压电陶瓷材料

合集下载

压电陶瓷材料测试需要知道的13个基本参数

压电陶瓷材料测试需要知道的13个基本参数

压电陶瓷材料测试需要知道的13个基本参数压电陶瓷材料是一种具有压电效应的材料,可将机械的压力或应力转化为电能,同时也可以将电能转化为机械的压力或应力。

因此,对于压电陶瓷材料的测试,需要关注以下13个基本参数。

1.介电常数(Dielectric constant):介电常数是指材料在电场作用下的电极化能力,是压电陶瓷材料的一个重要指标。

介电常数越大,材料的电极化能力越强。

2.电容(Capacitance):电容是指单位电压下存储的电荷量,通常以法拉(F)为单位。

对于压电陶瓷材料,电容可以用来判断材料的电性能。

3.压电系数(Piezoelectric coefficient):压电系数是指压电材料产生的电荷与施加在材料上的应力或压力之间的比例关系。

压电系数可以分为压电应力系数和压电应变系数。

4.机械耦合系数(Electromechanical coupling coefficient):机械耦合系数是指压电陶瓷材料在机械和电学特性之间的耦合程度。

该参数描述了材料将电能转化为机械能或将机械能转化为电能的能力。

5.压电应用温度范围(Operating temperature range):压电陶瓷材料在不同温度下的性能是不同的,因此需要确定材料的工作温度范围。

过高或过低的温度可能会影响材料的性能。

6.力常数(Force constant):力常数是指压电材料在单位面积上所承受的力与电压或电荷之间的比例关系。

力常数可以用来描述材料的力学特性。

7.色散(Dispersion):色散是指压电陶瓷材料的压电性能随着频率的变化而产生的变化。

了解材料的色散特性可以优化材料的应用。

8.应力-应变曲线(Stress-strain curve):应力-应变曲线描述了在施加外力或压力时,材料的应力和应变之间的关系。

通过绘制应力-应变曲线,可以获得材料的力学性能。

9.电化学稳定性(Electrochemical stability):压电陶瓷材料应具有良好的电化学稳定性,以确保其在一定电压或电流下不发生电化学反应。

压电陶瓷材料成分

压电陶瓷材料成分

压电陶瓷材料成分
压电陶瓷材料是一种具有压电效应的陶瓷材料,其成分主要包括铈酸锂(LiCeO2)、钛酸锂(LiTiO3)、锆酸铅(PbZrO3)等。

下面将分别介绍这些成分的特点和应用。

铈酸锂是一种高温压电材料,具有较高的压电系数和良好的稳定性。

它的主要特点是压电系数高,能够在高温下工作,因此在高温环境下被广泛应用。

铈酸锂可以用于传感器、声纳、换能器等领域,比如在航空航天领域中,可以用于制作高温传感器,监测发动机温度变化,确保发动机的安全运行。

钛酸锂是一种具有优良压电性能的陶瓷材料。

钛酸锂的主要特点是具有较高的压电系数和较低的机械耗散。

由于其良好的压电性能和稳定性,钛酸锂被广泛应用于传感器、声波滤波器、振荡器等领域。

例如,在移动通信领域中,钛酸锂可以用于制作滤波器,过滤掉杂波,提高通信信号的质量和稳定性。

锆酸铅是一种具有较高压电系数和良好稳定性的压电材料。

锆酸铅的主要特点是具有较高的压电系数和较低的机械耗散,能够在较宽的温度范围内工作。

锆酸铅被广泛应用于声纳、换能器、超声波清洗等领域。

例如,在医疗领域中,锆酸铅可以用于制作超声波清洗器,清洗器的超声波振子由锆酸铅制成,能够产生高频振动,实现对物体的深层清洁。

压电陶瓷材料成分包括铈酸锂、钛酸锂和锆酸铅。

这些材料具有不同的特点和应用领域,但都能够实现压电效应,并在各个领域中发挥着重要的作用。

随着科技的不断发展,压电陶瓷材料的研究和应用将会越来越广泛,为各行业的发展带来新的机遇和挑战。

简述压电陶瓷

简述压电陶瓷

简述压电陶瓷压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料,是一种具有压电效应的陶瓷材料。

与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品、价格低廉等优点。

它具有压电效应。

所谓压电效应是正电压效应和负电压效应。

前者是指由应力诱导出极化或电场的现象,后者则是由电场诱导出应力或应变的现象,二者统称为压电效应。

目前为止,压电陶瓷的这种压电效应已被广泛应用于与人们生活息息相关的许多领域,遍及卫星广播、电子设备、生物、航空航天、医疗卫生、日常生活等等。

由此可见压电陶瓷的应用十分广泛,研究意义非常重大。

一些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。

具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。

反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。

常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。

如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。

此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Ba x·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。

目前,我国所使用的压电陶瓷体系主要是铅基压电陶瓷,材料其中含铅化合物PbO(或Pb3O4)约占原料总质量的百分之七十左右。

由于含铅化合物在高温时具有挥发性,这些材料在生产、使用、废弃过程中都会对人类健康和生态环境造成很大的危害。

压电陶瓷是什么

压电陶瓷是什么

压电陶瓷是什么?压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料。

压电陶瓷到底是一种什么样的材料呢?压电陶瓷属于无机非金属材料。

这是一种具有压电效应的材料。

所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。

反之,施加激励电场,介质将产生机械变形,称逆压电效应。

这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。

在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。

电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。

用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。

压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。

地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。

压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。

这不能不说是压电陶瓷的一大奇功。

压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。

谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。

它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。

我们来看一种新型自行车减震控制器,一般的减振器难以达到平稳的效果,而这种ACX减震控制器,通过使用压电材料,首次提供了连续可变的减震功能。

压电陶瓷材料

压电陶瓷材料

压电陶瓷材料压电陶瓷材料是一种能够产生压电效应的材料,它具有压电效应和介电效应。

压电效应是指在材料受到外力作用时,会产生电荷分离,从而产生电压;而介电效应是指在外电场作用下,材料会发生极化现象。

因此,压电陶瓷材料具有很高的应变灵敏度和介电常数,广泛应用于传感器、换能器、滤波器、压电陶瓷换能器、压电陶瓷马达、压电陶瓷振动器等领域。

压电陶瓷材料的基本原理是通过应力-电压效应和电压-应变效应来实现能量的转换。

在应力-电压效应中,当外力作用于压电陶瓷材料时,材料内部的正负电荷会发生分离,从而产生电压;而在电压-应变效应中,当外加电压作用于材料时,材料会产生相应的应变。

这种能量转换的特性使得压电陶瓷材料在各种领域得到了广泛的应用。

在传感器方面,压电陶瓷材料可以将机械能转换为电能,从而实现对压力、力、加速度、振动等物理量的检测和测量。

在换能器方面,压电陶瓷材料可以将电能转换为机械能,用于声波的发射和接收。

在滤波器方面,压电陶瓷材料可以利用其介电效应来实现对特定频率信号的滤波。

在压电陶瓷换能器、马达、振动器等方面,压电陶瓷材料可以实现能量的高效转换和控制。

除了以上应用外,压电陶瓷材料还在医疗、汽车、航空航天等领域得到了广泛的应用。

在医疗领域,压电陶瓷材料可以用于超声波探测和治疗;在汽车领域,压电陶瓷材料可以用于汽车传感器、超声波清洗等;在航空航天领域,压电陶瓷材料可以用于飞机结构健康监测、声学阵列等方面。

总的来说,压电陶瓷材料具有很高的应变灵敏度和介电常数,能够实现能量的高效转换,广泛应用于传感器、换能器、滤波器、压电陶瓷换能器、压电陶瓷马达、压电陶瓷振动器等领域,同时在医疗、汽车、航空航天等领域也有着重要的应用。

随着科技的不断发展,相信压电陶瓷材料将会有更广阔的应用前景。

压电陶瓷材料

压电陶瓷材料

压电陶瓷材料
压电陶瓷材料是一种能够产生压电效应的陶瓷材料。

压电效应是指当压电材料受到外界压力或拉力时能够产生电荷分离,从而形成电压差。

压电陶瓷材料具有稳定性好、能耗低、响应速度快等优点,因此在许多领域有着广泛的应用。

首先,压电陶瓷材料在传感器和控制装置中有着重要的应用。

由于压电陶瓷材料能够将机械能转换为电能,因此它可以作为传感器来检测物体的压力或力量。

例如,在工业机械中,压电陶瓷材料可作为加速度传感器,通过检测机械振动来判断设备的运行状况。

此外,在医学领域,压电陶瓷材料可用于心脏和肌肉等生物组织的压力测量。

其次,压电陶瓷材料还可以应用于声波和超声波技术中。

压电陶瓷材料能够产生声波和超声波,并且具有高频率和高能量的特点,因此适用于超声波清洗装置、医学超声波成像设备等。

此外,压电陶瓷材料还可以用作声纳探测装置,如潜艇和鱼群探测。

此外,压电陶瓷材料在振动控制和能量收集方面也有着广泛的应用。

由于压电陶瓷材料具有压力和拉力之间的相互转换能力,它可以用于振动控制装置中,通过施加适当的电压来调节振动的幅度和频率。

此外,压电陶瓷材料还可以用于能量收集装置中,通过收集周围的振动能量并转化为电能储存起来,从而实现能源的可持续利用。

总之,压电陶瓷材料是一种应用广泛的材料,它在传感器、声
波和超声波技术、振动控制和能量收集等领域都有着重要的作用。

随着科技的不断发展,压电陶瓷材料的应用也在不断拓展,相信它将在未来的科技领域中发挥更为重要的作用。

压电陶瓷原料配方

压电陶瓷原料配方

压电陶瓷原料配方
压电陶瓷是一种能够产生压电效应的材料,广泛应用于传感器、滤波器、换能器等领域。

压电陶瓷的性能受到原料配方的影响,合理的原料配
方能够提高压电陶瓷的性能。

下面将介绍一种常用的压电陶瓷原料配方。

1.主要原料
主要原料是指能够提供压电效应的物质,常见的原料有铅酸钙(PbTiO3)、铅锆钛酸钡(Pb(Zr,Ti)O3)等。

这些原料具有较高的介电
常数和压电常数,能够有效地传导电荷和产生压电效应。

2.添加剂
添加剂是为了改善陶瓷的性能而加入的物质。

常见的添加剂有镁铼酸
铅(Pb(Mg1/3Nb2/3)O3)、铌酸锂(LiNbO3)等。

添加剂可以提高陶瓷的
压电性能和稳定性,使其在不同温度和压力下保持较好的性能。

3.稳定剂
稳定剂是为了减少陶瓷在高温条件下的结构变化和热膨胀系数的改变
而添加的物质。

常见的稳定剂有锡酸钡(BaSnO3)、钛酸锶(SrTiO3)等。

稳定剂可以提高陶瓷的热稳定性和耐热性能,保证其在高温下的正常工作。

4.接枝剂
接枝剂是为了增强陶瓷的强度和抗断裂能力而添加的物质。

常见的接
枝剂有氧化锄(Cr2O3)、氧化镁(MgO)等。

接枝剂可以增加陶瓷的晶粒
生长和结晶度,提高其力学性能和耐冲击能力。

以上是一种常用的压电陶瓷原料配方,不同的配方会有不同的性能和应用领域。

在实际生产中,根据需要选择合适的原料和配比,通过合理的工艺处理和烧结工艺,可以得到具有良好性能的压电陶瓷材料。

压电陶瓷原理

压电陶瓷原理

压电陶瓷原理
压电陶瓷是一种特殊的陶瓷材料,其能够通过外力的作用而产生电荷分布的变化,从而产生电场。

这种材料在工业和科技领域有着广泛应用。

压电陶瓷的工作原理是压电效应,即当外力施加在压电陶瓷上时,其内部产生正负电荷分布的不均匀。

这种不均匀的电荷分布会形成一个电偶极子,进而产生一个电场。

当外力释放后,压电陶瓷会恢复到无电场状态。

压电陶瓷的原理可以通过晶格结构解释。

晶格结构中,每个原子或离子都处于平衡位置,如果外力施加在晶体上,原子或离子会发生位移,从而导致电荷重分布,形成电偶极子。

这种电偶极子的产生使得压电陶瓷材料具有压电效应。

压电陶瓷的压电效应具有正压电效应和负压电效应两种形式。

正压电效应是指当外力施加在材料上时,材料的电荷分布产生极化,而负压电效应是指当外力释放时材料的电荷分布恢复到初始状态。

压电陶瓷的应用包括声波传感器、声波发生器、电子点火器、压力传感器等。

由于其压电特性能够将机械能转化为电能,因此被广泛用于传感器、谐振器和声音设备等领域。

总而言之,压电陶瓷通过压电效应将机械能转化为电能,具有广泛的应用前景。

压电陶瓷原料

压电陶瓷原料

压电陶瓷原料
压电陶瓷是一种具有压电效应的陶瓷材料,其性质使其在压电传感器、压电换能器、压电马达等领域得到广泛应用。

压电陶瓷的原料主要包括以下几种:
1.氧化物陶瓷材料:压电陶瓷的主要成分通常是氧化物,如氧化
铅锆(PZT),氧化铅钛(PT),氧化铝(Al2O3)等。

这些氧化物是制备压电陶瓷的基础。

2.铅化合物:铅是许多压电陶瓷的重要成分,例如PZT。

这种陶
瓷通常包含铅酸铅、氧化铅等铅化合物。

3.钛化合物:钛也是一些压电陶瓷的主要组成部分,例如PT。

钛酸钛是一种常见的钛化合物。

4.锆化合物:锆是PZT等陶瓷中的另一重要元素,锆酸锆是其中
的一种。

5.其它添加剂:为了改变陶瓷的性能,可能会添加一些其它元素
或化合物,如镍、铁、钴等。

制备压电陶瓷通常需要将这些原料混合,并在高温条件下烧结成陶瓷坯体,然后通过切割、抛光等工艺制成最终的压电陶瓷元件。

需要注意的是,由于一些压电陶瓷中含有铅等有毒物质,生产和处理时需要采取相应的安全措施。

压电陶瓷材料的合成及应用

压电陶瓷材料的合成及应用

压电陶瓷材料的合成及应用压电陶瓷材料是一种能够将机械能转化为电能或将电能转化为机械能的材料,广泛应用于超声波发生器、声波过滤器等领域。

其独特的电学和机械性能,使得压电陶瓷材料被广泛关注和研究。

本文将探讨压电陶瓷材料的合成及应用。

一、压电陶瓷材料的合成1. 碳酸铅法碳酸铅法是目前最主要的压电陶瓷材料制备方法之一,其制备过程是将碳酸铅和钛酸铅混合在一起,经过多次煅烧和压制、烧结而成。

碳酸铅法制备的压电陶瓷材料具有稳定的性能、良好的压电性能和介电性能等特点。

2. 气相沉积法气相沉积法是利用化学气相沉积技术,在高温高压下合成压电陶瓷材料。

该方法制备出的压电陶瓷材料具有良好的均匀性和致密性,具有良好的压电响应和热稳定性。

3. 溶胶-凝胶法溶胶-凝胶法是通过溶胶-凝胶化学反应来合成陶瓷材料。

该方法具有简单、可控性强等优点,制备出的压电陶瓷材料具有均匀性好、结晶度高等特点。

二、压电陶瓷材料的应用1. 超声波发生器压电陶瓷材料具有压电效应,能够将电信号转化为机械运动,因此被广泛应用于超声波发生器中。

超声波发生器是利用压电片振动产生超声波,应用于水处理、非损检测、超声波清洗等领域。

2. 声波过滤器声波过滤器是利用压电陶瓷片的压电效应来调节机械振动谐振频率的装置,通常作为电子器件的支持层。

由于其具有稳定性好、压电响应时间短等特点,被广泛应用于无线电器件、计算机器件等领域。

3. 振动传感器振动传感器是利用压电陶瓷材料的压电效应来测量机械振动的装置,是工业控制中常用的传感器之一。

该传感器具有精度高、灵敏度高、可靠性高等特点,被广泛应用于飞行器、兵器装备、船舶、汽车等领域。

总之,压电陶瓷材料具有压电效应、介电效应等特点,被广泛应用于超声波发生器、声波过滤器、传感器等领域,具有重要的科学研究价值和实际应用价值。

未来,需要进一步探索陶瓷材料制备新方法,提高制备工艺的稳定性和效率,推动压电陶瓷材料的快速发展。

几种材料压电陶瓷的特性

几种材料压电陶瓷的特性

1. 大功率发射材料YT-8型压电陶瓷: 该压电陶瓷材料具有良好压电性,机械强度高、矫顽场高,强场介电损耗低。

它主要用于超声清洗、强力超声钻孔、超声焊接、洁牙机探头、美容仪探头、超声手术刀探头、心血管治疗仪探头等。

2. 高灵敏度接收材料YT-5型压电陶瓷: 该压电陶瓷材料具有高机电耦合系数,适宜的介电常数、较高的灵敏度。

它主要用于高灵敏度换能器、流量计换能器、液位计换能器、加速度计换能器、超声检测换能器等。

3. 收发两用材料YT-4型压电陶瓷: 该压电陶瓷材料介于YT-8与YT-5之间,兼顾二者特点,具有较高的灵敏度,又具有较低介电损耗,对于发射功率不大而且可同时做接收用的收发两用换能器,选用本材料最合适。

目前用该压电陶瓷材料生产的超声雾化换能器已批量投产。

4. PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。

具有正压电效应和负压电效应。

PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写
PZT是反铁电相PbZrO3和铁电相PbTiO3的二元固溶体,具有钙钛矿型结构。

PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族,
PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。

研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点.。

压电陶瓷主要成分

压电陶瓷主要成分

压电陶瓷主要成分压电陶瓷是一种具有压电效应的陶瓷材料,其主要成分包括钛酸锆、钛酸铅和硅酸钠等。

压电陶瓷具有压电效应,即在受到外力作用时会产生电荷分离现象,从而产生电压差。

这种材料常被用于传感器、驱动器和压电换能器等设备中。

钛酸锆是一种重要的压电陶瓷材料,其化学式为ZrTiO4。

它具有较高的压电系数和介电常数,因此在压电陶瓷中具有广泛的应用。

钛酸锆是一种晶体材料,其晶体结构为正交晶系。

它的压电性能主要是由晶格结构变形引起的,当外力施加到钛酸锆晶体上时,晶格会发生畸变,导致正电荷和负电荷的分离,从而产生电压。

钛酸铅是另一种常见的压电陶瓷材料,其化学式为PbTiO3。

它具有良好的压电性能和介电性能,因此在压电器件中得到广泛应用。

钛酸铅是一种钙钛矿结构的陶瓷材料,其晶体结构具有较高的对称性,因此表现出优异的压电性能。

钛酸铅的压电效应是由晶体结构的畸变引起的,当外力作用到钛酸铅晶体上时,晶格会发生畸变,导致电荷的分离。

硅酸钠是一种常用的玻璃基质材料,它的化学式为Na2SiO3。

硅酸钠在压电陶瓷中常用作玻璃相的添加剂,可以提高陶瓷的烧结性能和机械强度。

硅酸钠的加入可以改善压电陶瓷的工艺性能,并且对陶瓷的压电性能没有明显的影响。

除了以上主要成分外,压电陶瓷中还可能含有其他添加剂,如氧化铁、氧化钴等。

这些添加剂的加入可以改变陶瓷的物理性能和电学性能,从而适应不同的应用场景。

压电陶瓷具有许多优异的性能,如高压电系数、宽工作频率范围、稳定性好等。

它在传感器领域中被广泛应用,如压力传感器、加速度传感器等。

此外,压电陶瓷还可以用于声波发生器、压电换能器等设备中。

压电陶瓷的应用领域非常广泛,涉及到电子、通信、医疗、汽车等多个行业。

压电陶瓷是一种具有压电效应的陶瓷材料,其主要成分包括钛酸锆、钛酸铅和硅酸钠等。

这些成分赋予了压电陶瓷优异的压电性能和介电性能,使其在传感器、驱动器和压电换能器等设备中得到广泛应用。

压电陶瓷的发展将为电子技术的进步和应用提供强大的支持。

压电陶瓷材料实验报告

压电陶瓷材料实验报告

一、实验目的1. 了解压电陶瓷材料的基本特性和应用领域。

2. 掌握压电陶瓷材料的制备方法及性能测试技术。

3. 分析压电陶瓷材料的性能与结构之间的关系。

二、实验原理压电陶瓷材料是一种具有压电效应的无机非金属材料,其基本原理是在外部机械力的作用下,内部产生电荷,从而实现机械能与电能之间的相互转换。

压电陶瓷材料具有高介电常数、高介电损耗、高压电系数等特性,广泛应用于声学、光电子、传感器、驱动器等领域。

三、实验材料与仪器1. 实验材料:PZT(锆钛酸铅)压电陶瓷材料。

2. 实验仪器:(1)高温烧结炉:用于压电陶瓷材料的烧结。

(2)X射线衍射仪(XRD):用于分析压电陶瓷材料的晶体结构。

(3)扫描电子显微镜(SEM):用于观察压电陶瓷材料的微观结构。

(4)压电系数测试仪:用于测试压电陶瓷材料的压电系数。

(5)介电性能测试仪:用于测试压电陶瓷材料的介电常数和介电损耗。

四、实验步骤1. 压电陶瓷材料的制备(1)将PZT粉末与适量粘结剂混合,制成浆料。

(2)将浆料涂覆在陶瓷基板上,形成压电陶瓷薄膜。

(3)将压电陶瓷薄膜放入高温烧结炉中,进行烧结,烧结温度为850℃左右,保温时间为2小时。

2. 压电陶瓷材料的性能测试(1)X射线衍射分析:对烧结后的压电陶瓷材料进行XRD分析,确定其晶体结构。

(2)扫描电子显微镜分析:对压电陶瓷材料进行SEM分析,观察其微观结构。

(3)压电系数测试:利用压电系数测试仪测试压电陶瓷材料的压电系数。

(4)介电性能测试:利用介电性能测试仪测试压电陶瓷材料的介电常数和介电损耗。

五、实验结果与分析1. X射线衍射分析(1)通过XRD分析,确定压电陶瓷材料的晶体结构为PZT相。

(2)分析压电陶瓷材料的晶体结构特点,如晶胞参数、晶粒尺寸等。

2. 扫描电子显微镜分析(1)通过SEM分析,观察压电陶瓷材料的微观结构,如晶粒尺寸、晶界、孔隙等。

(2)分析压电陶瓷材料的微观结构对性能的影响。

3. 压电系数测试(1)测试压电陶瓷材料的压电系数,确定其性能。

压电陶瓷

压电陶瓷

一、压电材料与应用综述1、概述在1880年,居里兄弟首先在单晶上发现压电效应。

在1940年前,人们知道有两类铁电体:罗息盐和磷酸二氢钾盐,具有压电性。

在1940年后,发现了BaTiO3是一种铁电体,具有强的压电效应。

是压电材料发展的一个飞跃。

在1950年后,发现了压电PZT 体系,具有非常强和稳定的压电效应,具有重大实际意义的进展。

在1970年后,添加不同添加剂的二元系PZT 陶瓷具有优良的性能,已经用来制造滤波器、换能器、变压器等。

随着电子工业的发展,对压电材料与器件的要求就越来越高了,二元系PZT 已经满足不了使用要求,于是研究和开发性能更加优越的三元、四元甚至五元压电材料。

2、压电效应电效应产生的根源是晶体中离子电荷的位移,当不存在应变时电荷在晶格位置上分布是对称的,所以其内部电场为零。

但当给晶体施加应力则电荷发生位移,如果电荷分布不在保持对称就会出现净极化,并将伴随产生一个电场,这个电场就表现为压电效应。

压电陶瓷(piezoelectric ceramics ),是指经直流高压极化后,具有压电效应的铁电陶瓷材料。

晶体受到机械力的作用时,表面产生束缚电荷,其电荷密度大小与施加外力大小成线性关系,这种由机械效应转换成电效应的过程称为正压电效应(力→形变→电压)。

晶体在受到外电场激励下产生形变,且二者之间呈线性关系,这种由电效应转换成机械效应的过程称为逆压电效应(电压→形变)。

3、压电性能①压电常数d33压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。

当沿压电陶瓷的极化方向(z 轴)施加压应力T3时,在电极面上产生电荷,则有以下关系式:式中d33为压电常数,足标中第一个数字指电场方向或电极面的垂直方向,第二个数字指应力或应变方向;T3为应力;D3为电位移。

它是压电介质把机械能(或电能)转换为电能(或机械能)的比例常数,反映了应力(T )、应变(S )、电场(E )或电位移(D )之间的联系,直接反映了材料机电性能的耦合关系和压电效应的强弱,从而引出了压电方程。

压电陶瓷材料

压电陶瓷材料

压电陶瓷材料湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:09701540130姓名:姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。

这是一种具有压电效应的材料。

它在工业生产和日常生活中得到了广泛的应用。

由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。

1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。

如果压力是一种高频震动,则产生的就是高频电流。

而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。

也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。

例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。

当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电荷出现。

这一效应称为正压电效应,晶体的这一性质,称为压电性。

1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。

这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。

1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。

石英是压电晶体的代表,它一直被广泛应用至今。

利用石英的压电效应可制成振荡器和滤波器等频控元件。

压电陶瓷特点

压电陶瓷特点

压电陶瓷特点
压电陶瓷是一种特殊的陶瓷材料,具有压电效应,即在施加或取消机械压力时会产生电荷分布的变化。

以下是压电陶瓷的一些特点:
1. 压电效应:压电陶瓷的最显著特点是具有压电效应。

当施加压力或拉伸力时,其晶格结构发生变化,导致正电荷和负电荷在陶瓷内部的分布发生变化,从而产生电荷。

这个电荷分布的变化产生的电场使得压电陶瓷呈现出电荷的极性。

2. 压电材料应用广泛:压电陶瓷广泛应用于传感器、换能器、声波器件等领域。

例如,压电陶瓷可以用于制造压电传感器,用于检测和测量压力、力、温度等物理量。

3. 高频响应:压电陶瓷具有较高的频率响应能力,因此常被应用于声波器件,如扬声器、超声波发生器等。

4. 机械刚性好:压电陶瓷具有较好的机械刚性,可以在较大的压力范围内保持其稳定性,这使得它在一些需要耐高压力环境的应用中具有优势。

5. 温度稳定性:压电陶瓷具有相对较好的温度稳定性,能够在一定温度范围内保持压电效应的稳定性。

6. 易加工:压电陶瓷易于制备和加工,可以通过陶瓷成型和烧结等工艺进行制造,使其形成不同形状和尺寸的器件。

7. 良好的电机械能换能性能:压电陶瓷具有良好的电机械能换能性能,即可以将电能转换为机械能,也可以将机械能转换为电能。

8. 耐腐蚀性:压电陶瓷具有较好的耐腐蚀性,可以在一些特殊环境下使用。

总体而言,压电陶瓷以其独特的压电性能在多个领域有广泛的应用,从传感器到声学器件等,都发挥着重要的作用。

压电陶瓷材料

压电陶瓷材料

压电陶瓷材料引言压电陶瓷材料是一种特殊的陶瓷材料,可以在电场或压力作用下产生机械应变,并且在机械应变作用下也可以产生电荷。

这种材料具有独特的压电效应,因此在传感器、驱动器、滤波器等领域有着广泛的应用。

本文将介绍压电陶瓷材料的基本原理、制备方法和应用领域。

压电效应的基本原理压电效应是指某些材料在外加电场或机械应力作用下会发生尺寸的变化或电荷的分布,从而产生电压或电荷的现象。

对于压电陶瓷材料来说,其原子或分子结构具有非中心对称性,因此在电场作用下会引起正负电荷的分离,从而产生压电效应。

压电陶瓷材料的压电效应可以通过以下公式描述:$$ d = \\frac{D}{E} $$其中,d代表材料的压电应变系数,D为材料的压电极化强度,E为施加在材料上的电场强度。

根据此公式可知,压电应变系数越大,材料在给定电场下的机械变形就越明显。

压电陶瓷材料的制备方法1. 陶瓷烧结法陶瓷烧结法是目前最常用的制备压电陶瓷材料的方法之一。

其步骤可以概括为以下几个阶段:1.原料的制备:将所需的陶瓷粉末经过粉碎、混合等处理,得到均匀的混合物。

2.成型:将混合物进行成型,常用的方法有注塑成型、压片成型等。

3.烧结:将成型后的陶瓷材料置于高温炉中进行烧结,使其结晶化并形成密实的结构。

4.精加工:对烧结后的陶瓷材料进行精密加工,如磨削、抛光等,以获得所需的形状和尺寸。

2. 化学溶胶凝胶法化学溶胶凝胶法是另一种制备压电陶瓷材料的常用方法。

其步骤如下:1.溶胶制备:将所需的金属盐或有机金属化合物等混合物溶解在溶剂中,得到溶胶。

2.凝胶形成:通过控制溶胶的条件,如温度、浓度等,使溶胶发生凝胶化反应,形成凝胶。

3.热处理:将凝胶进行热处理,使其形成固体陶瓷。

4.精加工:对热处理后的陶瓷材料进行精密加工,以得到所需的形状和尺寸。

压电陶瓷材料的应用领域压电陶瓷材料由于其特殊的压电效应,被广泛应用在以下领域:1. 传感器压电陶瓷材料可以将机械信号转化为电信号,因此在传感器中经常被用于测量和检测。

压电陶瓷

压电陶瓷
六、成型:目的是将制好粒的料压结成所要求的预制尺寸的毛坯。
七、排塑:目的是将制粒时加入的粘合剂从毛坯中除掉。
应用
主要用途
常见运用
1、声音转换器声音转换器是最常见的应用之一。像拾音器、传声器、耳机、蜂鸣器、超声波探深仪、声纳、 材料的超声波探伤仪等都可以用压电陶瓷做声音转换器。如儿童玩具上的蜂鸣器就是电流通过压电陶瓷的逆压电 效应产生振动,而发出人耳可以听得到的声音。压电陶瓷通过电子线路的控制,可产生不同频率的振动,从而发 出各种不同的声音。例如电子音乐贺卡,就是通过逆压电效应把交流音频电信号转换为声音信号。
压电陶瓷
具有压电特性的电子陶瓷材料
01 基本释义
03 物质组成
目录
02 发展历史 04 特性
05 原理
07 应用
目录
06 制造工艺
压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应,压电陶瓷除具有压电性外,还 具有介电性、弹性等,已被广泛应用于医学成像、声传感器、声换能器、超声马达等。压电陶瓷利用其材料在机 械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷即压电 效应而制作,具有敏感的特性,压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶 瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等,除 了用于高科技领域,它更多的是在日常生活中为人们服务,为人们创造更美好的生活而努力。
其中u12为压电能,u1为弹性能,u2为介电能。
经过极化了的压电陶瓷片的两端会出现束缚电荷,所以在电极表面上吸附了一层来自外界的自由电荷。当给陶 瓷片施加一外界压力F时,片的两端会出现放电现象。相反加以拉力会出现充电现象。这种机械效应转变成电效应 的现象属于正压电效应。

压电陶瓷材料的莫氏硬度

压电陶瓷材料的莫氏硬度

压电陶瓷材料的莫氏硬度莫氏硬度是衡量材料硬度的一种常用方法,它是由德国矿物学家弗里德里希·莫氏于1812年提出的。

莫氏硬度通过对材料进行划痕实验来确定,将材料与10种不同硬度的矿物相比较,找到能够将材料划痕的最硬矿物,该矿物的硬度即为该材料的莫氏硬度。

压电陶瓷材料是一种具有压电效应的材料,它的莫氏硬度对于其应用具有重要意义。

压电陶瓷材料是一类在外加电场作用下能够发生形变的陶瓷材料。

它们具有压电效应,即在外加电场的作用下产生机械应变,反之亦然。

压电陶瓷材料广泛应用于传感器、声波器件、驱动器件等领域,其性能与硬度密切相关。

莫氏硬度是衡量材料硬度的一种重要指标,对于压电陶瓷材料而言,莫氏硬度的大小直接影响了其在实际应用中的性能和可靠性。

莫氏硬度越高,材料越难被划伤,表明材料具有较高的抗划伤性能,更加耐用。

因此,对于需要长时间使用的压电陶瓷器件而言,选择莫氏硬度较高的材料可以提高其使用寿命。

压电陶瓷材料的莫氏硬度与材料的组分和微观结构密切相关。

通常情况下,含有较多金属氧化物的压电陶瓷材料具有较高的莫氏硬度。

这是因为金属氧化物具有较高的结晶度和较强的化学键,使得材料具有较高的硬度。

另外,压电陶瓷材料的微观结构也对其莫氏硬度产生影响。

晶粒尺寸较小、分布均匀的压电陶瓷材料往往具有较高的莫氏硬度,这是因为小晶粒尺寸增加了材料的晶界数量,晶界具有较高的能量,可以有效抵抗划痕的扩展。

压电陶瓷材料的烧结工艺也会影响其莫氏硬度。

烧结是压电陶瓷材料制备过程中的关键步骤,通过高温下的烧结过程,可以使材料颗粒结合更紧密,晶界更清晰,从而提高材料的莫氏硬度。

适当的烧结工艺可以有效提高压电陶瓷材料的硬度。

在实际应用中,莫氏硬度的大小对于压电陶瓷材料的选择和设计具有重要影响。

对于一些需要在恶劣环境下工作的压电陶瓷器件,如声波传感器和驱动器件,选择莫氏硬度较高的材料可以提高其抗划伤性能和耐久性,确保其长期稳定工作。

而对于一些对莫氏硬度要求不高的应用,如压电陶瓷触发器和开关等,可以选择莫氏硬度较低的材料,以降低制备成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号::姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。

这是一种具有压电效应的材料。

它在工业生产和日常生活中得到了广泛的应用。

由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。

1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差〔称之为正压电效应〕,反之施加电压,则产生机械应力〔称为逆压电效应〕。

如果压力是一种高频震动,则产生的就是高频电流。

而高频电信号加在压电陶瓷上时,则产生高频声信号〔机械震动〕,这就是我们平常所说的超声波信号。

也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。

例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。

当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些外表上会有电荷出现。

这一效应称为正压电效应,晶体的这一性质,称为压电性。

1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。

这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。

1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。

石英是压电晶体的代表,它一直被广泛应用至今。

利用石英的压电效应可制成振荡器和滤波器等频控元件。

在第一次世界大战中,居罩的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电效应应用史的光芒篇章。

自发现压电性能以来,压电学己成为晶体物理学的一个重要分支。

直到1944年,人们对“压电陶瓷”这个术语仍不理解。

大约在1940年以前,只知道有两类铁电体,一类是罗息盐与某些关系密切的酒石酸盐;一类是磷酸二氢钾和它的同晶型物。

前者是一种在高温下具有压电性的晶体,在技术上具有使用价值,但是它有容易潮解的缺点;后者要在极低的温度(低于148℃)下才具有压电性,因此工程上应用价值不大。

二次大战中,1942年到1945年期间,美国的韦纳等人、苏联的伍尔和戈德曼、日本的小川分别发现钛酸钡(BaTiO3)具有异常高的介电常数。

此后不久,有人发现BaTi03具有压电性。

BaTiO3陶瓷的发现是压电陶瓷材料的一个飞跃。

在此以前,压电材料只是压电单晶材料。

从此以后,压电材料有了两大类:压电单晶和压电陶瓷。

1947年,美国Roberts在BaTiO3陶瓷上,施加高压进行极化处理,获得了压电陶瓷的压电性,同年,美国出现了用BaTi03陶瓷制造的留声机用拾音器。

由于BaTiO3压电陶瓷材料和石英晶体、罗息盐压电单晶相比,具有制备容易,且可制成任意形状和任意极化方向的产品等优点,随后,日本积极开展利用BaTiO3压电陶瓷制作超声换能器、高频换能器、压力传感器、滤波器、谐振器等各种压电器件应用研究,这种研究一直进行到20世纪50年代中期。

虽然如此,BaTiO3陶瓷也有缺点,即它的压电性比罗息盐弱,而且压电性随温度和时间变化又比石英晶体大。

为了提高这些方面的性能,有人对BaTi03陶瓷进行了改性试验。

通过改性试验除了获得一些改进型的BaTi03陶瓷材料外,还发现了许多与BaTiO3有类似结构的AB03型铁电体或反铁电体。

这些实验结果为以后发现新压电材料打下了良好的基础。

1954年美国B.贾菲等人发现了压电PbZr03一PbTiO3(PZT)固溶体系统。

这一系统材料具有比BaTi03更为优越的性能。

在此系统中,各种材料的居里点都比BaTi03高,并存在着与温度无关的准同型相界(MPB)。

准同型相界附近的组成,其机电耦合系数、机械品质因数都比BaTi03的大,温度稳定性和时间稳定性都比BaTiO3的好。

且经过改性以后,它的压电性能还能提高。

由于PZT具有良好的压电性,使它一出现就在压电应用领域逐步取代了BaTiO3的地位。

PZT系压电陶瓷的出现对压电陶瓷来说,是一件划时代的大事,它使许多在BaTi03时代不能制作的器件成为可能,并且以后又从它派生出一系列新的压电陶瓷材料。

1965年,日本根据斯摩棱斯基法则,在PZT的基础上添加复合钙钛矿型结晶结构的第三成分——铌镁酸铅(Pb(Mg1/3Nb2/)O3,研制成三元系压电陶瓷材料PCM。

这种三元系压电陶瓷材料比PZT陶瓷更3易于烧结,而PbO挥发极少,其相界由PZT的点扩展为线,因而其可供选择的组成范围更广,具有比PZT更为优越的性能。

故自PCM问世以后,以诸如Pb(Mgl/3Sb2/3)03、Pb(Col,3Nb2,3)03等不同复合钙钛矿型化合物为第三成分及第四成分的三元系、四元系压电陶瓷材料陆续出现122,231。

20世纪70年代中期,Newhnma等人以及他们的合作者提出了柱状PZT陶瓷周期排列的1.3型压电复合材料的理论模型,分析了其中的横向结构模,对压电陶瓷棒或压电陶瓷纤维在聚合物基体中的排布问题进行了大量的理论和实验研究工作,测试了不同陶瓷体积含量压电复合材料的电学特性,并将压电复合材料应用于水声探测器中。

1988年,清华大学柴京鹤等人对PZT压电陶瓷的低温烧结进行了研究,他们通过添加少量低熔玻璃以到达降低烧结温度的目的。

他们对陶瓷显微结构、烧结机理和添加剂的作用进行了讨论,所研制的低温烧结瓷料已用于制备独石压电陶瓷变压器,其空载交流升压比可高达9000以上【24J。

90年代中期,江苏陶瓷研究所的诸爱珍对PZT压电陶瓷的掺杂改性着重作了一些研究和探讨,通过实验总结出等价离子和不等价离子置换Pb2+引起材料性能改变的一般规律,其中不等价离子包括“硬性’’添加物和“软性’’添加物,以及其它一些添加物。

同时实验还说明,单独加入一种添加物往往不能满足性能的要求。

为了取长补短,常常用两种或两种以上添加物同时加入,以获得理想的材料性能。

作为PZT的一个基本组成成分PbTi03虽被发现甚早,但由于其烧结困难等制造工艺上原因,长期内不能实际应用。

在研究开发PZT之后,对PbTiO3进行了取代、固溶等改进型实验工作,使PbTi03陶瓷逐步趋向实用化。

以上所述均属钙钛矿型材料。

在研究开发钙钛矿型压电陶瓷材料的同时,也对非钙钛矿型压电陶瓷材料如焦绿石型、铋层状结构、钨青铜型等压电陶瓷材料如进行了探索与研究。

这些材料都有潜在的实用价值,其中有些材料已被应用。

我国对压电陶瓷材料的研究开始于五十年代末期,比国外晚了十年左右。

经过几十年的努力,我国的压电陶瓷有了很大发展。

21世纪初叶,低温压电陶瓷的改进对于压电陶瓷广泛用于电子技术领域起了巨大的推动作用。

然而,由于压电陶瓷硬度高、脆性大、难于加工。

因此结构复杂的压电陶瓷体的制造一直是一大难题。

清华大学材料系新型陶瓷与精细工艺国家重点实验室GuoDongt利用凝胶注模成型(gelcasting)制备PZT压电陶瓷,解决了压电陶瓷制备中亟待解决的问题。

同时低温烧结压电陶瓷也抑制了烧结渗银过程中银离子向陶瓷内部进行扩散。

我们知道,陶瓷属于绝缘介质,只有经过极化后的陶瓷才有压电性。

但是陶瓷不能象金属那样被直接极化,必须先被金属化。

LiQuan lut271利用低温烧结渗银法、化学沉银法,这两种方法解决了陶瓷的极化问题。

另一个降低烧结温度的方法基于超细粉体的制备。

在保证压电陶瓷材料良好的压电性能的前提下,从能源和环保方面考虑,人们把目光放在了烧结的最初阶段超细粉体的制备。

粉体越精细、均匀性越好、外表活性越高、越有利于烧结过程,从而降低烧结温度。

目前,关于粉体制备技术有:水热法、solgel、化学共沉淀法等。

惠春利用水热法合成粒径小、外表活性大的PZT结晶粉体。

实验证明,这种PZT粉体的氧化铅挥发温度为924.71℃。

而粒径间的反应温度为911.26℃,从而防止了氧化铅的挥发。

Zhao Ming leit以solgel工艺制备的粉料所制出的(Bi0.151sNa o.15)1-x BaxTiO3压电陶瓷不仅压电性能得到了较大的提高,其qb(Bi0.15Na0.15)0.94Ba0.06TiO3系陶瓷具有该系列最大的压电常数,d33=173x10-12 c/N。

与传统工艺相比,d33提高了近40%。

而且,在一定范围内,随Ba含量的增加,材料的剩余极化Pr和矫顽场Ec逐渐减小,退极化温度逐渐降低。

最近,清华大学材料科学与工程系陶瓷国家重点实验室利用放电等离子法(SPS)成功合成晶粒尺寸为纳米级的高密度(>90%)钛酸钡BaTiO3纳米晶。

放电等离子法(SPS)是一种快速烧结方法,与传统的烧结方法相比,SPS烧结保温时间短、烧结后的致密度高、能显著抑制晶粒在烧结后期长大。

三、PZT压电陶瓷的研究现状与发展趋势压电陶瓷材料主要有BaTiO3、PbTiO3、Pb(TiZr)O3(PZT)、改性PZT和其它三元系材料如xPb(Mg1/3Nb2/3)O3--yPbTiO3--zPbrO3(x+y+z=100)及四元系等。

目前己批量生产各种系列的产品,用于制作超声振子、换能器、拾音器、压电变压器、陶瓷滤波器及蜂鸣器等。

在声外表波器件方面,陶瓷滤波器已用作黑白电视机中频图像滤波器,已研究出延迟温度系数接近于零的压电材料,如Pb(La l-Nda)(TiMnIn6)O3,选择适当a值,可使温度系数近于零;当a=0.5时,在-10~a50℃范围内温度系数小于1 ppm/'C。

对陶瓷原料进行特殊处理,并采用静水压成型和通氧烧结等一系列工艺,可得到晶粒直径为O.8 mm的改性钛酸铅,其外表条件与单晶的相似,是目前外表波器件用的比较理想的陶瓷材料。

振子用压电陶瓷,频率在10 MHZ以下采用PZT,在10 MHZ以上时采用PbTiO3。

它不容易做成大型基板。

为了克服这个问题,加入La2O3mMnO3。

加La203的PbTi03系陶瓷用于制造金属探伤用的超声波发送器。

医学超声应用的压电材料希望提高其性能。

接收、发送超声波的探头的频率高、灵敏度高,除了K值大以外,还要求K的各向异性要大,音响阻抗小。

为此开发了添加Sn、Ca的PbTiO3陶瓷,如(Pb、Ca)(Sn、Ti、Mn)03等陶瓷材料。

作为基本成份使用的陶瓷为PbTi03.PbZr03.Pb(Mg l/3Nb2/3)O3-SrTiO3(PZT-PMN)。

相关文档
最新文档