发热量计算
算锂离子电池发热量的公式
算锂离子电池发热量的公式
锂离子电池发热量的计算公式是基于能量守恒定律和热学原理的,它可以用于估算电池在使用过程中产生的热量。
具体而言,我们可以通过以下公式来计算锂离子电池的发热量:
发热量 = 电池的放电能量 - 电池的化学能量
我们需要知道电池的放电能量。
电池的放电能量可以通过电池的放电容量和电池的工作电压来计算得出。
放电容量是电池能够释放的电荷量,而工作电压是电池在放电时的电压。
放电能量可以表示为:放电能量 = 放电容量 × 工作电压
我们需要知道电池的化学能量。
电池的化学能量是指电池中所含有的可供释放的化学能量。
电池的化学能量可以通过电池的化学反应来估算。
不同类型的锂离子电池具有不同的化学反应,所以具体的计算方法会有所不同。
通过将电池的放电能量减去电池的化学能量,我们就可以得到电池的发热量。
发热量的单位通常是焦耳(J)或千焦(kJ)。
这个值可以帮助我们评估电池在使用过程中的热量释放情况,从而更好地了解电池的性能和稳定性。
锂离子电池发热量的计算公式是基于能量守恒定律和热学原理的。
通过计算电池的放电能量和化学能量之差,我们可以得到电池的发
热量,从而更好地了解电池的性能和稳定性。
这对于锂离子电池的设计和应用具有重要意义。
液压系统发热量的计算
液压系统发热量的计算
液压系统的发热量计算需要考虑以下几个因素:
1. 液压系统的工作压力:液压系统工作时所承受的压力越高,发热量也越大。
2. 液压系统的流量:液压系统的流量越大,所需要的泵的功率也越大,从而产生更多的发热量。
3. 液体的黏度:黏度越大的液体,在通过管道流动时,需要克服更大的摩擦,从而产生更多的热量。
4. 系统中的阀门:阀门的流阻会增加系统的压降,从而增加系统的发热量。
发热量的计算可以使用下面的公式:
Q = V × rho × Cp × deltaT
其中,Q表示热量,单位为J(焦耳);
V表示液体的体积流量,单位为m³/s;
rho表示液体的密度,单位为kg/m³;
Cp表示液体的定压比热容,单位为J/(kg·K);
deltaT表示液体的温度差,单位为K。
通过对几个因素的把握,我们可以计算出液压系统的发热量,并进行相应的优化。
电路发热量计算公式
电路发热量计算公式电热器件的散热问题,一直是电路设计的重点,如果能在电路设计阶段,就考虑到发热问题,那么发热量也就有了保证。
在半导体芯片上,的元件,也就是电容,是一种电阻,其导热系数和绝缘系数都与电介质绝缘,电阻越小,电阻所发出的热量也越少;反之,电阻越大,电阻所发出的热量也就越多。
对于普通家用家电产品来说,主要是把电路当成一个发热体来考虑,并没有把温度作为一个热传导率来考虑,因此,在计算过程中会造成计算误差;如果是电子设备,就不会有这方面的误差。
这就需要根据电阻的性质来计算发热量了,并使用公式进行计算,从而保证计算准确度,避免计算错误。
今天我们来简单了解下这个公式: f (热量)= A (C)/A (C)*(VF+ VF)* VF (VT)2* VT 3* VT 4* VT 5* VT 6* VT 7* VT 8* VT 9* VT 9* VT 10+ VT 11* VT 12* VT 13* VT 13* VT 14* VT 14* VT 15* VT 16* VT 18* VT 19* VT 19* VT 20* VT 21* VT 22* VT 22* VT 23* VT 25* VT 28*VT-30* MH 13+ VTC 14* VT 12* FT 23.关于 VT的理解,就不展开了。
电路中总热功率与元件、电热材料之间存在着直接关系。
那么如何计算功率呢?这里给出一个公式帮助大家:电流 V=热量 Q/D。
一、功率的计算公式从上面我们知道,在电路中,各元件之间的电阻是有不同大小差异的;在实际设计时,计算电流时,应该先考虑电阻的大小问题,然后再考虑对热量的要求。
这里提供两个计算方式:功率:电流和温度两个变量取值的平均值;功率等于总热量除以总电阻的比率就是功率;电阻:温度与电流成正比,而电阻只与温度成反比。
这里说下功率计算原理:功率= P/R (P为电阻值); A 代表热电阻温度系数 A; C代表热量系数 C; D为计算热阻所用材料(或功率)的热导率 T (P).这里定义: T= P (T· R)/R (P· T).所以,对于一个电阻来说: VF= VT+ VF. VF= VF (VT)/VF (VF)= VT (VF+ VT)/VT.所以功率公式是 VF= VT/VF.如图中所示:当 VF和 VF不变时(即 VF和 VF不变时) VF和 VF均为固定值。
变频器发热量计算
变频器发热量计算
变频器的发热量也许是多少. 可以用以下公式估算:
发热量的近似值= 变频器容量(KW)×55 [W] 在这里, 假如变频器容量是以恒转矩负载为准的(过流力量150% * 60s) 假如变频器带有直流电抗器或沟通电抗器, 并且也在柜子里面, 这时发热量会更大一些。
电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 国产变频器容量(KW)×60 [W] 由于各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 留意:假如有制动电阻的话,由于制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。
变频器的发热是由内部的损耗产生的。
在变频器中各部分损耗中主要以主电路为主,约占98%,掌握电路占2%。
为了保证变频器正常牢靠运行,必需对变频器进行散热,通常采纳以下方法:
① 采纳风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应马上停止变频器运行。
② 降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。
通用变频器的环境运行温度一般要求-10℃~-50℃,假如能够实行措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。
我们实行两种方法:一种方法是建筑单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。
另一种方法是变频器的安
装空间要满意变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。
当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必需通过正常的选型来避开此类现象的发生。
天然气低位发热量计算公式
《天然气低位发热量计算公式》
1、低位发热量:低位发热量是指天然气在某一温度下的发热量,其单位为MJ/ m3 (兆焦耳\/立方米);低位发热量也称为冷吨发热量。
2、高位发热量:高位发热量是指天然气在某一温度下的发热量,其单位为MJ/ kg (千焦耳\/公斤);高位发热量又称为热吨发热量。
3、低位发热量和高位发热量的关系:低位发热量与高位发热量之差即为热值差,热值差越大则低位发热量就越多,反之亦然。
4、燃烧热值:燃烧热值是表示可燃物质完全燃烧时所释放出来的能量的多少。
5、热值差:燃烧热值是表示可燃物质完全燃烧时所释放出来的能量的多少。
6、燃烧热值与燃烧效率:燃烧热值是指完全燃烧时释放出来的总能量,它等于燃料的发热量与完全燃烧时吸收的总热量之比。
7、理论空气量:理论空气量是指天然气完全燃烧后不需要补充的空气量,理论空气量等于理论燃烧热值除以天然气的密度。
8、当量空气量:当量空气量是指完全燃烧时需要消耗的空气量,等于理论空气量减去实际空气量。
9、实际空气量:实际空气量是指完全燃烧时所需要的空气量。
发热量的计算公式
发热量的计算公式
发热量是指物质在化学反应或物理过程中所释放或吸收的热量。
在工业生产和科学研究中,对于各种物质的发热量的精确计算是非常重要的。
因此,我们需要一种简单而可靠的发热量计算公式。
目前,广泛应用的发热量计算公式是“热力学计算法”。
这种方法基于热力学第一定律,即能量守恒的原理。
根据这个原理,物质参与反应前后的能量总量应该是相等的。
因此,如果我们知道物质的摩尔数和反应的反应热,就可以求出其发热量。
具体来说,发热量的计算公式如下:
Q = ΔH × n
其中,Q表示发热量,单位为焦耳(J)或千焦(kJ);ΔH表示反应热,单位为焦耳/摩尔(J/mol)或千焦/摩尔(kJ/mol);n表示物质的摩尔数,单位为摩尔(mol)。
需要注意的是,反应热可以是正的也可以是负的。
如果反应热是负的,则说明反应是放热反应,物质会释放热量;如果反应热是正的,则说明反应是吸热反应,物质会吸收热量。
在实际应用中,我们可以通过实验来测定反应热。
例如,可以将反应物置于热量计中,通过测量热量计的温度变化来确定反应热。
同时,我们还可以利用文献中已有的反应热数据来计算发热量。
总之,发热量计算公式是工业生产和科学研究中不可缺少的工具。
我们可以通过热力学计算法来准确地计算不同物质的发热量,这对于推动科学研究和实现高效能源利用具有重要的意义。
发热量的计算方法
发热量的计算方法一:通过工业分析数据估算发热量的方法1. 古塔尔公式Q gr , ad =82FC ad +αV ad 式中发热量的单位为cal/g,α为系数,由V daf 值查出相应关系见下表:2. 斯密特公式 Q gr , a d=810-03(-4V 0d a f)3. 格美林公式 Q gr , a d=80. 8(10-0Ma d-A) 为系数,其与M ad 的对应值见下表a d α4. 切诺波利公式 Q gr , a d=87. 4(10-0Ma d-Aad5. 云涅斯特公式 Q gr , a d=80. 8(10-0Ma d-Aad)6. 煤科总院公式无烟煤公式Q gr , ad =100K -(K +6)(M ad +A ad ) -3V ad (-40M ad ) *K与H daf 的对应关系式中K 值见下表若无法获得H daf ,则利用V daf (校)代替K 与V daf 的对应关系如下烟煤公式Q gr , ad =100K -(K +6)(M ad +A ad ) -3V ad (-40M ad ) *(-40Mad)项只在V daf ≤35%,且M ad >3%时减去,K 值与V daf 及焦渣对应关系如下表● 褐煤公式Q gr , ad =100K -(K +6)(M ad +A ad ) -V ad其中K 见下表7. 北京物资学院:● 无烟煤公式Q gr , ad =32346.8-161.5V ad -345.5A ad -360.3M ad +1042.3H adH ad 可用矿区以往测定的H daf 的平均值;如果无法获得H daf 可用下面的公式:Q gr , ad =34813.7-24.7V ad -382.2A ad -563.0M ad● 褐煤公式Q gr , ad =31732.9-70.5V ad -321.6A ad -388.4M ad二:利用元素分析计算发热量的方法Q ar , gr =4.19(87C ar +300H ar +26S ar -26O ar ) 锅炉原理:范从振等 Q ar , net =339C ar +1031H ar -109(O ar -S ar ) -25.1M ar 门捷列夫经验公式三:利用量热计测定煤的发热量煤的各种发热量名称的含义 a. 煤的弹筒发热量(Q b )煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25℃)。
发热量计算
(2)煤的各种发热量名称的含义a.煤的弹筒发热量(Qb)煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。
由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。
如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N2O5或NO2等氮氧化合物。
这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。
另外,煤中可燃硫在空气中燃烧时生成SO2气体逸出,而在弹筒中燃烧时却氧化成SO3,SO3溶于弹筒水中生成硫酸。
SO2、SO3,以及H2SO4溶于水生成硫酸水化物都是放热反应。
所以,煤的弹筒发热量要高于煤在空气中、工业锅炉中燃烧是实际产生的热量。
为此,实际中要把弹筒发热量折算成符合煤在空气中燃烧的发热量。
b.煤的高位发热量(Qgr)煤的高位发热量,即煤在空气中大气压条件下燃烧后所产生的热量。
实际上是由实验室中测得的煤的弹筒发热量减去硫酸和硝酸生成热后得到的热量。
应该指出的是,煤的弹筒发热量是在恒容(弹筒内煤样燃烧室容积不变)条件下测得的,所以又叫恒容弹筒发热量。
由恒容弹筒发热量折算出来的高位发热量又称为恒容高位发热量。
而煤在空气中大气压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。
恒容高位发热量和恒压高位发热量两者之间是有差别的。
一般恒容高位发热量比恒压高位发热量低8.4~20.9J/g,实际中当要求精度不高时,一般不予校正。
c.煤的低位发热量(Qnet)煤的低位发热量,是指煤在空气中大气压条件下燃烧后产生的热量,扣除煤中水分(煤中有机质中的氢燃烧后生成的氧化水,以及煤中的游离水和化合水)的汽化热(蒸发热),剩下的实际可以使用的热量。
同样,实际上由恒容高位发热量算出的低位发热量,也叫恒容低位发热量,它与在空气中大气压条件下燃烧时的恒压低位热量之间也有较小的差别。
根据生物质的高位发热量和低位发热量计算说明
根据生物质的高位发热量和低位发热量计算说明根据生物质的高位发热量和低位发热量,可以有效地评估生物质作为能源的潜力和效率。
以下是计算说明的方法:高位发热量计算高位发热量(higher heating value,简称HHV)是指在完全燃烧生物质时所释放的热量。
它包括了生物质所含有的全部热能,包括水分的蒸发热和烟气中的凝结热。
高位发热量可以通过以下的计算公式来估算:HHV = D × (Hc - Hw)其中,HHV表示高位发热量,D表示生物质的干燥重量,Hc 表示生物质的碳水化合物的燃烧热,Hw表示水的蒸发热。
低位发热量计算低位发热量(lower heating value,简称LHV)是指在燃烧过程中,烟气中的水分未凝结时所释放的热量。
它不包括水分的蒸发热。
低位发热量可以通过以下的计算公式来估算:LHV = HHV - (0.09 × M)其中,LHV表示低位发热量,HHV表示高位发热量,M表示生物质的水分含量。
计算示例以下是一个计算生物质高位发热量和低位发热量的示例:假设生物质的干燥重量为10 kg,碳水化合物的燃烧热为18,000 kJ/kg,水的蒸发热为2,500 kJ/kg,水分含量为20%。
首先,我们可以计算高位发热量:HHV = 10 × (18,000 - 2,500) = 150,000 kJ然后,我们可以计算低位发热量:LHV = 150,000 - (0.09 × (10 × 0.2)) = 147,820 kJ因此,根据以上的计算,该生物质样品的高位发热量为150,000 kJ,低位发热量为147,820 kJ。
通过计算生物质的高位发热量和低位发热量,我们可以评估其作为能源的潜力和效率,以便更好地利用生物质作为可再生能源的来源。
注意:以上计算方式仅提供了一种常见的估算方法,实际计算可能需要考虑更多因素和调整参数。
无烟煤发热量的计算公式
无烟煤发热量的计算公式
无烟煤发热量的计算公式是指计算无烟煤在燃烧过程中所释放的热量的方法。
无烟煤是指经过高温煤化处理的煤炭,其含硫量低于1%。
无烟煤在燃烧时可以产生大量的热能,因此被广泛用于发电、供暖等领域。
无烟煤发热量的计算公式为Q=3375V-92.4M-15.2A,其中Q表示无烟煤的发热量,单位为千卡/千克;V表示无烟煤中挥发分的含量,单位为%;M表示无烟煤中的水分含量,单位为%;A表示无烟煤的灰分含量,单位为%。
这个公式的意义是,无烟煤的发热量与其挥发分、水分和灰分的含量有关。
挥发分的含量越高,发热量就越大;水分的含量越高,发热量就越小;灰分的含量越高,发热量就越小。
需要注意的是,这个公式仅适用于无烟煤,在计算其他类型的煤的发热量时需要使用不同的公式。
此外,由于煤的热值受到多种因素的影响,实际的热值可能会有所偏差。
因此,在实际应用中,需要根据具体情况进行调整。
- 1 -。
设备发热量计算表格
设备类型
平均发热功率范围
桌面电脑
50 - 250瓦特
笔架)
100 - 500瓦特
路由器/交换机
10 - 100瓦特
打印机
50 - 200瓦特
显示器
20 - 100瓦特
网络存储设备
100 - 300瓦特
电视机
50 - 300瓦特
空调设备
500 - 2000瓦特
照明设备
取决于灯泡类型和数量
这些数值可以用作初步估算设备的发热量,但实际情况可能因设备型号、负载、环境温度等因素而有所不同。
电气设备发热量的估算及计算方法
电气设备发热量的估算及计算方法电气设备的发热量估算及计算方法:1.电源参数:首先,我们需要确定电源参数,包括电压和电流。
大部分电气设备都会在设备本身或产品说明书上标明。
2.功率计算:根据电源参数,可以计算出设备的功率。
功率的单位是瓦特(W)。
功率的计算公式是功率=电压×电流。
3.储能计算:电气设备在工作时,会产生一定程度的能量损失,这部分能量会转化为热能。
根据设备的功率,可以计算出设备的能量损失。
能量损失的计算公式是能量损失=功率×时间。
其中,时间的单位可以是小时、分钟或秒。
4.热量传输计算:设备产生的热量会通过传导、对流和辐射等方式传输到周围环境中。
因此,我们需要考虑设备周围的温度和散热条件。
如果设备有外壳,我们还需要考虑外壳的散热特性和面积。
-传导热量计算:传导热量是通过物体直接接触而传输的热量。
传导热量主要通过材料的导热性质来计算。
公式为Q=λ×A×ΔT/δx,其中Q表示传导热量,λ表示导热系数,A表示传导面积,ΔT表示温度差,δx表示传导路径的长度。
-对流热量计算:对流热量是通过流体(如气体或液体)介质的对流传输而产生的热量。
对流热量的计算比较复杂,需要考虑流体的速度、密度、粘度和传热系数等因素。
公式为Q=hc×A×ΔT,其中Q表示对流热量,hc表示对流传热系数,A表示传热面积,ΔT表示温度差。
-辐射热量计算:辐射热量是通过辐射方式传输的热量,主要是通过热辐射和光辐射来计算。
辐射热量的计算公式为Q=εσA(T^4-T0^4),其中Q表示辐射热量,ε表示发射率,σ表示斯特藩-玻尔兹曼常数,A表示辐射面积,T表示物体温度,T0表示周围环境温度。
5.散热设计:通过计算出设备产生的热量,我们可以进行散热设计。
散热设计包括散热方式、散热器材料和散热器大小等。
通过合适的散热设计,可以确保设备在工作时能够保持正常的温度。
总结:电气设备的发热量估算及计算方法包括电源参数的确定、功率计算、能量损失计算和热量传输计算等。
煤炭发热量计算公式
煤炭发热量计算公式1、分析基弹筒发热量与分析基(空气干燥基)高位热值换算:Qgr,ad=Qb,ad-95Sb,ad-aQb,adQgr,ad——分析煤样的高位发热量,J/g;Qb,ad——分析煤样的弹筒发热量,J/g;Sb,ad——由弹筒洗液测得的煤的硫含量,%;95——煤中每1%(0.01g)硫的校正值,J/g;a——硝酸校正系数。
Qb,ad≤16700J/g,a=0.001;16700J/g<Qb,ad<25100J/g,a=0.0012;Qb,ad>25100J/g ,a=0.0016;当Qb,ad〉16700J/g,或者12500J/g<Qb,ad<16700J/g,同时,Sb,ad≤2%时,可用St,ad代替Sb,ad。
2、各种高位发热量基的换算公式:Qgr,ar= Qgr,adx(100- Mt)/(100- Mad),J/g;Qgr,d = Qgr,adx100/(100- Mad),J/g;Qgr,daf= Qgr,adx100/(100- Mad-Aad),J/g;Qgr,ar——收到基高位发热量,J/g;Qgr,d——干燥基高位发热量,J/g;Qgr,daf——干燥无灰基高位发热量,J/g;Mt——全水,%Mad——分析基水分(内水),%Aad——分析基灰分,%3、低位发热量基的换算公式:Qnet,v,m=( Qgr,v,ad-206Had)x(100-M)/(100-Mad)-23MQnet,v,m——水分为M的煤的恒容低位发热量,单位为焦耳每克( J / 9 )M——煤样的水分,单位为百分数( %)干燥基时M=0 ,分析基(空气干燥基)时M= Mad,收到基时M= Mt。
4、分析基低位发热量(Qnet,ad)2.1烟煤以焦耳表示的计算方式:Qnet,ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克用卡制表示的计算式:Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC 卡/克Qnet.ad——分析基低位发热量;Vad——分析基挥发分(%);Aad——分析基灰分(%);Mad——分析基水分(%);CRC——焦渣特征。
电气设备发热量的估算及计算方法
高压柜、低压柜、变压器的发热量计算方法变压器损耗可以在生产厂家技术资料上查到铜耗加铁耗;高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算.一条n芯电缆损耗功率为:Pr=nI2r/s,其中I为一条电缆的计算负荷电流A,r为电缆运行时平均温度为摄氏50度时电缆芯电阻率Ωmm2/m,铜芯为,铝芯为,S为电缆芯截面mm2;计算多根电缆损耗功率和时,电流I要考虑同期系数. 上面公式中的"2"均为上标,平方.一、如果变压器无资料可查,可按变压器容量的1~%左右估算;二、高、低压屏的单台损耗取值200~300W,指标稍高尤其是高压柜;三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热.主要电气设备发热量电气设备发热量继电器小型继电器 ~1W中型继电器 1~3W励磁线圈工作时8~16W功率继电器 8~16W灯全电压式带变压器灯的W数带电阻器灯的W数+约10W控制盘电磁控制盘依据继电器的台数,约300W程序盘主回路盘低压控制中心 100~500W高压控制中心 100~500W高压配电盘 100~500W变压器变压器输出kW1/效率-1 KW电力变换装置半导体盘输出kW1/效率-1 KW照明灯白炽灯灯W数放电灯灯W数假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=,根据上述计算损耗的公式,该变压器的损耗为6801/=170KW 变压器的热损失计算公式:△Pb=Pbk+△Pb-变压器的热损失kW Pbk-变压器的空载损耗kW Pbd-变压器的短路损耗kW具体的计算方法:一、 发电机组发热量发电机组的散热量主要来自于两个方面,一是发电机组的盖板传热和机壳围护结构传热,另一是发电机组的冷却循环风的漏风所带来的热量.大、中型发电机组的冷却方式通常采用封闭式空气自循环冷却方式,发电机绕组的损耗传给冷却空气,空气的热量再通过机组水冷却器由冷却水带走.根据实测的数据,定子排出的空气温度一般不超过65℃,而进入转子的空气温度一般不低于5℃.发电机机壳的散热量可以按下式计算:()n g t t KA q k -=w 1 1其中:K ——发电机机壳的传热系数 w/㎡·℃A ——发电机机壳的面积 ㎡gt ——发电机冷却循环风的平均温度℃n t ——室内空气温度℃发电机的漏风散热量可以按下式计算:()n f t t vc q f -=γβw 1 2其中:β——漏风系数,钢盖板取%v ——发电机的冷却循环风量m3/h c ——空气比热 w/kg ·℃γ——空气容重取m3f t ——发电机漏风温度℃ n t ——室内空气温度℃根据发电机组内部的冷却风温和发电机的表面积,我们不难计算机组壳体的传热量.但漏风热量的计算上却有较大的差异,随着机械制造技术的不断提高,特别是空气冷却器的效率的提高,发电机组的冷却循环风量各个厂商有较大区别.例如按机电设计手册计算,30万KW 机组的冷却循环风量约为200m 3/h,但多数国际厂商提供的冷却风量约为120m 3/h,这就给计算结果产生较大的出入.机组的冷却风量不仅和机组的容量有关,而且和机组的水头、转速、尺寸有关.一般情况下,冷却风温越低,发电机的线圈温度也越低,发电机的效率就越高,但是冷却风温受冷却器的布置尺寸影响,冷却器大,机组的制造难度相对增大,经济性下降,冷却风温不可能无限降低,机组制造厂设计时考虑一个经济区域,达到机组的最大性价比.因此,在实际的设计计算中,应由发电机厂商提供冷却循环风量参数对漏风热量加以核算.二、 变压器发热量变压器散热散热主要指变压器内部的能量损耗,由铜损电阻损耗和铁损铁磁损耗两部分组成,其中铜损是随负荷大小而变化,而铁损与负荷的大小无关,可以看成一定值.通常将额定负荷时的铜损定为短路损耗,额定电压下的铁损定为空载损耗.自冷、风冷和干式变压器的损耗,全部散发到周围空气中,而水冷变压器的损耗则大部份由水冷却系统带走,一小部份由于油温高于周围空气温度而将热量散入空气中.一般情况下,封闭厂房、地下厂房和抽水蓄能电站,布置于厂房内部或地下的主变多采用库水冷却的主变,而电站中的其他变压器还有厂用变、照明变、事故变、励磁变等,多采用风冷或干式变压器.风冷变压器的散热量,简单地可以按下式计算:dk P P Q +=Kw 3其中:k P ——变压器的空载损耗 KwdP ——变压器的短路损耗 Kw水冷变压器的散热量可以按下式计算:()325.1n y 105.5-⨯-⨯=A t t Q Kw 1 4其中:y t——油箱的平均油温 ℃,一般在65~70℃之间n t ——室内气温 ℃A ——油箱的散热面积 ㎡电站的水冷却主变,受到冷却水温和水冷却器效率的影响较大,特别是抽水蓄能电站,由于库容较小,冷却水温受季节的影响较大,应按正常运行时,可能产生的最高水温核算变压器的散热量.三、 母线、电缆发热量在电站中,发电机和变压器之间的连接多用自冷却式封闭母线.母线的发热量包括母线的功率损耗发热和外壳感应散热两部分.由于主线的两端分别分别连接发电机和变压器设备,实际上母线与外壳之间的空气是封闭的,外壳起到一个保护和屏蔽电磁波的作用,以减少母线电磁场对周围电气设备和环境的影响,并没有减小母线的散热.母线的功率损耗散热传给母线和外壳间的空气,然后通过外壳壳体传入环境.而外壳感应散热则直接传入环境.母线功率损耗引起的散热量可以按下式计算:3s Z 2103-⨯⨯=L R I q s ϕKw 1 5母线外壳感应散热量可以按下式计算:3k k 2103-⨯⨯=L R I q k ϕKw 1 6其中:I ——母线的相电流AZ R ——母线在工作温度时的直流电阻Ω/m k R ——母线外壳在工作温度时的直流电阻Ω/ms ϕ——母线集肤效应系数k ϕ——母线外壳集肤效应系数L ——母线的长度m以下是某电站的母线参数:表1 母线参数序基本参数主母线分支母线启动母线号1额定电压 KV1818182工作电压KV3额定电流A1300025030004导体正常温度℃8750745外壳正常温度℃6747546导体截面积mm221375335833587外壳截面积mm215944836983698导体电阻μΩ/m9外壳电阻μΩ/m按上面两式计算,主母线单相的散热量约为550W/m,和母线制造商提供的母相散热损耗600 W/m基本相近.母线的发热损耗和母线的材质、制造技术、焊接工艺水平关系较大.材质越好,母线接头的焊接工艺水平越高,其直流电阻就越小,发热损耗也就越小.另外,在水电站厂房内敷设了各种电压等级的动力、照明、控制电缆,在运行中会散发出一定的热量,如果电缆温度过高,将导致电缆表面绝缘老化,电缆的载流量下降.在各种电缆中,低压动力电缆发热量较大,电气设计手册上,对电缆损耗大于150W/m的有通风要求.一般的3000V以下的铜芯电缆的散热损失较小.电缆截面3×50mm的发热量约为25W/m,3×150mm的发热量约为40W/m,电压等级越高,散热量越小.因此,除在主厂房中设有大量的电缆桥架如母线层、母线洞、水轮机层等和专门的电缆层、电缆廊道应核算电缆的发热量,其他部位的电缆发热可以忽略不计.四、 电抗器发热量电抗器用于较大容量的配电装置中,起到限制短路电流的作用,也可以用于整流装置中作滤波电抗器.电抗器的散热量可以按下式计算:P Q 21ηη=Kw 7其中:1η——电抗器的利用系数,一般取1η=2η——电抗器的负荷系数,一般取2η=P ——电抗器在额定功率下的功率损耗Kw,根据额定电流、额定电抗和型号确定.电抗器是由绕组组成的,发热特性是热容量和发热量较大,达到稳定发热量需要一段时间.如果是长期运行的电抗器,其发热量是稳定的,如果是间歇运行的电抗器,应按运行时间和电抗器的发热特性曲线确定发热量.五、 高、低压盘柜发热量高压配电盘柜的散热量可以按下式计算:e 2egq II Q ⎪⎪⎭⎫ ⎝⎛=Kw 1 8其中:g I——高压开关的工作电流 Ae I ——高压开关的额定电流 Aeq ——高压开关的额定电流时的散热量 Kw高压开关柜分为进线开关柜和馈电开关柜,一般说来进线开关柜的发热量要比馈电开关柜的发热量大.低压配电盘柜的散热量可以按下式计算:P ex Q ∑=Kw 9其中:e ——盘柜的利用系数x ——盘柜的实耗系数——低压盘柜的功率损耗之和 KwP由于电站内各种盘柜的用途不同,盘柜的工作电流不同,一般说来,工作电流越大,盘柜内的电器元件发热量也越大.对于集中布置的配电盘柜尽可能由设备制造商提供发热量较为准确.特别的,对于重要的配电盘柜,由于制造商对盘柜内的电气元件的保护,防止运行湿度过大,绝缘性能的下降,在盘柜内本身另设有电加热器.一般每只盘柜在~左右,集中布置的继电保护室等应加以考虑.在高压盘柜中,励磁柜的发热量较大.根据某电站外商提供的发热资料:表2 励磁柜的发热量名称发热量序号1整流闸管8Kw2母线组2Kw3散热风机2Kw4其它继电器2Kw5合计14Kw由于励磁系统关系到机组的安全启动和运行,对于集中或封闭布置的励磁盘柜应较为准确地核算其发热量.六、SFC静态变频启动装置发热量SFC称为静态变频启动装置,主要用于抽水蓄能电站的机组抽水工况的启动.它由输入电抗器、输出电抗器、滤波器、功率柜和直流电抗器组成.某个单机容量30万千瓦的抽水蓄能电站,根据外商提供的SFC装置各设备的容量如下:表3 SFC装置的容量序设备名称运行时停止时号1输入电抗器27Kw3Kw2输出电抗器63Kw03滤波器83Kw28Kw4功率柜15Kw6Kw5直流电抗器200Kw06合计388Kw37Kw 我们可以看出,如果按照满负荷计算,SFC装置的热量高达388Kw.按照一些已运行的抽水蓄能电站的实际运行分析统计,一台机组的启动,从静止拖动到并网时间仅需240秒,六台机组的启动时间约为25分钟.根据外商提供的SFC装置运行特性曲线,输入电抗器、输出电抗器和直流电抗器运行25分钟,发热达到额定发热量的20%,滤波器、功率柜发热达到额定发热量的70%左右.按此计算SFC装置的发热量约为,是额定发热量的%.SFC装置的发热量和SFC的容量、运行时间有极为密切的关系,如果要较为准确的确定设备发热量,应请有关制造商提供设备的运行特性曲线,然后根据设备的容量和运行时间确定.七、照明设备发热量大、中型电站随着建筑装修景观设计对灯光的需求,照明功率有增加的趋势.虽然照明设备的发展,电站的照明应用从白炽灯和荧光灯向碘钨灯和金卤灯等高亮度灯源转变.但照明设备散热量属于稳定得热,只要电压、功率稳定,散热量是不变化的.照明所耗电能的一部分直接转化为热能,此热能以对流、传导和向周围散出.光能以红外辐射方式向外辐射,但红外辐射不能直接被空气吸收,而是透过空气被周围物体吸收,尔后再给予空气.转化为光的那部分也是先射向周围物体,被物体吸收后再转化为热能,再以对流、传导或辐射等方式传给空气和其他物体.照明发热量为:QNKw 1 10n1其中:1n——镇流器消耗的功率系数,一般取N——照明灯具功率 Kw一般情况下,全厂的照明发热量约为照明变压器容量的80%左右.但随着电站自动化程度的提高和无人值班的推广,厂房内部的实际照明设备开启情况变化较大,可考虑正常运行时照明的利用系数.。
发热量计算与换算
煤的发热量是单位质量的煤完全燃烧时所放出的热量,以符号Q表示。
发热量的国际单位是J(焦耳)/g,中国过去使用cal(卡)/g。
(1J/g=0.239Cal/g)煤的发热量是评价煤质和热工计算的重要指标。
在煤的燃烧或转化过程中,常用煤的发热量来计算热平衡、耗煤量和热效率。
对动力用煤,其发热量是确定价格的主要依据。
在国际和中国煤炭分类中,煤的发热量还是低煤化度煤的分类指标之一。
1 煤发热量的测定方法国家标准(GB213)规定用氧弹量热法测定煤的发热量。
(1)氧弹量热法的测定原理将l~1.1g空气干燥煤样放入不锈钢制的耐压氧弹中,用氧气瓶将氧弹充氧至2.6~2.8MPa利用电流加热弹筒内的金属丝使煤样着火,试样在压力和过量的氧气中完全燃烧,产生CO2和H2O,灰和燃烧产物被水吸收后生成H2SO4和HNO3。
燃烧产生的热量被内套筒中的水吸收,根据水温的上升并进行一系列温度校正后,可计算出单位质量煤燃烧所产生的热量,称为弹筒发Qb.ad。
由于弹筒发热量是在恒定容器下测定的,所以它是恒容发热量。
(2) 煤的恒容高位发热量在弹筒内煤的燃烧是在高温高压下进行,所以试样中的氮和弹筒内氧气生成氧化物并溶解在水中变为稀硝酸;若试样是在空气中燃烧,其中的氮则成为游离氮逸出。
煤中的硫在空气中燃烧只生成SO2逸出,而在弹筒内则生成稀硫酸。
上述稀HNO3及稀H2SO4的生成及溶解于弹筒内的水中均为放热反应。
从上述弹筒发热量中减去硝酸、硫酸的生成热和溶解热后即得到煤的恒容高位发热量,其代表符号为Qgr.v.ad,计算式如下:Qgr.v.ad=Qb.ad—(95Sb.ad+a.Qb.ad)式中Qgr,v,ad ——煤的空气干燥基恒容高位发热量,J/g;Qb. ad ——煤的空气干燥基弹筒发热量,J/g;Sb,ad ——由弹筒洗液测得的煤的空气干燥基硫含量,%;95——煤中每1%的硫的校正值,J(硫酸生成热校正系数);a——硝酸生成热校正系数,无烟煤为0.0010,对其他煤为0.0015。
天然气高位发热量和低位发热量计算说明
天然气高位发热量和低位发热量计算说明天然气的高位发热量和低位发热量是衡量其热值的两个重要参数。
本文将从计算方法、原理以及应用等方面进行详细说明。
一、高位发热量的计算说明高位发热量(GCV,Gross Calorific Value)指的是在气体完全燃烧的情况下,单位质量的燃料所释放出的总能量,包括产生的热和实际可利用的热(热量由正燃烧释放)。
计量单位为焦耳/千克(J/kg)或千卡/立方米(kcal/m³)。
计算高位发热量的方法有两种常用途径,分别是化学分析法和物理计量法。
(一)化学分析法化学分析法基于天然气成分和燃烧反应的化学方程式,通过分析天然气中各成分的含量来计算高位发热量。
化学分析法是一种精确度较高的方法,但需要化学实验室进行实际分析,因此费用较高。
(二)物理计量法物理计量法是通过实际燃烧天然气并测量燃烧产生的热量来计算高位发热量。
这种方法适用于在现场或实验室中进行,需要使用专业的燃烧热量计以及气体流量计等设备。
物理计量法计算简单、快捷,但相对于化学分析法来说,精度稍低。
二、低位发热量的计算说明低位发热量(LHV,Low Calorific Value)指的是在天然气完全燃烧后,单位质量的燃料所释放的总能量,不包括水蒸气凝结释放的热能。
计量单位同样为焦耳/千克(J/kg)或千卡/立方米(kcal/m³)。
低位发热量可以通过高位发热量减去水蒸气凝结热来计算。
水蒸气在燃烧反应中生成,当水蒸气冷却后凝结成液态水,会释放出一定的热量,这部分热量被称为凝结热。
凝结热的计算可以通过水蒸气的质量和燃烧时水蒸气的温度差来估算,通常情况下,用30℃表示水蒸气温度差。
三、高位发热量和低位发热量的应用高位发热量和低位发热量的计算结果在能源行业,特别是天然气供应、应用以及经济效益等方面有着广泛的应用。
(一)天然气贸易与定价高位发热量和低位发热量可以用于天然气的贸易和定价。
天然气的价格通常和其能量含量有关,因此了解天然气的高位发热量和低位发热量可以帮助买卖双方确定合理的交易价格。
高位发热量的计算公式
高位发热量的计算公式高位发热量是指单位质量物体升高单位温度所释放的热量。
计算高位发热量的公式为:高位发热量 = 燃料燃烧释放的热量 / 燃料的质量燃料的燃烧释放的热量可以通过实验测定或者查找相关数据获得。
在实验中,一般使用燃烧弹量热计或者燃烧热测定仪器来测定燃料的燃烧释放的热量。
燃烧弹量热计是一种常用的测定燃料燃烧释放热量的设备,它通过将燃料燃烧后释放的热量转化为弹丸的动能来测定。
燃料的质量可以通过称重仪器来测定。
在实验中,需要将待测燃料放置于燃烧热测定仪器中,并记录下燃料的质量。
通过以上实验数据,我们可以得到燃料的燃烧释放的热量和燃料的质量,进而计算得到燃料的高位发热量。
高位发热量是衡量燃料燃烧能力的重要指标之一。
不同燃料的高位发热量不同,直接影响到燃料的燃烧效率和能源利用率。
高位发热量越高,表示单位质量燃料燃烧所释放的热量越大,燃烧效率越高,能源利用率也越高。
燃料的高位发热量对于能源领域的研究和应用具有重要意义。
在能源开发和利用过程中,科学计算燃料的高位发热量能够帮助我们评估燃料的燃烧性能和能源利用效果,选择合适的燃料以提高能源利用率,减少燃料消耗。
燃料的高位发热量还与环境保护有关。
高位发热量低的燃料燃烧后释放的热量较少,相应的燃烧产物也较少,对环境的污染相对较小。
因此,在环境保护方面,选择高位发热量较低的燃料也是一个重要的考虑因素。
高位发热量是衡量燃料燃烧能力的重要指标,其计算方法可以通过实验测定燃料的燃烧释放的热量和燃料的质量,进而得到。
高位发热量的大小直接影响到燃料的燃烧效率和能源利用率,对于能源领域的研究和应用具有重要意义。
电梯发热量计算公式
电梯发热量计算公式电梯,作为现代城市交通的重要组成部分,为人们提供了便捷的垂直运输方式。
然而,我们是否曾想过,电梯在运行过程中会产生热量?那么,如何计算电梯的发热量呢?电梯发热量的计算公式可以表达为:发热量= 电梯运行时间× 电梯额定功率 × 发热系数。
电梯运行时间是指电梯在一段时间内的运行总时间,通常以小时为单位。
可以通过电梯的运行记录或者实时监测来获取这个数值。
电梯额定功率是指电梯在额定负载下的功率,通常以千瓦(kW)为单位。
电梯的额定功率可以通过电梯的技术参数或者相关资料来获取。
发热系数是指电梯单位时间内产生的热量与电梯额定功率之间的比例关系。
发热系数可以根据电梯的品牌、型号以及运行状态来确定。
一般来说,不同品牌、型号的电梯发热系数会有所差异。
通过以上计算公式,我们可以得出电梯在一段时间内的发热量。
这个发热量的大小与电梯的运行时间、额定功率以及发热系数密切相关。
电梯发热量的计算对于电梯的设计、运维和安全管理都具有重要意义。
首先,了解电梯的发热量可以帮助设计人员合理选择电梯的散热装置,确保电梯的正常运行。
其次,运维人员可以通过监测电梯的发热量,及时发现异常情况,采取相应措施,保障电梯的安全运行。
最后,对于电梯的安全管理来说,了解电梯的发热量可以帮助制定合理的安全措施,避免因过高的温度引发事故。
电梯发热量的计算公式为我们提供了一种简单而有效的方法来评估电梯的运行状况。
通过合理计算电梯的发热量,我们可以更好地了解电梯的工作特性,为电梯的设计、运维和安全管理提供科学依据。
让我们共同关注电梯的发热量,为安全、便捷的城市交通贡献一份力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)煤的各种发热量名称的含义
a.煤的弹筒发热量(Qb)
煤的弹筒发热量,是单位质量的煤样在热量计的弹筒内,在过量高压氧(25~35个大气压左右)中燃烧后产生的热量(燃烧产物的最终温度规定为25C)。
由于煤样是在高压氧气的弹筒里燃烧的,因此发生了煤在空气中燃烧时不能进行的热化学反应。
如:煤中氮以及充氧气前弹筒内空气中的氮,在空气中燃烧时,一般呈气态氮逸出,而在弹筒中燃烧时却生成N2O5或NO2等氮氧化合物。
这些氮氧化合物溶于弹筒税种生成硝酸,这一化学反应是放热反应。
另外,煤中可燃硫在空气中燃烧时生成SO2气体逸出,而在弹筒中燃烧时却氧化成SO3,SO3溶于弹筒水中生成硫酸。
SO2、SO3,以及H2SO4溶于水生成硫酸水化物都是放热反应。
所以,煤的弹筒发热量要高于煤在空气中、工业锅炉中燃烧是实际产生的热量。
为此,实际中要把弹筒发热量折算成符合煤在空气中燃烧的发热量。
b.煤的高位发热量(Qgr)
煤的高位发热量,即煤在空气中大气压条件下燃烧后所产生的热量。
实际上是由实验室中测得的煤的弹筒发热量减去硫酸和硝酸生成热后得到的热量。
应该指出的是,煤的弹筒发热量是在恒容(弹筒内煤样燃烧室容积不变)条件下测得的,所以又叫恒容弹筒发热量。
由恒容弹筒发热量折算出来的高位发热量又称为恒容高位发热量。
而煤在空气中大气
压下燃烧的条件湿恒压的(大气压不变),其高位发热量湿恒压高位发热量。
恒容高位发热量和恒压高位发热量两者之间是有差别的。
一般恒容高位发热量比恒压高位发热量低8.4~20.9J/g,实际中当要求精度不高时,一般不予校正。
c.煤的低位发热量(Qnet)
煤的低位发热量,是指煤在空气中大气压条件下燃烧后产生的热量,扣除煤中水分(煤中有机质中的氢燃烧后生成的氧化水,以及煤中的游离水和化合水)的汽化热(蒸发热),剩下的实际可以使用的热量。
同样,实际上由恒容高位发热量算出的低位发热量,也叫恒容低位发热量,它与在空气中大气压条件下燃烧时的恒压低位热量之间也有较小的差别。
d.煤的恒湿无灰基高位发热量(Qmaf)
恒湿,是指温度30C,相对湿度96%时,测得的煤样的水分(或叫最高内在水分)。
煤的恒湿无灰基高位发热量,实际中是不存在的,是指煤在恒湿条件下测得的恒容高位发热量,除去灰分影响后算出来的发热量。
恒湿无灰基高位发热量是低煤化度煤分类的一个指标。
(3)煤的弹筒发热量的测试要点见GB213-87。
(4)煤的高位发热量计算
煤的高位发热量计算公式为:
Qgr,ad=Qb,ad-95Sb,ad-aQb,ad
式中:
Qgr,ad——分析煤样的高位发热量,J/g;
Qb,ad——分析煤样的弹筒发热量,J/g;
Sb,ad——由弹筒洗液测得的煤的硫含量,%;
95——煤中每1%(0.01g)硫的校正值,J/g;
a——硝酸校正系数。
Qb,ad≤16700J/g,a=0.001
16700J/g<Qb,ad<25100J/g,a=0.0012
Qb,ad>25100J/g ,a=0.0016
当Qb,ad〉16700J/g,
或者12500J/g<Qb,ad<16700J/g,同时,Sb,ad≤2%时,
可用St,ad代替Sb,ad。
(5)煤的低位发热量的计算
Qnet,ad=Qgr,ad-0.206Had-0.023Mad
式中:
Qnet,ad——分析煤样的低位发热量,J/g;
Qgr,ad——分析煤样的高位发热量,J/g;
Had——分析煤样氢含量,%;
Mad——分析煤样水分,%。
(6)煤的各种基准发热量及其换算
a.煤的各种基准得发热量
如上所述,煤的发热量有弹筒发热量、高位发热量和低位发
热量,每一种发热量又有4种基准,所以煤的不同基准的各种发热量有3×4=12种表示方法,即:
弹筒发热量4种表示方式:
Qb,ad——分析基弹筒发热量;
Qb,d——干燥基弹筒发热量;
Qb,ar——收到基弹筒发热量;
Qb,daf——干燥无灰基弹筒发热量。
高位发热量4种表示形式:
Qgr,ad——分析基高位发热量;
Qgr,d——干燥基高位发热量;
Qgr,ar——收到基高位发热量;
Qgr,daf——干燥无灰基高位发热量。
低位发热量4种表示形式:
Qnet,ad——分析基低位发热量;
Qnet,ar——收到基低位发热量;
Qnet,daf——干燥无灰基低位发热量。
b.煤的各种基准的发热量间的换算
煤的各种基准的发热量间的换算公式和煤质分析中各基准的换算公式相似。
如:
Qgr,ad=Qgr,ad×(100-Mar)/(100-Mad)
Qgr,d=Qgr,ad×100/(100-Mad)
Qgr,daf=Qgr,ad×100/(100-Mad-Aad-CO2,d)
式中:
CO2,d——分析煤样中碳酸盐矿物质中CO2的含量(%),当CO2含≤2%时,此项可略去不计
Qgr,maf=Qgr,ad×(100-M)/(100-Mad-Aad-Aad×M/100)
式中:
Qgr,maf——恒温无灰基高位发热量;
M——恒湿条件下测得的水分含量,%。
以收到状态单位质量的煤燃烧后产生的热量。
收到基As received basis 已收到状态的煤为基准
应用基ar
空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad
分析基
干燥基Dry basis 以假想无水状态的煤为基准 d 干基
1、恒容低位发热量
煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中:
Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g);
Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%;
Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;
Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%;
206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g);
23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。
如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm
式中:
Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g );
Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%;
Mcwm——水煤浆水分的质量分数,%
其余符号意义同前。
2、高位发热量基的换算
煤的各种不同基的高位发热量按下式换算:
Qgr,ar=Qgr,ad×
Qgr,d=Qgr,ad×
Qgr,daf=Qgr,ad×
式中:
Qgr——高位发热量,单位为焦耳每克(J/g);
Aad——空气干燥基煤样灰分的质量分数,%
Ar,ad,d,daf——分别代表收到基、空气干燥基、干燥基和干燥无灰基。
其余符号意义同前。
3、低位发热量基的换算
煤的各种不同水分基的恒容低位发热量按下式换算:
Qnet,v,M=(Qgr,v,ad-206Had)×-23M
式中:
Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%;
干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt
其余符号意义同前。
煤的水分:煤中的水分有外在水分、内在水分、化合水。
外在水分是由开采、运输和储存过程中机械作用附着在煤粒表面或大毛细孔中的水,在空气中这类水分会不断蒸发。
内在水分是吸附或凝聚在煤粒内部细毛细孔中的水,它的含量与煤化程度有关,在室温条件下不易除去。
化合水又叫结晶水,它是与煤中无机化合物结合的水,如硫酸钙(CaSO4·2H20)、高岭土(Al2O3·2SiO2·2H20)等。
它们通常要在200℃以上才能分解析出。
全水分(Mt),是煤中所有内在水分和外在水分的总和,也常用Mar表示。
通常规定在8%以下。
(收到基水分)空气干燥基水分(Mad),是指煤在空气干燥状态下所含的水分。
也可以认为是内在水分。
(分析基水分)
收到基(MAR):以实际收到的煤为基准(含水分、灰分),
又称应用基。
分析基(MAD):以空气干燥状态的煤为基准,表示煤中
各成分的百分数的方法。