倾斜摄影测量技术方案

合集下载

倾斜摄影建模测图技术方案

倾斜摄影建模测图技术方案

倾斜摄影建模测图技术方案天津腾云智航科技有限公司第一部分倾斜摄影影像获取 (3)1.1概述 (3)1.2飞行载体 (3)1.3倾斜摄影相机 (7)第二部分倾斜摄影建模测图生产 (11)1倾斜摄影建模 (12)1.1概述 (12)1.2自动化建模 (12)1.2.1 DP-Smart简介 (13)1.2.2 数据检查与预处理 (13)1.2.3 DP-Smart三维模型生产过程 (14)1.3 DP-Modeler精细化建模工具 (18)1.3.1 DP-Modeler 简介 (18)1.3.2 DP-Modeler 原理 (19)1.3.4 DP-Modeler-Mesh模型修饰 (22)2倾斜摄影地形图测绘 (27)2.1地形图测绘 (27)2.2DP-Modeler 矢量测图 (28)2.2.1字典功能 (29)2.2.2点、线提取 (30)2.2.3等高线 (32)2.2.4屋檐纠正 (33)2.2.5矢量导出 (33)第三部分案例 (34)案例1 某地方三维自动化建模项目 (35)案例2 酒泉精细化建模项目 (37)案例3衡水测图 (38)第一部分倾斜摄影影像获取1倾斜摄影航摄平台1.1概述倾斜摄影中航摄平台作为原始影像获取的重要设备,有着不可替代的作用和地位。

航摄飞行器与航摄仪组成了航空摄影平台。

航摄仪的性能参数,对飞行载体提出了明确需求,飞行载体允许到达的高度、速度和效率为航摄仪提供了直观的选择依据。

1.2飞行载体飞行平台是指用于航空摄影的飞行载体。

根据任务不同,要求不同,使用相机不同,需选择不同类型的飞行平台。

适用于倾斜摄影的飞行平台大致可分为固定翼和旋翼两大类,每一类按照操作方式的不同又可分为有人驾驶和无人机。

航摄相机依靠飞行平台作为载体,其搭载方式主要有两种,一种是在飞机机舱底部开出对地面摄影窗口,用于安置航摄相机和有关设备;另一种是外挂,借助飞行平台的外挂点,按照飞行平台外形订制航摄相机外挂支架。

无人机倾斜测量方案

无人机倾斜测量方案

无人机倾斜测量方案一、准备工作1.选择合适的无人机:需要选择适用于倾斜摄影的无人机,具备稳定的飞行性能和飞行控制系统,同时要具备能够搭载倾斜摄影系统的载荷承载能力。

2.选择合适的倾斜摄影系统:倾斜摄影系统主要由倾斜相机和惯性测量单元(IMU)组成,其中倾斜相机用于采集倾斜图像,IMU用于测量无人机的姿态信息。

需要选择具备高精度测量能力和稳定性的倾斜摄影系统。

3.规划飞行航线:根据需要测量区域的大小和复杂程度,规划合适的飞行航线,包括起飞点、航线路径和降落点。

二、数据采集过程1.无人机起飞:将无人机放置在平坦开阔的起飞点上,通过无人机遥控器将其起飞,并悬浮在指定高度上。

2.倾斜摄影开始:无人机达到悬浮状态后,启动倾斜摄影系统进行图像采集。

倾斜摄影系统会自动采集一定时间或一定面积的图像,同时记录无人机的姿态信息。

3.飞行航线覆盖:通过遥控器控制无人机按照预先设定的飞行航线进行飞行,确保整个测量区域被完全覆盖。

在飞行过程中,倾斜摄影系统会不断采集图像和记录姿态信息,以获取全方位、多角度的影像数据。

4.数据采集结束:当无人机完成整个飞行航线后,返回到降落点并降落。

此时,倾斜摄影系统停止采集图像。

三、数据处理与分析1.数据导入:将倾斜摄影系统采集到的图像数据和姿态信息导入至计算机,并进行数据备份以防止数据丢失。

2.图像配准:对采集到的图像进行配准,通过特征点匹配等方法将各个图像对齐。

3.姿态解算:通过IMU记录的姿态信息,计算出无人机在倾斜图像获取过程中的姿态参数,如俯仰角、横滚角和偏航角。

4.点云生成:通过立体匹配算法,将配准后的图像数据转化为点云数据。

点云数据是表达地物三维形态和位置的重要信息。

5.三维模型重建:利用点云数据生成三维模型。

可以采用表面拼接算法或体素化算法将点云数据转化为三维模型。

6.质量检查与精度评定:对生成的三维模型进行质量检查与精度评定,比对实地测量数据和其他数据源的精度,评估模型的准确性和可靠性。

倾斜摄影测量技术规程

倾斜摄影测量技术规程

倾斜摄影测量技术规程第一章引言倾斜摄影测量技术是摄影测量学的一种新兴技术,广泛应用于地理信息系统、城市规划、三维建模等领域。

随着无人机技术摄影发展,倾斜摄影测量技术正逐渐成为摄影测量的主流方法之一。

为推动倾斜摄影测量技术的规范发展和应用,制定本技术规程,以保证测量结果的准确性和可靠性。

第二章技术概述2.1 倾斜摄影测量技术的原理概述倾斜摄影测量技术主要通过倾斜摄影机采集倾斜影像,利用影像测量方法计算出三维空间内点的坐标。

倾斜摄影机可以实现前、后、左、右、俯仰等多个方向的拍摄,从而将整个目标区域的地物信息完整地表达出来。

2.2 倾斜摄影测量技术的特点倾斜摄影测量技术相对于传统航空摄影测量技术具有以下特点:(1)高分辨率:由于近距离拍摄,倾斜摄影测量技术可以获取高精度的影像信息,能够清晰地显示地物细节。

(2)多角度观测:倾斜摄影测量技术可以通过不同角度的拍摄,获得多个视角的影像,能够提供更多的地物信息。

(3)精准定位:倾斜摄影机配备了高精度GPS和惯性导航系统,能够提供精确的拍摄位置和姿态信息。

(4)高效率:倾斜摄影测量技术可以快速地获取大量影像数据,能够在短时间内完成大规模地物的测量。

第三章技术要求3.1 倾斜摄影测量系统的要求(1)倾斜摄影机:倾斜摄影机需要具备高分辨率、广视场、低畸变等特点,以保证测量结果的准确性和可靠性。

(2)GPS和惯性导航系统:倾斜摄影机的定位和姿态信息需要通过GPS和惯性导航系统精确获取,以进行后续的影像测量。

(3)影像处理软件:倾斜摄影测量系统需要配备专业的影像处理软件,能够实现影像的几何校正、配准和三维模型的生成等功能。

3.2 测量控制点的要求在倾斜摄影测量中,测量控制点的准确性对于测量结果的精度和可靠性起着关键作用。

测量控制点需要满足以下要求:(1)精确标定:测量控制点需要经过准确的地面测量,确保其实际坐标的精度。

(2)分布均匀:测量控制点应在目标区域内分布均匀,以提高测量的可靠性。

倾斜摄影测量解决方案

倾斜摄影测量解决方案

倾斜摄影测量解决方案倾斜摄影测量(Oblique Photogrammetry)是一种基于高倾斜角度拍摄的航空摄影测量技术,借助于倾斜摄影设备,可以获得地面目标的多视角影像,提供高分辨率、具有立体感的三维影像数据,广泛应用于城市规划、建筑设计、地质勘探、文物保护等领域。

为了实现高精度的倾斜摄影测量,需要综合利用倾斜影像的几何位姿、影像纹理信息和地面控制点等数据进行空间定位、影像匹配和几何定向等处理。

下面将从硬件设备、数据采集、数据处理和应用方面介绍倾斜摄影测量的解决方案。

一、硬件设备1. 倾斜摄影设备:包括倾斜摄影机、测量内参、外方位元素的测量系统和GPS/INS组合导航系统。

倾斜摄影机通常具备高分辨率、高动态范围和低畸变的特点,如Leica RCD30、Vexcel UltraCam Osprey等。

2. 惯性导航系统(INS):通过测量加速度和陀螺仪进行姿态和位置的估计,提供倾斜摄影机的姿态、位置和速度参数,常见的INS系统包括Honeywell HGuide、Applanix POS AV等。

3.全球导航卫星系统(GNSS):利用多颗卫星提供的观测数据,实现倾斜摄影机的绝对定位,常用的GNSS系统有GPS、GLONASS等。

二、数据采集1.航空平台:倾斜摄影测量需要使用具备较高稳定性和机头摆动角度控制能力的航空平台,如直升机、轻型固定翼无人机等。

2.航行计划和导航:根据任务需求和飞行区域,规划合理的航行计划,使用INS和GNSS实时获取航空平台的姿态、位置和速度信息,确保数据采集的准确性和一致性。

3.影像采集:倾斜摄影测量通常以很高的重叠度和侧向视角采集影像数据,采用连续拍摄的方式获得连续的影像序列,保证数据的连续性和完整性。

4.控制点布设:布设地面控制点用于提供空间定位和几何定向时的参考信息,保证数据采集的绝对定位和精度。

三、数据处理1.影像预处理:包括图像去畸变、影像匹配和纹理加强等预处理步骤,消除影像的径向畸变、减少图像噪声、增强影像纹理信息,提高影像匹配的可靠性和精度。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

倾斜摄影测量技术方案倾斜摄影测量技术是一种利用航空摄影测量技术和数字摄影技术相结合的高精度三维数据采集方法。

它相对于传统的垂直摄影测量技术,能够提供更加立体感强的三维模型,具有更高精度和更广泛的应用领域。

以下是一个关于倾斜摄影测量技术方案的详细介绍。

一、数据采集数据采集时,摄影设备需要安装在航空平台上,同时还需要配备惯性导航系统(IMU)和全球定位系统(GPS)等辅助设备。

通过IMU和GPS等设备,可以获取航拍时摄影设备的姿态和位置信息,从而实现后续数据处理中的定位和导向。

二、数据处理数据采集完成后,需要对采集到的立体影像进行处理,包括影像纠正、影像匹配和三维模型生成等过程。

影像纠正是指根据采集时摄影设备的姿态和位置信息,对采集到的立体影像进行校正和去畸变处理。

这一过程旨在消除由于飞行姿态变化和摄影设备自身失真等因素导致的影像畸变,提高测量精度和准确性。

影像匹配是指对纠正后的立体影像进行特征点匹配和像素块匹配等处理,以确定相邻影像之间的对应关系。

根据影像匹配的结果,可以计算出影像之间的视差信息,进而获取三维点云数据。

三维模型生成是基于匹配后的视差信息,通过三角测量或者立体测绘方法,计算出影像中点的三维坐标。

将计算得到的三维坐标按照一定的分辨率和形式进行存储,可以生成高精度的三维模型。

同时,还可以对模型进行质检和修正,以提高模型的精度和可信度。

三、数据应用生成的三维模型可以应用于多个领域,例如城市规划、地质勘探、环境监测等。

通过对三维模型进行分析和可视化处理,可以获取地表地貌信息、物体体积和形状等关键参数,为相关领域的决策支持提供重要的数据基础。

在城市规划方面,倾斜摄影测量技术可以提供精确的城市地形和建筑物模型,用于规划道路、建筑物布局和景观设计等。

在地质勘探方面,可以通过倾斜摄影测量技术获取地下岩石和矿物的分布情况,为矿产资源开发和地质灾害预测提供可靠数据。

在环境监测方面,倾斜摄影测量技术可以用于监测城市空气质量、水质污染等环境指标,提供及时的监测和预警。

倾斜摄影建模测图技术方案

倾斜摄影建模测图技术方案

倾斜摄影建模测图技术方案一、前言随着科技的快速发展,倾斜摄影技术作为一种新型的测量手段,逐渐在建筑、城市规划、文化遗产保护等领域展现出巨大的应用潜力。

倾斜摄影建模测图技术结合了摄影测量与计算机视觉等技术,能够快速、高效地获取地表三维信息和纹理信息,为相关领域的研究和应用提供了有力支持。

二、倾斜摄影技术基础1.倾斜摄影技术原理倾斜摄影技术是通过搭载在飞行器上的多角度相机,同时从垂直和倾斜角度对地面进行拍摄,获取地面物体顶部和侧面的高分辨率影像。

这些影像经过处理后,可以生成具有高精度的三维模型和真实的纹理信息。

2.倾斜摄影设备与系统组成倾斜摄影设备主要包括飞行器、多角度相机、定位系统、控制系统等。

其中,飞行器负责搭载相机进行航拍,多角度相机用于获取不同角度的地面影像,定位系统确保飞行器和相机的精确定位,控制系统则负责整个设备的运行和数据处理。

3.倾斜摄影数据采集与处理流程倾斜摄影数据采集与处理流程包括外业数据获取和内业数据处理两个阶段。

外业数据获取阶段主要包括航线规划、像控点布设、飞行拍摄等步骤;内业数据处理阶段则包括影像预处理、空中三角测量、三维模型构建、纹理映射等步骤。

三、倾斜摄影建模技术1.三维建模方法概述三维建模方法主要分为手工建模、半自动建模和自动建模三种。

手工建模精度较高,但效率低下;半自动建模结合了手工建模和自动建模的优点,适用于复杂场景;自动建模则通过算法自动识别和处理影像数据,快速生成三维模型。

2.基于倾斜摄影的三维建模技术流程基于倾斜摄影的三维建模技术流程主要包括影像预处理、特征提取与匹配、空中三角测量、三维模型构建和纹理映射等步骤。

首先,对获取的倾斜影像进行预处理,包括去噪、增强等操作;然后,提取影像中的特征点并进行匹配;接着,利用匹配的特征点进行空中三角测量,解算出相机的位置和姿态;最后,根据相机的位置和姿态以及影像数据构建三维模型,并进行纹理映射。

3.三维模型优化与精度控制为了提高三维模型的精度和质量,可以采用一些优化措施。

倾斜摄影测量技术方案设计

倾斜摄影测量技术方案设计

倾斜摄影测量技术方案设计摄影测量是一种通过摄影测量相机在不同位置上拍摄相同目标,并通过对这些影像数据进行处理和分析,来获得目标的空间坐标和形状信息的测量方法。

传统的摄影测量技术一般采用垂直摄影方式,即相机与地面垂直拍摄。

然而,在一些情况下,垂直摄影不能满足需求,如在地质灾害监测、三维建模等领域。

这时候就需要使用倾斜摄影测量技术。

倾斜摄影测量技术是一种通过相机在不同倾斜角度上拍摄目标,获取更多地面信息的摄影测量方法。

相比于垂直摄影,倾斜摄影可以提供更多的地面纹理信息,对于地物的立体特征和细节信息的获取更加准确和精确。

因此,倾斜摄影测量技术在城市规划、地质灾害监测、建筑测量等领域有着广泛的应用。

下面我将介绍一个倾斜摄影测量技术方案设计的流程和关键步骤。

1.目标选择和规划首先,需要选择目标区域进行倾斜摄影测量。

在选择目标区域时,应考虑目标的复杂程度、需要获取的信息类型和精度要求等因素。

然后,根据目标区域的大小和复杂程度,进行倾斜摄影规划,确定需要安装的摄影测量系统和相机的拍摄参数。

2.摄影测量系统配置摄影测量系统包括倾斜摄影相机、GPS/IMU(全球定位系统/惯性测量单元)以及相关软件。

在倾斜摄影相机的选择时,需要考虑其分辨率、光学特性和稳定性等因素。

GPS/IMU用于获取相机在拍摄过程中的位置和姿态信息,以便后期进行影像定位和融合。

相机和GPS/IMU的配置需要进行精准标定,以提高测量的准确性。

3.摄影测量数据采集在进行倾斜摄影测量数据采集时,需要在目标区域内选择适当的摄影站点,并确定每个站点的拍摄角度和方向。

摄影时需注意相机的侧倾角和俯仰角,以获得不同视角的影像。

4.影像处理和解译采集的倾斜摄影影像需要经过一系列的处理和解译,生成倾斜摄影影像的三维模型和纹理图。

首先,对采集的影像进行预处理,包括影像去畸变、影像拼接等。

然后,通过影像定位的方法,使用GPS/IMU数据将影像定位到地面坐标系,并进行相邻影像的融合。

倾斜摄影测量技术规程

倾斜摄影测量技术规程

倾斜摄影测量技术规程第一章:引言倾斜摄影测量技术是现代测绘工程中的一种重要手段,通过使用倾斜摄影设备,能够获取地面三维信息,广泛应用于城市规划、土地管理、电力工程等领域。

本规程旨在指导倾斜摄影测量技术的应用,确保数据质量,提供参考和指导。

第二章:倾斜摄影测量设备2.1 倾斜摄影设备的分类及原理倾斜摄影设备按照测量原理可分为光学倾斜摄影和激光扫描倾斜摄影,前者采用相机的光学原理进行影像获取,后者采用激光扫描仪的原理进行点云数据采集。

2.2 倾斜摄影设备的选择与使用在选择倾斜摄影设备时,需要考虑测量目标、工作环境和数据精度等因素。

合理选择设备,正确使用设备,能够提高测量效率和数据质量。

第三章:数据采集与处理3.1 数据采集准备工作在进行倾斜摄影测量之前,需要进行场地勘察、设备校准、航线规划等准备工作。

合理的准备工作能够确保数据采集的顺利进行。

3.2 数据采集参数的设置在进行倾斜摄影数据采集时,需要合理设置影像采集参数,包括焦距、曝光、白平衡等。

正确设置参数能够保证影像质量和数据的准确性。

3.3 数据处理流程倾斜摄影数据的处理包括相对定向、绝对定向、点云配准等步骤。

合理的处理流程能够提高数据的精度和可靠性。

第四章:倾斜摄影测量的应用4.1 城市三维建模倾斜摄影测量技术能够获取地面建筑、道路等三维信息,为城市规划和建设提供了重要基础数据。

通过建立城市三维模型,能够辅助规划和决策工作。

4.2 土地管理与评估倾斜摄影测量技术能够获取土地利用、土地覆盖等信息,为土地管理和评估提供支持。

通过对土地数据的分析,能够制定合理的土地利用和规划。

4.3 电力工程与线路检测倾斜摄影测量技术能够获取电力线路、变电站等信息,为电力工程建设和线路检测提供便利。

通过对电力数据的分析,能够实现电力工程的规划和优化。

第五章:倾斜摄影测量的质量控制5.1 数据质量控制的原则倾斜摄影测量数据的质量控制是保证数据可靠性和准确性的关键。

遵循合理的原则和方法进行质量控制能够确保数据的有效使用。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

航测1:500房屋测量技术方案2018年12月14日目录一、技术标准.................................... 错误!未定义书签。

二、航飞摄影基本流程............................ 错误!未定义书签。

1.项目所用测量数据....................... 错误!未定义书签。

2.像控点选取要求......................... 错误!未定义书签。

3.飞行及摄影设备......................... 错误!未定义书签。

4.飞行质量要求........................... 错误!未定义书签。

5.影像质量要求........................... 错误!未定义书签。

6.飞行任务规划........................... 错误!未定义书签。

三倾斜摄影测量建模............................. 错误!未定义书签。

空三加密 ................................... 错误!未定义书签。

加密要求 ................................... 错误!未定义书签。

模型分块重构 ............................... 错误!未定义书签。

四立体测图..................................... 错误!未定义书签。

工作流程 .................................. 错误!未定义书签。

内业采集 ................................... 错误!未定义书签。

细部采集 .................................. 错误!未定义书签。

五外业调绘补测................................. 错误!未定义书签。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

航测1:500房屋测量技术方案2018年12月14日目录一、技术标准........................................................................ 错误!未定义书签。

二、航飞摄影基本流程........................................................ 错误!未定义书签。

1.项目所用测量数据............................................... 错误!未定义书签。

2.像控点选取要求................................................... 错误!未定义书签。

3.飞行及摄影设备................................................... 错误!未定义书签。

4.飞行质量要求....................................................... 错误!未定义书签。

5.影像质量要求....................................................... 错误!未定义书签。

6.飞行任务规划....................................................... 错误!未定义书签。

三倾斜摄影测量建模.......................................................... 错误!未定义书签。

空三加密 ....................................................................... 错误!未定义书签。

加密要求 ....................................................................... 错误!未定义书签。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

倾斜摄影测量技术方案1. 仪器设备准备:准备一台倾斜摄影机、GPS接收机和惯导仪等测量设备。

倾斜摄影机可以选择专业的倾斜摄影测量系统,如Leica定向相机或Trimble摄影测量系统。

2.实地调查:根据测量区域的特点,进行详细的实地调查和勘测,确定地面控制点的位置和分布,并进行标记。

3.摄影测量:在合适的时刻,安装倾斜摄影机进行航空摄影,同时记录GPS定位和惯导测量数据。

通过调整摄影机的角度和方位,可以获取多个不同倾斜角度和方位的影像。

4.影像处理:将采集到的倾斜影像进行预处理,包括去除畸变、校正、配准等,以及对应用于摄影测量的地面控制点进行识别和提取。

5.点云生成:利用影像特征和倾斜摄影几何关系,通过自动或半自动的方式,对影像进行匹配和配准,从而得到地面点云数据。

6.数据处理与建模:对点云数据进行精度控制和去除噪声,然后通过三角剖分等算法,生成三维模型、数字表面模型(DSM)和数字高程模型(DEM)。

7.数据分析与应用:利用生成的三维模型和高程数据,进行地形分析、体积计算、变形监测等工作;同时,还可以结合遥感影像、地理信息数据等,进行地理空间分析和应用。

这种基于倾斜摄影测量技术的方案具有以下优点:1.高精度:倾斜摄影测量技术能够提供更高的精度和分辨率,适用于需求较高的测量和建模任务。

2.快速高效:相比于传统的测量方法,倾斜摄影测量技术能够更快速地获取大面积的影像数据,并且可以实现自动化处理和分析。

3.全天候性:倾斜摄影测量技术不受天气条件的限制,可以在晴天、阴天、雨天等多种气象条件下进行工作。

4.多角度多方位:倾斜摄影测量技术可以获取多个不同角度和方位的影像,从而提供更多的信息和更完整的建模结果。

5.应用广泛:倾斜摄影测量技术可以在城市规划、地质勘察、海岸线监测、工程建设等多个领域得到广泛应用。

综上所述,基于倾斜摄影测量技术的方案可以实现高精度的地面测量和三维建模,为各个领域的测绘和地理信息工作提供重要支持。

倾斜摄影测量的技术流程

倾斜摄影测量的技术流程

倾斜摄影测量的技术流程倾斜摄影测量是一种利用倾斜摄影机进行空间三维数据获取和建模的技术。

它通过倾斜摄影机在飞机飞行过程中以倾斜角度拍摄地面影像,再利用影像处理和数据分析技术,从而实现对地面目标的精确测量和建模。

下面将详细介绍倾斜摄影测量的技术流程。

一、飞行准备倾斜摄影测量的第一步是进行飞行准备。

首先需要确定测量区域,并制定航线规划。

根据需要测量的目标和精度要求,确定飞行高度和航线间隔等参数。

同时要对摄影设备进行校准和设置,确保其正常工作。

二、飞行数据采集在飞行过程中,倾斜摄影机会以一定的倾斜角度拍摄地面影像。

影像的拍摄频率和间隔时间可以根据需要进行调整。

飞行过程中需要保持飞机的稳定性和平衡性,确保影像的质量和准确性。

同时还要记录飞行的相关参数,如飞机的姿态、位置等信息。

三、影像处理飞行结束后,将拍摄到的影像传输到计算机中进行处理。

首先要对影像进行校正,消除由于飞机姿态、地形变化等因素引起的畸变。

然后进行影像的拼接和配准,将不同影像之间的重叠部分进行匹配,实现整体的一致性。

最后对影像进行去噪和增强处理,提高影像的质量和清晰度。

四、地面目标提取经过影像处理后,可以开始对地面目标进行提取。

根据需要测量的目标,利用图像解译和目标识别技术,将目标从影像中提取出来。

这可以通过手动或自动的方式进行。

提取的目标包括建筑物、道路、植被等。

提取的目标可以根据需要进行分类和标注。

五、三维数据建模在地面目标提取的基础上,可以开始进行三维数据建模。

根据提取的目标,利用三维重建技术,将影像中的二维信息转化为三维空间坐标。

可以利用立体匹配、三角测量等方法实现三维坐标的计算。

建模的结果可以是点云、三维模型等形式。

六、精度评定和验证在完成三维数据建模后,需要对结果进行精度评定和验证。

可以通过与实地测量数据进行对比,计算测量误差和偏差,评估倾斜摄影测量的精度和可靠性。

根据评定结果,可以对测量结果进行修正和优化。

七、应用与分析倾斜摄影测量的结果可以应用于各种领域。

倾斜摄影测量技术方案设计

倾斜摄影测量技术方案设计

倾斜摄影测量技术方案设计摄影测量是一种基于影像数据进行地物测量和分析的技术方法。

传统的摄影测量主要基于平行摄影,即相机与地面垂直拍摄,但在一些情况下,平行摄影无法满足实际需要。

倾斜摄影测量则是在飞机或无人机上安装倾斜摄影系统,通过倾斜角度调整相机姿态,拍摄到地面上的具有多个方向特性的倾斜影像。

本文是倾斜摄影测量技术方案设计,将介绍倾斜摄影测量的原理、设备选择、数据处理流程和应用案例。

一、倾斜摄影测量原理倾斜摄影测量是通过控制相机的倾斜角度,使得相机可以在垂直于水平面的方向上进行拍摄。

倾斜摄影系统一般由倾斜相机、GPS/INS导航系统和红外测距仪等组成。

倾斜相机可以实时获取水平、竖直和旋转方向上的摄影姿态参数,GPS/INS导航系统可以提供摄影机在空间上的位置和姿态信息,红外测距仪用于测量相机到地面的距离。

二、设备选择1.倾斜相机:倾斜相机是倾斜摄影测量的核心设备,要选择分辨率较高,动态范围广,光学畸变小的相机,如索尼A6000、哈苏A6D等。

2. GPS/INS导航系统:选择精度高、更新速度快的GPS/INS导航系统,如NovAtel(加拿大)或Trimble(美国)等。

3.红外测距仪:选择测距精度高、测量范围广的红外测距仪,如LEICARCD30。

三、数据处理流程1.倾斜校正:根据GPS/INS导航系统提供的相机姿态数据,对倾斜影像进行校正,使其变为垂直影像。

2.内外方位元素计算:通过倾斜校正后的影像,结合倾斜相机的内部参数和外部参数,计算出每张影像的内外方位元素。

3.立体像对匹配:通过立体像对匹配算法,对倾斜影像进行立体配对,得到像对间的对应关系。

4.数学模型建立:根据立体像对的对应关系,建立数学模型,进行倾斜影像的地物测量和分析。

四、应用案例1.城市规划:倾斜摄影测量可以快速、精确地获取城市的建筑物、道路等地物信息,为城市规划和管理提供支持。

2.环境监测:倾斜摄影测量可以监测城市环境的变化,如土地利用、植被覆盖等,为环境保护和资源管理提供数据支持。

倾斜摄影测量的技术流程

倾斜摄影测量的技术流程

倾斜摄影测量的技术流程倾斜摄影测量,是一种空间数据采集和制图领域中的新型技术,其可以获取建筑物、道路、桥梁等高耸物件的三维数值模型,同时也被广泛应用于城市规划、土地利用、环保和安全等领域。

本文将分别介绍倾斜摄影测量的技术流程,包括数据采集、相对定位、绝对定位、建模及可视化等技术流程。

一、数据采集倾斜摄影测量第一步是数据采集,该步骤是指用无人机、飞机或直升机搭载倾斜摄影仪对进行拍摄。

当然,这里采集的数据不仅包括照片,也包括GPS坐标数据、惯性测量单元(IMU)数据和相机姿态(方向)数据。

其中,GPS坐标数据是为了建立场地坐标系而采集的,IMU数据则可以从加速度计、陀螺仪和磁力计获得,以获得更准确的姿态数据,相机姿态数据则可以从惯性传感器上获取。

这些气象数据一起用于计算相机姿态,从而将所有照片地位于场地坐标系中,以便后续数据处理的准确性。

二、相对定位经过数据采集后,第二步是进行相对定位,该步骤是将拍摄的照片按照相机拍摄的姿态计算到一个三维坐标系中。

相对定位可以通过多视图三角测量方法来完成,这是一种基于照片的标记点位置计算相机位姿的方法。

将通过标注的点位置直接从图像位置估计三维点,再将其与另一图像中的三维点匹配可精确定位照片中对应点的位置。

这种方法可以准确计算照片的相对位置和朝向,以便于后续的数据处理。

三、绝对定位相对定位计算完成后,第三步则是进行绝对定位。

这一步骤需要处理场地坐标系和全球坐标系之间的关系,以便于将采集的照片数据与地球上的实际地物坐标相对应。

绝对定位包括两个步骤,一个是场地定位,一个是全球定位。

场地定位通常采用封闭空间调节模型,将相对定位计算结果嵌入到场地坐标系中。

全球定位通常使用全球定位系统(GPS)、全球卫星定位系统(GLONASS)或北斗卫星系统(BDS)的数据来确定场地坐标系和全球坐标系之间的关系。

四、建模在绝对定位清除所有误差之后,就可以进入第四步,即基于采集的倾斜摄影数据构建三维场景模型。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

倾斜摄影测量技术方案引言倾斜摄影测量技术是一种通过倾斜拍摄的方式获取高精度三维地理信息的技术。

相比传统航空摄影测量技术,倾斜摄影测量技术具有更高的精度和更多的应用潜力。

本文将介绍倾斜摄影测量技术的基本原理、数据处理流程和应用领域,并提出一种基于倾斜摄影测量技术的实际方案。

1. 倾斜摄影测量技术的基本原理倾斜摄影测量技术利用带有倾斜角度的摄像机拍摄地面目标,通过对倾斜图像进行测量和分析,获取目标的三维坐标信息。

其基本原理如下:1.摄像机控制:倾斜摄影测量技术通过控制摄像机的倾斜角度和角度传感器来确定摄像机的姿态。

2.图像获取:倾斜摄影测量技术利用倾斜角度的摄像机拍摄地面目标,获取倾斜图像。

3.三维重构:利用倾斜摄影测量技术获取的倾斜图像,通过图像匹配、立体重建等方法,获取地面目标的三维坐标信息。

4.数据处理:倾斜摄影测量技术通过对倾斜图像进行纠正、校正等处理,提高数据精度。

2. 倾斜摄影测量技术的数据处理流程倾斜摄影测量技术的数据处理流程主要包括以下几个步骤:1.倾斜图像预处理:对倾斜图像进行去噪、增强和图像纠正等处理,提高倾斜图像的质量。

2.特征提取与匹配:通过特征提取算法提取倾斜图像中的特征点,并使用特征匹配算法找到对应的特征点对。

3.立体重建:根据倾斜摄影测量技术获取的特征点对,进行立体重建,得到地面目标的三维坐标。

4.数据精度校正:对倾斜摄影测量技术获取的数据进行校正,提高数据的精度和准确性。

5.数据融合与分析:将倾斜摄影测量技术获取的三维地理信息与其他地学数据进行融合与分析,实现更深入的应用。

3. 基于倾斜摄影测量技术的实际方案基于倾斜摄影测量技术的实际方案主要包括以下几个步骤:1.摄像系统选择:根据实际需求选择合适的倾斜摄影测量系统,考虑摄像机的分辨率、倾斜角度范围、数据处理能力等因素。

2.数据采集:通过倾斜摄影测量系统进行数据采集,确保采集的倾斜图像覆盖区域完整且质量良好。

3.数据处理:对采集到的倾斜图像进行预处理、特征提取与匹配、立体重建、数据精度校正等处理,获取高精度的三维地理信息。

倾斜摄影测量技术规程

倾斜摄影测量技术规程

倾斜摄影测量技术规程倾斜摄影测量是一种先进的摄影测量技术,广泛应用于地理空间信息领域。

本文将为您介绍倾斜摄影测量技术规程,让您对这一技术有一个全面的了解。

第一章:引言倾斜摄影测量技术是一种通过倾斜摄影机进行航空摄影测量的方法。

它可以提供更丰富的地物信息和更高的空间分辨率,因此在城市规划、三维建模、电力巡检等领域得到广泛应用。

第二章:倾斜摄影测量系统倾斜摄影测量系统由倾斜摄影机、惯性导航系统、GPS定位系统和数据处理软件等组成。

其中,倾斜摄影机是关键设备,它能够实现对地物的正射影像和倾斜影像的获取。

第三章:倾斜摄影测量采样规程倾斜摄影测量的采样规程包括飞行计划制定、飞行高度选择、相机参数设置等内容。

根据不同的测量任务和地物特征,合理地制定采样规程对数据质量和后续处理有着重要影响。

第四章:倾斜摄影测量数据处理倾斜摄影测量数据处理主要包括倾斜影像定向、影像拼接、三维重建以及地物特征提取等步骤。

在数据处理过程中,需要根据具体任务需求选择合适的算法和软件,确保数据的精度和稳定性。

第五章:倾斜摄影测量精度评定倾斜摄影测量精度评定是对测量结果进行准确性验证的过程,其目的是评估测量精度并提供相应的误差评定。

评定方法包括内部精度评定和外部精度评定,在实际应用中能够有效提高测量结果的可靠性。

第六章:倾斜摄影测量应用案例本章将介绍倾斜摄影测量在城市三维建模、地质灾害监测等领域的应用案例。

这些案例展示了倾斜摄影测量技术在实际工程中的高效性和准确性,对于进一步推动该技术的应用具有重要的参考价值。

第七章:倾斜摄影测量的发展趋势最后一章将展望倾斜摄影测量的发展趋势。

随着无人机技术和传感器技术的不断进步,倾斜摄影测量将进一步提高数据获取效率和准确性。

同时,倾斜摄影测量在智能交通、测绘地理信息等领域的应用也将得到拓展。

结语倾斜摄影测量技术规程是对倾斜摄影测量技术的总结和规范,对于保证测量结果的准确性和可靠性起到关键作用。

希望本文能够为读者提供全面了解倾斜摄影测量技术的基础知识,并促进其在实际应用中的广泛应用。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

倾斜摄影测量技术方案倾斜摄影测量技术是指在航空或航天平台上搭载有倾斜摄影测量系统,通过对地面目标进行倾斜拍摄,从而获取全景立体的高分辨率图像和三维数据的一种测量技术。

该技术广泛应用于城市规划、地理信息系统(GIS)、土地资源调查、环境监测、遥感图像解译和三维建模等领域。

下面是一个倾斜摄影测量技术方案的描述,该方案包括系统实施步骤、数据处理流程和技术优势等。

方案描述:一、系统实施步骤1.选取倾斜摄影测量系统:根据项目需求和测量精度要求,选择适当的倾斜摄影测量系统,如倾斜摄影测量机载系统或无人机搭载系统等。

2.系统准备工作:对选定的倾斜摄影测量系统进行准备工作,包括设备检查和校准、设定测量参数和飞行计划等。

3.倾斜摄影测量飞行:将倾斜摄影测量系统搭载在航空或航天平台上,并按照飞行计划进行目标区域的倾斜拍摄。

4.数据采集和处理:在倾斜摄影测量过程中,通过摄影设备获取到的图像数据与GPS/惯导数据进行同步,获得带有三维坐标信息的倾斜摄影图像数据。

5.数据处理和生成产品:通过对倾斜摄影图像数据进行几何校正、遥感图像解译和三维数据重建等处理,生成高精度的倾斜摄影测量产品。

二、数据处理流程1.数据准备:对倾斜摄影测量系统采集到的图像数据和GPS/惯导数据进行预处理,包括图像校正、数据格式转换和坐标系统转换等。

2.特征提取:利用遥感图像解译算法提取图像中的特征信息,如建筑物、道路、水体等,以及地物边界和纹理等特征。

3.倾斜摄影测量:基于特征点的匹配、三角测量和立体视觉算法,通过对倾斜摄影图像进行立体重建,得到三维坐标信息。

4.数据融合:将倾斜摄影测量得到的三维点云与其他测量数据(如LiDAR点云或地面控制点)进行融合,提高数据的精度和完整性。

5.产品生成:根据项目需求,生成倾斜摄影测量产品,如全景立体影像、数字地面模型(DSM)和数字地面表面模型(DTM)等。

三、技术优势1.全景视角:倾斜摄影测量技术可以获得全景立体的影像数据,能够提供更加真实、直观的场景信息,有助于对地物进行精确的定位和识别。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

倾斜摄影测量技术方案航测1:500房屋测量技术方案2018年12月14日目录一、技术标准二、XXX基本流程1.项目所用测量数据在进行航测1:500房屋测量项目时, 需要使用高精度的测量数据作为基础。

这些数据可以来自于现场实地测量、地面控制点、GPS测量等多种途径。

在选择数据时, 需要考虑数据的精度和可靠性, 以确保后续的测量结果准确可靠。

2.像控点选取要求像控点是进行航测测量的重要基础, 其选取要求如下:1)像控点数量要足够, 以保证整个区域的测量精度。

2)像控点位置要分布均匀, 覆盖整个测量区域。

3)像控点要具有明显的地物特征, 以便于在航拍影像中识别和定位。

3.飞行及摄影设备在进行航测测量时, 需要使用专业的飞行和摄影设备。

其中, 飞行设备包括飞机、遥控器、飞行控制器等, 而摄影设备则包括相机、镜头、云台等。

这些设备需要具有高精度、高稳定性、高可靠性等特点, 以确保测量数据的准确性和可靠性。

4.飞行质量要求在进行航测测量时, 需要严格按照飞行规程进行飞行, 以确保飞行质量。

其中, 飞行规程包括起飞、飞行、降落等多个环节, 需要注意飞机姿态、飞行速度、高度等参数的控制, 以确保航拍影像的质量和准确性。

5.影像质量要求航测测量的最终结果是生成高精度的立体测图, 因此需要对航拍影像的质量进行严格要求。

其中, 影像质量要求包括分辨率、色彩准确性、几何精度等多个方面。

只有影像质量达到要求, 才能保证后续的测量结果准确可靠。

6.飞行任务规划在进行航测测量时, 需要进行飞行任务规划。

其中, 飞行任务规划包括飞行航线的设计、像控点的布设、飞行高度的确定等多个方面。

在规划飞行任务时, 需要考虑影像质量要求、测量精度要求、飞行安全要求等多个因素, 以确保测量结果的准确性和可靠性。

三、倾斜摄影测量建模3.1空三加密倾斜摄影测量建模是航测测量中的一项重要技术, 其核心是进行空三加密。

空三加密是指将航拍影像和像控点进行三维重建, 生成高精度的三维模型。

倾斜摄影测量技术方案

倾斜摄影测量技术方案

航测1:500房屋测量技术方案2018年12月14日目录一、技术标准 (3)二、航飞摄影基本流程 (4)1.项目所用测量数据 (4)2.像控点选取要求 (4)3.飞行及摄影设备 (7)4.飞行质量要求 (8)5.影像质量要求 (9)6.飞行任务规划 (9)三倾斜摄影测量建模 (10)3.1空三加密 (11)3.2加密要求 (12)3.3模型分块重构 (13)四立体测图 (15)4.1 工作流程 (15)4.2内业采集 (15)4.3 细部采集 (16)五外业调绘补测 (17)六成果整理 (19)6.1数据编辑 (19)6.2 数据输出 (20)七完成成果 (20)一、技术标准1.《无人机航摄安全作业基本要求》CH/Z 3001-20102.《无人机航摄系统技术要求》CH/Z 3002-20103.《低空数子航空摄影测量内业规范》CH/Z 3003-20104.《低空数字航空摄影规范》CH/Z 3005-20105.《数字航摄仪检定规程》CH/Z 8021-20106.《全球定位系统(GPS)测量规范》(GBT18314-2009);7.GB/T 20257.1-2007《国家基本比例尺地图图式第1部分:1:500 1: 1000 1:2000地形图图式》8.《1:500 1:1000 1:2000地形图图式》GBT 20257.1-2007)9.《数字测绘产品检查验收规定和质量评定》GB/ T18316-2001) ;10.《1:500 1:1000 1:2000比例尺地形图航空摄影规范》(GB/T15967-2008);11.本项目技术设计书。

二、航飞摄影基本流程1.项目所用测量数据1、项目测区内有高等级平面控制点5个以上(含五个),用于精度控制。

2、坐标系统:平面坐标系统采用2000国家大地坐标系,中央子午线117度,投影面为参考椭球面。

3、高程系统:采用1985国家高程基准。

2.像控点选取要求1)在选择像控点时,应充分考虑布点要求,将像控点的布设与布点方案结合在一起,选择地形测量对天通视良好且可以明确辨认的地物点和目标点;2)布设的标志应对空视角好,避免被建筑物、树木等地物遮挡;黑白反差不大,地物有阴影以及某些弧形地物不应作为控制点点位目标;3)航摄相片控制点的选取还需满足以下几个标准:①像控点应尽量布设在航向旁向重叠的公共区域使控制点能够公用;②控制点应选在旁向重叠中线附近,离开中线的距离不应大于3cm,当旁向重叠过大或过小而不能满足要求时,应分别布点;4)控制点距相片边缘不小于 1.5cm,距相片的各类标志不小于1mm;5)位于自由图边的控制点,应布设在图廓线外(如图1):图1 像控点布设方案基本图式6)像控点样式图2 像片像控点样式7)像控点测量1.测量采用GPS,其标称精度满足以下要求:水平标称精度:±10mm + 2 ppm;垂直标称精度:±20mm + 2 ppm;2.像控点测量GPS测量时,观测时间应超过15秒,每点观测两回,观测值应在得到RTK固定解且收敛稳定后开始记录,测回间的平面坐标分量较差不应大于2cm,垂直坐标分量较差不应大于3cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航测1:500房屋测量技术方案2018年12月14日目录一、技术标准.................................... 错误!未定义书签。

二、航飞摄影基本流程............................ 错误!未定义书签。

1.项目所用测量数据....................... 错误!未定义书签。

2.像控点选取要求......................... 错误!未定义书签。

3.飞行及摄影设备......................... 错误!未定义书签。

4.飞行质量要求........................... 错误!未定义书签。

5.影像质量要求........................... 错误!未定义书签。

6.飞行任务规划........................... 错误!未定义书签。

三倾斜摄影测量建模............................. 错误!未定义书签。

空三加密 ................................... 错误!未定义书签。

加密要求 ................................... 错误!未定义书签。

模型分块重构 ............................... 错误!未定义书签。

四立体测图..................................... 错误!未定义书签。

工作流程 .................................. 错误!未定义书签。

内业采集 ................................... 错误!未定义书签。

细部采集 .................................. 错误!未定义书签。

五外业调绘补测................................. 错误!未定义书签。

六成果整理..................................... 错误!未定义书签。

数据编辑 ................................... 错误!未定义书签。

数据输出 .................................. 错误!未定义书签。

七完成成果..................................... 错误!未定义书签。

一、技术标准1.《无人机航摄安全作业基本要求》CH/Z 3001-20102.《无人机航摄系统技术要求》CH/Z 3002-20103.《低空数子航空摄影测量内业规范》CH/Z 3003-20104.《低空数字航空摄影规范》CH/Z 3005-20105.《数字航摄仪检定规程》CH/Z 8021-20106.《全球定位系统(GPS)测量规范》(GBT18314-2009);7.GB/T 《国家基本比例尺地图图式第1部分:1:500 1: 1000 1:2000地形图图式》8.《1:500 1:1000 1:2000地形图图式》GBT9.《数字测绘产品检查验收规定和质量评定》GB/ T18316-2001) ;10.《1:500 1:1000 1:2000比例尺地形图航空摄影规范》(GB/T15967-2008);11.本项目技术设计书。

二、航飞摄影基本流程1.项目所用测量数据1、项目测区内有高等级平面控制点5个以上(含五个),用于精度控制。

2、坐标系统:平面坐标系统采用2000国家大地坐标系,中央子午线117度,投影面为参考椭球面。

3、高程系统:采用1985国家高程基准。

2.像控点选取要求1)在选择像控点时,应充分考虑布点要求,将像控点的布设与布点方案结合在一起,选择地形测量对天通视良好且可以明确辨认的地物点和目标点;2)布设的标志应对空视角好,避免被建筑物、树木等地物遮挡;黑白反差不大,地物有阴影以及某些弧形地物不应作为控制点点位目标;3)航摄相片控制点的选取还需满足以下几个标准:①像控点应尽量布设在航向旁向重叠的公共区域使控制点能够公用;②控制点应选在旁向重叠中线附近,离开中线的距离不应大于3cm,当旁向重叠过大或过小而不能满足要求时,应分别布点;4)控制点距相片边缘不小于,距相片的各类标志不小于1mm;5)位于自由图边的控制点,应布设在图廓线外(如图1):图1 像控点布设方案基本图式6)像控点样式图2 像片像控点样式7)像控点测量1.测量采用GPS,其标称精度满足以下要求:水平标称精度:±10mm + 2 ppm;垂直标称精度:±20mm + 2 ppm;2.像控点测量GPS测量时,观测时间应超过15秒,每点观测两回,观测值应在得到RTK固定解且收敛稳定后开始记录,测回间的平面坐标分量较差不应大于2cm,垂直坐标分量较差不应大于3cm。

两测回结果取平均值作为该像控点测量最终成果。

像控点测量的平面坐标和高程记录至.(现场测量如图3)图3 现场像控点示例3.飞行及摄影设备飞行器:大疆经纬 M600 Pro图4 飞行器产品图示摄影设备:五目相机图5 五目相机图示(1)倾斜影像的产品规格满足以下要求指标参数地面分辨率<飞行高度80m - 100m飞行平台无人机倾斜摄影相机QX1 等定姿定位测量仪POS 系统(2)相片重叠度应满足以下要求:a)航向重叠度一般应为60%—80%,最小不应小于53%;b)旁向重叠度一般应为60%—80%,最小不应小于60%。

(3)航向覆盖超出摄区边界线应不少于两条基线。

旁向覆盖超出摄区边界线一般应不少于像幅的50%;在便于施测像片控制点及不影响内业正常加密时,旁向覆盖超出摄区边界线应不少于像幅的30%。

(4)同一航线上相邻像片的航高差不应大于30m,最大航高与最小航高之差不应大于50m,实际航高与设计航高之差不应大于50m。

(5)航摄中出现的相对漏洞和绝对漏洞均应及时补摄,应采用前一次航摄飞行的数码相机补摄,补摄航线的两端应超出漏洞之外两条基线。

图6 重叠影像图影像质量应满足以下要求:a)影像应清晰,层次丰富,反差适中,色调柔和;应能辨认出与地面分辨率相适应的细小地物影像,能够建立清晰的立体模型。

b)影像上不应有云、云影、烟、大面积反光、污点等缺陷。

虽然存在少量缺陷,但不影响立体模型的连接和测绘,可以用于测制线划图。

c)确保因飞机低速的影响,在曝光瞬间造成的像点位移一般不应大于一个像素,最大不应大于个像素。

d)拼接影像应无明显模糊、重影和错位现象。

6.飞行任务规划根据区域范围线,在飞行软件中按现场情况设置合理的飞行参数,建立该区域飞行计划。

任务航线如下:图7 飞行任务航线图示三倾斜摄影测量建模航空相片外业数据获取完成后,首先要对获取的影像进行质量检查,对不合格的区域进行补飞,直到获取的影像质量满足要求;当相片数据符合要求后可在建模软件中导入所有的相片数据。

倾斜摄影测量建模流程:导入像控点坐标、匹配坐标系、像控刺点、空中三角测量、空三解算通过、建立模型(如图9)。

图8 建模流程空三加密外业布设的像片控制点转标到数据影像上。

内业加密点在加密时应尽量选在相邻像对目标明确易判读的点位上。

用实景三维建模系统(Smart3D Capture Master)进行像点坐标量测。

加密采用全数字摄影测量系统进行立体观测,利用自动空三软件进行解算。

(如下图)图9 控制点导入及刺点图10 空三3D视图图11 自动空三计算图12 空三计算通过加密要求1)内业加密点应尽量选在本片和相邻像片都清晰、明显、易转刺和量测的目标点上。

2)加密点和像控点大于1cm时必须转刺,小于1cm时可以不转刺。

尽量保证加密网的连接强度。

3)加密成果中平面坐标和高程均取至小数点三位即,密接四边。

模型分块重构自动空中三角测量完成且通过后,可以进行下一步的自动模型建立,在模型数据重构时,由于数据量巨大,需要切块集群运算。

如下图图13 切块重构图14 重构完成:图15 三维效果图四立体测图工作流程采用EPS地理信息工作站基础平台进行裸眼3D立体测图,测绘与地理信息角度构建数据模型,综合 CAD(计算机辅助设计,图形绘制平台)技术与 GIS(地理信息系统,空间数据管理)技术,以数据库为核心,将图形和属性融为一体,从数据生产源头支持测绘的信息化转变。

立体采集工作流程:工作环境准备、建立EPS文件、导入三维模型、导入DOM、立体编辑处理、数据检查、成果输出。

(如图15)图15 立体采集工作流程内业采集裸眼3D信息采集对于信息化的DLG数据,表现在完全面向对象的动态符号化且一套数据二三维符号化一致、图属一体化、图库一体化。

所有地理要素全部用骨架线+属性描述方式表示,完全满足GIS建库与应用需求,在显示与打印环节动态符号化,完全满足图式规范与制图需求。

(如图17)图16 立体采集细部采集按模型进行全要素采集,做到不变形、不移位、无错漏。

采集依比例及用符号表示的地物时,应以测标中心切准轮廓线或拐点连接,采集不依比例尺表示地物时,就以测标中心切准基点、结点、定位线。

对模型不清楚,无法准确定位时,务必在相应位置做标记,以便外业补测。

(如图17)图17 细部采集五外业调绘补测外业调绘工作流程:资料准备、外业检查、调绘补测、内业编辑、成果输出。

野外调绘是航测外业的最后一道工序,也是确保地形图数学精度和地理精度的重要环节。

外业人员按规范、图式、设计书的要求,利用航内初编的线划图对内业测绘的地形要素进行野外检查、调绘及补测。

因此在调绘工作中要做到四到:走到、看到、问到、测到。

调绘补测工作要认真细致,对原图上的每一条线、每一个符号都要仔细判读,并将所调绘的内容及相关量测的数据用红笔标注在图纸上,做到图面整洁、易读,字迹清晰不乱,数据交代明确,综合取舍合理。

其主要工作内容为调注各种地理名称、房檐改正数据、房屋层数结构等;补测原图上没有的地物、地貌要素;测注建成区铺装路面高程注记点;检查纠正内业错绘的地物、地貌;实地检测地物、地貌的绝对精度和地物的相对精度。

为确保图幅的地理精度,对图内所有的地物地貌元素应逐一进行量注、定性、取舍,准确真实反映地物地貌。

对航内的差、错、漏,外业调绘能处理的一定要处理清楚。

对新增地物、地貌要实地补测。

一般补测内容直接清绘在线划图上,各类补测要素要有足够的定位数据,能准确的进行内业数据图形编辑;大面积补测的内容应在外业形成图形数据并编辑后提供给内业。

在清绘或编辑时要遵循线状要素连通、面状要素封闭的数据要求。

1)地形图测绘内容及取舍原则地物、地貌要素按GB/T —2007《国家基本比例尺地图图式第1部分:1:500 1:1000 1:2000地形图图式》表示。

相关文档
最新文档