参考答案及评分建议一、选择题:本题共10小题,每小题4分,共40分.二、填空题:本题共6小题,每小题4分,共24分.11.-3 12.x 1=0,x 2=-113.2 14.>15.30°16.17a ≤且a ≠0 三、解答题:本题共9小题,共86分.17.(本小题满分8分)解:∵2x 2+4x -3=0, ∴23202x x +-=, ∴2321102x x ++--=, ∴25(1)2x +=, ···················································································· 4分∴1x += ·················································································· 6分∴11x =-+21x =-. ··························································· 8分18.(本小题满分8分)解:∵22992642(3)442y x x x x =-++=--+++23172()22x =--+, ····················· 4分 ∴该函数图象的开口向下,对称轴是直线32x =,顶点坐标是(32,172). ········· 8分19.(本小题满分8分)证明:∆=[-(2k -1)]2-4×1×(-2k )=4k 2+4k+1=(2k +1)2. ······································· 5分∵(2k+1)2≥0,即∆≥0,∴不论k 取何值,这个方程都有两个实数根. ·········································· 8分20.(本小题满分8分)解:(1)(10-2x )dm (6-2x )dm·································································· 4分 (2)根据题意,得(10-2x )(6-2x )=32,解得x 1=1,x 2=7(不符合题意,舍去).答:剪去的正方形边长为1 dm . ······················································· 8分21.(本小题满分8分)解:(1)如图,△A 1B 1C 1为所求作的三角形. ·················································· 2分(2)如图,△A 2B 2O 为所求作的三角形. ·················································· 4分 (3)点P 的坐标是(165,0). ·································································· 8分22.(本小题满分10分)解:(1)设该型号自行车的进价为x 元,则标价为1.5x 元. ······························· 1分根据题意,得1.5x ×0.9×8-8x =(1.5x -100)×7-7x , ······························· 3分 解得x =1 000. ·············································································· 4分1.5×1 000=1 500(元).答:该型号自行车的进价为1 000元,标价为1 500元. ························ 5分(2)设该型号自行车降价a 元时,月利润为w 元. 根据题意,得(513)(15001000)20a w a =+⨯-- ···································· 7分 23(80)2646020a =--+. ·········································· 9分 ∵3020-<, ∴当a =80时,w 有最大值,最大值为26 460.答:该型号自行车降价80元时,每月获利最大,最大月利润是26 460元.10分23.(本小题满分10分)(1)证明:如图,连接BC .∵AB ⊥CD ,E 是OB 的中点,∴CB =CO ,12BCD BCO =∠∠. ··················································· 1分∵OC =OB ,∴OB =OC =BC ,∴△OCB 是等边三角形,∴∠BOC =∠BCO =60°, ······························································· 2分∴∠AOF =∠BOC =60°,∠BCD =∠BAD =30°, ··································· 4分∴∠AFO =180°-(60°+30°)=90°, ···················································· 5分∴CF ⊥AD . ·············································································· 6分(2)解:∵AB =12,∴OB =6.∵E 是OB 的中点, ∴132OE OB ==. ········································································· 8分 在Rt △OCE中,CE =.∵AB ⊥CD ,∴2CD CE == ··································································· 10分24.(本小题满分12分)解:(1)BE =BF . ······················································································ 1分证明如下:∵AB =BC ,∴∠A =∠C .由旋转,知∠A =∠C =∠C 1,BA =BC =BC 1,∠ABE =∠C 1BF , ··· 2分在△ABE 和△C 1BF 中,111A C BA BC ABE C BF =⎧⎪=⎨⎪=⎩∠∠∠∠, ∴△ABE ≌△C 1BF (ASA),∴BE =BF . ···································································· 4分(2)四边形BC 1DA 是菱形. ··································································· 5分证明如下:∵α=30°,∠ABC =120°,∴∠ABC 1=∠ABC +α=120°+30°=150°.∵∠ABC =120°,AB =BC , ∴1(180120)302A C ==⨯︒-︒=︒∠∠, ∴∠ABC 1+∠C 1=150°+30°=180°,∠ABC 1+∠A =150°+30°=180°,∴AB ∥C 1D ,AD ∥BC 1,∴四边形BC 1DA 是平行四边形. ······································· 7分又∵AB =BC 1,∴四边形BC 1DA 是菱形. ················································· 8分(3)如图,过点E 作EG ⊥AB 于点G .由(2)可知:∠A =30°,∵α=∠ABA 1=30°,∴∠A =∠ABA 1=30°, ∴12AG BG AB ==. ∵AB =4,∴AG =2. ····················································································· 9分 在Rt △AEG 中,AE =2EG , ∴222()22AE AE -=,解得AE =. ········································································· 10分 由(2)可知:四边形BC 1DA 是菱形,∴AD =AB =4,∴4DE AD AE =-=. ························································ 12分25.(本小题满分14分)解:(1)二次函数图象的对称轴是直线122a x a -=-=. ······································· 1分 ∵AB =5,∴A (-2,0),B (3,0).将(-2,0)代入y =ax 2-ax -3, 解得12a =, 故二次函数的解析式为211322y x x =--. ··········································· 3分 (2)∵b =-5,∴OP =5. ∵254OPQ S =△, ∴125524OQ ⨯⨯=, ∴52OQ =, ∴Q (52,0), ················································································ 4分 ∴5502b k b =-⎧⎪⎨+=⎪⎩.解得k =2.∴直线MN 的解析式为y =2x -5. ······················································ 5分 将抛物线与直线对应的解析式联立,整理得x 2-5x +4=0,解得x 1=1,x 2=4,∴M 的横坐标是4,N 的横坐标是1, ················································ 6分 ∵C (0,-3), ∴12(41)32CMN MCP NCP S S S =-=⨯⨯-=△△△. ······································ 8分 (3)当b =-3k 时,直线y =kx +b =kx -3k ,将抛物线与上述直线的解析式联立,整理得x 2-(2k +1)x +6k -6=0, ·········· 9分 ∆=4k 2-20k +25=(2k -5)2>0,∴x 1=3,x 2=2k -2.当2k -2>3时,x N =3,∴N (3,0).∴H (0,0).∵P (0,-3k ),C (0,-3),∴CP =3k -3,CH =3, ∴1CP k CH =-,即32CP CH >; ·························································· 11分 当2k -2<3时,x N =2k -2,∴N (2k -2,2k 2-5k ),则AN 所在直线的解析式为25252k y x k -=+-, ∴H (0,2k -5).∵C (0,-3),P (0,-3k ),∴|33|CP k =-,|22|CH k =-, ∴32CP CH =, ··············································································· 13分 综上可知32CP CH ≥. ······································································ 14分。
2020-2021初三数学上期中试卷附答案(1)
2020-2021初三数学上期中试卷附答案(1)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程25x bx +=的解为( ). A .10x =,24x = B .11x =,25x = C .11x =,25x =- D .11x =-,25x =3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150°5.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0;④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .46.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13)C .(2,-8)D .(4,-20)7.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( ) A .2020 B .2019C .2018D .20178.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 9.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017B .2018C .2019D .202010.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .811.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AB=BCC .AC ⊥BDD .AC=BD二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.18.如图,四边形ABCD 是O e 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD ∠的度数为______.19.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为¼BB',则图中阴影部分的面积为_____.20.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD,(1)求证:CD是⊙O的切线;(2)若BC=6,tan∠CDA=23,求CD的长.24.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?25.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm . (1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形; B 选项中该图形是轴对称图形不是中心对称图形; C 选项中既是中心对称图形又是轴对称图形; D 选项中是中心对称图形又是轴对称图形. 故选B .考点: 1.轴对称图形;2.中心对称图形.2.D解析:D 【解析】 【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线, ∴抛物线的对称轴为直线x=2, 则−2b a =−2b=2,解得:b=−4,∴x2+bx=5即为x2−4x−5=0,则(x−5)(x+1)=0,解得:x1=5,x2=−1.故选D.【点睛】本题考查了抛物线与x轴的交点:把二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与x轴的交点坐标问题转化为关于x的一元二次方程的问题.3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.C解析:C【解析】【分析】根据圆周角定理求出∠AOD即可解决问题.【详解】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,5.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x<﹣1时,y随x的增大而增大,∴y1>y2②错误;∵对称轴为直线x=﹣1,∴﹣2ba=﹣1, 则2a ﹣b=0,③正确; ∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误;故选B.6.C解析:C 【解析】 【分析】 【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C . 【点睛】本题考查二次函数的性质.7.B解析:B 【解析】 【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得. 【详解】解:∵α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根, ∴α+β=1、α2﹣α=2018, 则原式=α2﹣α﹣2(α+β)+3 =2018﹣2+3 =2019, 故选:B . 【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.8.B解析:B 【解析】 【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答. 【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m =﹣3,n =2. 故选:B . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.B解析:B 【解析】 【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案. 【详解】解:∵设a b ,是方程220190x x +-=的两个实数根, ∴把x a =代入方程,得:22019a a +=, 由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=; 故选:B . 【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值.10.B解析:B 【解析】 【分析】根据旋转的性质和图形的特点解答. 【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2; 故答案为B . 【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.11.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.D解析:D 【解析】 【分析】四边形ABCD 的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等. 【详解】 添加AC=BD ,∵四边形ABCD 的对角线互相平分, ∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形, ∴四边形ABCD 是矩形, 故选D . 【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2 【解析】 【分析】 【详解】解:∵关于x 的一元二次方程ax 2-3x-1=0的两个不相等的实数根 ∴△=(-3)2-4×a×(-1)>0, 解得:a >−94设f (x )=ax 2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a -<0, ∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.【解析】试题分析:解:连接OD ∵CD 是⊙O 切线∴OD ⊥CD ∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB ⊥OD ∴∠AOD=90°∵OA=OD ∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD .∵CD 是⊙O 切线,∴OD ⊥CD ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴AB ⊥OD ,∴∠AOD=90°,∵OA=OD ,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.【解析】【分析】根据二次函数图像和性质得a0c=3即可设出解析式【详解】解:根据题意可知a0c=3故二次函数解析式可以是【点睛】本题考查了二次函数的性质属于简单题熟悉概念是解题关键解析:223,y x =-+【解析】【分析】根据二次函数图像和性质得a <0,c=3,即可设出解析式.【详解】解:根据题意可知a <0,c=3,故二次函数解析式可以是2y 2x 3,=-+【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键. 16.20%【解析】【分析】此题可设每次降价的百分率为x 第一次降价后价格变为100(1-x )元第二次在第一次降价后的基础上再降变为100(1-x )(1-x )即100(1-x )2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x ,第一次降价后价格变为100(1-x )元,第二次在第一次降价后的基础上再降,变为100(1-x )(1-x ),即100(1-x )2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x ,第二次降价后价格变为100(1-x )2元.根据题意,得100(1-x )2=64,即(1-x )2=0.64,解得x 1=1.8,x 2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.17.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补解析:70°【解析】【分析】先根据圆周角定理求出BAD∠的度数,再由圆内接四边形的性质即可得出结论.【详解】80CBD∠︒Q=,80CAD CBD∴∠∠︒==..30BAC∠︒Q=3080110BAD∴∠︒+︒︒==.∵四边形ABCD是Oe内接四边形,180********BCD BAD∴∠︒∠︒︒︒=﹣=﹣=.故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.19.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出,,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S阴=905253 1222222=36042()ππ⨯-⨯÷-÷-.故答案为53 42π-.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23.【解析】【分析】(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;(2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%; (3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14. 考点:列表法与树状图法.23.(1)证明见解析;(2)4.【解析】分析:(1)连接OD,如图,先证明∠CDA=∠ODB,再根据圆周角定理得∠ADO+∠ODB=90°,则∠ADO+∠CDA=90°,即∠CDO=90°,于是根据切线的判定定理即可得到结论;(2)由于∠CDA=∠ODB,则tan∠CDA=tan∠ABD=23,根据正切的定义得到tan∠ABD=23ADBD=,接着证明△CAD∽△CDB,由相似的性质得23CD ADBC BD==,然后根据比例的性质可计算出CD的长.详(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)∵∠CDA=∠ODB,∴tan∠CDA=tan∠ABD=23,在Rt△ABD中,tan∠ABD=23 ADBD=,∵∠DAC=∠BDC,∠CDA=∠CBD,∴△CAD∽△CDB,∴23 CD ADBC BD==,∴CD=23×6=4.点睛:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.24.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.25.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.。
2020-2021初三数学上期中试题(含答案)(3)
2020-2021初三数学上期中试题(含答案)(3)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .345.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°6.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 7.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .88.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间9.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④10.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 11.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A .AB=CDB .AB=BC C .AC ⊥BD D .AC=BD 12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.14.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.19.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .20.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________三、解答题21.2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目( 必考), 物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分, 假设小丽在选择科目时不考虑主观性. (1)小丽选到物理的概率为 ;(2)请用“画树状图”或“列表”的方法分析小丽在思想政治、 地理、 化学、生物四门科目中任选 2门选到化学、生物的概率.22.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.23.为响应市政府关于“垃圾不落地⋅市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B :比较了解;C :了解较少;D :不了解.”四种,并将调查结果绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题;()1求m =______,并补全条形统计图;()2若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;()3已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.24.(1)解方程:x2﹣2x﹣8=0;(2)解不等式组3(2)1 112x xx--<⎧⎪⎨-<⎪⎩25.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan ∠CBD=tan ∠MBA=34, 故选D .5.D解析:D【解析】试题解析:∵四边形ABCD 为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D .6.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧,∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.考点:二次函数图象与系数的关系.7.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m>0,然后解不等式得到m<4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m>0,解得:m<4,所以m可以取3,不能取5、6、8.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.9.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.11.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k的一元一次不等式组解之即可得出k的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【详解】(k-2)x2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V= , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.15.40°【解析】:在△QOC 中OC=OQ∴∠OQC=∠OCQ 在△OPQ 中QP=QO∴∠QOP=∠QPO 又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP 解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.17.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.【详解】设AA ′=x,AC 与A ′B ′相交于点E ,∵△ACD 是正方形ABCD 剪开得到的,∴△ACD 是等腰直角三角形,∴∠A=45∘,∴△AA ′E 是等腰直角三角形,∴A ′E=AA ′=x ,A ′D=AD−AA ′=12−x ,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x 2−12x+32=0,解得x 1=4,x 2=8,即移动的距离AA ′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·. 18.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.19.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键 解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒=直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.20.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.三、解答题21.(1)12;(2)16 【解析】【分析】(1)由题意可知小丽只有两种可选择:物理或历史,即可求解; (2)从所有等可能结果中找到同时包含生物和化学的结果数,再根据概率公式计算可得. 【详解】(1)因为小丽只有两种可选择:物理或历史,所以小丽选到物理的概率为12(2)设思想政治为 A , 地理为 B , 化学为 C , 生物为 D ,画出树状图如下:共有 12 种等可能情况, 选中化学、生物的有2 种,∴P (选中化学、生物)=212=16. 【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.22.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.23.(1)20(2)500(3)12【解析】【分析】 ()1先利用A 选项的人数和它所占百分比计算出调查的总人数为50,再计算出B 选项所占的百分比为42%,从而得到m%20%=,即m 20=,然后计算出C 、D 选项的人数,最后补全条形统计图;()2用1000乘以()8%42%+可估计该校“非常了解”与“比较了解”的学生数;()3画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】()1调查的总人数为48%50÷=,B 选项所占的百分比为21100%42%50⨯=, 所以m%18%42%30%20%=---=,即m 20=,C 选项的人数为30%5015(⨯=人),D 选项的人数为20%5010(⨯=人),条形统计图为:故答案为20;()()210008%42%500⨯+=,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;()3画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率61 122 ==【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(1)x=﹣2或x=4;(2)52<x<3【解析】【分析】(1)用因式分解法求解;(2)分别求不等式,再确定公共解集.【详解】解:(1)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4;(2)解不等式x﹣3(x﹣2)<1,得:x>52,解不等式12x-<1,得:x<3,∴不等式组的解集为52<x <3. 【点睛】 考核知识点:解一元二次方程方程,解不等式组.掌握解不等式组和一元二次方程的基本方法是关键.25.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则9032321801802n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.。
2020-2021初三数学上期中试卷带答案(4)
2020-2021初三数学上期中试卷带答案(4)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.﹣3的绝对值是( )A .﹣3B .3C .-13D .13 3.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 4.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4 B .k≤4 C .k<4且k≠3 D .k≤4且k≠38.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm9.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h10.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°11.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .12B .1∶2C 32D .1312.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知方程x2﹣3x+k=0有两个相等的实数根,则k=_____.15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y轴上______________ 16.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.17.如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C的坐标是_____.18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB=3 cm,则此光盘的直径是________cm.19.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A B C D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同,,,一个组的概率是_______.20.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.三、解答题21.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.22.如图,在等腰ABC ∆中,AB AC =,以AC 为直径作O e 交BC 于点D ,过点D 作DE AB ⊥,垂足为E .(1)求证:DE 是O e 的切线.(2)若3DE =30C ∠=︒,求»AD 的长.23.某公司委托旅行社组织一批员工去某风景区旅游,旅行社收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加一人,人均旅游费降低10元;但人均旅游费不低于550元,公司支付给旅行社30000元,求该公司参加旅游的员工人数.24.三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.25.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x -=,故x -2=3或x -2=-3,解得:x 1=5,x 2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.4.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质. 5.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.10.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C .11.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.12.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A 、∵方程M 有两个不相等的实数根,∴△=b 2−4ac >0,∵方程N 的△=b 2−4ac >0,∴方程N 也有两个不相等的实数根,故不符合题意;B 、把x =4代入ax 2+bx +c =0得:16a +4b +c =0,∴110164c b a ++=, ∴即14是方程N 的一个根,故不符合题意; C 、∵方程M 有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为解析:94【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(40382)【解析】【分析】先求出开始时点C 的横坐标为OC =1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C 的位置然后求出翻转B 前进的距离连接CE 过点D 作解析:(4038,3【解析】【分析】先求出开始时点C 的横坐标为12OC =1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C 的位置,然后求出翻转B 前进的距离,连接CE ,过点D 作DH ⊥CE 于H ,则CE ⊥EF ,∠CDH =∠EDH =60°,CH =EH ,求出CE =2CH =2×CDsin60°=3C 的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×32=3,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C所在的位置是解题的关键.18.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC与⊙O相切∴∠OAB=∠OAC=∠CAB=3【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.19.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164=,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.三、解答题21.(1)y=﹣x 2+2x +3;(2)C (0,3),D (1,4);(3)P (2,3).【解析】【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P (x ,y )(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.【详解】(1)由点A (﹣1,0)和点B (3,0)得10930b c b c --+=⎧⎨-++=⎩, 解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x +3;(2)令x=0,则y=3,∴C (0,3)∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴D (1,4);(3)设P (x ,y )(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y=2y , ∵S △ABP =4S △COE ,∴2y=4×32,∴y=3,∴﹣x 2+2x +3=3, 解得:x 1=0(不合题意,舍去),x 2=2,∴P (2,3).【点睛】 本题考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S △ABP =4S △COE 列出方程是解决问题的关键.22.(1)见解析;(2)»AD 23π=【解析】【分析】(1)连结OD ,根据等腰三角形性质和等量代换得1B ∠=∠,由垂直定义和三角形内角和定理得290B ∠+∠=︒,等量代换得2190∠+∠=︒,由平角定义得90DOE ∠=︒,从而可得证.(2)连结AD ,由圆周角定理得90ADC ∠=︒,根据等腰三角形性质和三角形外角性质可得60AOD ∠=︒,在Rt DEB ∆中,由直角三角形性质得23BD CD ==,在Rt ADC ∆中,由直角三角形性质得2OA OC ==,再由弧长公式计算即可求得答案.【详解】(1)证明:如图,连结OD .∵OC OD =,AB AC =,∴1C ∠=∠,C B ∠=∠,∴1B ∠=∠,∴DE AB ⊥,∴290B ∠+∠=︒,∴2190∠+∠=︒,∴90ODE ∠=︒,∴DE 为O e 的切线.(2)解:连结AD ,∵AC 为O e 的直径.∴90ADC ∠=︒.∵AB AC =,∴30B C ∠=∠=︒,BD CD =,∴60AOD ∠=︒.∵DE =∴BD CD ==∴2OC =, ∴60221803AD ππ=⨯= 【点睛】 本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.23.该公司有50人参加旅游.【解析】【分析】设该公司有x 人参加旅游,由308002400030000⨯=<,可得出x 30>,分30x 55<≤及x 55>两种情况考虑,由总价=单价⨯数量,可得出关于x 的一元二次方程(一元一次方程),解之即可得出结论.【详解】设该公司有x 人参加旅游.308002400030000⨯=<Q ,x 30∴>.()308005501055(+-÷=人).根据题意得:当30x 55<≤时,有()x 80010x 3030000⎡⎤--=⎣⎦,化简得:2x 110x 30000-+=,解得:1x 50=,2x 60(=舍去);当x 55>时,有550x 30000=, 解得:600x (11=舍去). 答:该公司有50人参加旅游.【点睛】本题考查了一元二次方程的应用以及一元一次方程的应用,分30x 55<≤及x 55>两种情况,列出关于x 的方程是解题的关键.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1) 2m <;(2) m 的值是1.【解析】【分析】(1)根据方程有两个不相等的实数根知△>0,据此列出关于m 的不等式,解之可得; (2)由(1)中m 的范围且m 为非负整数得出m 的值,代入方程,解之可得.【详解】解:(1)根据题意得:()()22410m --->,解得:2m <.故m 的取值范围为2m <;(2)由(1)得:2m <m Q 为非负整数, 0m ∴=或1,把0m =代入原方程得:2210x x --=,解得:11x =21x =,0m =不合题意舍去;把1m =代入原方程得:220x x -=,解得:10x =,22x =.故m 的值是1.【点睛】此题考查根的判别式及一元二次方程的解,熟练掌握根的判别式及一元二次方程的解的定义是解题关键.。
2020-2021上海北郊学校九年级数学上期中第一次模拟试卷(附答案)
2020-2021上海北郊学校九年级数学上期中第一次模拟试卷(附答案)一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .3.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -= B .2(3)14-=x C .2(6)44x -=D .2(3)1x -=4.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上5.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<6.已知()222226x y y x +-=+,则22xy +的值是( )A .-2B .3C .-2或3D .-2且37.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 8.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤9.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角10.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 212.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____. 16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;17.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________. 19.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .20.如图,O e 是ABC V 的外接圆,30C ∠=o ,2AB cm =,则O e 的半径为________cm .三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围; (2)若该方程的一个根为1,求的值及该方程的另一根.22.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元? (2)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (3)要使商场平均每天盈利1600元,可能吗?请说明理由. 23.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值. 24.如图,在中,,是的外接圆,点P 在直径BD 的延长线上,且.求证:PA 是的切线;若,求图中阴影部分的面积结果保留和根号25.已知抛物线y=-x 2-2x+c 与x 轴的一个交点是(1,0). (1)C 的值为_______;(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x••• 1- 1••• y••••••(3)根据所画图像,写出y>0时x 的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.2.B解析:B 【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.3.A解析:A 【解析】 【分析】利用配方法把方程2680x x --=变形即可. 【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17, 故选A . 【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.4.C解析:C 【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B解析:B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B 【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴c>0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.9.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.∵△ABC绕点A旋转一定角度得到△ADE,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.10.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.C解析:C【解析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.P >Q 【解析】∵抛物线的开口向下∴a <0∵∴b >0∴2a-b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b-2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c >0∴P=3b-2cQ=b解析:P >Q 【解析】∵抛物线的开口向下, ∴a <0,∵02ba -> ∴b >0, ∴2a-b <0,∵02ba -= ∴b+2a=0,x=-1时,y=a-b+c <0.∴102b bc --+< ∴3b-2c >0,∵抛物线与y 轴的正半轴相交, ∴c >0, ∴3b+2c >0, ∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0 ∴P >Q , 故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.14.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD 是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.k≤且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴△=(-4)2-4k×3≥0且k≠0解得k≤且k≠0故解析:k≤43且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可.【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根,∴△=(-4)2-4k×3≥0且k≠0,解得k≤43且k≠0,故答案为:k≤43且k≠0【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;解题时,要注意a≠0这个隐含的条件.16.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解解析:20%【解析】【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.根据题意,得100(1-x)2=64,即(1-x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.17.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠QOP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°18.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.19.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE 的位置使点A恰好落在边DE上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6解析:【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.2【解析】【分析】作直径AD连接BD得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB发现等边△AOB)【详解】作直径AD连接BD得:∠AB D=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【详解】作直径AD,连接BD,得:∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.三、解答题21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可;(2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3,∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得: 111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)商场每件衬衫降价4元,则商场每天可盈利1008元;(2)每件衬衫应降价20元;(3)不可能.理由见解析.【解析】【分析】(1)根据题意得到每天的销售量,然后由销售量×每件盈利进行解答;(2)利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可;(3)同样列出方程,若方程有实数根则可以,否则不可以.【详解】 (1)410205⎛⎫⨯+ ⎪⎝⎭×(40-4)=1008(元). 答:商场每件衬衫降价4元,则商场每天可盈利1008元.(2)设每件衬衫应降价x 元,根据题意,得(40-x)(20+2x)=1200,整理,得x 2-30x+200=0,解得x 1=10,x 2=20,∵要尽量减少库存,∴x=20.答:每件衬衫应降价20元.(3)不可能.理由如下:令(40-x)(20+2x)=1600,整理得x 2-30x+400=0,∵Δ=900-4×400<0, ∴商场平均每天不可能盈利1600元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.23.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.24.(1)证明见解析(2)【解析】【分析】 (1)如图,连接OA ;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB 、扇形AOB 的面积,即可解决问题.【详解】如图,连接OA ;, ;而, ;而,;,, 是的切线.如图,过点O 作,则, ,, ,; ,, 图中阴影部分的面积.【点睛】本题考查了切线的判定与扇形面积的计算,解题的关键是熟练的掌握切线的判定与扇形面积公式.25.(1)3;(2)见解析;(3)-3<x< 1.【解析】【分析】(1)直接把(1,0)代入抛物线22y x x c =--+即可得出c 的值;(2)先根据(1)抛物线的解析式得出其顶点坐标,再在顶点两边分别取两点,画出函数图象即可;(3)根据函数图象可直接得出结论.【详解】解:(1)∵抛物线22y x x c =--+与x 轴的一个交点是(1,0),∴2120,c --+= 解得c=3,∴抛物线的解析式为22 3.y x x =--+故答案为:3.(2)∵抛物线的解析式为22 3.y x x =--+即2(1)4,y x =-++∴其顶点坐标为(-1,4),∴当x=-2时,y=3;当x=0时,y=3; 当x=-3时,y=0;当x=1时,y=0.如下表: x •••3- 2- 1- 0 1 ••• y ••• 0 3 4 30 •••(3)由函数图象可知,当y >0时,-3<x <1.故答案为:-3<x <1.【点睛】本题考查的是抛物线与x 轴的交点,能利用描点法画出函数图象,根据数形结合求解是解答此题的关键.。
2020-2021学年九年级数学上学期期中考试含答案
一、选择题(每小题3分,共21分) 每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分. 1.9的平方根是( ) A.3± B. 3 C. ±3 D. 32. 下列计算正确的是( )A .234265+= B .3412= C .2733÷=D .24±=3.下列方程是一元二次方程的是( ) A .322=-+y x x B .31232=-x x C .03)13(22=--x D .x x 382=- 4.下列三角形一定相似的是( )A .两个等边三角形B .两个直角三角形C .有一个角为30°的两个等腰三角形D .两个等腰三角形 5.在梯形ABCD 中,AD ∥BC.AC,BD 相交于O ,如果AD :BC=1:3,那么下列结论正确的是( )A .S △COD =9S △AODB .S △ABC =9S △ACD C .S △BOC =9S △AOD D .S △DBC =9S △AOD6.如果关于x 的一元二次方程01)12(22=++-x k x k 有两个不相等的实数根,那么k 的取值范围是( ) A .41->k B .041≠->k k 且 C .41-<kD .041≠-≥k k 且 7.实数a 、b 在数轴上的位置如图所示.化简222()a b a b -+-的结果是( )A BCD OA. a 2-B. b 2-C. b a 22--D. b a 22-+二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答8.一元二次方程05322=--x x 的二次项是 ,一次项系数是 . 9.若最简二次根式2+a 与5是同类二次根式,则a = .10.若0234x y z ==≠,则23x y z+= . 11.两个相似三角形对应高之比为1:2,那么它们对应中线之比为 .12.一元二次方程062=-+kx x 的一个根是2,则另一个根是_ ,k= .13. 如果1x =-1、2x =3是一元二次方程的两个根,那么这个一元二次方程可以是 .14.某经济开发区今年一月份工业产值达50亿元,第一季度总产值达175亿元,问二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程为 . 15.如图,点C 、D 在线段AB 上,△PCD 是等边三角形.当△ACP ∽△PDB 时,∠APB= °. 16.若411+-+-=x x y ,则=+y x .17. 在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P(x l ),(x 为自然数).第15题(1).如图①,∠A=90°,∠B=∠C ,当BP=2PA 时,P (1l )、P (2l )都是过点P 的△ABC 的相似线(其中1l ⊥BC ,2l ∥AC ),此外还有 条. (2).如图②,∠C=90°,∠B=30°,当=BABP时,P(x l )截得的三角形面积为△ABC 面积的41.三、解答题(共89分)在答题卡上相应题目的答题区域内作答 18.(9分)计算:19.(9分)计算:10537148⨯-÷+20.(9分)解方程: 2630x x -+=21.(9分)如图,在△ABC 中,DE ∥BC ,分别交BA 、CA 的延长线于点D 、E.求证:△ABC ∽△ADE.EDCBA()1242832-⨯+÷--+-π22. (9分)将进货价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个. 若设这种商品每个涨价x元,(1)用含x的代数式表示:①每个商品的实际利润是元,②实际的销售量是个;(2)为了获得8000元的利润,售价应定为多少?23.(9分)如图13,四边形ABCD、CDEF、EFGH都是边长为2的正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.24.(9分)已知关于x的方程22-++++=.x k x k k(23)320(1)判断方程的实数根的情况;(2)当Rt△ABC的斜边长5 a,且两条直角边b和c恰好是这个方程的两个根时,求:k的值及△ABC的周长.25.(12分)如图,在△ABC中,∠C=900,BC = 7cm,AC = 24cm,P 点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,设经过了x秒,请解答下面的问题,并写出探索的主要过程:(1)PC= cm,QC= cm(用含x的代数式表示);(2)经过多少时间,△PCQ的面积为15cm2(3)经过多少时间,△PCQ的面积最大,最大面积是多少?26.(14分)如图,平面直角坐标系中, 直线AB 解析式为:y=33-x+3.直线与x 轴,y 轴分别交 于A 、B 两点.(1)写出线段OA 、OB 的长度,OA= ,OB= . (2)若点C 是AB 的中点,过点C 作CD ⊥x 轴于点D ,E,F 分别为BC ,OD 的中点,求点E 的坐标;(3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.填空:1.(5分)计算:=-3233.2.(5分)如图,在△ABC中,BC=2,则中位线DE= .以下作为草稿纸三、解答题(共89分)18.(本小题9分)解:原式=2+1-2+2 ……………………………………………(8分)=3 ………………………………………………………………(9分)19.(本小题9分)解:原式=22-+……………………………………………(7分)2152=212- ………………………………………………………(9分)20.(本小题9分)解:6962=+-x x6)3(2=-x ………………………………………………… (3分)63±=-x ………………………………………………(6分)631+=x ,632-=x ………………………………(9分)21.(本小题9分) (1)证明:∵DE ∥BC∴B D ∠=∠,A E ∠=∠…………(6分) ∴ADE ∆∽ABC ∆…………………………(9分)22.(本小题9分)解:(1)①每个商品的实际利润是 (10+x )元,②实际的销售量是 (500-10x) 个;…(2分)(2)依题意得:8000)10500)(10(=-+x x ………………………(4分)0300402=+-x x ………………………(5分)解得:101=x ,302=x ………………………(7分)经检验,:101=x 、302=x 都符合题意∴601050=+元或803050=+元………………………(8分)答:为了获得8000元的利润,售价应定为60元或80元. ……………………(9分)EDCBA8124912422---++=k k k k1=∴0>∆∴方程的有两个不相等的实数根. ………………………………(3分)(2)依题意得⎩⎨⎧++=+=+23322k k bc k c b ……………………………(4分)∵在ABC Rt ∆中 222a c b =+∴()2522=-+bc c b ……………………………(5分) ∴()()252323222=++-+k k k ∴01032=-+k k解得:5-=k 或2=k …………………………………………(7分) 经检验,5-=k 时,7-=+c b 不合题意,舍去;2=k ,7=+c b ,符合题意E F∴ABC Rt ∆的周长为12=++c b a …………………………(9分)25.(本小题12分)解:(1)(1)PC=)(x 2-7cm ,QC=x 5cm …………(2分) (2)依题意得:1552-721=•x x )(…………(3分)整理得:06722=+-x x解得:231=x ,22=x …………(5分)经检验,231=x ,22=x 符合题意答:经过23秒或2秒,△PCQ 的面积为15cm2 …………(7分) (3)设△PCQ 的面积为S则x x S 52-721•=)( 16245475-2+-=)(x ……………………………………(10分) ∵270<≤x ……………………………………(11分)∴当47=x 时,△PCQ 的面积最大,最大面积是16245………………(12分)26.(本小题14分)解:(1)OA= 3 , OB=3 …………(2分)(2)证得:△ACD ∽△ABO …………(4分)CD=21BO=321,AD=OD=21AO=23…………(6分)∵E,F 分别为BC ,OD 的中点,CD//BO∴EF=21(BO+CO )=21(3+321)=43…(7分)OF=21OD=43 ∴E(43,43) …………(8分)(3)当∠OBP =90°时,如图①若△BOP ∽△OBA ,则OB BO OA BP =, ∵OB=3,OA=3 ∴BP=3∴1P (3,3). …………………(10分) ②若△BPO ∽△OBA ,则OA BOOB BP =,∵OB=3,OA=3 ∴BP=1∴2P (1,3). …………………(12分) 当∠OPB =90°时, 如图当∠OPB =90°时,点P 在x 轴上,不符合题意.综上所述,符合条件的点有四个,分别是: 1P (3,3),2P (1,3),3P (43,433),4P (43,43).四、附加题(共10分,每小题5分)1. 3;2. 1.。
2020-2021学年九年级数学上学期期中测试卷01(沪教版)(含解析)
2020-2021学年九年级数学上学期期中测试卷01本试卷由选择题、填空题和解答题三大题组成,共25题,满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(本大题共6小题,每小题4分,共24分。
每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上)1.已知、和都是非零向量,在下列选项中,不能判定∥的是()A.||=||B .∥,∥C .+=0D .+=2,﹣=32.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.3.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:AB=2:5,则DF:BF等于()A.2:5B.2:3C.3:5D.3:24.将抛物线y=﹣2(x+3)2+2以原点为中心旋转180°得到的抛物线解析式为()A.y=﹣2(x﹣3)2+2B.y=﹣2(x+3)2﹣2C.y=2(x﹣3)2﹣2D.y=2(x﹣3)2+25.如图,点A、B、E在同一直线上,∠FEB=∠ACB=90°,AC=BC,EB=EF,连AF,CE交于点H,AF、CB交于点D,若tan∠CAD =,则=()1。
2020-2021学年度九年级(上)期中数学试卷 (附答案)
2020-2021学年度九年级(上)数学期中试卷(附答案)一、选择题(每小题只有一个正确选项,每小题3分,共18分)1.(3分)如下图所示,下列四组图形中,左边图形与右边图形成中心对称的是()A.B.C.D.2.(3分)如图,A、B、C三点在圆O上,∠B=36°,则∠AOC的度数为()A.36°B.54°C.72°D.90°3.(3分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)4.(3分)如图,⊙O的直径为10,弦AB的长为8,点P在AP上运动,则OP的最小值是()A.2B.3C.4D.55.(3分)已知函数y=x2+bx+c的图象与x轴只有一个交点,(x1,2017)、(x2,2017)是该函数图象上的两个点,则当x=x1+x22时,函数值y=()A.﹣2017B.c C.0D.c﹣20176.(3分)下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是()①a >0;②9<m<16;③k≤9;④b2≤4a(c﹣k)x…x1x2x3x4x5x6x7…y…16m9k9m16…A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题3分,共18分)7.(3分)函数y=√3−x中,自变量x的取值范围是.8.(3分)如图,将正三角形绕其对称中心O旋转后,恰好能与原来的正三角形重合,那么旋转的角度至少是度.9.(3分)已知一元二次方程x2﹣4x+2=0的两根分别是x1,x2,那么(1+x1)(1+x2)的值是.10.(3分)如图,将△ABC绕点A逆时针方向旋转到△ADE的位置,点B落在AC边上的点D处,设旋转角为α(0°<α<90°).若∠B=125°,∠E=30°,则∠α=°.11.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围为.12.(3分)如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是.(把所有正确结论的序号都填在横线上)三、本大题共6小题,每小题6分,共30分)13.x 2﹣2x ﹣15=0.14.(6分)如图,在⊙O 中,AB̂=AC ̂,∠A =40°,求∠D 的度数.15.(6分)如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的14.若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.16.(6分)如图,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B ′落到BC 边上,∠B =50°.求∠CB ′C ′的度数.17.(6分)已知二次函数y=ax2﹣4x+c的图象经过点A(﹣1,﹣1)和B(3,﹣9).(1)求该二次函数的解析式;(2)填空:该抛物线的对称轴是;顶点坐标是;当x=时,y随x的增大而减小.18.(6分)如图,△ABC是⊙O的内接三角形,∠BAD是它的个外角,OP⊥BC交⊙O于点P,仅用无刻度的直尺分别按下列要求画图.(1)在图1中,画出△ABC的角平分线AF;(2)在图2中,画出△ABC的外角∠BAD的角平分线AG.四、(本大题共3小题,每小题8分,共24分)19.(8分)已知关于x的一元二次方程ax2﹣(a+2)x+2=0.(1)不解方程,判别方程的根的情况;(2)方程有两个不相等的正整数根时,求整数a的值.20.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.21.(8分)如图,△OBD中,OD=BD,△OBD绕点O逆时针旋转一定角度后得到△OAC,此时B,D,C三点正好在一条直线上,且点D是BC的中点.(1)求∠COD度数;(2)求证:四边形ODAC是菱形.五、(本大题共2小题,每小题9分,共18分).22.(9分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)(x>50)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(9分)如图,在平面直角坐标系xOy中,直线y=12x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=−32且经过A、C两点,与x轴的另一交点为点B.(1)直接写出点B的坐标;(2)求抛物线解析式.(3)若点P为直线AC上方的抛物线上的一点,连接P A,PC.求△P AC的面积的最大值,并求出此时点P的坐标.六、(本题12分)24.(12分)已知△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点.(1)如图1,试证CD=BE时,△AMN是等边三角形;(2)当把△ADE绕点A旋转到图2的位置时CD=BE吗?若相等,请证明;若不相等,请说明理由;(3)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是,请证明;若不是,请说明理由(可用第(1)问结论).。
2020-2021上海进才中学九年级数学上期中模拟试题(附答案)
2020-2021上海进才中学九年级数学上期中模拟试题(附答案)一、选择题1.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A.43B.45C.35D.342.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.16B.29C.13D.234.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④5.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A .大于60°B .小于60°C .大于30°D .小于30° 6.若2245a a x -+-=,则不论取何值,一定有( ) A .5x >B .5x <-C .3x ≥-D .3x ≤- 7.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -= 8.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .10.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 11.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .8 12.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.14.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____.15.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .19.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.20.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.(1)解方程:x 2﹣2x ﹣8=0;(2)解不等式组3(2)1112x x x --<⎧⎪⎨-<⎪⎩ 23.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.我国古代数学著作《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔各几何?”其大意是:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的各是多少步?”试用列方程解应用题的方法求出问题的解。
九上期中参考答案.
23、①在图 1 中按要求完成作图 ┄1 分 ②△MAC 的形状为 等腰直角三角形 ,┄2 分 ③∠ACB= 45° ;┄3 分
(2)证明:延长 CB 至 M 使得 BM=CD,连接 AM 依题意得,∠ABM=∠D,AB=AD,∴△CAD≌△MAB (SAS) ┄4 分 可得∠CAM=∠BAD=60°,CA=MA,∴△ACM 为等边三角形 ∴CA=CM=CB+BM=CB+CD ┄6 分
19、(共 8 分,正确设出未知数并列对方程给 5 分,结果正确 2 分,未写出 x2=-2.2 扣去 1 分,写答 1 分)
解:设资金年平均增长率为 x,则 30(1+x)²=43.2 所以 x1=0.2
x2=-2.2(舍去)
答:资金年平均增长率为 20%.
20、(共 8 分,2 分+3 分+3 分)
∵∠DBE+∠DBC=180°,∴ ∠DAE+∠DBC=180°. ┄10 分
(※注:本题证法不唯一,延长 CB 至 N 使得 BN=CD,使△ADC≌△ABN,或过 A 作 CB、CD 的垂线段均可完成本题证明)
24、(共 12 分,第 1 问 3 分,第 2 问 4 分,每个答案 2 分,第 3 问 5 分) (1)A(-3,0)、B(1,0)、C(0,-3) ┄3 分 (2)解:当点 D 位于第一象限时,如图,令 AD1 交 y 轴于 M,由(1)知,OA=OC=3,
∴CD=CE,∠BCD=∠BCA-∠ACD=∠DCE-∠ACD=∠ACE
△BCD≌△ACE,DE=DA+AE=BD+AD=8,CD=DE=8 ┄6 分
作 CM⊥ED 于 M,,在 Rt△CDM 中,DM= CD= ,CM=
2020-2021上海市北初级中学九年级数学上期中一模试题(含答案)
2020-2021上海市北初级中学九年级数学上期中一模试题(含答案)一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( )A .25°B .40°C .50°D .65° 3.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x += 4.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④ 5.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( ) A .(x+3)2=1 B .(x ﹣3)2=1 C .(x+3)2=19D .(x ﹣3)2=19 6.若2245a a x -+-=,则不论取何值,一定有( ) A .5x > B .5x <- C .3x ≥- D .3x ≤-7.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°8.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间 9.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2 10.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .11.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y xB .2(12)y x =-C .(12)y x x =-D .2(12)y x =-12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____.16.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.17.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.18.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .19.如图,四边形ABCD 是O 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD∠的度数为______.20.如图,正六边形ABCDEF 内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM 的长为__.三、解答题21.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数. 购买件数销售价格 不超过30件单价40元 超过30件 每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元23.已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x .(1)若a 为正整数,求a 的值;(2)若1x ,2x 满足221212-16x x x x +=,求a 的值.24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)25.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.B解析:B【解析】连接OC ,∵CD 是切线,∴∠OCD=90°,∵OA=OC ,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.3.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x 2−4x +1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B .【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.4.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.5.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 6.D解析:D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.7.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数.8.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.9.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.10.B解析:B【解析】分析:可先根据一次函数的图象判断a 的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A .由一次函数y =ax ﹣a 的图象可得:a <0,此时二次函数y =ax 2﹣2x +1的图象应该开口向下.故选项错误;B .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上,对称轴x =﹣22a->0.故选项正确; C .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上,对称轴x =﹣22a ->0,和x 轴的正半轴相交.故选项错误; D .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上.故选项错误.故选B .点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y =ax ﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.11.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.12.A解析:A【解析】【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB为等边三角形,60AOB∴∠=,又12C AOB ∠=∠,16030.2C∴∠=⨯=故选:A.【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k =2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.k≤且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴△=(-4)2-4k×3≥0且k≠0解得k≤且k≠0故解析:k≤43且k≠0;【解析】【分析】利用一元二次方程根的判别式及一元二次方程的定义解答即可.【详解】∵关于x的一元二次方程kx2﹣4x+3=0有实数根,∴△=(-4)2-4k×3≥0且k≠0,解得k≤43且k≠0,故答案为:k≤43且k≠0【点睛】本题考查了一元二次方程的定义及判别式,一元二次方程的一般形式为ax2+bx+c=0(a≠0),当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;解题时,要注意a≠0这个隐含的条件.16.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠Q OP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17.8x2+124x ﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一为了不出差错最好表示出照片的面积=4(镜框面积-照片面积)【详解】解:设镜框的宽度为xcm 依题意得:21×10=4(21解析:8x 2+124x ﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一,为了不出差错,最好表示出照片的面积=4(镜框面积-照片面积).【详解】解:设镜框的宽度为xcm ,依题意,得:21×10=4[(21+2x )(10+2x )﹣21×10], 整理,得:8x 2+124x ﹣105=0.故答案为:8x 2+124x ﹣105=0.【点睛】本题考查了一元二次方程的应用,解题的难点在于把给出的关键描述语进行整理,解决本题的关键是要正确分析题目中等量关系.18.m 【解析】【分析】利用勾股定理易得扇形的半径那么就能求得扇形的弧长除以2π即为圆锥的底面半径【详解】解:易得扇形的圆心角所对的弦是直径∴扇形的半径为:m ∴扇形的弧长为:=πm ∴圆锥的底面半径为:π÷m . 【解析】【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:2m ,∴扇形的弧长为:902180π=4πm ,∴圆锥的底面半径为:4π÷2πm .【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.19.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补解析:70°【解析】【分析】先根据圆周角定理求出BAD∠的度数,再由圆内接四边形的性质即可得出结论.【详解】80CBD∠︒=,80CAD CBD∴∠∠︒==..30BAC∠︒=3080110BAD∴∠︒+︒︒==.∵四边形ABCD是O内接四边形,180********BCD BAD∴∠︒∠︒︒︒=﹣=﹣=.故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.20.3【解析】连接OB∵六边形ABCDEF是⊙O内接正六边形∴∠BOM==30°∴OM=OB•cos∠BOM=6×=3故答案为:3解析:33【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM=36062︒⨯=30°,∴OM=OB•cos∠BOM=6×32=33,故答案为:33.三、解答题21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ;(2)根据题意,得:﹣3x 2+54x=25×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍), ∴32x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.22.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得: x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.23.(1)1a =,2;(2)1a =-【解析】【分析】(1)根据关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根,得到()22[2(1)]420a a a ∆=----->,于是得到结论;(2)由根与系数的关系可得122(1)x x a +=-,2122x x a a =--,代入22121216x x x x +-=,解方程即可得到结论.【详解】(1)∵关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根, ∴()22[2(1)]420a a a ∆=----->,解得:3a <,∵a 为正整数,∴1a =,2;(2)∵122(1)x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()2121216x x x x +-=,∴()22[2(1)]2163a a a -----=,解得:11a =-,26a =,∵3a <,∴1a =-.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.24.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38. 【解析】【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12; 故答案为:12;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种, ∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.25.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.【解析】试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即()()()2020280w x y x x =-=--+,然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()2230200y x =--+,然后根据二次函数的最值问题求解;(3)求函数值为150所对应的自变量的值,即解方程()2230200150x --+=,然后利用销售价不高于每件28元确定x 的值.试题解析:(1)根据题意可得:()20w x y =-⋅, ()()20280x x =--+,221201600x x =-+-,w 与x 之间的函数关系为:221201600w x x =-+-;(2)根据题意可得:()2221201*********w x x x =-+-=--+,∵20-<,∴当30x =时,w 有最大值,w 最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当150w =时,可得方程()2230200150x --+=.解得1225,35x x ==,∵3528>,∴235x =不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.。
2020-2021九年级数学上期中试卷含答案(1)
2020-2021九年级数学上期中试卷含答案(1)一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150° 3.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 4.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .2C .2D 2 5.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .06.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14 C .15 D .167.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对8.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 9.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4 10.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .11.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39D .45 二、填空题 13.已知、是方程的两个根,则代数式的值为______.14.已知:如图,CD 是O e 的直径,AE 切O e 于点B ,DC 的延长线交AB 于点A ,20A ∠=o ,则DBE ∠=________度.15.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.16.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.18.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.19.如图,将ABC V 绕点A 逆时针旋转150 ,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.20.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有_____.(填序号)三、解答题21.为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.22.如图,点C 是⊙O 的直径AB 延长线上的一点,且有BO=BD=BC .(1)求证:CD 是⊙O 的切线;(2)若半径OB=2,求AD 的长.23.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.24.如图1,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A出发沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC(点E、F分别在AC、BC上).设点D移动的时间为t秒.(1)试判断四边形DFCE的形状,并说明理由;(2)当t为何值时,四边形DFCE的面积等于20cm2?(3)如图2,以点F为圆心,FC的长为半径作⊙F,在运动过程中,当⊙F与四边形DFCE只有1个公共点时,请直接写出t的取值范围.25.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD 即可解决问题.【详解】解:∵∠AOD=2∠ACD ,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C .【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B .【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.4.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴22222222AB BD +=+=∴⊙O 的半径AO=22AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.5.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.6.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.7.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.8.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键9.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
2020-2021初三数学上期中试卷及答案
A.AB=CD
B.AB=BC
C.AC⊥BD
D.AC=BD
12.如图,在⊙O 中,AB 是⊙O 的直径,AB=10, AC CD DB ,点 E 是点 D 关于
AB 的对称点,M 是 AB 上的一动点,下列结论:①∠BOE=60°;②∠CED= 1 ∠DOB; 2
③DM⊥CE;④CM+DM 的最小值是 10,上述结论中正确的个数是( )
15.如图, AD 为 ABC 的外接圆 O 的直径,如果 BAD 50 ,那么 ∠ACB __________.
16.二次函数 y ax2 bx c 的部分对应值如下表:
利用二次函数的图象可知,当函数值 y>0 时,x 的取值范围是____________ 17.将一元二次方程 x2﹣6x+5=0 化成(x﹣a)2=b 的形式,则 ab=__.
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当 1<x<3 时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1
B.2
C.3
D.4
10.有两个一元二次方程 M : ax2 bx c 0 , N : cx2 bx a 0 ,其中, ac 0 ,
a c ,下列四个结论中错误的是( )
6.A
解析:A 【解析】 【分析】
根据等腰三角形的性质得到 OE 的长,再利用弧长公式计算出弧 CD 的长,设圆锥的底面 圆半径为 r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得 到r .
【详解】
过 O 作 OE AB 于 E , OA=OB=90cm,AOB=120 ,
D. 3 4
3.如图在平面直角坐标系中,将△ABO 绕点 A 顺时针旋转到△AB1C1 的位置,点 B、O 分
2020-2021年度第一学期期中测试 九年级数学答案 (2)
(3)不变………………8 分
∵∠ACB=90°,F 是 BE 的中点
∴CF=BF=EF
………………9 分
同理:DF=BF=EF
………………10 分
∴以 F 为圆心,CF 为半径的圆经过 B、C、E、D ………………11 分
∴∠CFD=2∠CBD=120°
………………12 分
2
第 28 题图
24.(本题满分 10 分) (1)补全圆…………1 分,可得∠AEB=75°…………3 分,∠AOB=150°……………5 分
(2) 150 12 2r ……………8 分,解之得,r=5……………10 分 180
1
第 24 题图
25.(本题满分 10 分)
(1)相切…………1 分,连接 OE,证出 OE⊥EF………4 分,从而 EF 与⊙O 相切………5 分;
21.(本题满分 8 分)
(1)
m
1 2
或m
1
………………4
分
(2)a 1,b m, c 2m2 ,b2 4ac m2 41 2m2 9m2 ………………6 分
m2 0 ,9m2 0 ………………7 分
∴原方程有两个实数根.………………8 分
22.(本题满分 8 分)
(1)作出两条角平分线得 4 分,标出交点 O 点得 1 分………………5 分
2020—2021 年度第一学期期中测试
九年级数学 参考答案
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分)
题号
1
2
3
4
5
6
7
8
答案
B
A
C
A
B
D
D
2020-2021学年度第一学期期中学业水平测试 九年级数学参考答案
2020−2021学年度第一学期期中学业水平测试九年级数学参考答案一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13. 7; 14. 相交; 15. 3; 16. 32; 17.409或5 三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.) 18. (本题满分8分,每小题4分)(1)−12; (2)34-. 19. (本题满分8分)证明:(1))OD=2OA )OC =2OB )12OA OB OD OC ∴== , 又∠AOB =)DOC )))AOB ))DOC ) ……………3分 )2)由(1)得:△AOB ))DOC ) ))ABO =)DCO ) )AB∥DE )))ABO =)EDO ) ))DCO =)EDO )))DOC =)EOD )))DOC ))EOD , ……………5分 ∴OD OCOE OD= , 2·OD OE OC ∴= ……………8分20. (本题满分7分)解:过点A 作AD ⊥BC 于D ……………1分在Rt △ABD 中,AB =4, ∠B =60°∴AD=AB ·sin B = ……………4分∴S △ABC =12BC ·AD =12⨯ ……………7分 21. (本题满分8分)解:如图,连接BC ,∵AB 是⊙O 直径,∴∠ACB =90°, ……………3分 ∵∠B =∠ADC =26°,∴∠CAB =90°−26°=64°. ……………8分22. (本题满分8分)(1)证明:∵CD 为Rt ABC ∆斜边上的中线, ∴12CD AB AD ==, ∴A ACD ∠=∠, ∵//DE AC ,∴CDE ACD A ∠=∠=∠, 又∵90ACB DCE ∠=∠=︒,∴△ABC ∽△DEC . ……………4分 (2)解:在Rt DCE ∆中,2CE =,4CD =,∴DE =12442DEC S ∆=⨯⨯=, ……………6分 ∵CD 为Rt ABC ∆斜边上的中线, ∴28AB CD ==, ∵△ABC ∽△DEC ,∴2ABC DEC S AB S DE ∆∆⎛⎫= ⎪⎝⎭,即24ABC S ∆=, ∴645ABC S ∆=. ……………8分 23. (本题满分8分)解:(1)由已知得116cm 2===AP BP AB , 在Rt)APE 中, )sin =∠APAEP AE,)1616 ==53sin sin180.3≈≈∠︒APAEAEP. ……………………3分答:眼睛E与显示屏顶端A的水平距离AE约为53cm;(2)如图,过点B作BF)AC于点F,)∥EAB+∥BAF=90°,∥EAB+∥AEP=90°,)∥BAF=∥AEP=18°,在Rt)ABF中,AF=AB•cos∥BAF=32×cos18°≈32×0.9≈28.8,…………5分BF=AB•sin)BAF=32×sin18°≈32×0.3≈9.6,)BF∥CD,)∥CBF=∥BCD=30°,)3=tan=9.6tan30=9.6 5.44∠⨯︒⨯≈CF BF CBF,……………………7分C)AC=AF+CF=28.8+5.44≈34(cm).答:显示屏顶端A到底座C的距离AC约为34cm.………………8分24. (本题满分10分)(1)证明:连接OC,∵CE=CB,∴CE⏜=CB⏜,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3;∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;……………5分(2)解:∵AB是直径,∴∠ACB=90°,∵AC∴5AB===. ……………6分∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴AD AC DC AC AB CB==,∴AD=4,DC=2.……………8分在Rt△DCE中,DE1==,)AE=AD-ED=4﹣1=3.……………10分25.(本题满分12分)解:(1)∵四边形ABCD是正方形,四边形AEFG是正方形,∴∠ACD=∠AFG=45°,∵∠CFM=∠AFG,∴∠CFM=∠ACM=45°,∵∠CMF=∠AMC,∴△MFC∽△MCA;……………………4分(2)∵四边形ABCD是正方形,∴∠ABC=90°,∠BAC=45°,∴AC AB,同理可得AF ,∴==AF ACAE AB∵∠EAF =∠BAC =45°,∴∠CAF+∠CAE =∠BAE+∠CAE =45°, ∴∠CAF =∠BAE ,∴△ACF ∽△ABE ; ……………………8分 (3)∵DM =1,CM =2, ∴AD =CD =1+2=3,∴AM = ∵△MFC ∽△MCA ,∴=CM FMAM CM2FM =,∴FM , ……………………10分∴AF =AM ﹣FM =5,∴=AG ,即正方形AEFG . ……………………12分。
2020-2021九年级数学上期中试卷(含答案)(1)
2020-2021九年级数学上期中试卷(含答案)(1)一、选择题1.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形2.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 3.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >04.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A .16B .29C .13D .235.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 6.已知()222226x y y x +-=+,则22x y +的值是( ) A .-2 B .3 C .-2或3 D .-2且37.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .1∶2B .1∶2C .3∶2D .1∶3 10.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个 11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .45二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知、是方程的两个根,则代数式的值为______. 15.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)16.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.17.如图,Rt ABC ∆中,已知90C =∠,55B ∠=,点D 在边BC 上,2BD CD =.把线段BD 绕着点D 逆时针旋转α(0180α<<)度后,如果点B 恰好落在Rt ABC ∆的边上,那么α=__________.18.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.19.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).20.如图,O 是ABC 的外接圆,30C ∠=,2AB cm =,则O 的半径为________cm .三、解答题21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式;(2)求△MCB 的面积MCB S. (3)在坐标轴上,是否存在点N ,满足△BCN 为直角三角形?如存在,请直接写出所有满足条件的点N .22.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元23.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.24.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.25.三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.2.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.3.B解析:B【解析】【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2b a>0, ∴b >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P (一红一黄)=26=13.故选C . 5.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.6.B解析:B【解析】试题分析:根据题意,先移项得()2222260x y y x +---=,即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.故选B.点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.7.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.8.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.B解析:B【解析】【分析】【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP,∴PP PB=,解得PB=2x,∴P′A:PB=x:2x=1:2.故选B.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B2倍转化到同一个直角三角形中是解题的关键.10.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.11.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5整理解析:【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.【详解】∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.15.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.16.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23 解析:34【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34. 故其概率为:34. 【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比. 17.或【解析】【分析】分两种情况:①当点落在AB 边上时②当点落在AB 边上时分别求出的值即可【详解】①当点落在AB 边上时如图1∴DB=DB′∴∠B=∠DB′B=55°∴∠BDB′=180°-55°-55°解析:70或120【解析】【分析】分两种情况:①当点B 落在AB 边上时,②当点B 落在AB 边上时,分别求出α的值,即可.【详解】①当点B 落在AB 边上时,如图1,∴DB=DB ′,∴∠B=∠DB ′B=55°,∴α=∠BDB ′=180°-55°-55°=70°;②当点B 落在AB 边上时,如图2,∴DB=DB ′=2CD ,∵90C =∠,∴∠CB ′D=30°,∴α=∠BDB ′=30°+90°=120°.故答案是:70或120.【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.18.【解析】【分析】画出树状图得出所有情况让从左向右恰好成上中下的情况数除以总情况数即为所求的概率【详解】画树状图如图:共有6个等可能的结果从上到下的顺序恰好为上册中册下册的结果有1个∴从上到下的顺序恰解析:1 6【解析】【分析】画出树状图得出所有情况,让从左向右恰好成上、中、下的情况数除以总情况数即为所求的概率.【详解】画树状图如图:共有6个等可能的结果,从上到下的顺序恰好为“上册、中册、下册”的结果有1个,∴从上到下的顺序恰好为“上册、中册、下册”的概率为16,故答案为:16.【点睛】本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm ,母线长5cm ,根据勾股定理得圆锥的底面半径为3cm ,所以圆锥的侧面积=π×3×5=15πcm ².故答案为:15π.【点睛】本题考查圆锥的计算.20.2【解析】【分析】作直径AD 连接BD 得∠ABD=90°∠D=∠C=30°则AD=4即圆的半径是2(或连接OAOB 发现等边△AOB)【详解】作直径AD 连接BD 得:∠ABD=90°∠D=∠C=30°∴A解析:2【解析】【分析】作直径AD ,连接BD ,得∠ABD =90°,∠D =∠C =30°,则AD =4.即圆的半径是2.(或连接OA ,OB ,发现等边△AOB .)【详解】作直径AD ,连接BD ,得:∠ABD =90°,∠D =∠C =30°,∴AD =4,即圆的半径是2.【点睛】本题考查了圆周角定理.能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.三、解答题21.(1)y=﹣x 2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可. (2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOB S S S S 梯形﹣﹣即可解决问题. (3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOB S S S S =梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15. (3)存在.如图2中,∵OC=OB=5,∴△BOC 是等腰直角三角形,①当C 为直角顶点时,N 1(﹣5,0).②当B 为直角顶点时,N 2(0,﹣5).③当N 为直角顶点时,N 3(0,0).综上所述,满足条件的点N 坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质22.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.23.(1) 12;(2)公平,理由见解析【解析】【分析】本题考查了概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【详解】方法一画树状图:由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)= 12.方法二列表如下:由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P (和为奇数)= 12; (2)∵P (和为奇数)=12,∴P (和为偶数)= 12,∴这个游戏规则对双方是公平的. 【点睛】 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)证明见解析;(2)352r =. 【解析】【分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==,根据勾股定理得:224845AB =+=45OA r ∴=,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()224520r r -=+, 解得:35r =. 【点睛】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.25.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.。
2020-2021九年级数学上期中试题含答案(6)
2020-2021九年级数学上期中试题含答案(6)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上4.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .5.下列交通标志是中心对称图形的为( )A .B .C .D .6.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=19 7.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 8.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a+b <0; ③213a -≤≤-; ④248acb a ->;其中正确的结论是( )A .①③④B .①②③C .①②④D .①②③④9.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上 10.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .211.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 12.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2二、填空题13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2)2=16﹣x 1x 2,实数m 的值为________.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知:如图,CD 是O e 的直径,AE 切O e 于点B ,DC 的延长线交AB 于点A ,20A ∠=o ,则DBE ∠=________度.16.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.17.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.18.如图,四边形ABCD 是⊙O 的内接四边形,∠B=135°,则∠AOC 的度数为_____.19.已知一个直角三角形的两条直角边长分别为3cm和4cm,则这个直角三角形的内切圆的半径为 cm20.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与轴的一个交点的坐标为(m,0),若2<m<3,则a的取值范围是_________.三、解答题21.如图,在Rt△ABC中,∠C=90°,点D在AB上,以AD为直径的⊙O与BC相交于点E,且AE平分∠BAC.(1)求证:BC是⊙O的切线;(2)若∠EAB=30°,OD=3,求图中阴影部分的面积.22.某市场将进货价为40元/件的商品按60元/件售出,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元/件,每星期该商品要少卖出10件.(1)请写出该商场每月卖出该商品所获得的利润y(元)与该商品每件涨价x(元)间的函数关系式;(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?23.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求阴影部分的面积.24.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD,(1)求证:CD是⊙O的切线;(2)若BC=6,tan∠CDA=23,求CD的长.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.3.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D .7.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.8.B解析:B【解析】【分析】①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,0),当x >3时,y <0,故①正确;②抛物线开口向下,故a <0,∵12b x a=-=,∴2a+b=0.∴3a+b=0+a=a <0,故②正确;③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=0得:y=﹣3a .∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴233a ≤-≤.解得:213a -≤≤-,故③正确; ④.∵抛物线y 轴的交点B 在(0,2)和(0,3)之间,∴2≤c≤3,由248acb a ->得:248ac a b ->,∵a <0,∴224b c a -<,∴c ﹣2<0,∴c <2,与2≤c≤3矛盾,故④错误.【详解】解:①由抛物线的对称性可求得抛物线与x 轴令一个交点的坐标为(3,0),当x >3时,y <0,故①正确;②抛物线开口向下,故a <0, ∵12b x a=-=, ∴2a+b=0. ∴3a+b=0+a=a <0,故②正确;③设抛物线的解析式为y=a (x+1)(x ﹣3),则223y ax ax a =--,令x=0得:y=﹣3a .∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间,∴233a ≤-≤. 解得:213a -≤≤-, 故③正确;④.∵抛物线y 轴的交点B 在(0,2)和(0,3)之间,∴2≤c≤3,由248ac b a ->得:248ac a b ->,∵a <0, ∴224b c a-<, ∴c ﹣2<0,∴c <2,与2≤c≤3矛盾,故④错误.故选B .【点睛】本题考查二次函数图象与系数的关系,结合图像,数形结合的思想的运用是本题的解题关键..9.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a 、b 都是实数,那么a +b =b +a 是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】 本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.11.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.12.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h =8,r =6,可设圆锥母线长为l ,由勾股定理,l 10,圆锥侧面展开图的面积为:S 侧=12×2×6π×10=60π, 所以圆锥的侧面积为60πcm 2.故选:C .【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可. 二、填空题13.1【解析】【分析】【详解】解:由题意有△=2(m+1)2﹣4(m2﹣1)≥0整理得8m+8≥0解得m≥﹣1由两根关系得x1+x2=﹣2(m+1)x1x2=m2﹣1(x1﹣x2)2=16﹣x1x2(x解析:1【解析】【分析】【详解】解:由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,由两根关系,得x1+x2=﹣2(m+1),x1x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1.∵m≥﹣1,∴m=1故答案为:1.【点睛】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D解析:55【解析】【分析】连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.【详解】如图,连接BC,∵CD是⊙O的直径,∴∠CBD=90°,∵AE是⊙O的切线,∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°①,∠A+∠2=∠1②,-②得∠1=55°即∠DBE=55°.故答案为:∠DBE=55°.【点睛】本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.16.x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步那么宽就应该是(x﹣12)步根据面积为864即可得出方程【详解】解:设矩形田地的长为x步那么宽就应该是(x﹣12)步根据矩形面积=长×宽解析:x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.17.12【解析】【分析】设长为x步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60解析:12【解析】【分析】设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.【详解】设长为x步,宽为(60-x) 步,x(60-x)=864 ,解得,x1=36,x2=24(舍去),∴当x=36 时,60-x=24 ,∴长比宽多:36-24=12 (步),故答案为:12.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 18.【解析】【分析】由圆内接四边形的性质先求得∠D的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD是⊙O的内接四边形∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°-135°=45°,∴∠AOC=90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.19.1【解析】通过勾股定理计算出斜边的长得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半计算出内切圆半径最后求它们的差解:因为斜边==5内切圆半径r==1;所以r=1故填1会利用解析:1【解析】通过勾股定理计算出斜边的长,得到三角形的外接圆半径;再利用内切圆半径等于两直角边的和与斜边的差的一半,计算出内切圆半径,最后求它们的差.解:因为斜边==5,内切圆半径r==1;所以r=1.故填1.会利用勾股定理进行计算.其内切圆半径等于两直角边的和与斜边的差的一半.20.<a<或-3<a<-2【解析】【分析】先用a表示出抛物线与x轴的交点再分a >0与a<0两种情况进行讨论即可【详解】解:∵y=ax2+(a2-1)x-a=(ax-1)(x+a)∴当y=0时x1=x2=解析:13<a<12或-3<a<-2.【解析】【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【详解】解:∵y=ax2+(a2-1)x-a=(ax-1)(x+a),∴当y=0时,x1=1a,x2=-a,∴抛物线与x轴的交点为(1a,0)和(-a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<1a<3,解得13<a<12;当a<0时,2<-a<3,解得-3<a<-2.故答案为:13<a<12或-3<a<-2.【点睛】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题21.(1)证明见解析;(2)93322π-. 【解析】 试题分析:()1连接OE .证明OE AC P ,从而得出∠OEB =∠C =90°,从而得证. ()2阴影部分的面积等于三角形的面积减去扇形的面积.试题解析:()1连接OE .∵AE 平分∠BAC ,∴∠CAE =∠EAD ,∵OA =OE ,∴∠EAD =∠OEA ,∴∠OEA =∠CAE ,OE AC ∴P ,∴∠OEB =∠C =90°,∴OE ⊥BC ,且点E 在⊙O 上,∴BC 是⊙O 的切线.(2)解: ∵∠EAB =30°,∴∠EOD =60°,∵∠OEB =90°,∴∠B =30°,∴OB =2OE =2OD =6, ∴223 3.BE OB OE =-=93OEB S =V 扇形OED 的面积3π.2= 933π.2- 22.(1)y =−10x 2+100x+6000;(2)每月该商场销售该种商品获利不能达到6300元,理由见解析;(3)每件售价不低于62元且不高于68元时,该商场获得的月利润不低于6160元【解析】【分析】(1)该商品每件涨价x (元),该商场每月卖出该商品所获得的利润y (元),依题意可得y与x的函数关系式;(2)不能,把函数关系式用配方法化为y=-10(x-5)2+6250,可得y有最大值为6250;(3)令-10x2+100x+6000≥6160,求出x的取值范围即可.【详解】(1)该商品每件涨价x(元),该商场每月卖出该商品所获得的利润y(元),根据题意得(6040)(30010)=+--y x x∴y=−10x2+100x+6000故答案为:y=−10x2+100x+6000(2)每月该商场销售该种商品获利不能达到6300元,理由:∵y=−10x2+100x+6000=−10(x−5)2+6250,当x=5时,y取最大值为6250元,小于6300元∴不能达到;(3)依题意有:−10x2+100x+6000⩾6160,整理得:x2−10x+16⩽0,∴(x−2)(x−8)⩽0,∴①2080xx-⎧⎨-⎩……或②2080xx-≤⎧⎨-≥⎩,解①得:2⩽x⩽8,解②得:x⩽2且x⩾8,无解,∴当售价不低于62元且不高于68元时,商场获得的月利润不低于6160元.【点睛】本题考查了二次函数的实际应用,理解两个变量表示的含义,根据题意找到等量关系列出函数关系式是解题的关键.23.(1)60°;(2)见解析;(3)163π-【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D =60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC =60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连接OC,作OF⊥AC,根据三角形中位线性质得出OF=2,根据圆周角定理得出∠AOC=120°,然后根据S阴影=S扇形﹣S△AOC即可求得.【详解】解:(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.可得∠BAC=90°﹣∠ABC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,得OA⊥AE,又∵OA是⊙O的半径,∴AE是⊙O的切线;(3)连接OC,作OF⊥AC,∴OF垂直平分AC,∵OA=OB,∴OF=12BC=2,∵∠D=60°,∴∠AOC=120°,∠ABC=60°,∴AC=32AB=43,∴S阴影=S扇形﹣S△AOC=2120411643243 36023ππ⨯-⨯⨯=-.【点睛】本题着重考查了切线的判定、圆周角定理以及扇形面积公式等知识,属于中档题.解题过程中,请注意注意辅助线的作法与数形结合思想的应用.24.(1)证明见解析;(2)4.【解析】分析:(1)连接OD,如图,先证明∠CDA=∠ODB,再根据圆周角定理得∠ADO+∠ODB=90°,则∠ADO+∠CDA=90°,即∠CDO=90°,于是根据切线的判定定理即可得到结论;(2)由于∠CDA=∠ODB,则tan∠CDA=tan∠ABD=23,根据正切的定义得到tan∠ABD=23ADBD=,接着证明△CAD∽△CDB,由相似的性质得23CD ADBC BD==,然后根据比例的性质可计算出CD的长.详(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∴CD是⊙O的切线;(2)∵∠CDA=∠ODB,∴tan∠CDA=tan∠ABD=23,在Rt△ABD中,tan∠ABD=23 ADBD,∵∠DAC=∠BDC,∠CDA=∠CBD,∴△CAD∽△CDB,∴23 CD ADBC BD==,∴CD=23×6=4.点睛:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.25.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
2020-2021九年级数学上期中试题含答案(4)
2020-2021九年级数学上期中试题含答案(4)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 2.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x += 3.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上4.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<5.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .2 6.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3B .﹣3或1C .3D .1 7.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 8.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 9.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .10.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④12.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 二、填空题13.抛物线y=ax 2+bx+c 的顶点为D(﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c <0;③c ﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根.其中正确结论是________.14.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.15.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .16.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².17.如图,四边形ABCD 是O e 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD ∠的度数为______.18.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .19.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.20.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.三、解答题21.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.()1求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;()2求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?()3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)23.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.24.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣5,1),B (﹣2,2),C (﹣1,4),请按下列要求画图:(1)将△ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;(2)画出与△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点A 2的坐标.25.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯的概率是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.3.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D【解析】【分析】【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∵AB=2,∴BD=2,∴==∴⊙O 的半径AO=2AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可.【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,∴a 2+2a ﹣3=0,解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3,即(x ﹣1)2=﹣3,此方程无实数解;当a =1时,x 2﹣2x +1=1,此时方程有解,故选:D .【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.7.A解析:A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.8.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=1lr2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB=11lr=22×6×3=9.故选D.【点睛】本题考查扇形面积的计算.9.D解析:D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.10.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC绕点A旋转一定角度得到△ADE,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.11.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键二、填空题13.②③④【解析】【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a=−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义. 14.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.-15.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.16.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R 圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π. 故答案为2π.【点睛】本题考查了圆锥的侧面积公式:S =12l •R .圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径. 17.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD 是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补 解析:70°【解析】【分析】先根据圆周角定理求出BAD ∠的度数,再由圆内接四边形的性质即可得出结论.【详解】80CBD ∠︒Q =,80CAD CBD ∴∠∠︒==.. 30BAC ∠︒Q =3080110BAD ∴∠︒+︒︒==.∵四边形ABCD 是O e 内接四边形,180********BCD BAD ∴∠︒∠︒︒︒=﹣=﹣=.故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键. 18.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为 解析:124; 【解析】【分析】 先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人, ∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是124. 故答案为124. 19.【解析】【分析】连接OB 根据切线的性质得到∠OBA=90°根据勾股定理求出OA 根据题意计算即可【详解】连接OB ∵AB 是⊙O 的切线∴∠OBA=90°∴OA==4当点P 在线段AO 上时AP 最小为2当点P 在解析:26AP ≤≤【解析】【分析】连接OB ,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA ,根据题意计算即可.【详解】连接OB ,∵AB 是⊙O 的切线,∴∠OBA=90°,∴22AB OB +=4,当点P 在线段AO 上时,AP 最小为2,当点P 在线段AO 的延长线上时,AP 最大为6,∴AP 的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点睛】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.20.-2【解析】已知3是关于x 的方程x2-5x+c=0的一个根代入可得9-3+c=0解得c=-6;所以由原方程为x2-5x-6=0即(x+2)(x-3)=0解得x=-2或x=3即可得方程的另一个根是x=解析:-2【解析】已知3是关于x 的方程x 2-5x +c =0的一个根,代入可得9-3+c =0,解得,c =-6;所以由原方程为x 2-5x -6=0,即(x +2)(x -3)=0,解得,x =-2或x =3,即可得方程的另一个根是x =-2.三、解答题21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ;(2)根据题意,得:﹣3x 2+54x=25×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍), ∴32x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.22.()()21y 5x 800x 2750050x 100=-+-≤≤;()2当x 80=时,y 4500=最大值;()3 销售单价应该控制在82元至90元之间.【解析】【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:()()y x 50505100x ⎡⎤=-+-⎣⎦()()x 505x 550=--+25x 800x 27500=-+-()2y 5x 800x 2750050x 100∴=-+-≤≤;()22y 5x 800x 27500=-+-25(x 80)4500=--+a 50=-<Q ,∴抛物线开口向下.50x 100≤≤Q ,对称轴是直线x 80=,∴当x 80=时,y 4500=最大值;()3当y 4000=时,25(x 80)45004000--+=,解得1x 70=,2x 90=.∴当70x 90≤≤时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得()505x 5507000-+≤,解得x 82≥.82x 90∴≤≤,50x 100≤≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.23.(1)6m <且2m ≠;(2)12x =-,243x =-【解析】【分析】(1)根据题意可得20m -≠且()()()22423m m m ∆=--+()460m >=--,由此即可求得m 的取值范围;(2)在(1)的条件下求得m 的值,代入解方程即可.【详解】(1)Q 关于x 的一元二次方程()22230m x mx m -+++=有两个不相等的实数根, 20m ∴-≠且()()()22423m m m ∆=--+()460m >=--. 解得6m <且2m ≠.m ∴的取值范围是6m <且2m ≠.(2)在6m <且2m ≠的范围内,最大整数为5.此时,方程化为231080x x ++=.解得12x =-,243x =-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.(1)画图形如图所示见解析,(2)画图形如图所示见解析,点A 2(5,-1)【解析】【分析】(1)将三个顶点分别向右平移4个单位长度、再向下平移1个单位长度,得到对应点,再顺次连接即可得;(2)将△ABC 的三个顶点关于原点O 成中心对称的对称点,再顺次连接可得.【详解】(1)画图形如图所示,(2)画图形如图所示,点A 2(5,-1)【点睛】本题主要考查作图-旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义及其性质,并据此得出变换后的对应点.25.(1)29;(2)2()3n 【解析】【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为23,到第2个路口还没有遇到红灯的概率为24293y ⎛⎫== ⎪⎝⎭【详解】解:(1)画出树状图即可得到结果;由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2, 所以到第二个路口时第一次遇到红灯的概率为29; (2)P (第一个路口没有遇到红灯)=23, P (前两个路口没有遇到红灯)=282()183=, 类似地可以得到P (每个路口都没有遇到红灯)=2()3n .故答案为:2()3n【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.35°B.40°C.60°D.70°
4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
24.关于x的一元二次方程 有两个不相等的实数根.
(1)求k的取值范围;
(2)当k为正整数时,求此时方程的根.
25.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.
考点:二次函数图象上点的坐标特征;二次函数的最值.
6.D
解析:D
【解析】
【分析】
六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.
【详解】
解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,
故选D.
【点睛】
本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.
【详解】
添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形,
故选D.
【点睛】
考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.
∴△=b2−4ac>0,
∵方程N的△=b2−4ac>0,
∴方程N也有两个不相等的实数根,故不符合题意;
B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,
∴ ,
∴即 是方程N的一个根,故不符合题意;
C、∵方程M有两根符号相同,
∴两根之积 >0,
∴ >0,即方程N的两根之积>0,
∴方程N的两根符号也相同,故本选项不符合题意;
7.B
解析:B
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、∵任何数的绝对值都是非负数,∴ 是必然事件,不符合题意;
B、∵ ,∴ 的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C、∵ ,∴a-1<-1<0是必然事件,故C不符合题意;
D、∵ >0,∴ 是不可能事件,故D不符合题意;
A.1B.2C.3D.4
5.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
6.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为( )
A. B. C. D.
9.有两个一元二次方程 , ,其中, , ,下列四个结论中错误的是()
A.如果方程 有两个不相等的实数根,那么方程 也有两个不相等的实数
B.如果4是方程 的一个根,那么 是方程 的另一个根
C.如果方程 有两根符号相同,那么方程 的两符号也相同
D.如果方程 和方程 有一个相同的根,那么这个根必是
∵抛物线的顶点坐标为(1,n),
∴ =n,
∴b2=4ac-4an=4a(c-n),所以③正确;
∵抛物线与直线y=n有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选C.
【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
故选:B.
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8.D
解析:D
【解析】
【分析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
二、填空题
13.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为_____.
14.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.
15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.
22.如图,在等腰 中, ,以 为直径作 交 于点 ,过点 作 ,垂足为 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
23.列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?
19.如图, 的半径为2,切线 的长为2 ,点 是 上的动点,则 的长的取值范围是_________.
20.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.
三、解答题
21.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.
(1)求a的取值范围;
(2)当a为符合条件的最大整数,求此时方程的解.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD= ×OD×CD= t2(0≤t≤3),即S= t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
A.32×20﹣2x2=570B.32×20﹣3x2=570
C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=570
7.已知实数 ,则下列事件是随机事件的是()
A. B. C. D.
8.如图, 中, ,且 ,设直线 截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
【详解】
∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y>0,
即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x=- =1,即b=-2a,
∴3a+b=3a-2a=a,所以②错误;
=2×0+3×(-1)+8×5+2
=39.
故选:C.
【点睛】
本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2= ,x1·x2= ;熟练掌握韦达定理是解题关键.
10.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()
A.AB=CDB.AB=BCC.AC⊥BDD.AC=BD
11.若a,b为方程 的两个实数根,则2 的值为()
A.-41B.-35C.39D.45
12.如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是()
A.30ºB.35ºC.25ºD.60º
11.C
解析:C
【解析】
【分析】
根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把2 变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.
【详解】
∵a,b为方程 的两个实数根,
∴a2-5a-1=0,a+b=5,ab=-1,
∴2
=2(a2-5a-1)+3ab+8(a+b)+2
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
9.D
解析:D
【解析】
【分析】
分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.
【详解】
解:A、∵方程M有两个不相等的实数根,
2.D
解析:D
【解析】
【详解】
∵二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,
∴抛物线的对称轴为直线x=2,
则− =− =2,
解得:b=−4,