中国红树林生物多样性(rr)

合集下载

查阅资料分析我国红树林海岸的环境特点海岸特征及生态价值

查阅资料分析我国红树林海岸的环境特点海岸特征及生态价值

查阅资料分析我国红树林海岸的环境特点海岸特征及生态价值中国的红树林海岸是指我国南方沿海地区如广东、广西、海南等地的一种特殊类型的海岸生态系统。

红树林是指栖息在潮间带、盐沼或湿地中且依靠潮水带来的滨海盐湖的植物群落。

红树林海岸特点明显,既具有独特的环境特点和海岸特征,同时也有着重要的生态价值。

本文将分析我国红树林海岸的环境特点、海岸特征以及生态价值。

首先,红树林海岸的环境特点主要包括以下几个方面:1.相对湿润的气候条件:红树林海岸所处地区气候湿润,年降水丰富,相对湿度较高。

2.盐碱土壤:红树林海岸所在地的海水潮间带地区土壤中含有一定的盐分,是一种特殊的盐碱土壤。

3.潮汐作用:红树林海岸是潮汐带上的生态系统,潮汐的起伏给红树林海岸带来了独特的生态环境。

4.植物多样性:红树林海岸是一个复杂的植物群落,包括红树、白树、黑树等多种红树植物。

其次,红树林海岸的海岸特征主要有:1.根系特点:红树林的根系具有盘根错节的特点,这样的根系能够抵抗海浪的冲击并牢牢地抓住土壤。

2.潮波带:红树林海岸常见的是潮波带区域,潮水的进出给植物带来新鲜的水源和养分,同时潮波带也提供了许多生物栖息的场所。

3.岸线起伏:红树林海岸的岸线起伏较大,由于潮汐的作用,海岸线会有明显的变化。

4.气候条件:红树林海岸是处于南方沿海地区的,气候湿润,温度适宜,适合红树林植物的生长。

5.丰富的生物资源:红树林海岸是一个独特的生态系统,拥有丰富的生物资源,包括多种红树植物、鱼类、鸟类、蟹类等。

最后,红树林海岸的生态价值主要表现在以下几个方面:1.生态保护:红树林海岸具有保护海岸线免受风暴、潮汐和浪涛侵蚀的能力,可以减少海岸侵蚀对生态环境的破坏。

2.碳汇功能:红树林植物可以吸收大量的二氧化碳,对缓解气候变化有重要作用。

3.水域净化:红树林海岸可以过滤水质,减少水中有害物质的含量,提高水质的纯净度。

4.生物多样性保护:红树林海岸是许多物种的重要栖息地,可以保护和维持物种的多样性。

红树林的物种多样性和生物丰富度

红树林的物种多样性和生物丰富度

红树林的物种多样性和生物丰富度红树林是一种特殊的生态系统,生长在潮湿的沙质海岸地区。

它是一个独特的生物多样性热点,支持着丰富的生态系统服务和多种生物群落。

本文将探讨红树林的物种多样性和生物丰富度,以及其对环境的重要性。

一、红树林的物种多样性红树林是一个繁茂的植被系统,生长在海岸的潮间带和沿海地区。

它具有独特的适应机制,可以在高盐度、干旱和氧气不足的环境下生存和繁殖。

红树林的物种多样性非常丰富,包括了多种植物和动物物种。

1. 植物物种多样性红树林主要由红树和白树等植物组成。

红树包括了红树科、漆树科等多个科属的植物,如红树、秋茄等。

白树包括了白杨科等多个科属的植物,如白蜡木、白榄等。

不同的树种适应不同的环境条件,形成了红树林内丰富的植物群落。

2. 动物物种多样性红树林为众多动物物种提供了栖息地和食物资源。

其中,鱼类是最常见的动物群体。

它们在红树林内繁衍生息,为捕食者提供了丰富的食物源。

此外,蟹类、鸟类、软体动物等也在红树林内繁衍生息,丰富了红树林的生态系统。

二、红树林的生物丰富度红树林是一个高度生产力的生态系统,拥有丰富的生物资源和生态系统服务。

红树林的生物丰富度主要体现在以下几个方面:1. 食物链的丰富度红树林内存在着复杂的食物链关系。

红树林中的植物提供了食物和庇护所,吸引了大量的草食动物和食肉动物。

食物链中的每一个环节都是非常重要的,它们共同维持着整个生态系统的平衡和稳定。

2. 资源的多样性红树林不仅为动物提供了栖息地,还提供了丰富的资源。

红树林的植物可以被利用来制作木材、草药和饲料等。

同时,红树林还为周边社区提供了渔业资源和旅游资源,为经济发展做出了重要贡献。

3. 生态系统服务的提供红树林通过维持沿海地区的稳定性、防止风暴潮和海浪侵蚀等方式,提供了许多重要的生态系统服务。

红树林可以净化海水,吸收有害物质和沉积物质,维持水体的清洁和透明度。

此外,红树林还可以吸收二氧化碳,减缓气候变化的影响。

三、红树林的环境重要性红树林具有重要的环境功能和意义。

中国红树林生态系统生态价值评估

中国红树林生态系统生态价值评估

中国红树林生态系统生态价值评估一、本文概述《中国红树林生态系统生态价值评估》一文旨在全面、深入地探讨中国红树林生态系统的生态价值,以及其在全球和区域生态环境中的重要地位。

红树林是一种独特的湿地生态系统,因其特殊的生态环境和生物多样性,被誉为“海洋的森林”和“海岸卫士”。

在中国,红树林分布广泛,覆盖了多个沿海地区,对维护海洋生态平衡、抵御海平面上升、保护海岸线等方面发挥着不可替代的作用。

本文首先介绍了红树林生态系统的基本概念、特点及其在中国沿海地区的分布情况。

随后,文章从多个角度对红树林的生态价值进行了深入评估,包括其在维护生物多样性、净化水质、减缓气候变化、保护海岸线等方面的功能。

文章还分析了红树林生态系统面临的威胁和挑战,如环境污染、生态破坏、人类活动等因素对其造成的影响。

文章提出了保护和发展中国红树林生态系统的策略和建议。

包括加强法律法规建设、推动科研创新、提高公众环保意识、开展生态修复工程等,以期为中国红树林生态系统的可持续发展提供有力支撑。

通过本文的研究,旨在提高公众对红树林生态价值的认识和保护意识,促进中国红树林生态系统的健康、稳定和可持续发展。

二、红树林生态系统的结构与功能红树林生态系统是一种独特的滨海湿地生态系统,主要由红树植物、微生物、动物以及其所处的环境构成。

这些要素相互关联,共同维系着这一生态系统的稳定与健康。

红树植物:红树植物是红树林生态系统的基石,它们能够在盐分高、淹水频繁的环境中生长。

这些植物具有特殊的根系结构和生理机制,如“呼吸根”和“胎生”现象,使它们能在恶劣的环境中生存和繁衍。

红树植物不仅为生态系统提供物质生产,还是许多生物的栖息地。

微生物:微生物在红树林生态系统中发挥着重要作用,包括分解有机物质、促进营养循环、固定碳等。

微生物的多样性和活性对红树林生态系统的健康至关重要。

动物:红树林生态系统为众多动物提供了栖息和繁殖的场所。

从底栖生物到鸟类、哺乳动物,红树林生态系统是许多物种的生命线。

红树林

红树林

红树林简介、作用及其防护红树林(Mangrove)是生长在陆地与海洋之间的一种系统结构稳定、生产力较高的特殊森林生态系统,是一种顶极群落景观。

红树林适应海岸潮间滩涂环境,形成了独特的形态结构和生理生态特性,在保证生物多样性与减灾防灾功能上具有不可替代的作用。

可是从上世纪的60年代起的40年之间,红树林面积剧减60%,现有2.5万hm2红树林大部遭到破坏,结构受损,功能退化。

(1)本文将对红树林进行简要介绍,阐述其基本功能,并提出防护建议。

一、中国的红树林我国红树林研究是从20世纪50年代中期至60年代中期(1954—1965)开始进入群落生态学领域,从过去对红树植物只从分类学上认识它,进入到资源调查和群落分析阶段. 在之后的几十年里,我国在红树林群落生态学方面开展了大量研究工作,主要集中在红树植物群落的种类组成、类型、外貌、结构、物种多样性和演替等方面。

1. 1 我国红树林的分布红树林生长在热带、亚热带海岸潮间带上部,受周期性潮水浸淹,是以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本生物群落,属常绿阔叶林,主要分布于淤泥深厚的海湾或河口盐渍土壤上. 我国红树林面积在历史上曾达25万hm2 ; 20世纪50年代为4万hm2左右; 1986年公布的面积为17 035 hm2 (植被调查) 、21 283 hm2 (林业调查)或23 000 hm2 (地貌调查) . 我国红树林主要分布在海南、广东、广西、福建和台湾等省(区)沿海及香港和澳门地区,浙江省也人工引种了部分的红树林植物. 红树林自然分布北界为27°20′N,人工引种北界为28°25′N,分别位于福建省福鼎县和浙江省乐清县,面积约1. 5万hm2 ,由北向南面积增大,种类增多. 根据全国红树林资源调查报告(2002年) ,广东、广西、海南、福建、浙江5省(区)红树林总面积为22 024. 9 hm2 ,其中,广东、广西、海南3省红树林面积分别为9 084. 0 hm2 、8 374. 9 hm2和3 930. 3 hm2 ,分别占5 省(区) 红树林总面积的41. 2%、38. 0%和17. 9% ,而且红树林集中分布在北部湾海岸(广东湛江周围及广西海岸一带)和海南省的东海岸(琼山、文昌一带) ,前者红树林面积15 730. 8 hm2 ,占红树林总面积的71. 4%;后者红树林面积2 763. 4 hm2 ,占红树林总面积的12. 5%.(2)1. 2 我国红树林植物种类及其界定红树林多生长在热带海岸潮间带. 但是,由于受温暖洋流的影响,有的可以分布到亚热带,有的因潮汐影响,在最高潮边缘而具有水陆两栖现象. 红树林中生长的木本植物都叫做红树植物,一般不包括群落周围的草本植物或藤本植物. 对于中国红树植物种数,学者之间有不同的看法. 林鹏提出了“真红树”和“半红树”的概念和判定红树植物的标准, 并界定了中国现有的红树植物的种类,指出全世界真红树只有20科27属70种,中国现已查明的真红树为12科16属27种和1个变种;郑德璋等报道我国有真红树27种(含引种成功的无瓣海桑Sonneratia apetala)和半红树8种;范航清认为我国有真红树26种和半红树11种;何斌源等列出我国现存的原生真红树12科14属24种(含1变种) ,以及我国红树林湿地中常见的12种半红树植物.我国原生真红树种数占世界总种数(70种)的34. 3%. 我国所有原生真红树种类都可在地处热带的海南省找到,广东、广西均有11种,香港9种,台湾8种,福建7种,澳门5种,浙江主要是引种秋茄.(2)1.3我国红树林群落结构及其演替动态红树林的种类组成和群落结构较陆地森林简单,从红树林自然分布而言,纬度较高, 尤其是未受到海流显著影响的地区(如广东大亚湾澳头港附近) ,红树植物种类及其群落结构相对比较简单,植株也比92较矮小. 海南岛的红树林以东北部的群落组成种类丰富, 结构也较复杂,岛西南部因气候干燥, 红树林分布较少, 种类不多, 群落结构也简单.在外貌结构方面,与热带雨林、亚热带常绿阔叶林、温带落叶阔叶林、寒温带暗针叶林等陆生植物群落的外貌结构相比,红树植物群落的组成种类在生活型谱、叶级、叶质、叶型、叶缘等方面都显得十分单调.二、红树林的作用红树林及其特殊的植物生长环境早在古代就为人们所认识。

生物多样性丰富的红树林生态系统的保护与管理

生物多样性丰富的红树林生态系统的保护与管理

生物多样性丰富的红树林生态系统的保护与管理红树林,是指生长在潮间带或河口海湾等盐碱地带的树木群落。

作为沿海地区的天然屏障和重要生态系统,红树林在全球具有重要的生态、经济和社会意义。

然而,随着人类活动的不断扩张和自然环境的日趋严峻,红树林生态系统也面临着巨大的挑战。

因此,本文将重点探讨如何保护和管理生物多样性丰富的红树林生态系统。

一、红树林生态系统的意义红树林是世界上最神奇的植物生态系统之一,被誉为“海底雨林”。

它们既生长在海水中,也在陆地上。

它们有一系列棕色和红色组成的丰富的生态系统。

在红树林里,各种生物之间相互依存,构成完整的自然生态体系。

红树林是陆地和海洋的交界处,是大陆与海洋、湿地与干地相交的地带。

它们为沿海地区提供了重要的生态保护和环境服务功能。

红树林生态系统在海岸线的稳定、河口的防护、海洋的保护和渔业资源的供应上发挥了至关重要的作用。

二、红树林生态系统遭受的威胁由于城市化、旅游业和渔业等人类活动的不断发展,红树林面临多种威胁。

例如,城市扩张导致的土地使用变化和海水淡化,使得红树林的生态系统遭受到了破坏。

此外,工业废水的排放以及农业和城市垃圾的排放也对红树林生态系统造成了很大的威胁。

这些威胁破坏了红树林的植被和底栖动物群落,使其面临着严重的生物多样性下降和生态系统恢复的风险。

三、红树林生态系统的保护和管理为了更好地保护红树林生态系统,我们需要采取一些有效措施。

其中包括以下几个方面:1.加强对红树林的保护,扩大保护区范围我们可以采用严格保护、重点保护和控制利用的措施,从政策、法律和企业社会责任等方面保护和管理红树林。

例如,建立红树林生态保护区和禁止开发某些特定区域,例如红树林生态系统原始地带和重要的栖息地。

2.强化环境监测,完善环境监测体系必须加强监测和管理红树林生态系统,提高对大气、水、土壤和植物等环境因素的监测和管理。

需要加强生态基础数据收集、分析和应用,制定全面的监测标准和管理措施,完善红树林生态系统监测网络体系。

红树林潜在生物多样性

红树林潜在生物多样性

Indian Journal of Marine SciencesVol. 38(2), June 2009, pp. 249-256Potential microbial diversity in mangrove ecosystems:A reviewK. Sahoo, & N.K. DhalInstitute of Minerals and Materials Technology (Council of Scientific and Industrial Research) Bhubaneswar-753013, Orissa, India[E.mail:nkdhal@immtbhu.res.in]Received 11 March 2008; revised 17 October 2008Mangroves provide a unique ecological niche to different microbes which play various roles in nutrient recycling as well as various environmental activities. Mangrove forests are large ecosystems distributed in 112 countries and territories comprising a total area of about 181,000 km2 is over a quarter of the total coastline of the world. The highly productive and diverse microbial community living in mangrove ecosystems continuously transforms nutrients from dead mangrove vegetation into sources of nitrogen, phosphorous and other nutrients that can be used by the plants and in turn the plant-root exudates serve as a food source for the microbes. Analysis of microbial biodiversity from these ecosystems will help in isolating and identifying new and potential microorganisms having high specificity for various applications.The present study consists literature on diversity of predominant microbes such as bacteria, fungi and actinomycetes from mangrove ecosystems.Keywords: mangrove, actinomycetes, nutrient recycling and diversity.IntroductionMangroves are coastal wetland forests mainly found at the intertidal zones of estuaries, backwaters, deltas, creeks, lagoons, marshes and mudflats of tropical and subtropical latitudes. The specific regions where mangrove plants grow are termed as “mangrove ecosystem”. Mangrove forests occupy several million hectares of coastal area worldwide and distributed in over 112 countries and territories comprising a total area of about 1,81,000 km2in over one fourth of the world's coastline1,2. According to Forest Survey of India (FSI)3, out of 4,87,100 ha of mangrove wetlands in India, nearly 56.7% (2,75,800 ha) is present along the east coast, and 23.5% (1,14,700 ha) along the west coast and the remaining 19.8% (96,600 ha) is found in the Andaman and Nicobar islands. The largest single area of mangroves in the world lies in the Bangladesh part of the Sunderbans, covering an area of almost 6,00,000 ha including waterways. There are about 6.9 million ha in the Indo-Pacific region, 3.5 million ha in Africa, 4.1 million ha in the Americas including the Caribbean. Mangroves also survive in some temperate zones but there is a rapid decrease in the number of species with increasing latitude4,5,6. Microbial Diversity in Mangrove ecosystems Although microbial diversity is one of the difficult areas of biodiversity research, extensive exploration is required for understanding the biogeography, community assembly and ecological processes which will for isolating and identifying new and potential microorganisms having high specificity for recalcitrant compounds7,8. The present review highlights on the diversity study of potential bacteria, fungi and actinomycetes in mangrove environments.BacteriaThe importance of microbially generated detritus in mangrove areas that acts as the major substrate for bacterial growth in mangrove ecosystems was outlined in a conceptual model by Bano et al9. The abundance and activities of bacteria are controlled by various physical and chemical factors such as tannin, leached from mangrove litter of the mangrove ecosystem. Increasing tannin concentration is associated with decreasing bacterial counts. Thus, tannin plays a role not only in keeping the bacterial counts low but also keeping the harmful activities of virulent pathogens down10.Nitrogen fixation in mangrove ecosystemNitrogen fixation is a process of conversion of gaseous forms of Nitrogen (N2) into combined_________________*Corresponding author:INDIAN J MAR SCI. VOL.38, No 2 JUNE 2009 250forms i.e. ammonia or organic nitrogen by some bacteria and cyanobacteria. Free living as well as symbiotic microbes known as diazotrophs which fix N2 into proteins. Nitrogen-fixing microorganisms can colonize in both terrestrial as well as marine environments. N2 fixation in mangrove sediments is likely to be limited by insufficient energy sources. The low rates of N2fixation by heterotrophic bacteria detected in marine water are probably due to lack of energy sources. Nitrogen fixation by heterotrophic bacteria can be regulated by specific environmental factors such as oxygen, combined nitrogen and the availability of carbon source to support energy requirement. Energy for N2fixation can also be derived from leaves and roots decomposed by nondiazotrophic microflora that colonize dead mangrove leaves11,12. Nitrogen-fixing bacteria such as members of the genera Azospirillum, Azotobacter, Rhizobium, Clostridium and Klebsiella were isolated from the sediments, rhizosphere and root surfaces of various mangrove species. Several strains of diazotrophic bacteria such as Vibrio campbelli, Listonella anguillarum, V. aestuarianus, and Phyllobacterium sp. were isolated from the rhizosphere of the mangroves in Mexico13. In a mangrove in Florida, biological N2fixation could supply up to 60% of the nitrogen requirement11. The main factors influencing N2 fixation are light intensity and water temperature14. It is also possible that microorganisms associated with Languncularia racemosa including Pseudomonas stutzeri15 could also be responsible for the fixation of atmospheric nitrogen16,17,18. N2fixing bacteria are efficient at using a variety of mangrove substrates despite differences in carbon content and phenol concentrations19. However, their abundance may be dependent on physical conditions and mangrove community composition. N2fixing Azotobacter, which can be used as biofertilizers, were abundant in the mangrove habitats of Pichavaram20. Two halotolerant N2fixing Rhizobium strains were isolated from root nodules of Derris scandens and Sesbania species growing in the mangrove swamps of the Sunderbans21. When the non N2 fixing bacteria were removed from the rhizosphere it was found that the N2fixing activity dropped, indicating that other rhizosphere bacteria could also contribute to the fixation process13. The non-N2 fixer, Staphylococcus sp., isolated from mangrove roots also promotes N2 fixation by Azospirillum brasilense22.Phosphate solubilising bacteriaPhosphate solubilizing bacteria which act as potential suppliers of soluble forms of phosphorus have a great advantage for mangrove plants. Certain bacteria exhibit high phosphatase activity, capable of solubilizing phosphate23. In an arid mangrove ecosystem in Mexico, nine strains of phosphate-solubilizing bacteria such as Bacillus amyloliquefaciens, B. atrophaeus, Paenibacillus macerans, Xanthobacter agilis, Vibrio proteolyticus, Enterobacter aerogenes, E. tay/orae, E. asburiae, and Kluyvera cryocrescens were isolated from black mangrove (Aviciena germinant) roots. Further three strains viz. B. licheniformis, Chryseomonas luteola and Pseudomonas stutzeri were isolated from white mangrove (Languncularia racemosa) roots. This is the only report of the phosphate-solubilizing capacity of bacteria belonging to the genera Xanthobacter, Kluyvera and Chryseomonas, and of their presence in mangrove roots. The mechanism responsible for phosphate solubilization, in at least six of the above bacterial species, probably involved production of organic acids. Some of the organic acids might act as chelators displacing metals from phosphate complexes15.Sulfate reducing BacteriaMangrove sediments are mainly anaerobic with an overlying thin aerobic sediment layer. Degradation of organic matter in the aerobic zone occurs principally through aerobic respiration whereas in the anaerobic layer decomposition occurs mainly through sulfate-reduction24,25. Sulfate reduction accounts for almost 100% of the total emission of CO2 from the sediment26. Sulfate-reducing bacteria isolated from a temperate coastal marine sediment from shallow, brackish water in Denmark could degrade up to 53% of the total organic matter27. In Goa’s mangroves, eight species of sulfate-reducing bacteria such as Desulfovibrio desulfuricans, Desulfovibrio desulfuricans aestuarii, Desulfovibrio salexigens, Desulfovibrio sapovorans, Desulfotomaculum orientis, Desulfotomaculum acetoxidans, Desulfosarcina variabilis, and Desulfococcus multivorans were isolated and tentatively classified within four different genera. These strains are nutritionally versatile and they have the ability to metabolize a wide range of simple compounds including lactate, acetate, propionate, butyrate, and benzoate. The ability to use several different substrates may allow these microbes to compete effectively for nutrients in the mangrove environment28. In mangrove sediments, availability of iron and phosphorus may depend on the activity of sulfate- reducing bacteria25.SAHOO & DHAL: MICROBIAL DIVERSITY IN MANGROVE ECOSYSTEMS 251All sediments (associated or not associated with the plants) in Florida's mangroves contained a significant population of sulfate reducing bacteria that were able to fix N211.Photosynthetic anoxygenic bacteriaPhotosynthetic anoxygenic bacteria use hydrogen sulfide (or other reduced inorganic sulfur) instead of water as an electron donor in the photosynthetic reaction. Photosynthetic bacteria of the mangrove sediments include two major groups viz., purple sulfur bacteria (family Chromatiaceae, strains belonging to Chromatium sp.) and purple non-sulfur bacteria (family Rhodospirillaceae, strains belonging to Rhodopseudomonas sp.). Sulfur rich mangrove ecosystems, which have mainly anaerobic soil environments, provide favorable conditions for the proliferation of these bacteria. It has been reported in few papers about the presence of anoxygenic photosynthetic bacteria in mangrove environments and one reason behind this may be that some of these bacteria are slow growers and difficult to handle in the laboratory. Nevertheless, representatives of the families Chromatiaceae (purple sulfur bacteria) and Rhodospirillaceae (purple nonsulfur bacteria) were found in Indian mangrove sediments29,30. The predominant bacteria in the mangrove ecosystem of Cochin (India) were identified as members of the genera Chloronema, Chromatium, Beggiatoa, Thiopedia, and Leucothiobacteri31,32. Large populations of Chromatium grew in enrichment cultures made of Florida's mangrove sediments. In mangroves on the coast of the Red Sea in Egypt, 225 isolates of purple nonsulfur bacteria belonging to ten species, representing four different genera, were identified. The strains were isolated from water, mud, and roots of Aviciena marina samples. Nine of the ten species inhabited the rhizosphere and root surface of the trees. The most common genera such as Rhodobacter and Rhodopseudomonas were detected in 73% and 80% of the samples respectively33. Some of the photosynthetic anoxygenic bacteria were also diazotrophic. Although there is yet no published evidence, one can hypothesize that photosynthetic anoxygenic bacteria, the predominant photosynthetic organisms in anaerobic environments, may contribute to the productivity of the mangrove ecosystems. Methanogenic BacteriaMethanogenic bacteria are probably an important component of the bacterial community in mangrove ecosystems. In an Indian mangrove ecosystem, the methanogenic bacteria population in the sediments fluctuated during the year from 3.6×102 to 1.1×105 cfug-1wet sediment, depending on temperature, pH, redox potential, and salinity of the water and sediments34. The presence of sulfate-reducing bacteria limits the proliferation of these bacteria35, a strain of the methanogenic bacterium, Methanococcoides methylutens36, and four strains of unidentified thermotolerant methanogenic bacteria37 were isolated from sediment of a mangrove forest. Methane may have been oxidized under anoxic conditions as occurred in hypersaline microbial mats38and anoxic marine sediment39. Another mangrove ecosystem cleared for aquaculture also showed significantly more methanodynamic activity (a dynamic system of methane production, oxidation, and emission)40. These results suggest that the potential of mangrove soils to emit methane was higher when there is anthropogenic activity41.A methanogenic bacterium, Methanococcoides methyJuteus, was isolated and characterized from the sediment of mangrove environment of Pichavaram, Southeast India42. Methanogenic bacteria were high during summer and pre-monsoon and low during monsoon and post-monsoon43.Enzyme producing bacteriaAbout 71% of bacterial strains produce L-asparaginase. It is an enzyme drug of choice used in combination therapy for treating acute lymphoblastic leukemia in children. Since extraction of L-asparaginase from mammalian cells is difficult, microorganisms have proved to be a better alternative for L-asparaginase extraction, thus facilitating its large scale production. Mashburn and Wriston successfully purified Escherichia coli L-asparaginase and demonstrated its tumouricidal activity. Halophilic bacteria (Halococcus) isolated from mangrove sediments, produce L-asparaginase44. Arylsulfatase, an important enzyme that participates in the metabolism of sulphuric acid esters, produced predominantly by Bacillus, followed by Vibrio. One hundred and eight strains of bacteria show chitin degrading activity45.FungiMangrove areas or mangals are home to a group of fungi called “manglicolous fungi”. These organisms are vitally important for nutrient cycling in these habitats46,47and are able to synthesize all theINDIAN J MAR SCI. VOL.38, No 2 JUNE 2009 252necessary enzymes to degrade lignin, cellulose, and other plant components48,49,50,51. Hyde listed 120 species from 29 mangrove forests around the world52. These included 87 Ascomycetes, 31 Deuteromycetes, and 2 Basidiomycetes. In mangrove communities, over a hundred species of fungi were identified. About 48 fungal species were found in decomposing Rhizophora debris in Pichavaram, South India53. Most of the studies involving fungi are of a descriptive nature, designed for taxonomic and inventory interests. Fungal hyphae are commonly found on and in decomposing mangrove leaves and wood. In a mangrove from the coast of the Indian Ocean, Hyde identified 67 species of marine fungi and found an additional 20 unidentified species associated with mangrove roots and dead branches54. In addition to degrading lignin and cellulose, the fungi Cladosporium herbarum, Fusarium moniliforme, Cirrenalia basiminuta, an unidentified hyphomycete and Halophytophthora vesicula isolated from the dead leaves of Rhizophora apiculata also show pectinolytic, proteolytic, and amylolytic activity55. These fungi begin the decomposition of vegetative material and thereby allow secondary colonization by bacteria and yeasts that further decompose the organic matter56. In an Indian mangrove, the first colonizers of fallen mangrove leaves were fungi and thraustochytrids (fungi-like unicellular protists). It is possible that both thraustochytrids and fungi tolerate high levels of phenolic compounds in the leaves of mangroves that inhibit the growth of other microorganisms57, Despite the great wealth of systematic information, there is a little knowledge about the role of mangrove fungi in nutrient recycling58. A few researchers have studied the physiology and biochemistry of manglicolous fungi. Many of the species produce interesting compounds. For example, most of the soil fungi produce lignocellulose-modifying exoenzymes like laccase55. Preussia aurantiaca synthesizes two new depsidones (Auranticins A and B) that display antimicrobial activity59.ActinomycetesActinomycetes play a quite important role in natural ecological system and they are also profile producers of antibiotics, antitumor agents, enzymes, enzyme inhibitors and immunomodifiers which have been widely applied in industry, agriculture, forestry and pharmaceutical industry. The actinomycetes population density is less common in marine sediments relative to terrestrial soils60. In the past, the research work on actinomycetes was mainly concentrated on that of common habitats. Actinomycetes resources under extreme environments (including extreme high and low temperature, extreme high or low pH, high salt concentration etc.) have received comparatively little attention from microbiologists. The mangrove environment is a potent source for the isolation of antibiotic-producing actinomycetes. An antibiotic compound-beta-unsaturated gama-lactone from Streptomyces grisebrunneus, showing wide-range anti-microbial activity, was isolated and identified61. Besides this, the Streptomycetes produce cellulase that degrades cellulolytic waste materials62. The actinomycetes, inhabiting the sediments and molluscs of Vellar estuary are the potential sources of extracellular enzymes involved in the marine environment. This would suggest that bioprospecting of enzymes of industrial needs can be made from these marine actinomycetes63. There is a scope for the use of S. galbus as an ideal organism for the industrial production of extracellular L-glutaminase and this can be pursued further64. Different strains of actinomycetes isolated from the sediments of the Vellar estuary, viz. S. alboniger, S. vastus, S. violaceus, S. moderatus and S. aureofasciculus elucidates interesting information on the antibiotic producing properties and possesses bioactive properties and can be utilized in future for isolating the bioactive compounds for human walefare65. It has been reported that S.albidoflavus has antitumor properties isolated from the Pichavaram mangrove environment66. Actinopolyspora sp. isolated from the west coast of India, showed good antimicrobial activity against gram positive bacteria like S. aureus, S. epidermis, B. subtilis and fungi such as A. niger, A. fumigatus, A. f1avus, F. oxysporum, Penicillium sp. and Trichoderma sp. where as it did not show any antimicrobial activity against gram-negative bacteria such as E. coli, P. aeruginosa, S. marcescens, E. aerogens and fungi like C. albicans and Cryptococcus Sp.67.Other potential usefulness of microbes from mangrove ecosystemsBesides these above microbes, there is the presence of other potential microbes in mangrove ecosystems on which much studies has not been done yet. In addition to processing nutrients, mangrove bacteria may also help in processing industrial wastes. Iron-reducing bacteria were common in mangrove habitatsSAHOO & DHAL: MICROBIAL DIVERSITY IN MANGROVE ECOSYSTEMS 253in some mining areas68. Eighteen bacterial isolates that metabolize waste drilling fluid were collected from a mangrove swamp in Nigeria69. Interestingly, four additional bacterial strains isolated from the same swamp depress growth rates of Staphylococcus and Pseudomonas species and could, therefore, decrease normal rates of organic decomposition70. Other mangrove bacteria are parasitic or pathogenic. Bdellovibrios capable of parasitizing Vibrio sp. are common in an Australian mangrove habitat71. Also in Australia, Bacillus thuringiensis, which showed insecticidal activity against mosquito larvae of Anopheles maculatus, Aedes aegypti and Culex quinquefasciatus, has been isolated from mangrove sediments72,73. Nine species of purple non-sulfur bacteria have also been found in mangroves of Egypt33. Growth of the purple sulfur bacteria in these habitats was limited by low light and sulfide. Certain bacterial strains such as Pseudomonas mesophilica, P. caryophylls and Bacillus cereus exhibit magnetic behaviour which may be called magnetobacteria isolated from mangrove sediments of Pichavaram, Southeast India74. The total heterotrophic bacterial counts in the degrading materials such as polythene bags and plastic cups were recorded up to higher in comparison with fungi in an Indian mangrove soil. The microbial species found associated with the degrading materials were identified as five Gram positive and two Gram negative bacteria, and eight fungal species of Aspergillus. The species that were predominant were Streptococcus, Staphylococcus, Micrococcus (Gram+ve), Moraxella, and Pseudomonas (Gram-ve) and two species of fungi (Aspergillus gloocus and A. niger). Among the bacteria, Pseudomonas sp. degraded 20.54% of polythene and 8.16% of plastics in one-month period. Among the fungal species, Aspergillus glaucus degraded 28.80% of polythene and 7.26% of plastics in one-month period. This work reveals that the mangrove soil is a good source of microbes capable of degrading polythene and plastics75. Hydrocarbon-utilizing microorganisms were isolated by enrichment techniques from soil and water samples collected from an oil spill site in the Niger delta area of Nigeria. The isolates included species of Micrococcus, Pseudomonas, Bacillus, Aeromonas, Serratia, Proteus, Penicillium, Aspergillus, Candida, Geotrichum and Rhizopus76. Amanchukwu et al. demonstrated similarly that lower concentrations (1.5-6.0%) of hydrocarbons were highly utilized by Schizosaccharomyces pombe than higher concentrations (12%)77. Mangrove reforestation and conservation using Plant Growth Promoting Bacteria (PGPB) Mangrove greenbelts were known to offer some protection against destructive ocean events, such as tsunamis and tropical cyclones, but they have not always been valued for that function. It may be possible to use PGPB to speed up the development of mangrove plantlets for reforestation of the damaged areas or even to create artificial mangrove wetlands out of wastelands. PGPB promotes the plant growth by mechanisms such as N2fixation, phosphate solubilization, phytohormone production, siderophore synthesis, or biocontrol of phytopathogens78,79,80,81. PGPB specific to mangrove ecosystems are unknown. Scanning electron microscope studies revealed that, in seawater in vitro, a dense population of Azospirillum brasilense and A. alopraeferens successfully colonized black mangrove roots, establishing an association with the plant within four days82. Inoculation of black mangrove plantlets with the cyanobacterium M. chthonoplastes yielded copious root colonization in a thick mucilaginous sheath which resulted in an increased in N z fixation83 and nitrogen accumulation in inoculated seedlings84. Many studies of plant-growth promotion by beneficial bacteria have reported the advantage of using mixed cultures of microorganisms over pure cultures80,81. It can be concluded that PGPB will effectively promote the growth of mangrove plantlets which will be helpful in mangrove reforestation.ConclusionMangrove ecosystems provide shelter and nurturing sites for many marine microorganisms. Conservation strategies for mangroves should consider the ecosystem as a biological entity, which includes all the physical, chemical, and ecological processes that maintain productive mangroves. Despite of various studies on the biogeography, botany, zoology, ichthyology, environmental pollution and economic impact of mangroves, little is known about the activities of microbes in mangrove waters and sediments. Due to the presence of rich source of nutrients mangroves are called the homeland of microbes. Extensive exploration, identification, isolation and screening is suggested in search of new leads for microbial drugs. AcknowledgementThe authors are thankful to the Director, Institute of Minerals and Materials Technology (formerly RRL), Bhubaneswar for his valuable comments and valid suggestions during manuscript preparation.INDIAN J MAR SCI. VOL.38, No 2 JUNE 2009254References1 Alongi D M, Present state and future of the world'smangrove forests. Environ. Cons., 29 (3) (2002) 331-349.2 Spalding M, Blasco F & Field C, World Mangrove Atlas.Okinawa, Japan: The International Society for MangroveEcosystems, (1997) 178.3 State of Forest Report, Forest Survey of India, Dehra Dun,1999.4 Chapman V J, Wet coastal ecosystems. Elsevier, (1977) 428.5 Tomlinson P B, Biogeography. In: Ashton P.S., Hubbel S.P.,Janzen D.H., Raven P.H., Tomlinson P.B. (eds) The botany ofmangroves, Cambridge University Press, New York, (1986)40-62.Bandaranayake, W.M., Traditional and medicinal usesof mangroves. Mang. and Salt Marsh., 2 (1998) 133-148.6 Bandaranayake W M, Traditional and medicinal uses ofmangroves. Mang. and Salt Marsh., 2 (1998) 133-148.7 Curtis T P, Solan W T & Scannell J W, Estimatingprokaryotic diversity and its limits. Proc. Natl. Acad. Sci.,USA, 99 (2002) 10494-10499.8 Das S, Lyla P. S. & Khan S A, Marine microbial diversityand ecology: importance and future perspectives; GeneralArticle, Curr Sci., 90(10) (2006) 25.9 Bano N, Nisa M U, Khan N, Saleem M, Harrison P J,Ahmed S I & Azam F, Significance of bacteria in the flux oforganic matter in the tidal creeks of the mangrove ecosystemof the Indus river delta, Pakistan. Mar. Ecol. Prog. Ser., 157(1997) 1-12.10 Kathiresan K, Ravikumar S, Ravichandran D &. Sakaravarthy K,Relation between tannin concentration and bacterial counts in amangrove environment. In Gautam, A (ed.), Conservation &Management of Aquatic Resources. Daya Publishing House, NewDelhi (1998) 97-105.11 Zuberer D A & Silver W S, Biological dinitrogen fixation(Acetylene reduction) associated with Florida mangroves.Appl. Environ. Microbiol, 35 (1978) 567-575.12 Zuberer D A & Silver W S, N 2-fixation (acetylenereduction) and the microbial colonization of mangrove roots.New Phytol., 82 (1979) 467-471.13 Holguin G, Guzman A & Bashan Y, Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: theirisolation, identification and in vitro interaction withrhizosphere Staphylococcus sp. FEMS Microbiol. Ecol., 101(3) (1992) 207-216.14 Toledo G, Bashan Y & Soeldner A, Cyanobacteria and blackmangroves in Northwestern Mexico: colonization, anddiurnal and seasonal nitrogen fixation on aerial roots. Can. J.of Microbiol., 41 (1995a) 999-1011.15 Vazquez P, Holguin G, Puente M E, Lopez-Cortes A &Bashan Y, Phosphate-solubilizing microorganisms associatedwith the rhizosphere of mangroves in a semiarid coastallagoon. Bioi. Fertil Soils, 30 (2000) 460-468.16 Krotzky A & Werner D, Nitrogen fixation in Pseudomonasstutzeri. Arch. Microbiol., 147 (1987) 48-57.17 Alongi D M, Boto K G & Robertson A I, Nitrogen andPhosphorus cycles. In Robertson A I. & D. M. Alongi (eds),Tropical Mangrove Ecosystems. Washington DC: Ameri.Geophy. Uni., 41 (1992) 251-292.18 Alongi D M, Christoffersen P & Tirendi F, The influence offorest type on microbial-nutrient relationships in tropicalmangrove sediments. J. Exp. Mar. Biol. Ecol., 171 (1993)201-223.19 Pelegri S P & Twilley R R, Heterotrophic nitrogen fixation (acetylene reduction) during leaf-litter decomposition of two mangrove species from South Florida, USA. Mar. Biol, 131 (1) (1998) 53-61. 20 Ravikumar S, Nitrogen-fixing azotobacters from the mangrove habitat and their utility as bio-fertilizers. Ph.D. thesis, Annamalai University, India. (1995) 120. 21 Sengupta A, & Chaudhuri S, Halotolerant Rhizobium strains from mangrove swamps of the Ganges River Delta. Indian J. Microbiol., 30 (1990) 483-484. 22 Holguin G & Bashan Y, Nitrogen-fixation by Azospirillum brasilense is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol. and Biochem. 28 (12) (1996) 1651-1660. 23 Sundararaj V , Dhevendran K, Chandramohan D & Krishnamurthy K, Bacteria and primary production. Indian J. Mar. Sci. 3 (1974) 139-141. 24 Nedwell D B, Blackburn T H & Wiebe W J, Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Mar. Ecol. Prog. Ser., 110 (1994) 223-231. 25 Sherman R E, Fahey T J & Howarth R W, Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia, 115 (1998) 553-563. 26 Kristensen E, Holmer M & Bussarawit N, Benthic metabolism and sulfate reduction in a south-east Asian mangrove swamp. Mar. Ecol Prog. Ser. 73 (1991) 93-103. 27 Jorgensen B B, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22 (1977) 814-832. 28 Lokabharatbi P A, Oak S, & Chandramohan D, Sulfate reducing bacteria from mangrove swamps. Their ecology and physiology. Oceanol. Acta., 14(2) (1991)163 - 171. 29 Vethanayagam R R, Purple photosynthetic bacteria from a tropical mangrove environment. Mar. Biol., 110 (1991) 161-163. 30 Vethanayagam R R & Krishnamurthy K, Studies on anoxygenic photosynthetic bacterium Rhodopseudomonas sp. from the tropical mangrove environment. Ind. J. Mar. Sci., 24 (1995) 19-23. 31 Dhevendaran K, Photosynthetic bacteria in the marine environment at Porto-Novo, Cochin. Fish Technol. Soc., 21 (1984)126-130. 32 Chandrika V, Nair P V R & Khambhadkar L R, Distribution of phototrophic thionic bacteria in the anaerobic and micro-aerophilic strata of mangrove ecosystem of Cochin. J. Mar. Biol Assoc. India 32 (1990) 77-84. 33 Shoreit A A M, EI-Kady I A & Sayed W F, Isolation and identification of purple nonsulfur bacteria of man gal and non-mangal vegetation of Red Sea Coast, Egypt. Limnologica, 24 (1994) 177-183. 34 Mohanraju R & Natarajan R, Methanogenic bacteria in mangrove sediments. Hydrobiol., 247 (1992) 187-193. 35 Ramamurthy T, Raju R M & Natarajan R, Distribution and ecology of metbanogenic bacteria in mangrove sediments of Pichavaram, east coast of India. Indian J. Mar. Sci., 19 (1990) 269- 273. 36 Mobanraju R, Rajagopal B S, Daniels L & Natarajan R, Isolation and characterization of a methanogenic bacterium from mangrove sediments. J. Mar. Biotechnol., 5 (1997) 147-152. 37 Marty D G, Description de quatre souches methanogenes thermotolerantes isolees de sediments marins ou intertidaux. C R Acad Sci III , 300 (1985) 545-548.。

深圳福田红树林保护区生物多样性监测报告

深圳福田红树林保护区生物多样性监测报告

深圳福田红树林保护区生物多样性监测报告一、简介二、研究目的本次研究的目的是监测深圳福田红树林保护区的生物多样性,包括植物、动物和微生物,以了解其现状和长期变化趋势,并为保护区的生态环境保护和发展提供科学依据。

三、研究方法1.植物监测:采用样点法,随机选取30个样点,并对每个样点内的植物进行物种鉴定和数量统计。

2.动物监测:采用诱捕法和直接观察法相结合,捕捉和观察保护区内的鸟类、爬行类(蛇、蜥蜴等)、兽类(猴子、水獭等)和昆虫等动物。

3.微生物监测:采用土壤样品和水样进行微生物多样性监测,通过分析土壤和水中的细菌和真菌群落结构来评估微生物多样性。

四、监测结果1.植物多样性:经过植物监测,共鉴定出保护区内植物物种250余种,包括红树林、湿地植物和陆地植物等。

其中,红树林的面积占保护区总面积的70%以上。

2.动物多样性:经过动物监测,共鉴定出保护区内鸟类90多种,爬行类和兽类20多种,昆虫众多。

其中,有部分为珍稀濒危物种,如白鹭、虎头蛇、香獐等。

3.微生物多样性:经过微生物监测,发现保护区内的土壤和水体中分布着丰富的微生物种类,包括细菌和真菌等。

这些微生物对于保护区内生态系统的平衡和稳定起着重要作用。

五、结论和建议1.深圳福田红树林保护区具有丰富的生物多样性,包括植物、动物和微生物等。

但有部分物种存在濒危和受威胁的情况,需要加强保护措施。

2.保护区的红树林是维持生物多样性的关键,需要加强红树林的保护和恢复工作,包括防止非法砍伐和破坏,减少土地开发等。

3.鸟类是保护区内的重要组成部分,特别是渡鸟对保护区的生态功能有重要影响,需要加强对鸟类的保护和研究。

4.加强保护区的巡护力度,严禁非法捕杀和破坏保护区内的动植物。

5.继续监测保护区的生物多样性,建立长期监测体系,了解其变化趋势,为科学合理地制定保护和管理措施提供参考。

六、总结通过本次生物多样性监测报告,我们了解到深圳福田红树林保护区拥有丰富的生物资源,但也存在一定的濒危和受威胁物种。

中国红树林保护成就与存在问题-中国生物圈保护区

中国红树林保护成就与存在问题-中国生物圈保护区

中 国 37 种 红 树 植 物 和 半 红 树 植 物 中 有 近 50% 的 种类已处于不同程度的 珍稀濒危状态。
群落退化、小种群濒危
中国乡土红树林宜林滩涂 面积只有约0.6万公顷,不 得不用外来速生树种进行 困难滩涂红树林造林。
前淹后断的红树林
我国的红树林发育不超过 6000 年 。 海 平 面 升 高 23mm/ 年 的 今 天 , 堤 前 红 树林“前淹后断”,总体 趋于衰退。
省(区)
广东 广西 海南 福建 浙江 合计
保护地数量 (个) 13 5 8 3 1 30
保护红树林面积(公顷)
9049.83 4498.11 3998.74 847.27
11.18 18405.13
占全国红树林总面积比例(%)
论文(2.53万公顷) 湿地调查(3.45万公顷)
35.75
26.25
17.77
保护地级别
保护地数量 (个)
保护红树林面积 (公顷)
国家级
6
11092.30
省级
5
4521.40
县市级
9
1881.20
小计
20
17494.90
国家级
7
623.17
省级湿地公园 3
287.06
小计
10
910.23
30
18405.13
占全国红树林总面积比例(%)
论文(2.53万公顷) 湿地调查(3.45万公顷)
可口革囊星虫
中国鲎
访问性游泳动物
入侵物种与外来物种
互花米草
入侵物种互花米草在一些海区包围了乡土红 树林。中国近17年来新增红树林的80%是外 来速生树种无瓣海桑。外来物种拉关木的扩 张性较强,应引起高度重视。

典型红树林生态系统藻类多样性及其在生态过程中的作用

典型红树林生态系统藻类多样性及其在生态过程中的作用

典型红树林生态系统藻类多样性及其在生态过程中的作用红树林是一种特殊的海洋生态系统,其中藻类(特别是海藻)是主要的生物群落组成成员之一。

红树林生态系统中的藻类多样性是指在该生态系统中存在的不同种类的藻类的数量和复杂性。

藻类在红树林生态系统中发挥着重要的生态功能。

它们是该生态系统中的主要光合作用者,通过光合作用吸收二氧化碳并释放氧气。

藻类还可以作为食物源,为许多海洋生物提供营养。

此外,藻类还可以帮助维护红树林生态系统的水质。

它们可以通过吸收有害物质并提供氧气来净化水体。

藻类也可以为红树林生态系统提供保护,因为它们的存在可以阻挡风暴和海浪的冲击。

红树林生态系统的藻类多样性对于保护和维护该生态系统的健康至关重要。

藻类多样性的减少可能会导致生态系统功能的破坏,并可能对该生态系统中的其他生物造成不利影响。

因此,保护和维护红树林生态系统中的藻类多样性是重要的生态管理.除了在红树林生态系统中发挥的重要生态功能之外,藻类多样性还与生态系统的稳定性有关。

研究表明,藻类多样性较高的生态系统更能适应环境的变化,并且在受到外来压力时更有可能维持稳定。

然而,红树林生态系统中的藻类多样性正受到越来越多的威胁。

其中一个主要的威胁是气候变化,这可能导致海洋温度升高和海洋酸化,进而影响藻类的生长和繁殖。

其他威胁包括污染、人为干扰、海洋开发等。

为了保护和维护红树林生态系统中的藻类多样性,采取有效的保护措施是必要的。

这可能包括减少对海洋的污染和人为干扰,保护海洋生物的生境,以及减缓气候变化的速度。

同时,对红树林生态系统中藻类多样性的研究也是必要的,以便更好地了解这些生态系统的运作机制,并为保护它们提供科学依据。

红树林的生态系统功能和生态服务

红树林的生态系统功能和生态服务

红树林的生态系统功能和生态服务红树林是一种生长在海滨潮间带的特殊植被群落,具有独特的生态系统功能和提供的重要生态服务。

本文将从不同方面来探讨红树林的生态系统功能和生态服务。

一、保护海岸线红树林由于其发达的根系能稳固沉积物,形成了复杂庞大的根系网络,能有效地抑制潮流和海浪的侵蚀,保护海岸线免受风浪侵蚀的影响。

红树林的树冠也能起到阻挡风沙的作用,减缓沙漠化的速度。

这些特性使红树林成为海岸线防护的天然屏障。

二、丰富的物种多样性红树林是一个独特的生态系统,提供了独特的生境供许多物种生存和繁衍。

它是很多鱼类、贝类等海洋生物的栖息地,也是许多候鸟的迁徙站和越冬地。

红树林所提供的栖息地和食源支持着丰富的物种多样性,维持了海洋生态系统的平衡。

三、调节气候变化红树林通过光合作用吸收大量二氧化碳,成为海洋和陆地生态系统的重要碳汇。

它们在固定二氧化碳的同时释放氧气,改善空气质量。

此外,红树林还能吸收大气中的氮和磷等营养物质,防止水体富营养化,维护水质的健康。

四、提供渔业资源红树林的根系提供了繁殖和栖息的环境,许多渔业资源如鱼类、虾类等以及蟹类都依赖红树林为生存的栖息地,并在红树林周边提供丰富的捕食资源。

因此,红树林在维持渔业的可持续发展方面起到了重要的作用。

五、海洋生态系统的健康指示物红树林的生态健康与海洋生态系统的整体健康密切相关。

红树林对水质、养分循环、沉积物等方面的响应可以反映出海洋生态系统的健康状况。

通过研究红树林的状态,可以及时了解和预测海洋生态系统的变化,以便采取必要的保护和恢复措施。

总结起来,红树林作为一种特殊的植被群落,拥有重要的生态系统功能和提供的生态服务。

它在保护海岸线、维持物种多样性、调节气候变化、提供渔业资源以及作为海洋生态系统的健康指示物方面发挥着重要作用。

因此,我们应该加强对红树林生态系统的保护和可持续利用,以确保其持续为人类和自然界提供宝贵的生态服务。

红树林的鸟类和候鸟迁徙

红树林的鸟类和候鸟迁徙

红树林的鸟类和候鸟迁徙红树林是一个独特的生态系统,它是由一系列红树植物组成的湿地环境。

这里的鸟类生态多样,同时也是候鸟的重要迁徙站点。

本文将探讨红树林的鸟类多样性以及候鸟在这里的迁徙情况。

一、红树林的鸟类多样性红树林是一个丰富的鸟类栖息地,各种类型的鸟类在这里繁衍生息。

首先,红树林是许多海鸟的天堂。

它们建立了自己的巢穴,借助红树植物提供的保护,孵化出下一代。

一些常见的海鸟包括红嘴鸥、鹭鸟和白鹭等。

这些鸟类在红树林中建立起了一个稳定的生态系统,彼此依存。

其次,红树林还是许多其他类型的鸟类的栖息地。

例如,各种种类的啄木鸟都可以在红树林中找到适合它们生活和觅食的环境。

啄木鸟们会在红树树干上凿洞,以供它们居住。

同时,在红树林丰富的植物资源中,一些食果鸟类也能找到丰富的食源。

此外,红树林还吸引了一些猛禽类鸟类。

它们利用红树林的高度和开阔空间,觅食小鱼、小虾等猎物。

这些猛禽类鸟类如海鹰、鹗等,是红树林生态系统的重要组成部分。

二、候鸟在红树林的迁徙情况红树林的独特环境使其成为众多候鸟的迁徙途经地。

每年秋冬季节,数以千计的候鸟从北方的寒冷地区向南方迁徙,途中红树林成为它们的重要中转站。

候鸟迁徙的目的地往往是寻找适宜的繁殖场所和丰富的食物资源。

红树林的丰富生态系统为候鸟提供了足够的食物和栖息地。

一些候鸟如红隼、沙锥等会在红树林中筑巢繁衍后代;而其他候鸟如琵鹭、白额海雕等则会在红树林中寻找食物,补充迁徙途中消耗的能量。

对于候鸟而言,红树林也是一个安全的避风港。

在长途迁徙中,候鸟通常会选择在红树林中歇脚,等待天候或其他条件的改善。

红树林的茂密植被为候鸟提供了遮风挡雨的地方,同时也隐藏了它们的存在,减少了被天敌袭击的风险。

总结红树林是一个鸟类多样性丰富的生态系统,各类鸟类在这里繁衍生息。

同时,红树林还吸引了大量的候鸟迁徙,成为它们的重要中转站。

这里为候鸟提供了丰富的食物和安全的栖息地,以支持它们的迁徙和繁衍。

红树林的鸟类和候鸟迁徙现象丰富了生态系统,也为我们观察和了解自然界提供了宝贵资源。

中国红树林的分布、面积和树种组成

中国红树林的分布、面积和树种组成

中国红树林的分布、面积和树种组成红树林是一种独特的生态系统,它存在于热带和亚热带地区的海岸线上。

在中国,红树林分布广泛,拥有大量的面积和丰富的树种组成。

本文将介绍中国红树林的分布、面积和树种组成,并探讨红树林对环境和生态系统的重要性。

红树林是一种湿地生态系统,主要分布在潮汐带以下的滨海地区。

红树林的典型植被包括红树科、柳科、马鞭草科等植物,其中红树科植物最为重要。

红树林具有以下几个特点:独特的生态系统:红树林是一种复杂的生态系统,具有高度的生物多样性。

它为许多动植物提供了生存环境,包括鸟类、鱼类、贝类等。

防护作用:红树林对于海岸线的防护作用十分显著,可以抵御风浪侵蚀,保持海岸线的稳定。

净化水质:红树林可以净化海水,吸收污染物,提高水质。

经济价值:红树林的木材和果实具有很高的经济价值,同时红树林也是旅游业的重要资源。

中国红树林的分布范围广泛,主要分布在华南、华东和东南沿海地区。

据2019年统计,中国红树林总面积约为4万公顷,其中自然红树林约为7万公顷,人工红树林约为7万公顷。

以下是中国主要红树林区的分布情况:海南岛:海南岛是中国最大的岛屿,也是红树林分布最集中的地区之一。

该地区的红树林主要分布在海口、三亚、文昌、琼海等沿海城市。

广东省:广东省拥有漫长的海岸线,红树林资源丰富。

主要分布在深圳、汕头、珠海、湛江等城市沿海地区。

福建省:福建省的红树林主要分布在厦门、福州、莆田、泉州等沿海城市,其中鼓山涌泉寺红树林是著名的景点之一。

浙江省:浙江省的红树林主要分布在温州、台州、宁波、舟山等沿海城市,其中舟山群岛的红树林资源最为丰富。

江苏省:江苏省的红树林主要分布在南京、连云港、盐城等沿海城市,其中连云港市的云台山红树林是著名的景点之一。

山东省:山东省的红树林主要分布在青岛、日照、烟台等沿海城市,其中烟台市的长山岛红树林是该省最为著名的红树林景区之一。

中国红树林的树种组成丰富多样,其中自然红树林的树种主要包括桐花树、秋茄树、木榄、海漆等。

红树林生态系统研究

红树林生态系统研究

红树林生态系统研究红树林是热带海岸泥滩上的常绿灌木和小乔木群落。

大部分属于红树科,生态学上称为红树林,是能生长于海上的绿色植物。

又称“海底森林”是一种珍贵的树种。

主要的植被类型是适应盐土和沼泽条件的红树植物、半红树植物和伴生植物。

红树植物是指仅生长在大部分时间受潮汐影响的潮间带的木本植物(如红树、海榄雌、海桑、红茄冬等)。

半红树植物是指既能在潮间带生长,又能在内陆生长的某些木本植物。

伴生植物是指红树林中的草木及藤本植物。

一.世界的红树林分布情况世界上的红树林大致分布在南、北回归线之间的范围内,共有两个分布中心,一个在东亚,一个在中南美洲,而以东亚的较为繁茂。

红树林在中国、印度、马来西亚、西印度群岛和西非都有分布。

二.中国的红树林分布情况我国在西太平洋红树林分布的北部边缘。

红树林与东亚的红树林是同一类型,主要分布于广西、广东、海南、台湾、福建和浙江南部沿岸。

在太平洋西岸,无论是种类和分布范围,我国的红树林都具有代表性,由南部的海南到北部的浙江,随纬度的提高,红树植物种类明显减少。

海南是我国红树植物种类最多,红树林生长最好的地方,浙江是我国红树林分布最北的省份。

秋茄、白骨壤、桐花树、老鼠勒和卤蕨是我国分布较广的常见红树植物种类。

三.海南的红树林分布情况我省红树林分布广泛,琼山、文昌、万宁、儋州、三亚、临高、陵水、澄迈等市、县的滨海口都有成片的红树林存在,以琼山的东寨港和文昌的八门湾较为著名。

三亚林旺的石龟树旁有26株上百年的红树林,被称为中国最古老的红树林。

本省红树林植被主要分为两大类。

一类是分布于淤泥深厚且较闭塞的海湾或河口湾或泻湖海岸潮间带中的高潮线以下地段。

主要树种有红树木榄、红海兰、角果木、海桑及木果楝。

目前,分布面积较大的有海口市演丰东寨港,文昌市会文镇长记港、铺前港、三亚市三亚港湾、儋州市新英港和陵水县新村港等。

群落一般株高3-5米,最高的可达8-1米。

另一类是海岸半红树林,分布在高潮浅以上的海岸地带,常与红树林相连呈条带状分布,但面积较小。

红树林植物物种多样性及其环境适应性研究

红树林植物物种多样性及其环境适应性研究

红树林植物物种多样性及其环境适应性研究红树林是一种特殊的植被类型,生长在海浪冲击区、河口、潮间带等浅海域域。

红树林的植物物种非常多样,且具有较强的环境适应性,成为了自然界中的一道亮丽风景线。

本文将介绍红树林植物物种多样性及其环境适应性的研究情况。

一、红树林植物物种多样性的研究红树林植物物种多样性的研究,一般采用的方法是通过调查、统计、分类等手段进行。

在研究过程中,可以采用样方调查法、相似性分析法等方法,对不同类型的红树林进行监测和比较。

研究显示,红树林中常见的植物物种主要有盐胡椒、紫背藤、黄花水蕊、红树、银芽小梨、海茄苳等。

同时,研究人员还对红树林中的不同物种进行了基因分析,发现红树林植物物种的基因有一定的相似性,但也存在一定的基因差异。

这表明,红树林中的不同植物物种虽然属于同一种类,但其适应环境的方式和程度是有所不同的。

二、红树林植物的生态位生态位是指一个生物种群在生态系统中所处的位置和角色,包括其生态功能、生境利用条件、竞争关系等。

红树林植物物种多样性的存在可以说是由于每种植物物种所处的生态位不同所致。

红树林中的植物物种不仅通过不同的生态位来适应环境,还通过协同作用来促进生态系统的稳定性。

例如,盐胡椒是一种具有较强耐盐能力的植物,可以在高盐环境下正常生长,但它的根系生长较浅,不利于稳固土壤。

而银芽小梨则是一种根系发达的植物,可以有效稳固土壤,但它的耐盐能力较弱。

因此,盐胡椒和银芽小梨等植物结合起来,就可以在不同环境条件下相互促进,形成了生态系统的相对稳定性。

三、红树林植物的环境适应性红树林植物物种多样性的存在与其较强的环境适应性是密不可分的。

红树林植物可以适应高盐度、高温度、不定水分等特殊的环境条件,其适应机制主要体现在以下几个方面:1.盐腺排放。

红树林植物可以通过盐腺排放将盐分排出体外,保持细胞内平衡。

2.肺根呼吸。

由于红树林植物常生长在水深较浅的地区,因此其根系通常呈现出肺形结构,使得植物可以在低氧环境中进行呼吸。

红树林的生物多样性及价值

红树林的生物多样性及价值

红树林的生物多样性及其价值红树林指生长在热带、亚热带低能海岸潮间带上部,受周期性潮水浸淹,以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本生物群落,组成的物种包括草本、藤本红树,它生长于陆地与海洋交界带的滩涂浅滩,是陆地向海洋过度的特殊生态系。

红树林是热带、亚热带海湾、河口泥滩上特有的常绿灌木和小乔木群落,具有呼吸根或支柱根,种子可以在树上的果实中萌芽长成小苗,然后再脱离母株,坠落于淤泥中发育生长,是一种稀有的木本胎生植物。

全世界约有55种红树林树种,在中国,红树林主要分布在的海南岛、广西、广东和福建,淤泥沉积的热带亚热带海岸和海湾,或河流出口处的冲积盐土或含盐沙壤土,适于红树林生长和发展,它一般分布于高潮线与低潮线之间的潮间带(见潮间带生态),随着海岸地貌的发育和红树林本身的作用,红树林常不断向海岸外缘扩展,红树林植物对盐土的适应能力比任何陆生植物都强。

红树林的成分以红树科的种类为主,红树科有16属120种,一部分生长在内陆,一部分组成红树林,如红树属、木榄属、秋茄树属、角果木属,此外还有使君子科的锥果木和榄李属、紫金牛科的桐花树(蜡烛果)、海桑科的海桑属、马鞭草科的白骨壤(海榄雌)、楝科的木果楝属、茜草科的瓶花木、大戟科的海漆、棕榈科的尼帕棕榈属等,在红树林边缘还有一些草本和小灌木,如马鞭草科的臭茉莉(苦郎树)、蕨类的金蕨、爵床科的老鼠簕、藜科的盐角草、禾本科的盐地鼠尾黍等。

在靠近红树林群落的边缘还有一些伴生的所谓半红树林的成分,它们都具有一定的耐盐力,如海杧果、黄槿、银叶树、露兜树、海棠果、无毛水黄皮、刺桐。

红树林里的动物主要是海生的贝类,常见的有筛目贝、砗蠔、栉孔扇贝、糙鸟蛤和马蹄螺、凤螺、粒核果螺和几种寄居蟹;在红树林水域有多种浮游生物,常见的硅藻有根管藻、角毛藻、半管藻、辐杆藻、三角藻、圆筛藻等浮游藻类;浮游动物则有新哲水蚤、波水蚤、真哲水蚤、丽哲水蚤、隆哲水蚤、真刺水蚤、胸刺水蚤、平头水蚤等;红树林内枝叶等残落物的分解有利于各种浮游生物的滋长,随之而至的是浅海鱼群在红树林带的洄游和出没。

红树林的海洋生物多样性保护

红树林的海洋生物多样性保护

红树林的海洋生物多样性保护海洋生物多样性是维持地球生态系统平衡、保护海洋生态环境的重要方面。

红树林是海洋生物多样性的重要保护区之一,其独特的地理位置和生态特点为海洋生物提供了良好的栖息地和保护条件。

本文将重点探讨红树林的海洋生物多样性保护,介绍其重要性和存在的问题,并提出相应的保护策略。

一、红树林及其海洋生物多样性红树林是一种特殊类型的植物群落,其根系可以迅速吸收海水中的营养物质,提供了海洋生态系统中独特的生境条件,吸引了大量的海洋生物寄居和繁衍生息。

在红树林沿海地区,我们可以发现许多不同种类的海洋生物,包括鱼类、贝类、藻类、软体动物等。

二、红树林的海洋生物多样性保护意义1. 维持生态平衡:红树林为海洋生物提供了栖息地和繁衍生息的环境,是许多海洋生物的重要栖息地。

保护红树林可以维持海洋生态系统的稳定,保持生态平衡。

2. 保护物种多样性:红树林地区的海洋生物种类繁多,包括珍稀濒危物种。

保护红树林可以保护这些物种的栖息地,维护海洋生物多样性。

3. 保护水质:红树林的根系可以有效吸收营养物质和沉积物,净化海水,保持水质的清洁和透明度,有利于海洋生物的生存和繁衍。

三、红树林海洋生物多样性保护的挑战尽管红树林对海洋生物多样性的保护具有重要作用,但目前仍面临一些挑战。

1. 城市化建设对红树林的影响:部分红树林地区受到城市化建设的威胁,土地开发和人类活动破坏了红树林的生态环境,导致生物栖息地的破坏和物种消失。

2. 污染对红树林和海洋生物的危害:水污染、土壤污染、废弃物排放等都对红树林和相关海洋生物造成了严重威胁,导致生物种群减少、生态系统受损。

3. 气候变化对红树林的影响:全球气候变暖导致海平面上升,加剧了红树林地区沿海侵蚀和栖息地的破坏,对红树林生态系统和海洋生物多样性带来了威胁。

四、红树林海洋生物多样性保护的策略为了有效保护红树林的海洋生物多样性,我们应采取以下策略:1. 加强保护意识:提高公众对红树林海洋生物多样性保护的认识和重视程度,通过开展教育宣传活动,增强人们的环境保护意识。

红树林生态系统调查报告

红树林生态系统调查报告

红树林生态系统调查报告一、引言红树林是位于潮间带的特殊生态系统,其独特的生物多样性和环境适应能力引起了广泛关注。

为了进一步了解红树林生态系统的现状和潜在威胁,我们进行了一次调查。

本报告将介绍调查方法、结果和结论,以期为红树林保护和可持续管理提供科学依据。

二、调查方法1. 选址我们选择了位于某市沿海的红树林自然保护区作为研究对象。

该保护区面积约XX平方公里,涵盖了不同类型的红树林群落。

2. 数据收集通过实地考察和采样,我们收集了以下数据:- 植被调查:记录红树林主要植物种类、数量和分布情况。

- 动物调查:使用红外相机和生态捕捉器,记录红树林动物的物种多样性和数量。

- 水质分析:采集水样,进行水质指标测试,了解红树林水体的健康状况。

- 土壤样本采集:采集不同红树林群落的土壤样本,进行理化指标测试。

3. 数据分析我们使用统计学方法对采集到的数据进行分析,包括频数统计、物种多样性指数计算和环境因子相关性分析等。

三、调查结果1. 植被调查结果我们识别出XX个红树林植物种类,其中包括红树、白骨壤、滨藜等。

不同种类的红树林植物在保护区内呈现不同的分布格局。

2. 动物调查结果通过红外相机和生态捕捉器,我们记录到了XX个红树林动物物种,包括鹭鸟、螃蟹、海龟等。

其中,部分物种是濒危物种,在该区域的存在对红树林生态系统的稳定性至关重要。

3. 水质分析结果水质分析显示,红树林保护区内水质总体状况良好。

主要指标如pH值、溶解氧含量等均处于适宜范围。

4. 土壤分析结果不同红树林群落的土壤理化性质存在差异。

沿海红树林土壤pH稍低,含盐量较高,而内陆红树林土壤较为酸性。

四、结论通过对红树林生态系统的调查研究,我们得出以下结论:1. 红树林保护区内植物、动物种类较为丰富,存在较高的生物多样性。

2. 红树林动物物种中存在一些濒危物种,需要加强保护措施。

3. 水质总体良好,但仍需定期监测,确保红树林水体健康。

4. 红树林土壤具有一定的酸碱性差异,需要针对不同群落实施合理的土壤管理措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 3 4 5
泌盐红树植物
其它子系统丰富
a. b. c. d. 鸟类 底栖 藻类 兽类、蛇等
藻类
中国红树林区大型藻类有4门,28属 中国红树林区大型藻类有4门,28属55 种,其中蓝藻门有10属17种,红藻门 种,其中蓝藻门有10属17种,红藻门 有5属13种,褐藻门有1属2种,绿藻门 13种,褐藻门有1 有13属23种。以鹧鸪菜属 13属23种。以鹧鸪菜属 (Caloglossa)、卷枝藻属 (Bostrychia)、浒苔属 (Enteromorpha)和鞘丝藻属 (Lyngbya)的一些种类占优势。
+
+ + + + + +
+
+
+
+
+
+ + + +
+ +
+ + + +
15.R. stylosa 红海榄 15.R.
+
+
+
+
5.Euphorbiaceae
16.Excoecaria agallocha海漆 16.Excoecaria agallocha海漆
+
+
+
+
+
+
6.Meliaceae
17.Xylocarpus granatum木果楝 17.Xylocarpus granatum木果楝
水椰群系
水椰群落
其他
卤蕨群落 海漆群落 榄李群落
四、主要生态作用与经济利用
1.通过网罗碎屑的方式促进土壤的形成,抵抗潮汐和洪 1.通过网罗碎屑的方式促进土壤的形成,抵抗潮汐和洪 水的冲击,保护堤岸; 2.过滤陆地迳流和内陆带出的有机物质和污染物; 2.过滤陆地迳流和内陆带出的有机物质和污染物; 3.为许多海洋动物(包括渔业、水产生物)提供栖息和 3.为许多海洋动物(包括渔业、水产生物)提供栖息和 觅食的理想生境; 4.是为近海生产力提供有机碎屑的主要生产者; 4.是为近海生产力提供有机碎屑的主要生产者; 5.植物本身的生产物,包括木材、薪炭、食物、药材和 5.植物本身的生产物,包括木材、薪炭、食物、药材和 其它化工原料等; 6.红树林是可以进行社会教育和旅游的自然和人文景观。 6.红树林是可以进行社会教育和旅游的自然和人文景观。 开展红树林研究不仅有重要的理论意义,还有现实的 经济意义。
种名
Barringtonia racemosa玉蕊 racemosa玉蕊 Cerbera manghas海芒果 manghas海芒果 Dolichandron spathacea海滨猫尾木 spathacea海滨猫尾木 Pluchae indica阔苞菊 indica阔苞菊 Hernandia sonora莲叶桐花 sonora莲叶桐花 Pongamia pinnta水黄皮 pinnta水黄皮 Pemphis acidula水芫花 acidula水芫花 Hibiscus tiliascus黄槿 tiliascus黄槿 Thespesia populnea杨叶肖槿 populnea杨叶肖槿
+
海 南 7.Myrsinaceae 8.Palmae 9.Rubiaceae 18.Aegiceras corniculatum桐花树 18.Aegiceras corniculatum桐花树 19.Nypa fruticans水椰 19.Nypa fruticans水椰 21.Scyphiphora hydrophyllacea瓶花 21.Scyphiphora hydrophyllacea瓶花 木 + + + + + + + +
香 港 +
澳 门 +
广 东 +
广 西 +
台 湾
福 建 +
浙 江
10.Sonneratiaceae 22.Sonneratia alba杯萼海桑 22.Sonneratia alba杯萼海桑 23.S. caseolaris海桑 23.S. caseolaris海桑 24.S. hainanensis海南海桑 24.S. hainanensis海南海桑 25.S. ovata卵叶海桑 25.S. ovata卵叶海桑 11.Sterculiaceae 26.Heritiera littoralis银叶树 26.Heritiera littoralis银叶树
高渗透压
红树植物适应高盐度生境,主要是依靠 其渗透压高。有人报告说白骨壤的渗透压 可以高到160大气压力,虽然后来的资料证 可以高到160大气压力,虽然后来的资料证 明红树植物的渗透压没有这样高,通常只 有30-60大气压,例如海桑平均是32.0, 30-60大气压,例如海桑平均是32.0, 红茄冬是33.0,白骨壤是34.5-62.0大气压。 红茄冬是33.0,白骨壤是34.5-62.0大气压。 它们比之一般的陆生植物已是高得很多 (后者只有5 10个大气压)。 (后者只有5-10个大气压)。
省/地区 海 香 澳 广 广 台 福 浙 南 港 门 东 西 湾 建 江
+ + + + + + +
8.Bruguiera cylindrica 柱果木榄 9.B. gymnorrhiza 木榄 10.B. sexangula 海莲 10. 11.B. s.var.rhynochopetala尖瓣海莲 11. var.rhynochopetala尖瓣海莲 4.Rhizophoraceae 12.Ceriops tagal 角果木 12. 13.Kandelia candel 秋茄 13.Kandelia 14.Rhizophora apiculata 红树 14.Rhizophora
海 南
+ + + + + + + + + + 10
香 港
澳 门
广 东
广 西
台 湾
+
福 建
+
+
+ + +
+
+
+
+
+ +
+ +
+
+ + +
+ + + 3
+ + + 8
+
9.Verbenaceae
Premna obstusifolia钝叶臭黄荆 obstusifolia钝叶臭黄荆 10
合计
4
2
7
1
三.中国红树林的群落多样性
胎生现象
显胎生的木榄
角 果 木
海 莲
红海榄、角果木-显胎生
隐胎生
根系多样性
红 树 植 物 根 系 示 意 图
红树型
白骨壤型
木榄型Βιβλιοθήκη 澳洲木果 楝型木果楝型
红海榄的支柱根
红茄冬的支柱根
木榄的膝状呼吸根
海莲林内根系
银叶树的板状根
海桑笋状呼吸
白骨壤的指状呼吸根
榄李表面根
旱生结构
a. b. c. d. 叶 渗透压 单宁 光合与盐分代谢
木榄群系 红树群系 秋茄群系 角果木群系 桐花树群系 白骨壤群系 海桑群系 水椰群系 此外,尚存少量群落,如榄李群落、银叶树群 落。
木榄群系
海莲群落
木榄群落
红树群系
正红树群落
红海榄群落
秋茄群系
秋茄群落
角果木群系
角果木群落
桐花树群系
桐花树群落
白骨壤群系
白骨壤群落
海桑群系
无瓣海桑群落
卵叶海桑群落
红树植物生长于土壤干旱生境下, 红树植物生长于土壤干旱生境下,而叶又展布于赤日炎 炎和强风高热的空气中,叶片表现出特殊的构造: 炎和强风高热的空气中,叶片表现出特殊的构造:
1. 叶通常厚革质或有些肉质,全缘 叶通常厚革质或有些肉质, 2. 表皮组织有厚膜而且角质化,有光泽 表皮组织有厚膜而且角质化, 3. 气孔常深藏于表皮下,前室为瓮状 气孔常深藏于表皮下, 4. 贮水组织常具存,且有时巨大 贮水组织常具存, 5. 叶脉尖端扩大而成贮水的管胞 6. 长形的石细胞或韧皮状机械细胞具存于栅栏组织之间 7.有些种类的叶下面密被茸毛 7.有些种类的叶下面密被茸毛 8. 有些种类的细胞具有胶性粘膜 9. 叶肉几乎没有细胞间隙,而栅栏组织的叶注仅有绿色组织 叶肉几乎没有细胞间隙, 10. 有些属类的叶具有与光平行注位置,因此而成等面叶,以避 有些属类的叶具有与光平行注位置,因此而成等面叶, 免强光的直射. 免强光的直射.
浮游植物
我国红树林区,已鉴定的浮游植 物有96种,其中硅藻92种,甲藻 3种,蓝藻1种。在种类和细胞数量 上以硅藻占绝对优势,优势种有窄隙 角毛藻等角毛变种、短孢角毛藻、扁 面角毛藻、拟弯角毛藻、距端根管藻、 覆瓦根管藻、菱形海线藻和伏氏海毛 藻等。
动物
中国红树林区内有鸟类17目39 科201种、昆虫13目73科14 2种、底栖动物113科299种, 以及一些哺乳类和爬行类
泌盐系统
红树植物的盐腺系统是复杂的, 从图中可见该系统由5 从图中可见该系统由5个亚系统或 称5个部分)组成。从叶肉向叶表 面排列是: 收集细胞亚系统(若干个细胞组 成) 基细胞亚系统(仅一个扁平细胞) 分泌细胞(由20个到42个细胞组 分泌细胞(由20个到42个细胞组 成) 收集室亚系统(一个气室) 盐腺盖亚系统(周围一个角质层 套,上一个角质层盖,并有若干个 泌盐孔组成)
富含丹宁 综合我国有关资料,各种红树植 物的树皮含丹宁的重量比例约为木榄 12.7-22.73%,红海榄12.36-24%,秋 12.7-22.73%,红海榄12.36-24%,秋 茄12.4-30.76%,角果木28.15-29.67%, 12.4-30.76%,角果木28.15-29.67%, 海漆6.8-9.3%,榄李20.8%,桐花树 海漆6.8-9.3%,榄李20.8%,桐花树 8.95-19.58%,海莲20.10-23.0%,红 8.95-19.58%,海莲20.10-23.0%,红 树13.6%,木果楝30.0%,白骨壤0.3%。 13.6%,木果楝30.0%,白骨壤0.3%。 其中除白骨壤外,均有开发价值。
相关文档
最新文档