七年级数学第一学期期中考试试卷

合集下载

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案

七年级第一学期期中考试数学试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题4分,满分40分) 1.在-12与311,-π,-4中,属于负整数的是( )A .-12 B.311 C .-π D .-42.国产C919,全称COMAC C919,是我国按照国际民航规章自行研制,具有自主知识产权的大型喷气式民用飞机,最大航程达5 555 000 m .数据5 555 000用科学记数法表示为( ) A .0.5555×107 B .5.555×106 C .55.55×105 D .5555×1033.单项式-x a +1y 3与12y b x 2是同类项,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =3C .a =2,b =2D .a =2,b =3 4.根据等式的性质,下列变形正确的是( )A .若a c =b c ,则a =bB .若x 4+x3=1,则3x +4x =1 C .若ab =bc ,则a =c D .若4x =a ,则x =4a 5.下列各式中,运算正确的是( )A .5x 3+6x 3=11x 6B .-8x -8x =0C .5x -3x =2D .2xy -2yx =06.【2024·六安金安区校级月考】已知(m +2)2+|n -2|=0,则-m n 的值是( )A .4B .-2C .2D .-47.一种商品,先提价20%,再降价10%,这时的价格是2 160元.则该商品原来的价格是( )A .2 400元B .2 200元C .2 000元D .1 800元8.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这道题目的意思是:甲、乙两人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A.⎩⎨⎧x -9=2(y +9)y +9=x -9B.⎩⎨⎧x +9=2(y -9)y +9=x -9C.⎩⎨⎧x +9=2y y +9=xD.⎩⎨⎧x -9=2y y +9=x -99.【2024·宿州桥区校级期中】图①是我国古代传说中的洛书,图②是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数之和都相等.图③是一个不完整的幻方,根据幻方的规则,由已知数求出x -y 的值应为( )A .-3B .3C .-2D .210.求1+2+22+23+…+22 024的值,可令S =1+2+22+23+…+22 024,则2S =2+22+23+24+…+22 025,因此2S -S =22 025-1.仿照以上方法,计算出1+5+52+53+…+52 024的值为( )A .52 024-1B .52 025-1 C.52 025-14 D.52 024-14二、填空题(本大题共4小题,每小题5分,满分20分) 11.把5.187 245按四舍五入的方法精确到千分位为________. 12.已知3a -2b =-4,则整式4b -6a +3=________.13.一组“数值转换机”按如图所示的程序计算,如果输入的数是30,则输出结果为56,要使输出结果为60,则输入的正整数是 ________.14.表示有理数m 与n 的点在数轴上的位置如图,有理数m 对应的点为M ,有理数n 对应的点为N ,且m =-4,n 比m 大24. (1)点M 与点N 之间的距离为________;(2)若点P 和点Q 分别从点M 和点N 同时出发,相向运动,点P 运动的速度为4个单位长度/s ,点Q 运动的速度为2个单位长度/s ,相遇前当点P 与点Q 之间的距离为18时,两点运动停止,则运动时间为________.三、(本大题共2小题,每小题8分,满分16分) 15.【2024·黄山期中】计算: (1)5.5-(-6.5)+(-7);(2)-12-(1-0.5)÷32×[4-(-2)3].16.(1)解方程:1-2x +16=2x -13;(2)解方程组:⎩⎨⎧8x =2-5y ,10-3y =4x .四、(本大题共2小题,每小题8分,满分16分) 17.【2024·蚌埠蚌山区期中】先化简,再求值:x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y ,其中⎪⎪⎪⎪⎪⎪x -32+(y +2)2=0.18.【2024·芜湖期末】已知关于x ,y 的方程组⎩⎨⎧2x +y =-2,ax +by =-4和方程组⎩⎨⎧3x -y =12,bx +ay =-8的解相同,求(5a +b )2的值.五、(本大题共2小题,每小题10分,满分20分)19.【2024·淮南期中】小蕊暑假在父母开设的小食堂帮忙,她把相同规格的碟子洗干净后整齐地摆放在桌子上,发现碟子的个数与碟子的高度的关系如下表:碟子的个数 1 2 3 4 … 碟子的高度(单位:cm)23.556.5…(1) 当桌子上放有x 个碟子时,请写出此时碟子的高度(用含x 的式子表示);(2)如图所示,某天小蕊把洗好的上述规格的碟子摆放成三摞,小蕊妈妈想把它们整齐地叠成一摞,求叠成一摞后的高度.20.【2024·蚌埠蚌山区月考】有20箱石榴,以每箱25 kg为标准,超过或不足的千克数分别用正、负来表示,记录如表:与标准质量的差值(单位:kg)-3-2-1.501 2.5箱数142328(1)20箱石榴中,最重的一箱比最轻的一箱多多少千克?(2)与标准质量比较,20箱石榴总计超过或不足多少千克?(3)若石榴每千克售价8元,购进这批石榴一共花了3 000元,则售出这20箱石榴可赚多少元?六、(本题满分12分)21.在学习完“有理数”后,小奇对有理数运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“”,规则如下:a b =ab +2a (a ,b 不相等).(1)3(-2)=________;(2)求-5⎝⎛⎭⎪⎫-412的值; (3)试以(-4) 3和3(-4)说明,新定义的运算“”满足交换律吗?七、(本题满分12分)22.【2024·合肥瑶海区期中】为鼓励人们节约用水,合肥市居民使用自来水实行阶梯式计量水价,按如下标准缴费(水费按月缴纳):用户月用水量 单价 不超过12 m 3的部分 a 元/m 3 超过12 m3但不超过20 m 3的部分1.5a 元/m 3 超过20 m 3的部分2a 元/m 3(1)当a =2时,芳芳家5月份用水量为14 m 3,则该月需交水费________元;6月份芳芳家交了水费36元,则6月份用水量为________m 3(直接写出答案);(2)当a =2时,亮亮家一个月用了28 m 3的水,求亮亮家这个月应缴纳的水费;(3)设某用户月用水量为n m 3(n >20),该用户这个月应缴纳水费多少元?(用含a ,n 的式子表示)八、(本题满分14分)23.【2024·芜湖师大附中月考】古人曰:“读万卷书,行万里路”,经历是最好的学习,研学是最美的相遇.伴着三月的春风,哼着欢快的曲调,方树泉中学七年级同学开启了期盼已久的研学活动,师生一起去参观博物馆.下面是王老师和小真、小萱同学有关租车问题的对话.王老师:“客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵150元.”小真:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到该博物馆参观,一天的租金共计5 100元.”小萱:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满”.根据以上对话,解答下列问题:(1)参加此次研学活动的七年级师生共有________人;(2)该客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车方案最省钱?参考答案一、1.D2.B3.B4.A5.D6.D7.C8.B9.A10.C 【点拨】设S=1+5+52+53+…+52 024,则5S=5+52+53+…+52 025所以5S-S=52 025-1,所以S=52 025-14.二、11.5.18712.1113.32,18或11 14.(1)24【点拨】根据题意知n-m=24.即MN=24.(2)1 【点拨】设运动时间为t s.当相遇前点P 与点Q 之间的距离为18时,4t +2t +18=24,解得t =1. 即当运动时间为1 s 时点P 和点Q 之间的距离为18. 三、15.【解】(1)原式=5.5+6.5-7=5.(2)原式=-1-12×23×[4-(-8)] =-1-12×23×12=-1-4=-5.16.【解】(1)去分母,得6-(2x +1)=2(2x -1) 去括号,得6-2x -1=4x -2 移项,得-4x -2x =-2+1-6 合并同类项,得-6x =-7 系数化为1,得x =76. (2)⎩⎨⎧8x =2-5y ,①10-3y =4x .②①+②×2得8x +20-6y =2-5y +8x ,解得y =18 把y =18代入①,解得x =-11 所以方程组的解为⎩⎨⎧x =-11,y =18.四、17.【解】x 2y -2⎝ ⎛⎭⎪⎫14xy 2-3x 2y +⎝ ⎛⎭⎪⎫-12xy 2-x 2y =x 2y -12xy 2+6x 2y -12xy 2-x 2y =6x 2y -xy 2因为|x -32|+(y +2)2=0,所以x =32,y =-2 所以原式=6×⎝ ⎛⎭⎪⎫322×(-2)-32×(-2)2=-27-6=-33.18.【解】解方程组⎩⎨⎧2x +y =-2,3x -y =12,得⎩⎨⎧x =2,y =-6.把⎩⎨⎧x =2,y =-6代入方程组⎩⎨⎧ax +by =-4,bx +ay =-8.得⎩⎨⎧2a -6b =-4,2b -6a =-8,解得⎩⎪⎨⎪⎧a =74,b =54,所以5a +b =5×74+54=10 所以(5a +b )2=102=100.五、19.【解】(1)依题意,得碟子个数为1时,碟子高度为2+1.5×(1-1)=2(cm); 碟子个数为2时,碟子高度为2+1.5×(2-1)=3.5(cm); 碟子个数为3时,碟子高度为2+1.5×(3-1)=5(cm); ……故碟子个数为x 时,碟子高度为2+1.5(x -1)=1.5x +0.5(cm); (2)由题图可知共有12个碟子 即x =12,将x =12代入1.5x +0.5 得1.5×12+0.5=18+0.5=18.5 故叠成一摞的高度为18.5 cm.20.【解】(1)最重的一箱比最轻的一箱多2.5-(-3)=5.5(kg) 答:20箱石榴中,最重的一箱比最轻的一箱多5.5 kg. (2)-3×1+(-2)×4+(-1.5)×2+0×3+1×2+2.5×8=8(kg) 答:20箱石榴总计超过8 kg. (3)25×20+8)×8-3 000=508×8-3 000 =1 064(元)答:售出这20箱石榴可赚1 064元. 六、21.【解】(1)0【点拨】3 (-2)=3×(-2)+2×3=-6+6=0.(2)-5⎝⎛⎭⎪⎫-412=-5⎣⎢⎡⎦⎥⎤(-4)×12+2×(-4) =-5 (-2-8) =-5(-10)=(-5)×(-10)+2×(-5)=50+(-10)=40.(3)(-4)3=-4×3+2×(-4)=-12+(-8)=-203(-4)=3×(-4)+2×3=-12+6=-6因为-20≠-6,所以(-4)3≠3(-4)所以新定义的运算“”不满足交换律.七、22.【解】(1)30;16【点拨】当a=2,芳芳家5月份用水量为14 m3时,该月需交水费为12×2+(14-12)×1.5×2=24+6=30(元);设芳芳家6月份用水量为x m3,易得12<x<20则由题意,得12×2+(x-12)×1.5×2=36解得x=16,所以芳芳家6月份用水量为16 m3.(2)12×2+(20-12)×1.5×2+(28-20)×2×2=24+24+32=80(元)答:亮亮家这个月应缴纳的水费为80元.(3)当n>20时该用户应缴纳的水费为12a+(20-12)×1.5a+(n-20)×2a=2an-16a(元)答:该用户这个月应缴纳水费(2an-16a)元.八、23.【解】(1)420【点拨】根据题意,得45a+15=60(a-2),解得a=9所以45a+15=45×9+15=420所以参加此次研学活动的七年级师生共有420人.(2)设该客运公司60座客车每辆每天的租金是x元,45座客车每辆每天的租金是y元第 11 页 共 11 页 根据题意,得⎩⎨⎧x -y =150,4x +2y =5 100,解得⎩⎨⎧x =900,y =750.答:该客运公司60座客车每辆每天的租金是900元,45座客车每辆每天的租金是750元.(3)设租用60座客车m 辆,45座客车n 辆根据题意,得60m +45n =420,所以m =7-34n .又因为m ,n 均为自然数所以⎩⎨⎧m =7,n =0或⎩⎨⎧m =4,n =4或⎩⎨⎧m =1,n =8,所以共有3种租车方案第1种:租用60座客车7辆,所需租车费用为900×7=6 300(元);第2种:租用60座客车4辆,45座客车4辆,所需租车费用为900×4+750×4=6 600(元); 第3种:租用60座客车1辆,45座客车8辆,所需租车费用为900×1+750×8=6 900(元). 因为6 300<6 600<6 900所以第1种租车方案最省钱.。

河南省南阳市邓州市2024—2025学年七年级上学期期中考试数学试卷(含答案)

河南省南阳市邓州市2024—2025学年七年级上学期期中考试数学试卷(含答案)

邓州市2024~2025学年第一学期期中质量评估七年级数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.中国是最早使用正负数表示具有相反意义的量的国家.某同学上午卖废品收入10元,记为元,下午买书支出6元,记为A .元B .元C .元D .元2.10月6日在北京石景山首钢园举行的2024年WTT (世界乒乓球职业联盟赛)中国大满贯女单决赛中,中国选手孙颖莎勇夺冠军.数据2024的相反数是A.B .C .D .3,小宇不小心将墨水滴在了数轴上,使部分数轴被墨迹遮盖,则被遮盖的部分中表示整数的点有A .3个B .4个C .5个D .6个4.绝对值等于5的数是A .5B .C .D .5,有理数大小比较的历史可以追溯到古希腊和古印度时期,下列各组有理数大小比较,正确的是A .B .C .D .6.代数式的意义是A .a 与b 的倒数的差的平方B .a 的平方与b 的倒数的差C .a 的平方与b 的差的倒数D .a 与b 的差的平方的倒数7.用四舍五入法对2.098176分别取近似值,其中正确的是A .2.09(精确到0.01)B .2.098(精确到千分位)C .2.0(精确到十分位)D .2.0981(精确到0.0001)8.把按字母y 的升幂排列后,其中的第2项是A .B .C .D .9.当时,多项式的值为3,则当时,这个多项式的值为A .B .2C .D .710.如图所示的运算程序中,若开始输入x 的值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,第三次输出的结果为2,……,则第2024次输出的结果为A .8B .4C .2D .110+4+4-6+6-2024-2024-1202412024-5-155±(5)0--<32(2)(2)->-1(0.3)3--<-83217-<-21a b-323223xy x y x y ---2x y-32x y-2x y32xy1x =2ax bx +-1x =-2-7-二、填空题(每小题3分,共15分)11.2024年6月2日清晨,嫦娥六号成功着陆在月球背面南极-艾特肯盆地,通过飞行器探测月球沿着一定的轨道围绕地球运动,某一时刻它与地球相距405500千米,用科学记数法表示这个数是________千米.12.写出一个只含有字母x ,y ,系数为的三次单项式________.(填一种即可)13.若与互为相反数,则________.14.在生物学中,生物链中的能量流动有“逐级递减”的特点,一个营养级中的能量只有10%-20%能被下一个营养级所利用.在如图所示的生物链中,若中摄入了1000千焦能量,每一个营养级中只有20%的能量能被下一营养级所利用,则获得的能量为________千焦.15.点A ,B ,P 是数轴上不重合的三个点,点A 表示的数为,点B 表示的数为3,若A ,B ,P 三个点中,其中一点到另外两点的距离相等时,我们称这三个点为“和谐三点”,则符合“和谐三点”的点P 表示的数为________.三、解答题(本题8个小题,共75分)16.(8分)已知下列各数:0,,2.0,,,,.(1)把这些数中符合要求的数分别填入如图所示的集合圈中,并标注重叠部分集合的名称;(2)画出数轴,把它们分别在数轴上表示出来,并用“”连接起来.17.(7分)下面是小乐同学进行有理数混合运算的过程,请认真阅读并完成相应任务.计算:.解:原式第一步;2-2b +2(3)a -a b =1H 4H 1234H H H H →→→1-12-3-0.5-142⎛⎫-- ⎪⎝⎭22-<18(41)2(5)÷-+-⨯-18(3)2(5)=÷--⨯-第二步;第三步;第四步;任务1:①第一步先算括号里面的有理数加法,依据的法则是:异号两数相加________,并用较大的绝对值减去较小的绝对值;第二步将有理数的除法转化为乘法,依据的法则是:除以一个数等于________.②运算从第________步开始出现错误.任务2:请你写出正确的解答过程.18.(12分)计算:(1);(2);(3).19.(9分)(1)若是关于x 的四次单项式,求m ,n 的值,并写出这个单项式.(2)我们称各项的次数都相同的多项式为齐次多项式,如就是齐次多项式,若多项式是齐次四项式,求的值;20.(9分)在一次航展期间,表演刚开始时,直升机A ,B 分别悬停在同一高度,表演过程中两直升机的连续高度变化如下表(单位:千米;规定:上升为正,下降为负).动作1动作2动作3动作4动作5直升机A 直升机B?(1)直升机A 在完成这5个动作之后,处在初始悬停位置的________;(填“上方”或“下方”)(2)直升机A 每上升1千米消耗5升燃油,每下降1千米消耗3升燃油,求直升机A 在这5个动作表演过程中,一共消耗多少升燃油?(3)若直升机A 和直升机B 完成5个动作后的高度相同,直接写出表格中“?”代表的数据.21.(9分)“数轴”是一个非常重要的数学工具,它使数轴上数和点建立起对应关系,揭示了数与点之间1182(5)3⎛⎫=⨯--⨯- ⎪⎝⎭610=--16=-21212133434⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2238(4)(8)595⎛⎫⎛⎫⨯---⨯-+-⨯ ⎪ ⎪⎝⎭⎝⎭22022123312(1)43⎛⎫-÷+-⨯-- ⎪⎝⎭22(2)2mm xn +-323253a ab b abc +-+2223||313(3)(1)2b a x y a y xy a x y +---+-2a b +4.2+ 2.3- 1.5+0.9- 1.1+3.8+ 2.5- 4.7+ 1.8-的内在联系,它是“数形结合”的基础.下面就让我们利用学习过的 “数轴”来进行探索活动吧.已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,A 、B 两点之间的距离记为或,且,,请回答下列问题:(1)求________.(2)设点P 在数轴上对应的数为x ,若,则________.(3)若点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为,动点P 表示的数为x .①当点P 在点M 、N 之间(含M 、N 两点),请化简;②若点P 表示的数是1,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,设运动时间为t 秒,当t 为________秒时,蚂蚁所在的点到点M 、点N 的距离之和是7.22.(10分)某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配个乒乓球,已知A ,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.(1)则在A 超市购买需要________元,在B 超市购买需要________元;(2)当每副球拍配10个乒乓球时,分别计算去A 超市和B 超市购买的费用各是多少元?(3)童童说:“当时,先去B 超市购买10副球拍,再去A 超市购买余下的乒乓球会更省钱.”童童的说法是否正确?请说明理由.23.(11分)综合与实践:【概念学习】定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如、等.类比有理数的乘方,我们把记作,读作“2的下3次方”,记作,读作“的下4次方”.一般地,把记作,读作“a 的下n 次方”.【初步探究】(1)直接写出计算结果:________,________.【深入探究】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:AB a b =-b a -3a =-2b =AB =35x -=x =1-14x x ++-(3)x x ≥12x =222÷÷3)3(3(3())()-÷-÷-÷-222÷÷323)3(3(3())()-÷-÷-÷-4(3)-3-(0)n aa a a a a ÷÷÷÷≠个n a 33313⎛⎫-= ⎪⎝⎭(2)仿照上面的算式,将下列运算写成幂的形式:________(a 为有理数且),________.【归纳结论】(3)一个非零有理数a 的下n 次方写成幂的形式是:________.【结论应用】(4)计算:.邓州市2024-2025学年第一学期期中质量评估七年级数学试题参考答案一、选择题(每小题3分,共30分)1.D2.B3.C4.D5.C6.B7.B8.A9.C10.B二、A 填空题(每小题3分;共15分)11.千米12.(答案不唯一)13.14.815.1或7或(每对一个即给1分)三、解答题(本题8个小题,共75分)16.(1)(2)17.(7分)任务1:①取绝对值较大的加数的符号2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭6a =0a ≠713⎛⎫- ⎪⎝⎭n a =236461112(2)333⎛⎫⎛⎫÷⨯--÷ ⎪ ⎪⎝⎭⎝⎭54.05510⨯22x y -8-5-211230|0.5| 2.0422⎛⎫∴-<-<-<<-<<-- ⎪⎝⎭乘以这个数的倒数②第 三 步开始出现错误;任务2:解:原式18.解:(1)原式.(2)原式(3)原式.(备注:每小题4分,共12分,解答方法不唯一,只结果错只扣1分)19.(9分)解:(1)是关于x 的四次单项式,,,,解得,.单项式是.(2)由题意得:,解得,,.又,即所以,(备注:若学生写两个答案,可扣1分)20.(9分)解(1)上方;(2)(升),∴直升机A 一共消耗了43.6升燃油;(3)表格中“?”代表的数据是.21.(9分)18(3)2(5)6104=÷--⨯-=-+=21212133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2211213213183344=-++-=-+=-2388559⎛⎫=⨯--- ⎪⎝⎭88(1)9=⨯--889=-12931212143=-÷+⨯-⨯-33819=-+--=-()2222mm xn +- 24m ∴=0n =20m +≠2m =0n =∴44x 24b +=2b =1a =1a =±10a -≠ 1a ∴≠1a =-()22120ab +=⨯-+=(4.2 1.5 1.1)5[| 2.3||0.9|]343.6++⨯+-+-⨯=0.6-解:(1)5, (2)或8(3)①5;(没有解答过程不扣分)②.22.(10分)解:(1)在A 超市购买需要元,即元,在B 超市购买需要元,即元;(备注:没有化简不扣分)(2)当时,在A 超市购买需要(元),在B 超市购买需要(元),所以当每副球拍配10个乒乓球时,去A 超市和B 超市购买的费用都是270元;(3)童童的说法正确.理由如下:当时,即购买10副球拍应配120个乒乓球.若只去A 超市购买的费用为:9x+180=9×12+180=288(元)若只去B 超市购买的费用为:(元);若在B 超市购买10副球拍,去A 超市购买余下的乒乓球的费用:(元).所以正确.23.(11分)解:(1),;(2);;(3)(4)解:原式(9分,其它形式表示也可).2-4t =0.92010(0)1x ⨯+()9180x +()2010103x ⨯+-()10170x +10x =9180910180270x +=⨯+=101701010170270x +=⨯+=12x =101701012170290x +=⨯+=()2000.912310281+⨯-⨯=281288290<<3133333=÷÷=3111133333⎛⎫⎛⎫⎛⎫⎛⎫-=-÷-÷-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭461a a a a a a a a ⎛⎫=÷÷÷÷÷= ⎪⎝⎭5711111111(3)33333333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-÷-÷-÷-÷-÷-÷-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2(1)11111n n n n a a a a a a a a a a a ↑↑--⎛⎫=÷÷÷÷=⨯⨯⨯⨯⨯ ⎪⎝⎭ 个个424311443332⎛⎫=÷⨯--÷ ⎪⎝⎭111443132916=⨯⨯-=-=-。

2024-2025学年七年级第一学期期中考试试题(数学)

2024-2025学年七年级第一学期期中考试试题(数学)

七年级数学试题(时间:90分钟 满分:100分)卷面要求:1.整张试卷整洁美观,格式规范,布局和谐;2.字迹清晰工整,标点符号准确;3.避免随意勾画,胡乱涂改.卷首语:相信你会静心、尽力做好答卷,动手就有希望,努力就会成功!一、 选择题:本大题共10道小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填入下表,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.题号 1 2 3 4 5 6 7 8 9 10 答案1. 在跳远测试时,合格的标准是4.00米,王杨跳出了4.20米,记为+0.2米,小伟跳出了3.95米,记作:A.-0.05米B.-3.95米C.+0.05米D.+3.95米 2. 下列各组数中相等的是:A.-2与)2(--B.-2与2-C.2-与2--D.2-与2 3. 如果x=2是方程21x+a=-1的解,则a 的值是( ) A.0 B.2 C.-2 D.-6 4.下列变形正确的是:A.由3+x=7,得x=7+3B. 由3=x-2,得x=2+3C. 由3x=-2,得x=23-D. 由3443=x ,得x=1 5. 已知a 、b 都是有理数,且021=++-b a ,则a+b 的值是: A.-1 B.1 C.3 D.5 6.下列各式中正确的是:A.33a a = B.a 3=(-a)3 C. –a 2=2a - D. a 2=(-a)27.用四舍五入法按要求对0.05019分别取近似值,其中错误的是: A.0.1(精确到0.1) B.0.05(精确到百分位) C.0.05(精确到千分位) D.0.0502(精确到0.0001) 8. 计算20092008)1()1(-+-所得结果是:A.-2B.0C.1D.29. 一个两位数,十位数字是x ,个位数字比十位数字的2倍少3,这个两位数是: A.x(2x-3) B.x(2x+3) C. 12x+3 D. 12x-310.如图是超市中“丝美”洗发水的价格标签,服务员不小心将墨水滴在了标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是: A.22元 B.23元 C.24元 D.26元二、填空题:本大题共8道小题,每小题3分,共24分,要求只写出最后结果.11. 已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高m. 12. 太阳光的速度是300000000米/秒,用科学记数法表示为米/秒. 13. 设三个连续整数的中间一个数是n,则它们三个数的和是. 14.比较有理数的大小:109-1110-. 15. 计算⨯++-)6143121(12=. 16. 规定一种关于a 、b 的运算:a*b=22b a -,那么3 *(-2)=. 17.如果a=b,那么=1-43b. 18.甲、乙两人都从A 地去B 地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时行 千米.三、解答题:本大题共7道小题,满分46分,解答应写出文字说明和推理步骤. 19.(6分)计算: (1)214314)211(321-+-+ (2)()2431513297-⨯--÷-)(20.(4分)解方程:3x+7=32-2x21.(6分)(1)在数轴上表示出:0, -1.5, -2, 311; (2)将(1)中各数用“<”号连接起来.22.(4分)求.32,2)3123()31(22122=-=+-+--y x y x y x x 的值,其中23.(8分)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9. (1)最后一名老师送到目的地时,小王距出租车出发点的距离是多少?在什么地方?(2)若汽车耗油量为0.4升/千米,这天下午小王的汽车共耗油多少升?24.(8分)某金融机构发行两种债券:甲种债券面值1000元,买入价为1000元,一年到期本息和为1140元;乙种面值为1000元,但买入价为880元,一年到期本息和为1000元,收益率=(到期本息和-买入价)÷(到期日期-买入日期)÷买入价×100%,日期以年为单位,你能利用已学过的知识分析哪种债券收益率更大吗?25.(10分)下表所示是某年11月份的日历表.星期六星期日星期一星期二星期三星期四星期五1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30请回答下列问题:(1)若一竖列的三个数的和为42,则这三个数分别是多少?若和为44,你能求出这三天是几号吗?为什么?(2)若一竖列的四个数之和为74,这四个数分别是多少?(3)若上表中一个2×2的矩形块四个数之和为80,求出这四个数;七年级数学参考答案及评分标准一、选择题:ACCBA DCBDC二、填空题:11、350 12、3×108 13、3n 14、> 15、10 16、5 17、1―a 4318、30. 解答题:19.解:(1)214314)211(321-+-+=)()(214211314321+-+…………………2分 =6―6=0……………………………3分 (2)()2431513297-⨯--÷-)(=3161531097--÷……………………………2分 =311-……………………………3分 20.解:移项,得 3x+2x=32―7, ……………………………2分 合并,得 5x=25, ……………………………3分 系数化为1,得 x=5……………………………4分 21.解:(1)表示正确,……………………………3分(2)―2<―1.5<0<321.……………………………6分 22.解:)3123()31(22122y x y x x +-+--=22312332221y x y x x +-+- =23y x +-……………………………3分当x=―2,y=32时,原式=―3×(―2)+232)(=946……………………………4分23.解(1)+5+(―4)+3+(―10)+3+(―9)= ―12∴最后一名老师送到目的地时,小王在出租车出发点西12米的地方.………………………4分 (2)4.09310345⨯-+++-+++-++)( =34×0.4=13.6(升).∴这天下午小王的汽车共耗油13.6升. ……………………………8分 24.解:甲种债券的收益率=(1140-1000)÷1÷1000×100% =140÷1000×100%=14%……………………………3分乙种债券的收益率=(1000-880)÷1÷880×100%=120÷880×100%≈13.64%……………………………7分∴甲种债券的收益率更大些. …………………………………………8分25.解:(1)设中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.根据题意,得x-7+ x + x+7=42,解得x=14,因此这三天分别是7号、14号、21号. ……………………………3分若和为44,则x的解不是整数,所以不能求出这三天是几号. ……………………………4分(2)设这四个依次是为:x+14,x+7,x,x-7.根据题意,得x+14+x+7+x+x-7=74,解得x=15,因此这四天分别是8号、15号、22号、29号. ……………………………7分(3)设这四个数分别是x,x+1,x+7,x+8.根据题意,得x+ x +1 + x +7+x+8=80,解得x=16,因此这四天分别是16号、17号、23号、24号. ……………………………10分。

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷一、单选题1.在一条东西方向的跑道上,小亮先向西走了20米,记作“20-米”,接着又向东走了8米,此时小亮的位置可记作()A .12+米B .12-米C . 8+米D .28-米2.老师在黑板上用粉笔写字,可用下面()的数学知识点来解释.A .点动成线B .线动成面C .面动成体D .线线相交3.“世界陶瓷看中国,中国陶瓷看佛山”,中国陶瓷官方协会的官方数据,仅佛山产区的瓷砖2018年就高达1090000000平方米,将1090000000平方米用科学记数法表示应为()A .100.10910⨯平方米B .91.0910⨯平方米C .810.910⨯平方米D .710910⨯平方米4.下列计算正确的是()A .2222m n mn mn -=-B .22523y y -=C .277a a a +=D .325ab ab ab+=5.下列说法中正确的是()A .单项式2x 的系数是2B .21xy x +-是三次二项式C .23π2x y -的系数是12-D .322xy 的次数是66.如图,数轴上点P ,Q ,M ,N 表示的数绝对值最小的是()A .点PB .点QC .点MD .点N7.某几何体从三个不同方向看到的形状图如图所示,则该几何体的体积是()A .2πB .3πC .6πD .12π8.按照如图所示的操作步骤,若输入的值为4,则输出的值为()A .30B .20-C .90D .28二、填空题9.比较大小:34-45-,415⎛⎫-- ⎪⎝⎭1.86--(填“<”,“>”或“=”).10.十棱柱有条棱,有个面.11.如果单项式167m x y -与335n x y +-是同类项,那mn =.12.若()2530m n -++=,则m n +=.13.在数轴上与表示数7的点距离3个单位长度的点表示的数是.三、解答题14.把下列各数的对应序号填在相应的横线上:①3.14,②10%,③219-,④0,⑤0.27,⑥()2--,⑦3π,⑧ 3.5--正分数集合:_________________;负有理数集合:_________________;自然数集合:_________________;非负数集合:___________________.15.计算(1)()()17278242-++-+;(2)()()()5.57.1 4.57---+--;(3)()215126326⎛⎫⎛⎫-⨯+-÷ ⎪ ⎪⎝⎭⎝⎭;(4)()()202414326-+⨯-÷-.16.先化简,再求值:2x 2+(x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =12-.17.在平整的地面上,有一个由7个完全相同的小立方块搭成的几何体,每个小正方体的棱长均为10cm ,如图所示.(1)请画出这个几何体的主视图和左视图;(2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从正面看和从上面看到的形状图不变,最多添加_______小正方体;(3)将原几何体露出的表面部分(不含底面)涂成红色,那么红色部分的面积为多少?18.“日啖荔枝三百颗,不辞长作岭南人”.每年六月正是荔枝集中上市的时间,下表是六月某周内水果批发市场每天的荔枝批发价格与前一天价格相比的涨跌情况.(前一个周日的批发价是6元/kg )星期一二三四五六日与前一天价格相比的涨跌情况/元0.2+0.15-0.25+0.1+0.3-0.2+0.1-注:正号表示价格比前一天上升,负号表示价格比前一天下降.(1)本周内荔枝的批发价格最高是__________元/kg .批发价格最低是__________元/kg .(2)对比前一个周日,本周日的荔枝批发价格是上升了还是下降了?上升或下降了多少元?(3)某水果商店周一从批发市场购进荔枝100kg ,以8元/kg 的售价销售,很快脱销,于是周三再次从批发市场购进荔枝100kg ,按原售价销售了40kg 后,剩下的按七折出售,全部售完,问水果商店销售这200kg 荔枝共盈利了多少元?四、填空题19.若23x y -=,则代数式249x y --的值等于.20.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是.21.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是立方厘米.(结果保留π)22.已知有理数a ,b ,c 的位置如图所示,化简式子:b c b a c a ++--+=.23.规定:符号[x ]叫做取整符号,它表示不超过x 的最大整数.例如:[]55=,[]2.62=,[]0.20=.现在有一列非负数123,,,a a a ⋯,已知110a =,当2n ≥时,1121555n n n n a a -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则2024a 的值为.五、解答题24.我们在分析解决某些数学问题时经常要比较两个数或整式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形、并利用差的符号来确定它们的大小,即要比较代数式a 、b 的大小,只要求出它们的差a b -,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.请你用“作差法”解决以下问题:(1)制作某产品有两种用料方案:方案一:用3块A 型钢板,用7块B 型钢板;方案二:用2块A 型钢板,用8块B 型钢板;A 型钢板的面积比B 型钢板的面积大,设每块A 型钢板的面积为x ,每块B 型钢板的面积为y ,从省料角度考虑,应选哪种方案?(2)试比较图1和图2中两个矩形周长的大小.25.定义:已知M ,N 为关于x 的多项式,若M N k -=,其中k 为大于0的常数,则称M 是N 的“友好式”,k 叫做M 关于N 的“友好值”.例如:223M x x =++,222N x x =+-,22(23)(22)5M N x x x x -=++-+-=,则称M 是N 的“友好式”,M 关于N 的“友好值”为5.又如,233M x x =++,223N x x =++,()()223323M N x x x x x -=++-++=,x 不是大于0的常数,则称M 不是N 的“友好式”.(1)已知223M x x =+-,221N x x =++,则M 是N 的“友好式”吗?若是,请证明并求出M 关于N 的“友好值”;若不是,请说明理由;(2)已知2244M x m xm =+-,246N x x n =-+,若M 是N 的“友好式”,且“友好值”为14,求m ,n 的值.26.如图,将等边ABC V 放在数轴上,点B 与数轴上表示6-的点重合,点C 与数轴上表示2的点重合,将数轴上表示2以后的正半轴沿C A B →→进行折叠.经过折叠后,(1)点A 、点B 分别与正半轴上表示哪个数的点重合?(2)若点D 为AC 的中点,点E 表示5-.折叠数轴上,记___EA 为数轴拉直后点E 到点A 的距离,即___A EA EC C =+,其中,EC CA 代表线段长度.若动点P 从点D 出发,沿D CB →→方向运动,动点Q 从点E 出发,沿EC →方向运动,当动点Q 运动到点C 时,P 、Q 同时停止运动.已知动点P 在DC 上运动速度为1单位秒,在CB 上运动速度为2单位/秒;动点Q的运动速度为1单位/秒,设运动时间为t(秒).①当t为何值时,动点P、Q表示同一个数.②当t为何值时,______1 PQ QC-=.。

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中测试卷(长沙专用,测试范围:七上第1~4章)(全解全析)

2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一至第四章。

5.难度系数:0.75。

一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。

安徽省宿州市泗县2024-2025学年七年级上学期期中考试数学试卷(含简单答案)

安徽省宿州市泗县2024-2025学年七年级上学期期中考试数学试卷(含简单答案)

泗县2024-2025学年度第一学期七年级期中质量检测数学试卷考试时间:100分钟;总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卷上。

一、单选题(每小题3分,共30分)1.的绝对值是()A.99B.C.D.2.由4个相同的小立方体搭成的几何体如图所示,则从上面看得到的图形是()A.B.C.D.3.如果a与b互为相反数,则下列各式不正确的是()A.B.C.D.4.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.B.C.D.5.用科学记数法表示为的数是()A.1888B.188.8C.0.001888D.188806.一个两位数,十位上的数字是a,个位上的数字是b,如果把十位上的数与个位上的数对调,所得的两位数是()A.B.C.D.7.今年10月14日泗县最低气温是16,温差是9,那么这一天的最高气温是()A.24B.25C.7D.208.已知代数式的值是9,那么代数式的值是()A.32B.33C.35D.369.下列图形不能围成正方体的是()A.B.C.D.10.用棋子摆出下列一组“□”字,按照这种方法摆下去,则摆第n个“□”字需用棋子枚数为()99-99-199199-a b+=0a b-=a b=a b=-a b>0ab<0b a->0a b+>31.88810⨯ba b a+10b a+10a b+℃℃℃℃℃℃21x x++2339x x++A .4nB .C .D .二、填空题(每小题3分,共24分)11.的相反数是________,倒数是________,绝对值是________。

12.次数是________。

13.比较大小:________。

14.在数轴上,如果A 点表示,那么与点A 距离4个长度单位的点表示的数是________。

15.若与是同类项,则________。

16.观察下面一列数,按规律在横线上填写适当的数,,,,,________。

2023-2024学年度第一学期联合体七年级数学(上)期中试题(含答案)

2023-2024学年度第一学期联合体七年级数学(上)期中试题(含答案)

2023-2024学年度第一学期期中学情分析样题七年级数学注意事项:1.本试卷共4页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卷及本试卷上.3.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷...相应位置....上) 1.-4的倒数是A .4B .-4C .-14D .142.在5,-23,0,2,3.1415926,-1.6666…,0.1010010001…(相邻两个1之间依次多一个0)这些数中,其中无理数共有 A .1个B .2个C .3个D .4个3.紫金山山顶的气温某天早晨是零下5℃,中午上升了8℃,傍晚下降了 6℃.这天傍晚紫金山山顶的气温是 A .零上2℃B .零下2℃C .零上3℃D .零下3℃4.下列各数中,与-32相等的是A .-23B .(-2)3C .(-3)2D .-(-3)25.下列运算正确的是A .4x -x =3B .4x +x =4x 2C .4xy -yx =3xyD .4x +y =4xyA .6B .3C .1D .-27.设面积为5的正方形的边长为a ,下列关于a 的结论:①a 是无理数;②a 可以用数轴上的一个点来表示;③2<a <3,其中,所有正确结论的序号是A .①②B .①③C .②③D .①②③8.若a <0,a +b <0,a +2b >0,则下列结论正确的是A .b <0B .a -b <0C .||a <||bD .-a +2b <0二、填空题(每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9.化简:-(-2)= ▲ ,||-2= ▲ .10.“杭州第19届亚运会”截至10月7日早晨售票超过了305万张,将数据“305万”用科学记数法表示为 ▲ .11.比较大小:-23 ▲ -34(填“>”、“=”或“<”)12.单项式-2x 2y3的系数与次数分别是 ▲ ; ▲ .13.若|x -2|+(y +3)2=0,则y x 的值为 ▲ .14.点A 在数轴上表示的数是-2.若点B 与点A 的距离是4,则点B 在数轴上表示的数为 ▲ . 15.若a -2b 3=3则代数式1-2a +4b 3= ▲ .16.有理数a ,b ,c 在数轴上的位置如图所示,试化简:|a -b |+|a -c |= ▲ .17.已知a ,b 为常数,且三个单项式2xy 3,axy b ,-5xy 的和仍然是单项式,则a +b 的值是 ▲ . 18.10,A 10表示的数为 ▲ .三、解答题(本大题共9小题,共64分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(5分)在数轴上画出表示-1.5,-||-3,0,+4的点,并按从小到大的顺序,用“<”号把这些数连接起来.(第19题)cab20.(12分)计算:(1)8-(-3)+(-2); (2)1÷54×(-15);(3)(310-14+45)÷(-120); (4)-102+[(-4)²-(1-3²)÷12]21.(8分)化简:(1)5a 2+3a -a 2-2a +1; (2)3(a 2b -ab )-2(a 2b -2ab ).22.(7分)化简并求值2(m 2-3mn -n 2)-(2m 2-7mn -2n 2),其中m =4,n =-12.23.(7分)某水果店销售某种水果,原计划每天卖出100kg ,但由于种种原因,实际每天的销售量与计划量相比有出入,如表是某一周的销售情况:(超额记为正,不足记为负,单位:kg )(1)请计算该店一周这种水果的销售总量;(2)若该店以1.5元/kg 的价格购进这种水果,又按4元/kg 出售,则该水果店本周一共赚了多少元?24.(7分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是长方形,且AG ∶BG =3∶2.设BG 的长为2x 米. (1)用含x 的代数式表示AF = ▲ ;(2)用含x 的代数式表示DF ,并求当x =125.(8分)对于一种新运算“⊙”,请观察下列各式,并完成问题: ①1⊙2=3×2-2×1=4;②4⊙(-2)=3×(-2)-2×4=-14; ③(-3)⊙1=3×1-2×(-3)=9;④(-2)⊙(-3)=3×(-3)-2×(-2)=-5; (1)1⊙(-2)= ▲ ; (2)求(2⊙3)⊙(-4)的值.(3)判断a ⊙b 和(-a ) ⊙b 的大小关系,并说明理由.26.(10分)数轴是非常重要的数学工具,它可以使代数中的推理更加直观.借助数轴解决下列问题: 【知识回顾】数轴上点A ,B 表示的数分别为a ,b ,A ,B 两点之间的距离记为AB ; (1)若a =-1,b =3,则AB = ▲ ;若a =-1,b =-4,则AB = ▲ ;一般地,AB = ▲ (用含a ,b 的代数式表示).【概念理解】(2)代数式||x +3+||x -4的最小值为 ▲ ; 【深入探究】(3)代数式||x +3+||x -m +||x -4(m 为常数)的最小值随m 值的变化而变化,直接写出该代数式的最小值及对应的m 的取值范围(用含m 的代数式表示); (4)若代数式||x +3+||x -m +||2x -8(m 为常数)的最小值为8,则m 的值为 ▲ .2023-2024学年度第一学期期中学情分析样题七年级数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题2分,共16分)二、填空题(本大题共10小题,每小题2分,共20分)9.2,2 10.3.05×106 11.> 12.-23,3 13.914.-6或2 15.-5 16.c -b 17.6或1 18.370三、解答题(本大题共8小题,共64分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤) 19.(5分)描点略 ···················································································· 4分 -│-3│<-1.5<0<4 ····························································· 5分 20.(12分)(1)原式=8+3-2 ······································································· 2分 =9 ············································································· 3分(2)原式=1×45×(-15) ································································ 1分=-425·········································································· 3分(3)原式=-6+5-16 ·································································· 2分=-17 ············································································ 3分(4)原式=-100+[ 16-(-8)×2] ··················································· 2分=-100+32=-68 ············································································ 3分21.(8分)(1)原式=4a 2+a +1 ···································································· 4分 (2)原式=3a 2b -3ab -2a 2b +4ab ··················································· 2分=a 2b +ab ········································································ 4分22.(7分)原式=2m 2-6mn -2n 2-2m 2+7mn +2n 2 ····································· 2分 =mn ····················································································· 4分当m=4,n=-12时,原式=4×(-12)=-2.··························································· 7分23.(7分)(1)+6-2+12+3-7+19-11=20 ····································· 2分100×7+20=720所以,该店一周这种水果的销售总量为720kg. ················· 4分(2)720×(4-1.5)=1800····················································· 6分所以,该水果店本周一共赚了1800元. ····························· 7分24.(7分)(1)3x;··············································································· 2分(2)DF=48-12x ·································································· 4分当x=1时,区域③的面积为5x (48-12x)=180. ······················ 7分25.(8分)(1)-8; ············································································· 2分(2)(2⊙3)⊙(-4)=5⊙(-4);········································ 3分=-22; ················································ 5分(3)a⊙b=3b-2a,(-a)⊙b=3b+2a····································· 6分a⊙b-(-a)⊙b=-4a当a>0时,-4a<0,a⊙b<(-a)⊙b;当a=0时,-4a=0,a⊙b=(-a)⊙b;当a<0时,-4a>0,a⊙b>(-a)⊙b; ································· 8分26.(10分)(1)4,3,│a-b│; ·································································· 3分(2)7; ····················································································· 5分(3)当m<-3时,最小值为4-m;当-3≤m≤4时,最小值为7;当m>4时,最小值为m+3;················································ 8分(4)3或5.··············································································10分。

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中测试卷(湖北省卷专用,人教版2024七上第1~4章)考试版

2024-2025学年七年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版第1章有理数+第2章有理数的运算+第3章代数式+第4章整式的加减。

5.难度系数:0.72。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣60元表示( )A.收入60元B.收入20元C.支出60元D.支出20元2.下列四个数中,是负数的是( )A.|﹣1|B.﹣|﹣4| C.﹣(﹣3)D.(﹣2)23.下列说法正确的是( )A.―2xy5的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.x﹣5x2+7是二次三项式4.2023年4月26日,成都市统计局、国家统计局成都调查队联合发布2023年第一季度成都市经济运行情况.数据显示,一季度全市实现地区生产总值5266.82亿元,同比增长5.3%.将数据“5266.82亿”用科学记数法表示为( )A .5266.82×108B .5.26682×109C .5.26682×1010D .5.26682×10115.下列运算中,正确的是( )A .3a +2b =5abB .2x 2+2x 3=4x 5C .3a 2b ﹣3ba 2=0D .5a 2b ﹣4a 2b =16.在数轴上,a 所表示的点在b 所表示的点的左边,且|a |=3,b 2=1,则a ﹣b 的值为( )A .﹣2B .﹣3C .﹣4或﹣2D .﹣2或47.下列说法:①平方等于4的数是±2;②若a ,b 互为相反数,则b a=―1;③若|﹣a |=a ,则(﹣a )3<0;④若ab ≠0,则a |a|+b |b|的取值在0,1,2,﹣2这4个数中,不能得到的是0,其中正确的个数为( )A .0个B .1个C .2个D .3个8.如图,把半径为1的圆放到数轴上,圆上一点A 与表示﹣1的点重合,圆沿着数轴滚动2周,此时点A 表示的数是( )A .﹣1+4πB .﹣1+2πC .﹣1+4π或﹣1﹣4πD .﹣1+2π或﹣1﹣2π9.如图,把四张形状大小完全相同的小长方形卡片(如图1),不重叠地放在一个长为a cm 、宽为b cm 长方形内(如图2),未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是( )A .4b cmB .4a cmC .2(a +b )cmD .4(a ﹣b )cm10.如图是一组有规律的图案,它们是由边长相同的灰白两种颜色的小正方形组成的,按照这样的规律,若组成的图案中有2025个灰色小正方形,则这个图案是( )A .第505个B .第506个C .第507个D .第508个第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.若x 与3互为相反数,则2x +4等于 .12.若x ,y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y )2023的值为 .13.定义一种新运算:a *b =a 2﹣b +ab .例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]= .14.当x =2时,ax 3﹣bx +3的值为15,那么当x =﹣2时,ax 3﹣bx +3的值为 .15.如图是一个运算程序的示意图,若开始输入的x 的值为81,我们看到第一次输出的结果为27,第二次输出的结果为9…第2024次输出的结果为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)―4+|5―8|+24÷(―3)×13; (2)―14―(1―0.5)×13×[2―(―3)2].17.(每小题4分,共8分)计算:(1)3(4x 2﹣3x +2)﹣2(1﹣4x 2+x ); (2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].18.(6分)先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y),其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)已知a2=4,|b|=3.(1)已知ba<0,求a+b的值;(2)|a+b|=﹣(a+b),求a﹣b的值.20.(8分)已知M=2x2+ax﹣5y+b,N=bx2―32x―52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.21.(8分)随着网络直播的兴起,凉山州“建档立卡户”刘师傅在帮扶队员的指导下做起了“主播”,把自家的石榴放到网上销售.他原计划每天卖100千克石榴,但由于种种原因,实际每天的销售量与计划量相比有出入.如表是某周的销售情况(超额记为正,不足记为负,单位:千克):星期一三三四五六日与计划量的差值+5﹣2﹣5+14﹣8+22﹣6(1)根据记录的数据可知前三天共卖出 千克.(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若石榴每千克按10元出售,每千克石榴的运费平均3元,那么刘师傅本周出售石榴的纯收入一共多少元?22.(8分)已知有理数a,b,c在数轴上的位置如图所示且|a|=|b|,(1)求值:a+b= ;(2)分别判断以下式子的符号(填“>”或“<”或“=”):b+c 0;a﹣c 0;ac 0;(3)化简:﹣|2c|+|﹣b|+|c﹣a|+|b﹣c|.23.(9分)定义一种新的运算⊗:已知a,b为有理数,规定a⊗b=ab﹣b+1.(1)计算(﹣2)⊗3的值.(2)已知x2⊗a与3⊗x2的差中不含x2项,求a的值.(3)如图,数轴上有三点A,B,C,点A在数轴上表示的数是(﹣6)⊗1,点C在数轴上表示的数是1⊗(﹣8)点B在点A的右侧,距点A两个单位长度.若点B以每秒3个单位长度的速度向右匀速运动,8同时点C以每秒1个单位长度的速度向左匀速运动,问运动多少秒时,BC=4?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20):(1)若该客户按方案①购买,需付款 元(用含x的代数式表示);(答案写在下面)若该客户按方案②购买,需付款 元(用含x的代数式表示);(答案写在下面)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30。

福建省福州市延安中学2024-2025学年七年级上学期期中考试数学试卷

福建省福州市延安中学2024-2025学年七年级上学期期中考试数学试卷

福建省福州市延安中学2024-2025学年七年级上学期期中考试数学试卷一、单选题1.下列四个数中,比3-小的数是()A .3B .0C .5-D .13-2.12024-的倒数是()A .12024-B .12024C .2024-D .20243.代数式224a b +用语言叙述正确的是()A .a 的平方与b 的平方的4倍的和B .a 的平方与4的和乘以b 的平方C .a 与4b 的和的平方D .a 与4b 的平方和4.从一批零件中挑选4个零件编号后进行称重检查,结果如下(超过标准质量的记为正数,不足的克数记为负数,单位:g ),其中最接近标准质量的是()编号1234检查结果0.2+0.4-0.1-0.3+A .1号零件B .2号零件C .3号零件D .4号零件5.某村小麦的种植面积是m 公顷,玉米的种植面积是小麦的3倍,大豆的种植面积比玉米的种植面积少2n 公顷,则大豆的种植面积是()A .()32m n +公顷B .()32m n -公顷C .123m n ⎛⎫+ ⎪⎝⎭公顷D .123m n ⎛⎫- ⎪⎝⎭公顷6.祖冲之是世界上第一位将圆周率计算到小数点后第7位的数学家,到如今人类已经将圆周率计算到小数点后约105万亿位。

数据105万亿用科学记数法表示为()A .140.10510⨯B .141.0510⨯C .131.0510⨯D .1210510⨯7.下列说法中,正确的是()A .π5xy 的系数是5B .22x x --的常数项是2C .0不是单项式D .234x x -+是二次三项式8.观察下面的一列单项式:2x -,2x ,32x -,44x ,58x -,…,根据其中的规律,得出第7个单项式是()A .732x -B .732xC .764x -D .764x 9.“幻方”最早记载于春秋时期的《大戴礼记》中,如图1所示,每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,如图2所示的“幻方”中,部分数据已填入,则图中32a b d --的值为()A .5-B .0C .1D .310.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l .若知道l 的值,则不需测量就能知道周长的正方形的标号为()A .①B .②C .③D .④二、填空题11.用四舍五入法求1.045精确到0.01的近似数是.12.把下列各数填在相应的括号内:38-,0,30-,225,20+,π,0.3,正有理数集合:{…}.13.已知一个长方体的体积是3200cm ,它的长是cm y ,宽是8cm ,高是cm x .用式子表示y 与x 之间的关系是.14.二进制中的数11001等于的十进制数是.15.有理数a ,b ,c 在数轴上的对应点的位置如图所示,请化简:a cb ac b -++--+=.16.如图是一个对于正整数x 的循环迭代的计算机程序.根据该程序指令,如果第一次输入x 的值是5时,那么第一次输出的值是16;把第一次输出的值再次输入,那么第二次输出的值是8;…若一开始输入的数为5,则第2024次输出的值是.三、解答题17.计算:(1)()()311915---+-;(2)()528.43 5.4177⎛⎫---+-+ ⎪⎝⎭.18.计算:(1)()23313122422⎛⎫⎛⎫-⨯--÷ ⎪ ⎪⎝⎭⎝⎭;(2)()220242141434129⎛⎫---⨯+-÷-+ ⎪⎝⎭.19.如图是一个长方形,分别以它的两个顶点为圆心以b 为半径作两个四分之一圆.(1)用代数式表示阴影部分的面积;(2)当9a =,4b =时,求阴影部分的面积(结果保留π).20.某文具店在一周的销售中,盈亏情况如下表(盈利为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计27.8-70.3-200138.1189460表中周五、周六的数据缺失.(1)若周五亏损5元,请算出周六盈利或亏损多少元;(2)若周六比周五多盈利12元,请算出周六缺失的数据.21.阅读材料:对于任何数,我们规定符号a b c d 的意义是a b ad bc c d =-.例如:3635461524945=⨯-⨯=-=-.(1)按照这个规定,请你计算5839--的值.(2)按照这个规定,当1x =,3=-y 时,求241134y x x y++--+的值.22.已知含字母m ,n 的代数式是:()()2222132332312m n mn m n mn m ⎡⎤⎛⎫++--++-- ⎪⎢⎥⎝⎭⎣⎦.(1)化简这个代数式.(2)聪明的小智从化简的代数式中发现,只要字母n 取一个固定的数,无论字母m 取何数,代数式的值恒为一个不变的数,那么小智所取的字母n 的值是多少呢?23.如图是2024年1月的日历表;日一二三四五六12345678910111213141516171819202122232425262728293031(1)在表中用优美的U 形框“”框住五个数,其中最小的数为1,求U 形框中的五个数字之和;(2)在表中移动U 形框的位置,若U 形框框住的五个数字之和为68,求这五个数字中最大的数.24.定义:若5a b +=,则称a 与b 是关于5的平衡数.(1)4与______是关于5的平衡数,7x +与______是关于5的平衡数;(填一个含x 的代数式)(2)若241a x x =--,()222214b x x x =---+,判断a 与b 是否是关于5的平衡数,并说明理由;(3)若1c kx =+,3d x =-,且c 与d 是关于5的平衡数,若x 为正整数,求非负整数k 的值.25.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”。

福建省泉州市四校(泉州实验、安溪一中等)2024-2025学年七年级上学期期中联考数学试题(含答案)

福建省泉州市四校(泉州实验、安溪一中等)2024-2025学年七年级上学期期中联考数学试题(含答案)

四校联盟2024-2025学年上学期期中考试七年级数学试卷(全卷满分:150分 考试时间:120分钟)注意事项:所有答案必须填写到答题卡相应的位置上.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.在答题卡相应的答题区域内作答.1.的相反数是( )A.B. C.D.2.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A.千克 B.千克C.千克D.千克3.在有理数中,负分数有( )A.3个B.4个C.5个D.6个4.下列代数式符合书写要求的是( )A. B. C. D.3mn5.用四舍五入法,把5.86精确到十分位,取得的近似数是( )A.5.87B.5.9C.5.8D.66.已知单项式与的和是单项式,那么的值是( )A.9B. C.6D.7.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. B. C. D.8.下列说法不正确的是( )A.是整式B.单项式的次数为7C.3是单项式D.“a 的2倍与b 的立方的差”表示为9.烷烃是一类由碳、氢元素组成的有机化合物质,这类物质前四种化合物的分子结构模型图如图所示,其中黑球代表碳原子(较大的),白球代表氢原子(较小的).第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,…按照这一规律,第10种化合物的分子结构模型中碳、氢原子的总个数是( )78-87-877878-95010⨯10510⨯9510⨯110.510⨯33,99,33%,,2024,0,0.01001410----112m3m ⨯2m n÷22mx y -335nx y ()nm -9-6-1b >-0a b +>0ab >||2b >24a b 253xy -32a b-图①图②图③图④…A.36个B.34个C.32个D.30个10.关于x 的多项式:,其中n 为正整数,各项系数各不相同且均不为0.当时,,交换任意两项的系数,得到的新多项式我们称为原多项式的“兄弟多项式”,给出下列说法:①多项式共有6个不同的“兄弟多项式”;②若多项式,则的所有系数之和为;③若多项式,则;④若多项式,则.则以上说法正确的个数为( )A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分.在答题卡相应的答题区域内作答.11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作,则零下8℃记作__________℃.12.把多项式按字母x 的降幂排列为__________.13.若,则代数式__________.14.某地居民的生活用水收费标准为:每月用水量不超过,每立方米a 元;超过部分每立方米元.若该地区某家庭10月份用水量为,则应交水费__________元.15.若多项式是关于x 的五次三项式,则m 的值为__________.16.已知,则代数式的最大值是__________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.在答题卡相应的答题区域内作答.17.(本小题8分)将下列各数在数轴上表示出来,并用“<”号连接起来:18.(本小题8分)12212210nn n n n n n A a x a x a x a x a x a ----=++++++ 3n =3233210A a x a x a x a =+++3A (12)nn A x =-n A 1±55(21)A x =-420121a a a ++=-20242024(12)A x =-20242023202131132a a a a -++++= 3+℃2323573x y xy x y +--2240a a --=2361a a -+=315m (2)a +320m ||328(2)m xx m x +-+-()()|3||2||1||5|30x x y y ++--++=2x y -1|3|,(4),0,1,1.53-----计算:(1);(2).19.(本小题8分)当,时,求代数式的值.20.(本小题8分)已知,c 、d 互为倒数,m 的平方是81.(1)直接写出__________;(2)求代数式的值.21.(本小题8分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,称重的记录如下表:与标准重量的差值(单位:千克)00.250.30.5箱数124652(1)求这20箱樱桃的总重量;(2)水果店打算以每千克24元销售这批樱桃,若全部售出可获利多少元?22.(本小题10分)已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.图1图2(1)请用含m ,n 的代数式表示下面的问题:①大长方形的长:__________;②阴影A 的面积:__________.(2)请说明阴影A 与阴影B 的周长的和与m 的取值无关.23.(本小题10分)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.457136824⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭631(10.5)31(2)⎡⎤---÷⨯--⎣⎦1x =-32y =222x xy y -+2|8|(8)0a b ++-=a b +=2||315202511a b m cd m ++-+0.5-0.25-假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:.其中、分别为单次漂洗前后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg ).【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%.【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,只用9.5kg 清水,是否能达到洗衣目标?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24.(本小题12分)定义一种对整数n 的“F ”运算:,以表示对整数n 进行k 次“F ”运算.例如,表示对2进行2次“F ”运算,因为2是偶数,所以,第一次运算的结果为,因为第一次运算的结果1是奇数,所以第二次运算的结果为,所以的运算结果是6.请回答下列问题:(1)直接写出的运算结果是__________.(2)若n 为偶数,且的运算结果为8,求n 的值.(3)若n 为奇数,且,,求n 的值.25.(本小题14分)阅读材料:如果数轴上有两点A ,B ,其表示的数分别为a ,b ,那么线段AB 的长度表示为,线段AB 的中点表示的数为.解决问题:如图,已知数轴上A ,B 两点分别位于原点O 两侧,点B 对应的数为18,且.(1)直接写出点A 对应的数是__________.(2)一动点P 从点A 出发,以每秒2个单位长度向左运动,一动点Q 从点B 出发,以每秒3个单位长度向左运动,设运动时间为t 秒().①试探究:P 、Q 两点到原点的距离可能相等吗?若能,请求t 的值;若不能,请说明理由;②若动点Q 从点B 出发后,到达原点O 后保持原来的速度向右运动,当点Q 在线段OB 上运动时,分别0.50.5d d w=+前后d 前d 后1( )()25( )n n F n n n ⎧⎪=⎨⎪+⎩是偶数是奇数(,)F n k (2,2)F 1212⨯=156+=(2,2)F (5,1)F (,2)F n (,1)0F n <(,3)0F n >a b -2a b+24AB =0t >取OB 和AQ 的中点E ,F ,试判断的值是否为定值?若是,请求出该定值;若不是,请说明理由.AB OQEF2024-2025学年上学期七年级期中考试数学试题参考答案及评分标准(全卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.1..C 2.B 3.A 4.D 5.B 6.A7.D8.B9.C10.D二、填空题:本题共6小题,每小题4分,共24分.11.12.13.1314.15.16.9注:14题没有括号不扣分.三、解答题:本题共9小题,共86分.17.(本小题8分)解:如图所示.5分.8分18.(本小题8分)解:(1)原式2分3分4分(2)原式2分3分4分19.(本小题8分)解:当,时,3分6分8分20.(本小题8分)8-3232537x y x y xy -+-+(2010)a +2-1|3|10 1.5(4)3--<-<<<--457242424368⎛⎫=--⨯+⨯-⨯ ⎪⎝⎭()322021=--+-33=111[1(8)]23=--⨯⨯--312=--52=-1x =-32y =2222332(1)2(1)22x xy y ⎛⎫-+=--⨯-⨯+ ⎪⎝⎭9134=++254=(1)0;2分(2)解:依题意得,4分原式当时,原式6分当时,原式8分综上,原式的值为12或.21.(本小题8分)解:(1)依题意,得(千克).5分答:这20箱樱桃的总重量是203千克.(2)依题意,得(元).5分答:全部售出可获利1075元.22.(本小题10分)解:(1)①;2分②;注:不扣分.4分(2)由图得6分8分10分阴影A 与阴影B 的周长的和与m 的取值无关.23.(本小题10分)解:(1)依题意,得 , 符合题意只经过一次漂洗,能达到洗衣目标.3分(2)第一次漂洗:,5分第二次漂洗:7分1cd =9m =±∴315m =-9m =12=9m =-42=-42-2010(0.5)2(0.25)060.2550.320.5⨯+-+⨯-++⨯+⨯+⨯203=2420320020872⨯-⨯=4m n +103m mn -(103)m n -2(103)A C m n =+-2(410)B C n m =+-2(103)2(410)A B C C m n n m ∴+=+-++-2(220)440n n =+=+∴0.2%d =前9.5w =0.50.2%0.01%0.59.5d ⨯∴==+后∴0.2%d =前12w =10.50.2%0.04%0.52d ⨯∴==+后22w =20.50.04%0.008%0.52d ⨯∴==+后0.008%0.01%<进行两次漂洗,能达到洗衣目标;8分(3)解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.10分备注:①能发现不同(比较结果,都能达标,但用水量不同)给1分;②能发现哪种更优(回答内容涉及节水理念,改变用水方式,少次多量,用更少的清水就能达标),给1分.24.(本小题12分)解:(1)103分(2)为偶数 4分若是偶数 则 若是奇数 则 综上,n 的值是32或6.8分(3)为奇数 是偶数 若是偶数 则(与矛盾,舍)若是奇数 则 又为态数 的值是.12分25.(本小题14分)解:(1)2分(2)①P 、Q 两点到原点的距离能相等.理由:依题意得点P 所表示的数为,点Q 所表示的数为,解得或当或时,P 、Q 两点到原点的距离能相等.8分②的值是定值.理由:当时,点Q 所表示的数为.线段OB 的中点E 表示的数为9线段AQ 的中点F 表示的数为∴n 1(,1)2F n n ∴=2n1(,2)84F n n ==32n ∴=2n1(,2)582F n n =+=6n ∴=n (,1)50F n n ∴=+<5n ∴<-5n + 5(,2)2n F n +∴=52n +15(,3)022n F n +=⋅>5n ∴>-5n <-52n +5(,3)502n F n +=+>15n ∴>-155n ∴-<<-n n ∴13,11,9,7----6-32t --183t -|62||183|t t ∴--=-125t =24t =∴125t =24t =AB OQ EF-06t ≤≤183t -∴618312322t t-+--=,是定值.11分当时,点Q 所表示的数为.线段OB 的中点E 表示的数为9线段AQ 的中点F 表示的数为, 是定值.13分综上,当点Q 在线段OB 上运动时,是定值.14分183OQ t ∴=-362t EF +=2AB OQEF-∴=612t <≤318t -∴3242t -318OQ t ∴=-4232t EF -=2AB OQEF-∴=2AB OQEF-=。

北京市西城外国语学校2024-2025学年七年级上学期期中考试数学试卷(含答案)

北京市西城外国语学校2024-2025学年七年级上学期期中考试数学试卷(含答案)

北京市西城外国语学校2024—2025学年度第一学期七年级数学期中练习试卷2024.11.5班 姓名学号成绩试卷满分100分 考试时间:100分钟一、单项选择题(本题共10个小题,每小题3分,共30分) 1.-4的相反数是( )A .41B .14- C .4 D .-42.去年某市国庆期间接待旅游人数达到602 000人次.将602 000用科学计数法表示应为( ) A .602×103 B .6.02×105C .6.02×106D .6.02×1073.下列各式结果为负数的是()A .-|-1|B .(-1)4C .-(-1)D .|1-2|4.下列式子中,正确的是()A.68--< B.11000-> C. 1157--< D.130.3<5.下列各组整式中不是..同类项的是()A .3m 2n 与3nm2B .13xy 2与13x 2y C .-5ab 与-5×103ab D .35与-126.下列运算正确的是( ).A .-12+3=-15B .45331354÷⨯=÷= C .12x -4=8xD .2-5x =-(5x -2)7.下列式子的变形中,正确的是( ). A .由6+x =10得x =10+6 B . 由3x +5=4x 得3x -4x = -5 C .由4x =2得x =2 D . 由2(x -1)= 3得2x -1=3 8.如果2=x 是方程112x a -+=的解,那么a 的值是( ).A .-2B .2C .0D .-69.有理数a,b 在数轴上的位置如图所示,则下列结论中,错误..的是( ). A .b a <<0B .|a |>|b |C . a b ->D .ba ab +<-010.按下面的程序计算:当输入x=60时,输出结果是297;当输入x =20时,输出结果是482;如果输入x 的值是正整数...,输出结果是182,那么满足条件的x 的值最多有( ) A .1个 B .2个 C .3个D .4个二、填空题(本题共10个小题,每小题2分,共20分)11.对代数式"5a "可以赋予实际意义:如果一个乒乓球拍的价格是 a 元,那么5a 表示5个乒乓球拍的总价.请你再对代数式"5a "赋予一个实际意义:_______________. 12.设n 是任意一个整数,用含n 的式子表示连续的两个奇数 .13.1.9983≈ .(精确到十分位).14.一个字母部分只含x 和y 的单项式满足下列两个条件:①系数是2;②次数是3.写出一个满足上述条件的单项式: . 15.关于a 、b 的多项式-2a 2b 3+kab -ab -3次数为__,若该多项式不含二次项,则k =___. 16.若数轴上点A 表示的数是-4,则与点A 相距3个单位长度的点表示的数是 . 17.水池中有若干吨水,开一个出水口将全池水放光,所用时间 t (单位:h )与出水速度 v (单位: T / h )之间的关系如下表:出水速度 v (T / h )10 8 5 4 2 … t (h )11.2522.55…用式子表示t 与v 的关系是________________. 18.若22(+1)0x y -+=,则x y -的值为_________. 19.右面的框图表示解方程3x +20=4x -25的流程. 第3步的依据是 .20.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类.如上图的1,5,12,22称为五边形数.则五边形数构成的一列数的第5项为 ,第 n 项为 .(用含n 的式子表示)否输入x计算5x -3的值>180输出结果是三、计算题(本题共4个小题,每小题5分,共20分) 21. -4-1+(-16)-(-3) 22. 512.5()(4)328-÷⨯-÷-23. ()157()272396--+÷-⨯24. 4279221()2643⎡⎤-⨯-+⨯--⎢⎥⎣⎦四、解答题(本题共3个小题,每小题5分,共15分) 25.有理数a ,b 在数轴上的对应点位置如图所示,(1)在图中标出-a ,-b 所对应的点,并用“<”连接a ,b ,-a ,-b ,0;(2)化简:3+a a b b a +--.26.化简:22233(13)()x x x x ----27.化简求值:2222414(2)2(3)33x xy y x xy y --+--,其中1x -=,12y =. 五、解关于x 的方程(本题共2个小题,每小题5分,共10分) 28.41224x x +=-; 29.2137135x x --=-六、解答题(本题5分)30.我们规定,若关于x 的一元一次方程b ax =的解为+b a ,则称该方程为“和解方程”,例如:-3x =2.25的解为-0.75,且-0.75=2.25+(-3),则该方程-3x =2.25是和解方程.请根据上边规定解答下列问题: (1)判断-x =0.5是否为和解方程;(2)若关于x 的一元一次方程62x m =-是和解方程,求m 的值.ab1-1七、附加题(可计入总分,但总分不超过100分)1.填空题(本题5分)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下) .他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲、乙、丙、丁、戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:1l;乙:4;丙:16;丁:7;戊:17.根据以上信息,判断:甲同学手里拿的两张卡片上的数字是;乙同学手里拿的两张卡片上的数字是;丙同学手里拿的两张卡片上的数字是;丁同学手里拿的两张卡片上的数字是;戊同学手里拿的两张卡片上的数字是.2.解答题(本题5分)探究规律,完成相关题目.定义“*”运算:(+2) * (+4) =(+4) * (+2) = +(42-22) ;(-7) * (-4) = (-4) * (-7) = + [ (-7)2 - (-4)2];(+4) * (-2) = (-2) * (+4) = -[ (+4)2-(-2)2];(+5) * (-7) = (+5) * (-7) = -[(-7)2-(+5)2];(-2) * (+2) =(+2) * (-2) = -[ (+2)2-(-2)2];(+5) * (+5) = +[(+5)2-(+5)2];(-5) * (-5) = +[(-5)2-(-5)2]=0;0* (-5) = (-5) * 0 = (-5)2;(+3) * 0 = 0 * (+3) = (+3)20 * 0 = 02 +02 = 0.归纳*运算的法则(用文字语言叙述)(1)绝对值不同的两数进行*运算时,结果的绝对值如何确定?___________________________________________________________.特别地,0和任何数进行*运算,或任何数和0进行*运算,__________.(2)计算:(-5) * [(+1) * (+3)](3)是否存在两个非零有理数m、n,使得m*n=0,若存在,求出m、n满足的关系,若不存在,说明理由.北京市西城外国语学校2024——2025学年度第一学期七年级数学期中练习答案2024.11.5一二、填空题(本题共10个小题,每小题2分,共20分)11. 答案不唯一: 如果汽车的速度是a 千米/时,那么5a 表示汽车5小时行驶的路程。

山西省晋中市榆次区2023-2024学年七年级上学期期中考试数学试卷(含解析)

山西省晋中市榆次区2023-2024学年七年级上学期期中考试数学试卷(含解析)

榆次区2023-2024学年第一学期期中学业水平质量监测题(卷)一、选择题(在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 有理数的相反数是()A. B. C. 2 D.答案:C解析:解:的相反数是,故选:C2. 用一个平面去截如图所示的几何体,若截面形状是长方形,则被截几何体不可能是()A. B. C. D.答案:D解析:解:A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、圆柱的横截面或纵截面中有一个为长方形,不符合题意;D、圆锥有一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.3. 中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.公元3世纪,我国数学家刘徽在“正负术”的注文中指出“今两算得失相反,要令正、负以名之.”就是说,对两个得失相反的量,要以正、负加以区别.如果盈利120元记作元,那么亏本80元记作()A. 元B. 元C. 元D. 元答案:A解析:解:∵盈利120元记作元,∴亏本80元记作元,故选:A.4. 小明将“明”“德”“乐”“学”“尚”“美”六个字分别写在某个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“德”字所在面相对的面上的汉字是()A. 乐B. 学C. 尚D. 美答案:B解析:解:由正方体的展开图可知,与“德”字所在面相对的面上的汉字是“学”,故选:B.5. 平遥牛肉是山西省平遥县特产,中国国家地理标志产品.现有4袋平遥原味一品香牛肉,每袋以为标准,超过的克数记为正数,不足的克数记为负数,以下数据是记录结果,其中最接近标准质量的是()A. B. C. D.答案:C解析:解:∵∴记录结果为的这袋实际克数最接近标准克数.故选C.6. 下列计算正确的是()A. B. C. D.答案:D解析:解:A、与不是同类项,所以不能合并,故本选项不合题意;B、,计算错误,故本选项不合题意;C、与不是同类项,不能合并,故本选项不合题意;D、,计算正确,符合题意;故选:D.7. 第19届亚洲运动会于2023年9月23日在杭州奥体中心体育场隆重开幕,杭州奥体中心体育场,又称“大莲花”,总建筑面积约21.6万平方米.数据“21.6万”用科学记数法表示为()A. B. C. D.答案:C解析:解:21.6万,小数点向左移动5位,得,因此21.6万.故选C.8. 下列说法中①棱柱的侧面可以是正方形,也可以是三角形;②棱柱的所有棱长都相等;③长方体、正方体都是四棱柱;④五棱锥共有6个面;⑤六棱柱有8个面,12条棱,12个顶点.正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:解:根据棱柱的结构特征:棱柱的各个侧面都是平行四边形,不可能是三角形,故①错误;棱柱的所有侧棱长都相等,故②错误;长方体、正方体都是四棱柱,故③正确;五棱锥共有6个面,故④正确;六棱柱有8个面,18条棱,12个顶点,故⑤错误;所以正确的由2个.故选:B.9. 某商场书包原价为m元,在9月份开学之季,商家开展优惠活动,现售价为元,则下列说法中,符合题意的是()A. 原价减30元后再打8折B. 原价打8折后再减30元C. 原价打2折后再减30元D. 原价减30元后再打2折答案:B解析:解:原价为m元,而则代表在原有的基础之上乘了,即打了8折,代表在原有基础之上减少了30元,∴代表的是原价打8折后再减30元,故选:B.10. 近年来出现了二维码,二维码是一种黑白相间的图形,通常一个二维码有1000个小方格组成,将每个小方格分别涂成黑色或白色从而产生不同的二维码.每天会生成许多二维码,有人也许会问,二维码会有用尽的一天吗?同学们想想将一个二维码的每个小方格任意涂成黑色或白色,则可生成不同的二维码数量是()A. 种B. 种C. 种D. 种答案:D解析:解:由题意得:每个小方格都有种不同的涂法,故个小方格有种涂法.故可生成不同的二维码数量是种故选:D二、填空题11. 比较大小:-3___________-2(填“<”或“>”).答案:<解析:解:∵3>2,∴-3<-2.故答案为:<.12. 流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是______.答案:点动成线解析:解:流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是点动成线,故答案为:点动成线.13. 已知单项式与的和是单项式,则______.答案:解析:解:由题意得:,,∴,,故答案为:14. 若,则______.答案:9解析:解:,故答案为:15. “整体思想”是数学中的一种重要思想方法,它广泛应用于数学运算中.例如:已知,,则,利用上述思想方法计算:若,.则______.答案:解析:解:====,∵,,代入得,故答案为:.三、解答题(解答应写出文字说明,证明过程或演算步骤)16. 下面是小宇同学进行有理数运算的过程,请认真阅读并完成相应任务.解:…第一步…第二步…第三步.…第四步任务一:(1)填空:①以上运算步骤中,第一步依据的运算律是______;②第______步开始出现错误,错误的原因是______;任务二:(2)请直接写出正确的计算结果.答案:任务一:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:解析:解:任务一:(1)①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号故答案为:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:原式17. 数学学习小组进行“几何体的拼搭”活动,其中勤学小组的同学用几个大小相同的小立块搭成如图所示的几何体,请同学们认真观察,在相应的网格中画出从正面和上面所看到的几何体的形状图.答案:见解析解析:解:根据题意可得:正面看、从上面看,分别如下图所示:18. 计算:(1)(2)(3)答案:(1)(2)(3)小问1解析:小问2解析:小问3解析:.19. 先化简,再求值.,其中,.答案:;解析:解:.当,时,原式20. “十一”黄金周期间,晋中某景区8天假期中每天游玩的人数变化如下表(用正数表示比前一天多的人数,用负数表示比前一天少的人数):日期29日30日1日2日3日4日5日6日变化/万人(1)若9月28日的游客人数为1万人,则9月30日的游客人数为______万人;(2)与9月28日相比,10月6日的游玩人数是减少了还是增多了?变化了多少?答案:(1)(2)10月6日的游玩人数增加了,增加了万人小问1解析:解:由表格可知:9月30日的游客人数为(万人)故答案为:小问2解析:解:(万人),答:与9月28日相比,10月6日的游玩人数增加了,增加了0.7万人21. 为了全面提高学生的综合素养,启迪学生的数学思维,某校初一年级开展了“数学思维导图”评比活动,设立一、二、三等奖共50人,其中二等奖人数比一等奖人数的2倍多10人.设一等奖的人数为x人.(1)请用含x的代数式表示:二等奖人数是______人,三等奖人数是______人(结果化为最简);(2)若一等奖奖品的单价为18元,二等奖奖品的单价为16元,三等奖奖品的单价为12元,请用含x的代数式表示该校本次购买所有奖品需要的总费用,并将结果化为最简;(3)在(2)基础上,若一等奖的人数为10人,则该校本次购买所有奖品共花费多少元?答案:(1),(2)(3)780元小问1解析:一等奖的人数为人.一、二、三等奖共50人,二等奖人数比一等奖人数的2倍多10人,二等奖有人,三等奖有人,故答案为:,;小问2解析:由题意可得,购买50件奖品所需的总费用为:元,即购买50件奖品所需的总费用为元;小问3解析:当时,,答:该校购买50件奖品共花费780元.22. 请仔细阅读小明的数学日记,并按要求完成相应任务.x年x月x日晴整式的加减我们已经学过整式的加减,知道整式的加减可以归结为合并同类项,而合并同类项实际就是合并同类项的系数.因此,进行整式的加减,关键就是把各同类项的系数进行加减.今天在课外阅读时我又学习了一种新的解决整式加减问题的方法.具体做法如下:如果把两个整式的各同类项对齐,我们就可以像小学列竖式进行加减法一样,来进行整式的加减运算了.怎样把同类项对齐呢?其实,只要将参加运算的整式按同一字母进行降幂排列(按同一字母的指数从大到小的顺序排列),凡缺项则留出空位或添零,然后让常数项对齐(即右对齐)即可.例如:计算时,可以用下列竖式计算:∴.我尝试用上述方法计算:.∴.任务:(1)上述小明同学的尝试过程出现了错误,错误的原因是______;(2)请帮助小明写出正确的尝试过程.答案:(1)列竖式时没有将同类项对齐(2)见解析小问1解析:解:列竖式时没有将同类项对齐;小问2解析:解:;∴.23. 数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图1,在数轴上点A表示的数是______,点B表示的数是______,A,B两点的距离是______;(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为______;(3)如图2,小明将刻度尺放在了图1的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B 对应刻度尺上的刻度,点E对应刻度,则数轴上点E表示的数是______.答案:(1);5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)小问1解析:解:由数轴得:点A表示的数是,点B表示的数是5,则A,B两点的距离为:,故答案为:;5;8.小问2解析:将点B向左移动6个单位长度或10个单位长度,故答案为:将点B向左移动6个单位长度或向左移动10个单位长度.小问3解析:由(1)得:,(),则数轴上1个单位长度对应刻度尺为,,点E距离点A两个单位长度,故点E所表示的有理数为:,故答案为:.。

广东省深圳市深圳高级中学2024-2025学年上学期七年级期中考试数学试卷(含答案)

广东省深圳市深圳高级中学2024-2025学年上学期七年级期中考试数学试卷(含答案)

深圳高级中学2024—2025学年第一学期期中试卷初一数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.第一部分 选择题一、单选题:(每小题3分,共24分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90元,那么亏本70元记作( )A .60元B .70元C .60元D .70元2.为庆祝中华人民共和国成立75周年,10月1日、2日两天深圳举行舰艇开放日活动,市民可以在南山区蛇口邮轮母港参观“国庆回家”的深圳舰,深圳舰被称为“神州第一舰”,该舰经现代化改进后满载排水量达6600吨.数据6600用科学记数法可表示为( )A .66×102B .6.6×103C .6.6×104D .0.66×1053.下列比较大小正确的是( )A .B .C .D .4.如图,用一个平面从不同的位置,沿着不同的方向取截一个圆柱,圆柱的截面不可能是( )A .B .C .D . 5.如果,那么代数式的值是( )A .0B .5C .7D .96.若规定,则的结果为( )A .9B .C .81D .7.长方形窗户上的装饰物(遮光)如图中阴影部分所示,它是由两个半径均为的四分之一圆组成,则该窗户能射进阳光部分的面积是( )+--+±33(3)(2)->-32(2)(2)->-2332-<-(3)3-->--32a b -=-73a b -+1a b a b b -⊗=÷⨯1(9)3-⊗9-81-bA.B .C .D .8.下图是由同样大小的△按一定规律排列而成,其中第①个图形中有4个△,第②个图形中有9个△,第③个图形中有14个△,…,则第⑧个图形中△的个数为( )A .34B .39C .40D .44第二部分 非选择题二、填空题:(每小题3分,共15分)9.若互为倒数,则________.10.若与是同类项,则________.11.按照如图所示的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么________.12.数在数轴上对应的点的位置如图所示,则________.13.如果记,即当时,,那么2π2b 22πab b -2π22ab b -2π24ab b -,a b 2024()ab -=2mx y 34nx y m n +=a b +=,,a b c a c a b b +--+=22()1x f x x =+1x =2211(1)112f ==+________.(结果用含的代数式表示,为正整数)三、解答题:(本大题共7小题,其中第14题8分,第15题7分,第16题8分,第17题7分,第18题8分,第19题11分,第20题12分,共61分)14.计算:(1)(2)15.已知代数式.(1)化简;(2)当,时,求的值.16.某手工作坊计划一天生产50个布娃娃,但由于各种原因,实际每天生产布娃娃数量与计划每天生产布娃娃数量相比有出入.下表是某一周的生产情况(超过计划数量的部分记作正数,不足计划数量的部分记作负数,单位:个):星期一二三四五六日增减(1)根据记录可知前四天共生产布娃娃________个;(2)求该作坊本周实际生产布娃娃的个数;(3)该作坊实行每日计件工资制,每生产一个布娃娃可得20元,若超额完成任务,则超过部分每个另奖8元,若未能完成任务,则少生产一个扣5元,那么该作坊工人这一周的工资总额是多少元?17.劳动技术课程是基础教育的重要课程之一,其根本使命是全面提高未来国民的基本劳动技术素养,培养具有技术知识、创新思维、实践能力的一代新人.我校将利用天台劳动基地展开一系列的劳动实践操作活动.如图所示,天台上有块长为20米,宽为10米的长方形空地,现在将其余三面留出宽都是米的小路,中间余下的长方形部分做菜地.(1)用含的式子表示菜地的周长;(2)当米时,求菜地的周长.18.归纳是发现数学结论、解决数学问题的一种重要策略.“归纳”的过程,即从几种特殊情形出发,进而找到一般规律的过程.在数学的学习过程中,我们经常用这样的策略探究规律.【数学问题】平面图的顶点数、边数与区域数之间存在什么样的数量关系?【问题探究】为了解决这个问题,我们可以从类似于()、()、()、()、()五个图等具体的情形入手,借助表格探索平面图的顶点数、边数与区域数之间的一般规律.111(1)(2)()(3)(()()23f f f f f f n f n+++++++= n n 523()(24)634+-⨯-21423(1)8233---⨯-÷-22(24)2(21)M a ab ab a =+--++M 2a =3b =-M 4-5+3+6-7-12+2-x x 1.2x =a b c d e x y z图顶点数边数区域数331463694851015【问题解决】(1)将表格数据补充完整,________;________;(2)猜想:一个平面图的顶点数、边数、区域数之间的数量关系为:_________;(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中猜想的关系,确定这个图有多少条边?19.规定:是数轴上的三个点,点将线段分成和两部分,若或,则称线段互为二倍伴侣线段.点表示的数为,点所表示的数为且满足.(1)________,________;(2)若点在线段上,且线段互为二倍伴侣线段,则点表示的数为________;(3)点从点出发,同时点从点出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当线段互为二倍伴侣线段时,求的值.20.(12分)七(1)班数学项目小组为解决小琴奶奶家储物问题,计划将闲置纸板箱制作成储物盒.素材1如图1,图中是小琴奶奶家需要设置储物盒的区域,该区域可以近似看成一个长方体,底面尺寸如图2所示.x y z()a ()b ()c ()d m()e nm =n =x y z ,,A B C C AB AC BC 2BC AC =2AC BC =,AC BC A a B b ,a b 2(3)a ++50b -=a =b =C AB ,AC BC C M A N B t ,MB NB t如图是利用闲置纸板箱侧面拆解出的①,②两种宽均为cm (cm )长方形纸板,纸板的厚度忽略不计.长方形纸板①长方形纸板②分别将长方形纸板①和②以不同的方式制作储物盒.长方形纸板①的制作方式长方形纸板②制作方式素材2裁去角上4个相同的小正方形,折成一个无盖长方体储物盒.将纸片四个角裁去4个相同的小长方形,折成一个有盖的长方体储物盒.目标1熟悉材料按照长方形纸板①的制作方式制成的储物盒能够无缝隙的放入储物区域,则长方形纸板宽为________cm .利用目标1计算所得的数据,进行进一步探究.初步应用(1)按照长方形纸板①的制作方式,为了更方便地放入或取出储物盒,盒子四周需要留出1cm 宽度,求储物盒的容积.目标2储物收纳(2)按照长方形纸板②的制作方式制作储物盒,若和两边恰好重合且无重叠部分,如图,是小琴奶奶家里一个玩具机械狗的实物图和尺寸大小,请设计一个各个面均不大于600cm 2的储物盒收纳这只玩具狗.a 50a a a EF HG深圳高级中学2024-2025学年初一数学期中考试参考答案一、选择题(24分)题号12345678答案BBDBDCBB二、填空题(15分)题号910111213答案154三、解答题(61分)14.(1)解:原式=(2)解:原式15.解:(1);(2)当时,.16.(1)198解析:个,故前四天共生产布娃娃198个;(2)解法一:个,答:该厂本周实际生产布娃娃的个数为351个;解法二:个,答:该厂本周实际生产布娃娃的个数为351个;(3)解:(元),该厂工人这一周的工资总额是7085元17.(1)解:依题可得:菜地的周长为: (米)答:菜地的周长是米.(2)解:当米时,菜地周长为:(米),答:当米时,菜地的周长是52.8米.c 12n -523(24)(24)(24)20161818634⨯-+⨯--⨯-=--+=-3439()8921219232=---⨯-⨯=-+-=-2222244222244236M a ab ab a a a ab ab ab =+----=-+---=--2,3a b ==32(3)618612M =-⨯⨯--=-=(4536)504198-++-+⨯=(7122)503198351-+-+⨯+=(45367122)507351-++--+-+⨯=35120(4672)5(5312)87020951607085⨯-+++⨯+++⨯=-+=2(202)2(10)x x -+-404202x x =-+-606x =-(606)x -1.2x =60 1.2652.8-⨯=1.2x =18.解:(1);;(2);(其他答案如:,也可)(3)解:设该平面图有条边,由(2)得,解得:,所以,这个图有1997条边19.解:(1),;(2)或(3)解:当运动时间为秒时,对应的数为,对应的数为,且点在线段之间∴,当时,则,解得:当时,则,∴ 解得:.综上所述或20.目标1: 40解析:储物区域的长为40,由于收纳盒可以完全放入储物区域,则图1中的四角裁去小正方形的边长为(cm ),则收纳盒的宽2小正方形的边长(cm ),目标2:(1)因为四周留出1cm 宽,所以储物盒的长为:(cm ),宽为:(cm ),高为:(cm )所以储物盒的容积为:(cm 3)(2)设裁出的小长方形的宽为cm ,长为cm ,则,所以所以储物盒的长为:(cm ),宽为: cm ,高为:cm当时,储物盒的长为:,宽为,不符合题意,舍去当时,储物盒的长为:,宽为,12m =6n =1x z y +-=1y x z =+-y 9999991y +-=1997y =3a =-5b =13-73t M 33t -+N 5t +B MN 5(33)83,BM t t BN t =--+=-=2BM BN =832t t -=85t =2BN BM =2(83)t t -=166t t -=167t =85t =167t =cm (5040)25-÷=a =+⨯302540=+⨯=40238-=30228-=(5038)26-÷=382866384⨯⨯=x y 2()1002y x y -=-252xy =+10021002(25502x y x -=-+=-(402)x -x 12x =1225312y =+=50123835-=>402121614-⨯=>3816608600S =⨯=>13x =132531.52y =+=50133735-=>4021314-⨯=3714518600S =⨯=<当时,储物盒的长为:,宽为答:可以利用纸板②裁去4个长为31.5cm ,宽为13cm 的小长方形,制作成长为37cm ,宽为14cm ,高为13cm 的储物盒:或裁去4个长为32cm ,宽为14cm 的小长方形,制作成长为36cm ,宽为12cm ,高为14cm 的储物盒,收纳这只玩具狗.14x =1425322y =+=50143635-=>4021412-⨯=3614504600S =⨯=<。

辽宁省盘锦市第一完全中学2024—2025学年上学期七年级期中考试数学试卷

辽宁省盘锦市第一完全中学2024—2025学年上学期七年级期中考试数学试卷

辽宁省盘锦市第一完全中学2024—2025学年上学期七年级期中考试数学试卷一、单选题1.若向东走60米记作60-米,则向西走50米可记作()A .60-米B .60米C .50-米D .50米2.在式子π,2x ,1x ,2ab a +,21x +,0,31m -+中,属于整式的有多少?()A .6个B .5个C .7个D .4个3.列式表示“x 的2倍与y 的差的平方”,正确的是()A .()22x y -B .()22x y -C .22x y -D .()22x y -4.已知32x a b 与2y a b -是同类项,则x y -=()A .1B .1-C .5D .5-5.若()1140mm x +-+=是关于x 的一元一次方程,则m 的值为()A .1±B .1C .1-D .任何实数6.下列说法正确的是()A .用四舍五入法把1.804精确到百分位,得到的近似数是1.8B .多项式2223721a b a b ab -+-+是四次三项式C .单项式225xy -的系数是25-,次数是3D .身高增加2m 和体重减少2kg 是具有相反意义的量7.若a b =,则下列等式变形不正确的是()A .2323a b=B .a b m m=C .2323a b -=-D .2211a bm m =++8.定义新运算“⊗”,规定:2||a b a b ⊗=-,则(2)(1)-⊗-的运算结果为()A .5-B .3-C .5D .39.下面是小芳做的一道运算题,但她不小心把一滴墨水滴在了上面:222221131542222x xy y x xy y x⎛⎫--⎛⎫+ ⎪⎝⎭+---=- ⎪⎝⎭2y +,阴影部分即为墨迹,那么被墨水遮住的一项应是()A .xy+B .xy-C .9xy+D .7xy-10.计算大长方形面积时(如图),下面右边竖式中虚线框这一步计算()A.长方形甲的面积B.长方形乙的面积C.长方形甲和乙的面积差D.长方形甲和乙的面积和二、填空题a-=,则a=.11.若712.2024年1月17日,国家统计局公布的数据显示,2023年全年社会消费品零售总额超47万亿元,达到471495亿元,比上年增长72.%,请将471495亿元用科学记数法表示元.-+=.13.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a b c14.在边长为10米的正方形地里,有纵横两条小路,路宽都为1米,其余地上种草,种草部分面积是平方米.15.你吃过“手拉面”吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),第一次捏合后,得到2根面条,第二次捏合后,得到4根面条,第三次捏合后,得到8根面条,如图所示,经过n次捏合后,可以拉出根细面条.(用含n的式子表示)三、解答题16.计算(1)()()()()152028137+---+--+;(2)733.584⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;(3)()7511303659612⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦;(4)()2211002333⎡⎤÷-⨯--⎣⎦;(5)()()210020141110.5333⎡⎤---⨯⨯--⎣⎦;(6)()32113823222⎡⎤--÷-+-+÷⨯⎢⎥⎣⎦.17.先化简,再求值:()()2222232233y x x xy x y -+--+,其中12x +与2(1)y -互为相反数.18.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.19.小刚在做一道题“已知两个多项式A ,B ,计算A B -”时,误将A B -看成A B +,求得的结果是542x mx -++,已知1B mx x =--.(1)求整式A ;(2)若2A B -的值与x 无关,求m 的值.20.怀化市在创建全国文明过程中,建设中建造了一批道路,建设完工之后,将极大的方便当地群众出行.某公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):10+,9-,7+,15-,3-,11+,6-,8-,5+,6+(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为每千米0.5升,则这次养护共耗油多少升?21.已知某品牌运动鞋每双进价120元,为确定一个合适的销售价格进行了4天的试销,试销情况如表:第1天第2天第3天第4天售价x /(元/双)150200250300销售量y /双40302420(1)用式子表示y 与x 的关系,y 与x 成什么比例关系?(2)若单价定为240元,每天的销售利润为多少?22.【知识呈现】我们可把()()()()52328242x y x y x y x y ---+---中的“2x y -”看成一个字母a ,使这个代数式简化为5384a a a a -+-,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x 、y 的式子表示)(2)若代数式21x x ++的值为3,求代数式2225x x +-的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知27a b -=,2b c -的值为最大的负整数,求()3423a b b c +-+的值.23.已知数轴上两点A ,B 表示的数分别为3-,1,点P 为数轴上任意一点,其表示的数为x .(1)点A 与点B 之间的距离为______;(2)若点P 在点A 与点B 之间,则点P 到点A 的距离为______,点P 到点B 的距离为______,化简:13x x -++=;(3)若点P 以每秒4个单位长度的速度从点A 沿着数轴向右运动,同时点Q 以每秒2个单位长度的速度从点B 沿着数轴向右运动,同时点M 以每秒1个单位长度的速度从点B 沿着数轴向右运动,①经过几秒,点P 与点Q 关于原点对称;②求经过___________________秒,点P 、点Q 、点M 这三点中的任意两点关于另外一点对称.(请直接写出答案)。

深圳实验学校中学部2024年七年级上学期期中考试数学试卷

深圳实验学校中学部2024年七年级上学期期中考试数学试卷

深圳实验学校中学部2024-2025学年度第一学期阶段检测七年级数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3. 考试结束后,答题卡交回。

第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1. 如图是一个放置在水平试验台上的锥形瓶,它从上面看到的形状图为( )2. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表面展开图可能是 ( )3. 绕轴旋转一周,能得到如图所示的几何体的平面图形是( )4. 观察算式(−4)×17×(−25)×28,在解题过程中,能使运算变得简便的运算律是 ( )A. 乘法交换律B. 乘法结合律C. 乘法交换律、结合律D. 乘法对加法的分配律5. 下列各图中,是数轴的是 ( )6. 某水库上周日的水位是30m,下表是该水库一周内水位高低的变化情况(用正数记水位比前一日上升量、用负数记水位比前一日下降量),那么本周水位最低的是( )星期一二三四五六日水位变化/m+0.12-0.02-0.13-0.20-0.08-0.020.32A. 星期日B. 星期四C. 星期五D. 星期六7. 化简a-b-(a+b)的结果是( )A. 0B. 2aC. -2bD. 2a-2b8. 如图所示的图案均是长度相同的小木棒按一定的规律拼搭而成:第1个图案需7根小木棒,第2个图案需13根小木棒,…,依此规律,第10个图案需小木棒的根数是( )A. 101B. 111C. 133D. 157第Ⅱ卷 (非选择题)二、填空题:本题共5小题,每小题3分,共15分。

9. 在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别截去三种几何体,则截面的形状可以截出长方形也可以截出圆形的是 .10. 已知|a|=5,|b|=3且|a-b|=b-a, 那么a+b= .11. 多项式3x|m|yy2+(mm+2)xx2yy−1是关于x、y的四次三项式,则m的值为 .12. 如果多项式−8xx²+xx−1与关于 x 的多项式2mmxx²+3xx−7的和不含二次项,则m= .13. 任何一个正整数n都可以进行这样的分解: n=s×t(s, t是正整数, 且s≤t), 如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:FF(nn)=pp qq.例如18可以分解成1×18, 2×9, 3×6这三种, 这时就有FF(18)=36=12.给出下列关于 F(n)的说法:①FF(2)= 12;②FF(24)=38;③FF(27):=3;④若n是一个整数的平方,则F(n)=1. 其中正确的说法是 (填序号).三、计算题:本大题共2小题,共22分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 0.855 B. 0.856 C. 0.8556 D. 0.8557
5.下列各式正确的是(▲)
A. B. C. D.
6. 的平方根是(▲)
A. B. C. 3 D. 3
7.如图,图中数轴的单位长度为1.如果点B、C表示的数的绝对值相等,那么点A表示的数分别是…(▲)
A.-4B.-5
C.-6D.-2
18.瑞士的一位中学教师巴尔末从光谱数据 中,成功地发现了其规律,
从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第6个
数为____▲______
19.对于正整数 、 ,规定一种新运算 , 等于由 开始的连续 个正整数的积,例如 ,则 ▲
20.将自然数按以下规律排列,则2017所在的位置是第▲行第▲列.
(1)(2),
(3)
25.(本题8分)
(1),
(2)
26.(本题16分)
【问题一】:
(1)
(2)①,②
(3)①

【问题二】:
(1)
(2)
2▲ ;0▲ ; ▲
13.计算: =▲; =▲; =▲
14. 9的平方根是▲;0的平方根是▲; =▲
15. 1的立方根是▲; 的立方根是▲; =▲
16.给出下列关于 的判断:① 是无理数;② 是实数;
③ 是2的算术平方根;④1< <2.其中正确的是_____▲_____(请填序号).
17.有一种“24点”游戏,其游戏规则是:任取1~13之间的4个自然数,将这4个数(每个数且只能用一次)进行加减乘除四则运算,使运算结果为24,例如,对1,2,3,4可作运算:(1+2+3)×4=24。现有数3,4,-6,10,请运用上述规则,写出一种运算式子,使其结果等于24。运算式子如下:▲。(只需写出算式)
三、解答题(本题有6小题,共60分)
21.计算(每小题3分,共12分):
(1) (2)
(3) (4)
22.(本题6分)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接:
, , , , ,
23.把下列各数填在相应的大括号内(共10分)
, , , , , , ,
正实数集合{…}
非正数集合{ …}
类比是一种推理方法,根据两种事物在某些特征上的相似,作出它们在其他特征上也可能相似的结论.
触类旁通,即用类比的方法提出问题及寻求解决问题的途径和方法.
26(本题满分16分).
【问题一】:观察下列等式
, , ,
将以上三个等式两边分别相加得:

(1)猜想并写出: ▲.(2分)
(2)直接写出下列各式的计算结果:
8. 的值为(▲)
A.5050B.100C.50D.-50
9.若 ,则 的值是(▲)
A. B. C. D.
10.已知 表示两个非零的实数,则 的值不可能是(▲)
A.2 B.–2 C.1 D.0
二、填空题(每小题3分,共30分)
11. 的相反数是▲ 的绝对值是▲绝对值等于4的数是▲
12.比较下列各对数的大小(用“>”、“<”或“=”连接):
11.,,12.,,13.,,
14.,,15.,,16.
17.18.19.20.,
三、解答题(共6(1) (2)
(3) (4)
22.(本题6分)
23.(本题10分)
正实数集合{…}
非正数集合{ …}
正分数集合{ …}
自然数集合{ …}
无理数集合{ …}
24.(本题8分)
正分数集合{ …}
自然数集合{ …}
无理数集合{ …}
24.(8分)某路公交车从起点经过A、B、C、D站到达终点,一路上下乘客如下表所示。(用正数表示上车的人数,负数表示下车的人数)
起点
A
B
C
D
终点
上车的人数
18
15
12
7
5
0
下车的人数
0
-3
-4
-10
-11
(1)到终点下车还有▲人(2分)
(2)车行驶在那两站之间车上的乘客最多?▲站和▲站(2分)
① ▲;(2分)
② ▲.(3分)
(3)探究并计算:
① .(3分)
② (2分)
【问题二】:为了求 的值,可令 ,则 ,因此 ,
所以. .
仿照上面推理计算:
(1)求 的值(2分)
(2)求 的值(2分)
七年级数学第一学期期中答题卷
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题有10小题,每小题3分,共30分.)
(3)若每人乘坐一站需买票1元,问该车出车一次能收入多少钱?写出算式。(4分)
25.(8分)观察图1:每个小正方形的边长均是1,我们可以得到小正方形的面积为1.
(1)图1中阴影正方形的面积是▲,并由面积求正方形的边长,可得边长AB长为▲;
(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为 的线段,并说明理由.
七年级数学第一学期期中考试试卷
(满分120分,时间120分钟)
一、选择题(每小题3分,共30分)
1.数轴上的点表示的数是(▲)
A.正数B.负数C.有理数D.实数
2.在 中无理数有(▲)个
A. 1 B. 2 C. 3 D. 4
3.下列计算中错误的是(▲)
A. B. C. D.
4. 0.85569精确到千分位的近似值是(▲)
相关文档
最新文档