历年高考真题(数学文化)

合集下载

高中数学文化试题及答案

高中数学文化试题及答案

高中数学文化试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数y=2x^2的图像?A. 经过原点的抛物线B. 经过原点的直线C. 经过原点的双曲线D. 经过原点的椭圆答案:A2. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 + r^2 = 0D. (x-a)^2 + (y-b)^2 = 0答案:A3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {3,4}答案:B4. 若f(x)=x^2-4x+3,则f(2)的值为:A. 1C. 3D. 5答案:A5. 等差数列{an}的前三项分别为1, 4, 7,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B6. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. 2D. -1答案:B7. 已知向量a=(2,3),b=(1,k),若a⊥b,则k的值为:A. 2B. -2C. 3D. -3答案:B8. 函数y=sinx在区间[0,π]上的最大值为:B. 1C. πD. -1答案:B9. 圆的半径为5,圆心在原点,该圆的方程为:A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. x^2 + y^2 - 5^2 = 0D. x^2 + y^2 + 5^2 = 0答案:A10. 函数f(x)=x^2-6x+8的顶点坐标为:A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A二、填空题(每题4分,共20分)1. 等比数列{an}的首项为2,公比为3,其第五项为______。

答案:1622. 抛物线y^2=4x的焦点坐标为______。

答案:(1,0)3. 直线l的斜率为-1,且经过点(2,3),则直线l的方程为______。

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。

做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。

1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。

近5年高考新课标(文科)数学高考试卷和详解答案

近5年高考新课标(文科)数学高考试卷和详解答案

2009-2013年普通高等学校招生全国统一考试试卷2009年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的.1. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =A .{3,5}B .{3,6}C .{3,7}D .{3,9} 2. 复数3223ii+=- A .1 B .1- C .i (D)i -3.对变量,x y 有观测数据(i x ,i y )(1,2,,10i =⋅⋅⋅),得散点图1;对变量,u v 有观测数据(i u ,i v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 4.有四个关于三角函数的命题:1p :∃x ∈R , 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π,1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是A .1p ,4pB .2p ,4pC .1p ,3pD .2p ,3p5.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为A .2(2)x ++2(2)y -=1 B .2(2)x -+2(2)y +=1 C .2(2)x ++2(2)y +=1 D .2(2)x -+2(2)y -=16.设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值 7.已知()()3,2,1,0=-=-a b ,向量λ+a b 与2-a b 垂直,则实数λ的值为A .17-B .17C .16- D .16 8.等比数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A .38B .20C .10D .99.如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是A .AC BE ⊥B .EF ∥平面ABCDC .三棱锥A BEF -的体积为定值D .△AEF 的面积与△BEF 的面积相等 10.执行如图所示的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于 A .3 B . 3.5 C . 4 D .4.511.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为A .48122+B .48242+C .36122+D .36242+12.用min{a ,b ,c}表示a ,b ,c 三个数中的最小值.设()min{2,2,10}xf x x x =+-(x ≥0),则()f x 的最大值为A .4B .5C .6D .7第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.曲线21xy xe x =++在点(0,1)处的切线方程为________________.14.已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若(2,2)P 为AB 的中点,则抛物线C 的方程为________________.15.等比数列{}n a 的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =________________.16.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值. 18.(本小题满分12分)如图,在三棱锥P ABC -中,△P AB 是等边三角形,∠P AC =∠PBC =90 º. (Ⅰ)证明:AB ⊥PC ;(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积.19.(本小题满分12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(Ⅰ)A 类工人中和B 类工人各抽查多少工人?(Ⅱ)从A 类工人中抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1:生产能力分组[)100,110[)110,120[)120,130[)130,140[)140,150人数 48x53表2:生产能力分组[)110,120[)120,130[)130,140[)140,150人数6y3618(i )先确定,x y ,再在答题纸上完成下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(ii )分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表).20.(本小题满分12分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个项点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若P 为椭圆C 的动点,M 为过P 且垂直于x 轴的直线上的点,OP e OM=,(e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线. 21.(本小题满分12分)已知函数3223()39f x x ax a x a =--+. (Ⅰ)设1a =,求函数()f x 的极值; (2)若14a >,且当[]1,4x a ∈时,)('x f ≤12a 恒成立,试确定a 的取值范围.22.(本小题满分10分)选修4—1;几何证明选讲如图,已知∆ABC 中的两条角平分线AD 和CE 相交于H ,∠B=60,F 在AC 上,且AE AF =。

历年高考真题(数学文化).doc

历年高考真题(数学文化).doc

历年高考真题(数学文化)1. (2009 湖北· 理)古希腊人常用小石子在沙滩上摆成各种形状研究数,如他们研究过图 1 中的 1, 3, 6, 10,,由于这些数能表示成三角形,将其称为三角形数;类似地,称图 2 中的 1, 4,9,16这样的数为正方形数,下列数中既是三角形数又是正方形数的是()2. ( 2011 湖北·文)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共 4 升,则第 5 节的容积为A.1升B .67升C .47升D .37升66 44 333. ( 2011 湖北·理)《九章算术》“竹九节”问题:现有一根9 节的竹子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,下面 3 节的容积共4 升,则第 5 节的容积为升.4.( 2012? 湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径 d 的一个近似公式 d 3 16 = .. 判断,V .人们还用过一些类似的近似公式.根据π9下列近似公式中最精确的一个是()A. d 3 16d 3 2V C. d 3300d 321 V B. V D. V 9 157 115. ( 2013? 湖北)在平面直角坐标系中,若点P(x, y)的坐标 x,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为 S,其内部的格点数记为 N,边界上的格点数记为 L.例如图中△ ABC是格点三角形,对应的S=1, N=0, L=4.(Ⅰ)图中格点四边形 DEFG对应的 S,N, L 分别是 ________;(Ⅱ)已知格点多边形的面积可表示为S aN bL c 其中a,b,c为常数.若某格点多边形对应的N=71, L=18,则 S=________(用数值作答).6.( 2014? 湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高 h,计算其体积 V 的近似公式 V1 L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式236V L2h 相当于将圆锥体积公式中的π近似取为()75A. 22B. 25C. 157D. 3557 8 50 1137.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷28 粒,则这批米内夹谷约为PA. 134 石B. 169 石C. 338石D. 1365 石F E8. ( 2015 湖北)《九章算术》中,将底面为长方形且有一D CA B第19题图条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马 P ABCD 中,侧棱 PD底面 ABCD ,且 PD CD ,过棱 PC 的中点 E ,作 EFPB 交 PB 于点 F ,连接 DE, DF, BD, BE.(Ⅰ)证明: PB平面 DEF .试判断四面体 DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)若面 DEF 与面 ABCD 所成二面角的大小为π,3求 DC的值. BC9. ( 2004 上海春季卷)如图,在由二项式系数所构成的杨辉三角形中,第_____行中从左至右第 14 与第 15 个数的比为2 : 3.10. ( 2013 上海)在 xOy 平面上,将两个半圆弧 ( x - 1) 2+ y 2= 1( x ≥ 1) 和( x - 3) 2+ y 2=1( x ≥ 3) 、两条直线 y = 1 和 y =- 1 围成的封闭图形记为,如图中阴影部分.记 D 绕 y 轴旋转一D周而成的几何体为 Ω. 过 (0 , y )(| y | ≤ 1) 作 Ω的水平截面,所得截面面积为 4 1 y 2 + 8π. 试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 ______.11. ( 2009 福建) . 五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为 1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为 3 的倍数,则报该数的同学需拍手一次已知甲同学第一个报数,当五位同学依序循环报到第100 个数时,甲同学拍手的总次数为________.12. ( 2003 全国卷·理)如图,一个地区分为 5 个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有 4 种颜色可供选择,则不同的着色方法共有种(以数字作答)13. ( 2015 全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何“其意思为:在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少已知 1 斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B. 22 斛C.36 斛D.66 斛14.(2015 全国Ⅱ卷)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b 分别为14,18,则输出的 a =()A. 0B.2C. 4D.1415.(2016 全国Ⅱ卷)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若输入的x=2,n=2,依次输入的 a 为 2, 2, 5,则输出的s=(A)7(B)12(C)17(D)34。

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(1卷)(含全国1卷共5套)

近五年高考文科数学试卷及答案解析(全国1卷)(2016年—2020年)说明:含有2016年—2020年的全国1卷高考文科数学试题以及答案详细解析(客观题也有答案详解)目录2020年普通高等学校招生全国统一考试文科数学(I卷)答案详解 (3)2020年普通高等学校招生全国统一考试文科数学(I卷) (19)2019年普通高等学校招生全国统一考试文科数学1卷 (29)2019年普通高等学校招生全国统一考试文科数学1卷答案详解 (39)2018年普通高等学校招生全国统一考试文科数学1卷 (50)2018年普通高等学校招生全国统一考试文科数学1卷答案详解 (60)2017年普通高等学校招生全国统一考试文科数学1卷 (71)2017年普通高等学校招生全国统一考试文科数学I卷答案详解 (81)2016年普通高等学校招生全国统一考试文科数学1卷 (93)2016年普通高等学校招生全国统一考试文科数学1卷答案详解 (103)2020年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(集合)已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B.{}1,5C.{}3,5 D.{}1,3【解析】∵{}14A x x =-<<,∴{1,3}A B = .【答案】D2.(复数)若312z i i =++,则z =A.0 B.1C. D.2【解析】∵3i i =-,∴1z i =+,∴z 【答案】C3.(立体几何)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.514- B.512C.514+ D.512【解析】如图A3所示,设正四棱锥底面的边长为a ,则有22221212h am a h m ⎧=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩整理得22420m am a --=,令mt a=,则有24210t t --=,∴114t +=,214t -=(舍去),即14m a +=.图A3【答案】C4.(概率统计)设O 为正方形ABCD 的中心,在O,A ,B,C,D 中任取3点,则取到的3点共线的概率为A.15B.25C.12D.45【解析】如图A4所示,从O,A ,B,C,D 中任取3点的所有情况数为35C =10,取到的3点共线的情况有:AOC 、BOD ,共2种情况,所以所求的概率为51102==P.图A4【答案】A5.(概率统计)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i x y i =(1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y a bx=+ B.2y a bx =+ C.xy a be =+ D.ln y a b x=+【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选D选项.【答案】D6.(解析几何)已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A.1B.2C.3D.4【解析】222(3)3x y -+=,设直线方程为2(1)y k x -=-,∴20kx y k -+-=,∴圆心(3,0)到该直线的距离为d ==,∴2max 8d =,故弦的长度的最小值为2==.【答案】B7.(三角函数)设函数()cos()6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为A.109π B.76π C.43π D.32π【解析】∵函数过点4π,09⎛⎫- ⎪⎝⎭,∴4ππcos()=096x ω-+,∴4πππ=962x ω-+-,解得23=ω,∴()f x 的最小正周期为3π4π2==ωT .【答案】C8.(函数)设3log 42a =,则4a -A.116B.19C.18D.16【解析】∵33log 4log 42a a ==,∴2439a ==,∴11449a a -==.【答案】B9.(算法框图)执行右面的程序框图,则输出的n =A.17B.19C.21D.23【解析】①输入10n S ==,,得1S S n =+=,100S ≤成立,继续;②输入31n S ==,,得4S S n =+=,100S ≤成立,继续;③输入54n S ==,,得9S S n =+=,100S ≤成立,继续;……由上述规律可以看出,S 是一个以a 1=1为首项,d =2为公差的等差数列的前m 项和,且21n m =-,故有21(1)2m m m S ma d m -=+=.当2100m S m =>,即11n >时,程序退出循环,此时2121n m =-=.【答案】C10.(数列)设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=A.12B.24C.30D.32【解析】设{}n a 的公比为q ,∵234123(+)2a a a q a a a ++=+=,∴2q =,∴55678123+(+)232a a a q a a a +=+==.【答案】D11.(解析几何)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则∆12PF F 的面积为A.72B.3C.52D.2【解析】由题可知1,2a b c ===,12(2,0),(2,0)F F -,解法一:设(,)P m n ,∵||2OP =,故有224m n +=,又∵点P 在C 上,故有2213n m -=,联立方程2222413m n n m ⎧+=⎪⎨-=⎪⎩,解得3||2n =,故∆12PF F 的面积为12113||||43222n F F ⋅=⨯⨯=.解法二:∵||2OP =,故点P 在以F 1、F 2为直径的圆上,故PF 1⊥PF 2,则22212||||(2)16PF PF c +==,又∵12||||22PF PF a -==,即222121212||||||||2||||4PF PF PF PF PF PF -=+-=,∴12||||6PF PF =,∴∆12PF F 的面积为1211||||6322PF PF =⨯=.图A11【答案】B12.(立体几何)已知A ,B ,C 为球O 的球面上的三个点, 1O 为△ABC 的外接圆.若 1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【解析】由题意可知, 1O 为的半径r =2,由正弦定理可知,2sin =ABr C,则12sin 2sin 6023==== OO AB r C r O 的半径2214R r OO =+=,∴球O 的表面积为24π64πR =.图A12【答案】A二、填空题:本题共4小题,每小题5分,共20分。

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题12 解析几何(学生版)

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题12 解析几何(学生版)

专题12 解析几何【2021年】1.(2021年全国高考乙卷数学(文)试题)设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A .52B C D .22.(2021年全国高考乙卷数学(理)试题)设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦3.(2021年全国高考甲卷数学(文)试题)点()3,0到双曲线221169x y -=的一条渐近线的距离为( ) A .95B .85C .65D .454.(2021年全国新高考Ⅰ卷数学试题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6二、多选题5.(2021年全国新高考Ⅰ卷数学试题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =三、填空题6.(2021年全国高考乙卷数学(文)试题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.7.(2021年全国高考乙卷数学(理)试题)已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________.8.(2021年全国高考甲卷数学(理)试题)已知12,F F 为椭圆C :221164x y+=的两个焦点,P ,Q 为C上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 9.(2021年全国新高考Ⅰ卷数学试题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.四、解答题10.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.11.(2021年全国高考乙卷数学(理)试题)已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.12.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.13.(2021年全国新高考Ⅰ卷数学试题)在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .42.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设12,F F 是双曲线22:13y C x -=的两个焦点,O为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A .72B .3C .52D .23.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2B .3C .6D .94.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知ⅠM :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作ⅠM 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=5.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 6.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .327.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线8.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)9.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +1210.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⅠF 2P .若ⅠPF 1F 2的面积为4,则a =( ) A .1B .2C .4D .811.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒12.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为13.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A .2 B .3 C .4D .814.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 15.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知F 是双曲线22:145x y C 的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .9216.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则ⅠPFO 的面积为A B C . D .17.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .318.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .819.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018年全国普通高等学校招生统一考试理数(全国卷II ))双曲线22221(0,0)x y a b a b-=>>的离心率A .y =B .y =C .y x =D .y x = 21.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2C D 122.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .1423.(2018年全国卷Ⅰ理数高考试题)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣24.(2018年全国卷Ⅰ文数高考试题)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为A B .2C D .25.(2018年全国卷Ⅰ理数高考试题)设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A B C .2D26.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为A .13B .1 2C .2 3D .3 227.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))(2017新课标全国卷Ⅰ文科)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足ⅠAMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞28.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1029.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)30.(2017年全国普通高等学校招生统一考试)过抛物线C :y 2=4x 的焦点F C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN Ⅰl ,则M 到直线NF 的距离为( )A B .C .D .31.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2B CD 32.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C .3D .1333.(2016年全国普通高等学校招生统一考试文科数学新课标Ⅰ卷))已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=34.(2016年全国普通高等学校招生统一考试)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .C .(0,3)D .)35.(2016年全国普通高等学校招生统一考试)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=|DE |=C 的焦点到准线的距离为 A .8B .6C .4D .236.()设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k = A .12B .1C .32D .237.(2016年全国普通高等学校招生统一考试)圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =A .43- B .34-C D .238.((2016新课标全国Ⅰ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为A B .32CD .239.(2016年全国普通高等学校招生统一考试)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF Ⅰx 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .3440.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = A .3 B .6C .9D .1241.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(,)33- B .(66-C .(,33-D .(,33-42.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为A B .2C D43.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知双曲线的离心率为2,则A .2B .C .D .144.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知抛物线C :的焦点为,是C 上一点,,则A .1B .2C .4D .845.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则A .B .C .D .46.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =A B .6 C .12 D .47.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C .⎡⎣D .22⎡-⎢⎣⎦48.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))设F 为抛物线C:23y x =的焦点,过F且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则 ⅠOAB 的面积为A B C .6332D .9449.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))为坐标原点,为抛物线的焦点,为上一点,若,则的面积为 A .B .C .D .50.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆22x a+22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .245x +236y =1B .236x +227y =1C .227x +227x =1D .218y +218x =151.(2012年全国普通高等学校招生统一考试理科数学)设1F 、2F 是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30的等腰三角形,则E 的离心率为 A .12B .23C .34D .45二、填空题52.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.53.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.54.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.55.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设12F F ,为椭圆22:+13620x y C =的两个焦点,M为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.56.(2018年全国卷Ⅰ理数高考试题)已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.57.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________.58.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =____________.59.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))(2017新课标全国III 文科)双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a =______________.60.(2016年全国普通高等学校招生统一考试))设直线2y x a =+与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =,则圆C 的面积为________61.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))已知直线l :60x -+=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点.则CD =_________.62.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))已知直线l :30mx y m ++=与圆2212x y +=交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若||AB =,则||CD =__________.63.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为 .64.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________.65.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷带解析))设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得ⅠOMN=45°,则0x 的取值范围是________.三、解答题66.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.67.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.68.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.69.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.70.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,ⅠM 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求ⅠM 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.71.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.72.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 73.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE Ⅰx 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.74.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.75.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.76.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.77.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.78.(2018年全国卷Ⅰ文数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.79.(2018年全国卷Ⅰ理数高考试题)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.80.(2017年全国卷文数高考试题)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⅠBM ,求直线AB 的方程.81.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知椭圆C :2222=1x y a b+(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1C 上. (Ⅰ)求C 的方程;(Ⅰ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.82.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .83.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⅠBC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.84.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.85.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅰ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.86.(2016新课标全国卷Ⅰ)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.87.(2016新课标全国卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN 的面积(Ⅰ) 当2AM AN =2k <<.88.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知椭圆E:2213x y t +=的焦点在x轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MAⅠNA . (Ⅰ)当t=4,AM AN =时,求ⅠAMN 的面积; (Ⅰ)当2AM AN =时,求k 的取值范围.89.(2016年全国普通高等学校招生统一考试)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点. (Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ; (Ⅰ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.90.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.91.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅰ)y 轴上是否存在点P ,使得当k 变动时,总有ⅠOPM =ⅠOPN ?说明理由.92.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,点在C 上 (1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.93.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅰ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.94.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积95.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知点A (0,-2),椭圆E :22221x y a b+=(a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当ⅠOPQ 的面积最大时,求l 的方程.96.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .97.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))(本小题满分12分)已知圆()22:11M x y ++=,圆()22:19N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅰ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 98.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.99.(2012年全国普通高等学校招生统一考试文科数学(课标卷))设抛物线C :22x py =(p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若090BFD ∠=,ABD ∆的面积为p 的值及圆F 的方程;(Ⅰ)若A ,B ,F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.100.(2012年全国普通高等学校招生统一考试理科数学(课标卷))设抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A C ,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若90,BFD ABD ∠=︒△的面积为p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.。

十年高考(2012-2021)高考数学真题详解集合篇

十年高考(2012-2021)高考数学真题详解集合篇

T 专题01 集合【2021 年】1.(2021 年全国高考乙卷数学(文)试题)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则U(M ⋃N ) =()A.{5} B.{1, 2} C.{3, 4} D.{1, 2,3, 4}【答案】A 由题意可得:M N ={1, 2,3, 4},则U (M U N )={5}.故选:A.2.(2021 年全国高考乙卷数学(理)试题)已知集合S={s s=2n+1,n∈Z},T={t t=4n+1,n∈Z},则S ()A.∅B.S C.T D.Z【答案】C【分析】任取t ∈T ,则t = 4n +1 = 2⋅(2n)+1,其中n ∈Z ,所以,t ∈S ,故T ⊆S ,因此,S I T =T .故选:C.3.(2021 年全国高考甲卷数学(文)试题)设集合M={1,3,5,7,9},N={x2x>7},则M I N =()A.{7,9} B.{5, 7,9} C.{3,5, 7,9} D.{1,3,5, 7,9}【答案】B【分析】N =⎛7, +∞⎫,故M ⋂N ={5, 7,9},2 ⎪⎝⎭故选:B.(2021 年全国高考甲卷数学(理)试题)设集合M ={x 0 <x < 4}, N =⎧ 1x ≤ 5⎫,则M I N =()⎬A.⎧x 0 <x ≤1 ⎫⎭B.⎧x1≤x < 4⎫⎨3⎬⎨3⎬⎩⎭C.{x 4 ≤x < 5}⎩⎭D.{x 0 <x ≤ 5}【答案】B【分析】因为 M ={x | 0 <x < 4}, N ={x | 1≤x ≤ 5} ,所以 M ⋂N =⎧x|1≤x < 4⎫, 3⎨3⎬⎩⎭故选:B.5.(2021 年全国新高考Ⅰ卷数学试题)设集合A={x-2<x<4},B={2,3,4,5},则AIB =()A.{2} B.{2,3} C.{3, 4} D.{2,3, 4}【答案】B【分析】由题设有A ⋂B ={2,3},故选:B .【2012 年——2020 年】1.(2020 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A IB =()A.{-4,1} B.{1,5}C.{3,5} D.{1,3}【答案】D【分析】由x2 -3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1,3,5},所以A I B ={1,3},故选:D.2.(2020 年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4【答案】B【分析】求解二次不等式x2 - 4 ≤ 0 可得:A ={x | -2 ≤x ≤ 2},求解一次不等式2x + a ≤ 0 可得: B = ⎧x | x ≤ -a ⎫ . ⎨ 2 ⎬ ⎩⎭由于 A ⋂ B ={x | -2 ≤ x ≤1} ,故: - a= 1,解得: a = -2 . 2故选:B.3.(2020 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则 A ∩B =( )A . ∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D因为 A = {x x < 3, x ∈ Z} = {-2, -1, 0,1, 2} ,B = {x x > 1, x ∈ Z} = {x x > 1或 x < -1, x ∈ Z },所以 AI B ={2, -2}.故选:D.4.(2020 年全国统一高考数学试卷(理科)(新课标Ⅱ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则 = ()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】由题意可得: A ⋃ B ={-1, 0,1, 2},则U ( A U B ) ={-2,3} .故选:A.5.(2020 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A = {1,2,3,5,7,11} ,B = {x | 3 < x < 15} ,则 A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B【分析】由题意, A⋂ B = {5,7,11},故 A IB 中元素的个数为 3.故选:B6.(2020 年全国统一高考数学试卷(理科)(新课标Ⅲ))已知集合 A ={(x , y ) | x , y ∈ N * , y ≥ x },U ( A ⋃ B )⎩ B = {(x , y ) | x + y = 8},则 A I B 中元素的个数为()A .2B .3C .4D .6【答案】C【分析】由题意, A I B 中的元素满足⎧y ≥ x,且 x , y ∈ N * ,由 x + y = 8 ≥ 2x ,得 x ≤ 4 ,⎨x + y = 8所以满足 x + y = 8 的有(1,7),(2,6),(3,5),(4,4) ,故 A I B 中元素的个数为 4.故选:C.7.(2019 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合U = {1, 2,3, 4,5, 6, 7},A ={2,3, 4,5},B ={2,3, 6, 7} ,则 B I C U AA .{1, 6}B .{1, 7}C .{6, 7}D .{1, 6, 7}【答案】C【分析】由已知得C U A = {1, 6, 7},所以 B ⋂ C U A = {6, 7},故选 C . 8.(2019 年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合M = {x -4 < x < 2},N = {x x 2 - x - 6 < 0} ,则 M ⋂ N =A .{x -4 < x <3}B .{x -4 < x <-2}C .{x -2 < x < 2}D .{x 2 < x <3}【答案】C【分析】【详解】由题意得, M = {x -4 < x < 2}, N = {x -2 < x < 3} ,则M ⋂ N = {x -2 < x < 2}.故选 C .9.(2019 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x | x > -1},B ={x | x < 2},则 A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D . ∅【答案】C【分析】本题借助于数轴,根据交集的定义可得.【详解】R A =由题知,A I B = (-1, 2) ,故选C.10.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B= A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)【答案】A【分析】由题意得, A ={x x2或x3}, B ={x x < 1},则A ⋂B ={x x < 1}.故选A.11.(2019 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A={-1,0,1,2},B={x x2 ≤1},则A I B =A.{-1, 0,1} B.{0,1} C.{-1,1} D.{0,1, 2}【答案】A【分析】Q x2 ≤ 1,∴-1 ≤x ≤ 1,∴B ={x -1 ≤x ≤1},则A I B ={-1, 0,1},故选A.12.(2018 年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知集合A={0,2},B={-2,-1,0,1,2},则A I B=A.{0,2} B.{1,2} C.{0} D.{-2,-1,0,1,2}【答案】A【分析】详解:根据集合交集中元素的特征,可以求得A B ={0, 2},故选A.13.(2018 年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知集合A={x x2 -x-2>0},则A.{x -1 <x < 2} C.{x |x <-1}⋃{x x 2} B.{x -1 ≤x ≤ 2} D.{x | x ≤-1}⋃{x | x ≥ 2}【答案】B【详解】:解不等式x2 -x - 2 > 0 得x <-1或x > 2 ,所以A ={x | x <-1或x > 2},所以可以求得C R A ={x | -1≤x ≤ 2},故选B.14.(2018 年全国普通高等学校招生统一考试文数(全国卷II))已知集合A={1,3,5,7},B={2,3,4,5},则 A I B =A.{3} B.{5} C.{3, 5} D.{1, 2,3, 4,5,7}【答案】C【详解】详解:Q A ={1,3,5,7}, B ={2,3, 4,5},∴A⋂B ={3,5},故选C15.(2018 年全国卷Ⅲ文数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1, 2} D.{0,1, 2}【答案】C【分析】:由集合 A 得x ≥1,所以A ⋂B ={1, 2}故答案选C.16.(2018 年全国普通高等学校招生统一考试理数(全国卷II))已知集合A={(x,y)x2 +y2 ≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.4【答案】A【分析】Q x2 +y2 ≤ 3∴x2≤3,Q x∈Z∴x=-1,0,1当x =-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x = 1 时,y =-1,0,1;所以共有9 个,故选:A.17.(2018 年全国卷Ⅲ理数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1,2} D.{0,1,2}【答案】C【解析】详解:由集合A 得x ≥1,所以A ⋂B ={1, 2}故答案选 C.(2017 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A= {x|x<2},B= {x|3-2x>0},则A .A IB = ⎧x |x < 3 ⎫B .A I B =∅⎨ 2 ⎬⎩ ⎭ C .A U B = ⎧x |x < 3 ⎫D .A U B=R⎨ 2 ⎬⎩⎭ 【答案】A【详解】由3 - 2x > 0 得 x < 3 ,所以 A I 2 B ={x | x < 2}I {x | x < 3} ={x | x < 3},选 A .2 219.(2017 年全国普通高等学校招生统一考试理科数学(新课标 1 卷))已知集合A ={x |x <1},B ={x | 3x < 1},则A. A IB ={x | x < 0}B. A U B = RC. A U B ={x | x >1}D. A I B =∅【答案】A【解析】∵集合 B ={x | 3x< 1}∴ B = {x x < 0}∵集合 A ={x | x <1}∴ A ⋂ B = {x x < 0} , A ⋃ B ={x | x <1} 故选A20.(2017 年全国普通高等学校招生统一考试文科数学(新课标 2 卷))设集合A ={1, 2,3},B ={2,3, 4},则 A U B = A .{1,2,3, 4} B .{1,2,3} C .{2,3,4} D .{1,3,4}【答案】A【详解】由题意 A ⋃ B = {1,2,3,4},故选 A.21.(2017 年全国普通高等学校招生统一考试理科数学(新课标 2 卷))设集合 A = {1, 2, 4}, B ={x x 2 - 4x + m = 0}.若 A ⋂ B = {1},则 B =( )A .{1, -3}B .{1, 0}C .{1, 3}D .{1, 5}【答案】C【详解】∵ 集合 A = {1,2,4}, B = {x | x 2 - 4x + m = 0}, A IB = {1}∴ x = 1 是方程 x 2 - 4x + m = 0 的解,即1- 4 + m = 0 ∴ m = 3∴B = {x | x 2- 4x + m = 0} = {x | x 2- 4x + 3 = 0}= {1,3},故选 C2 2 2 2 3, ) 22.(2017 年全国普通高等学校招生统一考试文科数学(新课标3 卷))已知集合 A={1,2,3,4},B={2,4,6,8},则 A I B 中元素的个数为 A .1B .2C .3D .4【答案】B【详解】由题意可得 A IB ={2, 4},故 A IB 中元素的个数为 2,所以选 B. 23.(2017 年全国普通高等学校招生统一考试文科数学)已知集合A = {(x , y ) x 2 + y 2= 1}, B = {(x , y ) y = x } ,则 A IB 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合 A 表示以(0, 0)为圆心,1为半径的单位圆上所有点组成的集合,集合 B 表示直线 y = x 上所有的点组成的集合,又圆x 2 + y 2 = 1 与直线 y = x⎛ ⎫ ⎛ 相交于两点, , - , - ⎫ ,则 A I B 中有 2 个元素.故选 B. 2 2 ⎪ 2 2 ⎪ ⎝ ⎭ ⎝ ⎭24.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A = {1,3,5, 7} , B ={x | 2 ≤ x ≤ 5},则 A ⋂ B =A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】试题分析:集合 与集合 的公共元素有3,5,故,故选B.25.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A ={x | x 2 - 4x + 3 < 0},B ={x | 2x -3 > 0},则 A I B =A . (-3, - 3) 2B . (- 32 3. (1, )2 3 . ( , 3)2【答案】D【详解】:集合A = {x | ( x -1)( x - 3) < 0}= {x |1 < x < 3},集合 ,所以C DA BA ⋂B =⎧x |3<x <⎫,故选D.⎨2 3⎬⎩⎭.2016 年全国普通高等学校招生统一考试文科数学(新课标2 卷)已知集合A={1,2,3},B ={x | x2 < 9},则A⋂B =A.{-2, -1,0,1, 2,3} B.{-2, -1,0,1, 2}C.{1,2,3} D.{1, 2}【答案】D【解析】试题分析:由x2< 9 得-3<x<3,所以B={x|-3<x<3},因为A={1,2,3},所以A⋂B={1,2},故选D.27.(2016 年全国普通高等学校招生统一考试文科数学)已知集合A={1,2,3},B ={x | (x +1)(x - 2) < 0, x ∈Z},则 A⋃B =A.{1}B.{1,2} C.{0,1,2,3}D.{-1,0,1,2,3}【答案】C【详解】试题分析:集合B ={x | -1 <x < 2, x ∈Z} ={0,1},而A ={1, 2,3},所以A⋃B ={0,1, 2,3},故选C.(2016 年全国普通高等学校招生统一考试文科数学(新课标3 卷))设集合A={0,2,4,6,8,10},B={4,8},则=A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【答案】C【详解】试题分析:由补集的概念,得A B ={0, 2, 6,10},故选C.29.(2016 年全国普通高等学校招生统一考试理科数学(新课标3))设集合S ={x|(x - 2)(x -3) ≥ 0},T ={x|x > 0} ,则S ⋂T=A.[2,3] B.(−∞,2] ⋃[3,+ ∞)C.[3,+ ∞)D.(0,2] ⋃[3,+ ∞)【答案】D【详解】:由(x - 2)(x -3) ≥ 0 解得x ≥ 3 或x ≤ 2 ,所以S ={x | x ≤ 2或x ≥ 3},所以S ⋂T ={x | 0 <x ≤ 2或x ≥ 3},故选D.30.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合A ={x | x = 3n + 2, n ∈N},B ={6,8,10,12,14},则集合A⋂B 中的元素个数为A.5 B.4 C.3 D.2【答案】D【详解】由已知得 A⋂B中的元素均为偶数,∴n应为取偶数,故 A⋂B ={8,14},故选D.31.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知集合A ={x | -1 <x < 2},B ={x | 0 <x < 3}, 则A U B =()A.(-1,3) B.(-1, 0) C.(0, 2) D.(2,3)【答案】A【详解】因为A ={x | -1<x < 2}, B ={x | 0 <x < 3},所以A U B={x | -1 <x < 3}. 故选A. 32.(2015 年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))已知集合A={-2,-1,0,1,2},B ={x | (x -1)(x +2) <0},则A I B =()A.{-1, 0} B.{0,1} C.{-1, 0,1} D.{0,1, 2}【答案】A【详解】已知得B={x|-2<x<1},因为A={-2,-1,0,1,2},所以A⋂B={-1,0},故选A.33.(2014 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合M ={x | -1<x < 3}, N ={x | -2 <x <1},则 M ⋂N =A. B. C. D.【答案】B【详解】试题分析:根据集合的运算法则可得:M ⋂N ={x | -1 <x < 1},即选B.34.(2014 年全国普通高等学校招生统一考试理科数学(新课标Ⅰ卷))已知集合,则A. B. C. D.【答案】A【详解】试题分析:由已知得,A ={x | x ≤-1或x ≥ 3},故A⋂B ={x | -2 ≤x ≤-1},选A.35.(2014 年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设集合A ={-2, 0, 2},B ={x | x2 -x - 2 = 0} ,则 A⋂B =A.∅B. C.{0}【答案】B【详解】:由已知得,B={2,-1},故A⋂B={2},选B.D.{-2}36.(2013 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A={1,2,3,4},B ={x | x =n2 , n ∈A} ,则A∩B=A.{1,4}B.{2,3}C.{9,16} D.{1,2}【答案】A【分析】依题意,,故A⋂B ={1, 4}.37.(2013 年全国普通高等学校招生统一考试理科数学(新课标1 卷)已知集合A={x|x2-2x>0},B={x|—5 <x<5 },则().A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【答案】B【详解】依题意 A ={x | x 0或x2},又因为B={x|-5 <x<5 },由数轴可知A∪B=R,故选B.38.(2013 年全国普通高等学校招生统一考试文科数学)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1 }【答案】C【详解】因为集合M=,所以M∩N={0,-1,-2},故选C.39.(2013 年全国普通高等学校招生统一考试理科数学)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}【答案】A【详解】:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选A40.(2012 年全国普通高等学校招生统一考试文科数学)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则A. B.C.A=B D.A∩B=Æ【答案】B【详解】集合,又,所以B 是A 的真子集,选B.41.(2012 年全国普通高等学校招生统一考试理科数学)已知集合A={1,2,3,4,5}, B ={(x, y) x ∈A, y ∈A, x -y ∈A},则B 中所含元素的个数为A.3 B.6 C.8 D.10【答案】D【详解】列举法得出集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含10 个元素.故答案选D .。

历年高考数学真题(全国卷整理版)

历年高考数学真题(全国卷整理版)

参考公式:如果事件A 、B 互斥,则球的外表积公式如果事件A 、B 相互独立,则其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,则334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 2、集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为*=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 4 正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B 3C 2D 1〔5〕等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101 (C) 99100 (D) 101100〔6〕△ABC 中,AB 边的高为CD ,假设a ·b=0,|a|=1,|b|=2,则(A)〔B 〕 (C) (D)〔7〕α为第二象限角,sin α+sin β=33,则cos2α=(A)5-3〔B 〕5-9 (C)59 (D)53〔8〕F1、F2为双曲线C:*²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14〔B〕35 (C)34 (D)45〔9〕*=lnπ,y=log52,12z=e,则(A)*<y<z 〔B〕z<*<y (C)z<y<* (D)y<z<*(10) 函数y=*²-3*+c的图像与*恰有两个公共点,则c=〔A〕-2或2 〔B〕-9或3 〔C〕-1或1 〔D〕-3或1〔11〕将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不一样,梅列的字母也互不一样,则不同的排列方法共有〔A〕12种〔B〕18种〔C〕24种〔D〕36种〔12〕正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

高考数学文化题汇总

高考数学文化题汇总

数学与日常生活
总结词
数学在日常生活中无处不在,从购物决策到 建筑设计,都涉及到数学的应用。
详细描述
购物时比较不同商品的价格和性价比需要进 行简单的算术计算;建筑设计需要考虑几何 学原理;时间管理则涉及到线性规划等数学 知识。此外,天气预报、股票交易等领域也 大量使用了数学工具。
04
CATALOGUE
现代中国数学
中国现代数学在几何学、拓扑学、概率论和统计学等方面取得了一定的成就, 逐渐与国际数学界接轨。
02
CATALOGUE
数学与文学艺术
数学与诗歌
总结词
数学概念和原理经常被用作诗歌的主题,以增加其深度和复 杂性。
详细描述
数学与诗歌的结合可以追溯到古代文明,如毕达哥拉斯学派 用诗歌来表达数学理念。在现代,也有许多诗人运用数学概 念和原理,如分形、无限等,来创作出富有哲理和美感的诗 歌。
近现代数学文化题解析
总结词
考察近现代数学的重要分支和应用
详细描述
近现代数学文化题主要涉及19世纪和20世纪的数学发展 ,如微积分、线性代数、概率论和统计学等分支的进展 。这些题目要求考生了解近现代数学的基本概念、定理 和思想,并能够运用这些知识解决实际问题。同时,这 些题目还要求考生了解数学与其他学科的交叉融合,如 数学与物理、经济和计算机科学等领域的联系。
高考数学文化题汇 总
contents
目录
• 数学历史与文化 • 数学与文学艺术 • 数学与社会生活 • 高考数学文化题解析
01
CATALOGUE
数学历史与文化
古代数学的发展
01
02
03
古埃及数学
古埃及人发展了数学符号 系统,用于解决日常生活 和建筑、农业等方面的问 题。

高考数学文化题集锦含答案.docx

高考数学文化题集锦含答案.docx

历年高考数学文化题集锦一. 数学名著中的立几题,例如:2015年全国1卷文6理6题6、《九章算术》是我国古代内容极为丰富的数学名著,书屮有如下问题:“今有委米依垣内角,下周八尺,高五尺,问''积及为米几何?”其意思为广在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A) 14斛(B) 22 斛(C) 36斛(D) 66 斛答案:B2012年湖北理科数学第10题10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积〃,求其直径〃的一个近似公式d 珂尹.人们还用过一些类似的近似公式.根据71=3.14159…判断,下列近似公式中最精确的一个是A. B. d =何 C・d = J型7—vV 9 V157考点分析:考察球的体积公式以及估算.解析:由卩二彳龙上几削二:胚‘设选项中常数为纟,则好④;力中代入得好空=3.375,3 2 V 7C b a163中代入得K空=3, C中代入得好空卫=3.14,科代入得好空丄3.142857,2 300 21曲于I)中值最接近加勺真实值,故选择D。

二、数学名著中的数列题,例如:2011年湖北卷文9理13题;13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为【解析】设该数列的杵项为公筮为依题总应该疇(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术"。

执行该程序框图,若输入a,b分别为14,18,则输出的玄= ___________【答幻B晦】師atWTil®中,a, 6的值依次为a = 14. 6 = 18; 6 = 4; a = 10; a = 6; a=2 b = 2・d匕时a = b = 2程牌抹,输岀a的值为2・故选B・数学名著中的统计题,例如:2015年湖北卷文2理2题2. (5分)(2015-湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(A. 134 石)B. 169 石C. 338 石D. 1365 石升。

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。

2024 年高考全国甲卷数学(文)真题卷含答案

2024 年高考全国甲卷数学(文)真题卷含答案

2024年高考全国甲卷数学(文)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ( )A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,93.若实数,x y 满足约束条件43302202690x y x y x y −−≥−−≤ +−≤ ,则5z x y =−的最小值为( )A .5B .12C .2−D .72−由5z x y =−可得1155y x z =−,即z 则该直线截距取最大值时,z 有最小值,此时直线联立43302690x y x y −−= +−= ,解得321x y==,即4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .29A .14B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B 2C .12D .【答案】A8.函数()2e e sin x x f x x x −=−+−在区间[2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α+=( )A .1B .1−CD .1是两个平面,是两条直线,且①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④ 【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误; ③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ∩=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BC D二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 .13.已知1a >,8115log log 42a a −=−,则=a .14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+> 则()()()2325351g x x x x x =+−=+−′,令()()00g x x ′=>得1x =,当()0,1x ∈时,()0g x ′<,()g x 单调递减,当()1,x ∞∈+时,()0g x ′>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点, 所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1−三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ;M ABF17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.【答案】(1)见解析 (2)见解析 18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M 在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.由223412(4)x y y k x += =−可得(34+故()(42Δ102443464k k =−+中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为cos 1ρρθ+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a = =+(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值.满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析 (2)见解析。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分

(1)f(x)存在唯一的极值点;
(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
49.(2019·江苏,19,16 分,难度)设函数 f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f'(x)的零点均在集合{-3,1,3}中,求 f(x)的极小值;
3
38.(2015·全国 1·文 T14)已知函数 f(x)=ax +x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a= .
2
39.(2015·全国 2·文 T16)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax +(a+2)x+1 相切,则 a= .
x
1
40.(2015·陕西·理 T15)设曲线 y=e 在点(0,1)处的切线与曲线 y=x (x>0)上点 P 处的切线垂直,则 P 的坐
T13) 已 知 函 数
y=f(x) 的 图 象 是 折 线 段
ABC, 其 中
A(0,0),B
1 2
,5
,C(1,0). 函 数
y=xf(x)(0≤x≤1)的图象与 x 轴围成的图形的面积为________________.
44.(2012·全国·文 T13)曲线 y=x(3ln x+1)在点(1,1)处的切线方程为 .
34.(2017·天津,文 10)已知 a∈R,设函数 f(x)=ax-ln x 的图象在点(1,f(1))处的切线为 l,则 l 在 y 轴上的
截距为 .

高考文数真题及答案解析

高考文数真题及答案解析

高考文数真题及答案解析在中国的高中教育中,高考是一道重要的关卡,而数学和文学是高考的两个主要科目。

通过高考,考生可以决定自己的高等教育路径和未来的发展方向。

因此,高考文数的真题和答案解析对于考生来说具有重要意义。

在本文中,我们将分析一些高考数学和文学的真题,并提供相关的解析和思路。

对于数学部分,我们选择了一道典型的高考真题,来看看解题的思路及答案解析。

【数学篇】题目:已知函数y=4x-2f(2-x),其中f(x)是函数自变量x的奇函数。

已知点A在y轴上,点A和函数图象上的点B所在的直线交于点C,且ABC三点共线。

已知AC的斜率是1/2,且AB的斜率不存在。

解析:首先,我们需要明确一些基本的数学概念。

奇函数是指满足f(x)=-f(-x)的函数,也就是说,关于原点对称。

根据题目中的条件,f(x)是一个奇函数。

可以推断,由于A点在y轴上,点B将在函数的图像上的两个对称点之一。

根据题目中的已知条件,斜率AB不存在。

这意味着直线AB垂直于x轴。

由于点B和点C都在函数图象上,我们可以推断点C也在该函数图象上。

另外,已知AC的斜率是1/2。

考虑到点A在y轴上,我们可以得出结论,直线AC的斜率等于4,即k=4。

根据已知条件,我们可以列出方程式:1/2 = (f(0) - f(2))/(0 - 2)通过简单计算,我们得出f(0) = f(2) 和 f(2) = -4f(0)综上所述,我们可以整理出以下几个结论:1. f(x)是一个奇函数,关于原点对称。

2. 点A和点B是函数图象上的对称点。

3. 斜率AC等于4。

4. f(0) = f(2) 和 f(2) = -4f(0)至此,我们可以解答这道题目。

由于题干中没有给出具体的函数表达式,因此无法进一步推导解答。

但通过上述思路,我们可以清晰地理解题目中的条件,并在解答过程中遵循逻辑性和推理性,进而解决问题。

【文学篇】在高考文学部分,理解文本和表达观点是非常重要的。

下面是一篇诗歌的摘录,让我们一起进行解读。

文数高考试题文档版(含答案)

文数高考试题文档版(含答案)

绝密★启用前2021年普通高等学校招生全国统一考试〔天津卷〕数学〔文史类〕本试卷分为第一卷〔选择题〕和第二卷〔非选择题〕两局部,共150分,考试用时120分钟。

第一卷1至2页,第二卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第一卷考前须知:1.每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每题5分,共40分。

参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 〔1〕设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,那么()A B C =〔A 〕{1,1}-〔B 〕{0,1}〔C 〕{1,0,1}-〔D 〕{2,3,4}〔2〕设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,那么目标函数35z x y =+的最大值为〔A 〕6 〔B 〕19 〔C 〕21〔D 〕45〔3〕设x ∈R ,那么“38x >〞是“||2x >〞 的〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充要条件〔D 〕既不充分也不必要条件〔4〕阅读如下图的程序框图,运行相应的程序,假设输入N 的值为20,那么输出T 的值为〔A 〕1〔B 〕2〔C 〕3〔D 〕4〔5〕13313711log ,(),log 245a b c ===,那么,,a b c 的大小关系为〔A 〕a b c >> 〔B 〕b a c >> 〔C 〕c b a >>〔D 〕c a b >>〔6〕将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 〔A 〕在区间[,]44ππ- 上单调递增 〔B 〕在区间[,0]4π上单调递减〔C 〕在区间[,]42ππ 上单调递增 〔D 〕在区间[,]2ππ 上单调递减〔7〕双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 那么双曲线的方程为〔A 〕22139x y -=〔B 〕22193x y -=〔C 〕221412x y -=〔D 〕221124x y -= 〔8〕在如图的平面图形中, 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==那么·BC OM 的值为〔A 〕15- 〔B 〕9- 〔C 〕6-〔D 〕0第二卷考前须知:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

十年高考真题分类汇编(2010—2019)数学(20210417120444)

十年高考真题分类汇编(2010—2019)数学(20210417120444)

十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。

1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。

泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。

所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。

的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档