三中七年级下学期期中数学试卷真题

合集下载

七年级下期中数学试卷3含答案解析

七年级下期中数学试卷3含答案解析

七年级(下)期中数学试卷一、选择题(共9小题,每小题2分,满分18分)1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24 D.(x3)3=x62.计算(﹣a+b)2的结果正确的是()A.a2+b2B.a2+ab+b2C.a2+2ab+b2 D.a2﹣2ab+b23.下列长度的三条线段能组成三角形的是()A.3,4,5 B.2,3,5 C.3,4,8 D.4,4,94.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a,b,c大小关系是()A.b<a<c B.b<c<a C.c<b<a D.a<c<b5.如图,直线a∥b,∠1=56°,∠2=37°,则∠3的度数为()A.87°B.97°C.86°D.93°6.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°7.如图,直线a∥b,直线c与直线a、b分别相交于点A,B,AD⊥b,垂足为D,若∠1=47°,则∠2=()A.57°B.53°C.47°D.43°8.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.9.如图,OA,BA分别表示甲、乙两学生运动的路程S随时间t的变化图象,根据图象判断快者的速度比慢者的速度每秒快()A.1米B.1.5米C.2米D.2.5米二、填空题(本大题共有9小题,每小题2分,共18分)10.0.0000235用科学记数法可表示为______.11.计算:2m=3,4n=8,则2m+2n=______.12.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=______度.13.已知:m2+n2=2,m+n=3,则mn=______.14.如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是______.15.已知:x2+y2+2x+4y+5=0,则x﹣y=______.16.如图,AB∥CD且∠A=25°,∠C=45°,则∠E=______.17.某三角形中一个内角为80°,第二个内角为x°,第三个内角为y°,则y与x之间的关系式为______.18.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有______(填序号).三、计算(本大题共有1小题,共10分)19.计算:(1)()﹣2+0÷(﹣2)﹣2﹣32;(2)(﹣ab3c)•ab3c•(﹣8abc)2.四、先化简,再求值(本大题共有1小题,共12分)20.先化简,再求值:(1)(a+2b)(a﹣2b)+(a+2b)2+4ab,其中a=1,b=;(2)(﹣a2b+2ab﹣b2)÷b+(a+b)(a﹣b),其中a=,b=﹣1.五、作图题(本大题共有1小题,共6分)21.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.六、解答题22.某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)23.如图,∠ABC=90°,∠BCD=120°,∠CDE=30°,试说明AB∥DE.24.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,(______)所以a∥c.(______)又因为∠2+∠3=180°(已知)∠3=∠6(______)所以∠2+∠6=180°,(______)所以a∥b.(______)所以b∥c.(______)25.如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)26.一辆汽车油箱内有油48L,从某地出发,每行1km耗油0.6L,如果设剩油量为y(L),行驶路程x(km),根据以上信息回答下列问题:(1)自变量和因变量分别是什么?(2)写出y与x之间的关系式;(3)这辆汽车行驶35km时,剩油多少升?(4)汽车剩油12L时,行驶了多少千米?2015-2016学年辽宁省丹东市振兴区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共9小题,每小题2分,满分18分)1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24 D.(x3)3=x6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】依据同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方法则计算即可.【解答】解:A、x6÷x3=x3,故A错误;B、(﹣2x)3=﹣8x3,故B正确;C、x6•x4=x10,故C错误;D、(x3)3=x9,故D错误.故选:B.2.计算(﹣a+b)2的结果正确的是()A.a2+b2B.a2+ab+b2C.a2+2ab+b2 D.a2﹣2ab+b2【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:(﹣a+b)2=a2﹣2ab+b2,故选:D.3.下列长度的三条线段能组成三角形的是()A.3,4,5 B.2,3,5 C.3,4,8 D.4,4,9【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7>5,能组成三角形;B中,2+3=5,不能组成三角形;C中,3+4=7<8,不能够组成三角形;D中,4+4=8<9,不能组成三角形.故选A.4.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a,b,c大小关系是()A.b<a<c B.b<c<a C.c<b<a D.a<c<b【考点】负整数指数幂;零指数幂.【分析】根据幂的运算性质进行计算,再进行实数的大小比较即可.【解答】解:a=()﹣3=8,b=(﹣2)2=4,c=(π﹣2015)0=1,∵1<4<8,∴c<b<a,故选C.5.如图,直线a∥b,∠1=56°,∠2=37°,则∠3的度数为()A.87°B.97°C.86°D.93°【考点】平行线的性质;三角形内角和定理.【分析】根据对顶角相等得∠4=∠1=56°,再利用三角形内角和定理计算出∠5,然后根据两直线平行,同位角相等即可得到∠3的度数.【解答】解:如图,∵∠4=∠1=56°,∴∠5=180°﹣∠2﹣∠4=180°﹣37°﹣56°=87°,又∵a∥b,∴∠3=∠5=87°.故选A.6.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【考点】余角和补角.【分析】本题根据互余和互补的概念计算即可.【解答】解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.7.如图,直线a∥b,直线c与直线a、b分别相交于点A,B,AD⊥b,垂足为D,若∠1=47°,则∠2=()A.57°B.53°C.47°D.43°【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.【解答】解:∵AD ⊥b ,∴∠3=90°﹣∠1=90°﹣47°=43°,∵直线a ∥b ,∴∠2=∠3=43°.故选D .8.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h (里面吗)与燃烧时间t (时) 之间的变化情况的图象是( )A .B .C .D .【考点】函数的图象.【分析】一根蜡烛长20厘米,点燃后每小时燃烧4厘米,燃烧时剩下高度h (cm )与燃烧时间t (小时)的关系是:h=20﹣4t (0≤t ≤4),图象是以(0,20),(5,0)为端点的线段.这是因为h=20﹣4t 的图象是直线;而本题条件(0≤t ≤5)决定了它有两个端点,所以,h=20﹣4t (0≤t ≤5)的折线统计图是一条线段.【解答】解:燃烧时剩下高度h (cm )与燃烧时间t (小时)的关系是:h=20﹣4t (0≤t ≤5),图象是以(0,20),(5,0)为端点的线段.故选:C .9.如图,OA ,BA 分别表示甲、乙两学生运动的路程S 随时间t 的变化图象,根据图象判断快者的速度比慢者的速度每秒快( )A .1米B .1.5米C .2米D .2.5米【考点】函数的图象.【分析】根据图象知道甲学生8秒行了64米,乙学生8秒行了(64﹣12)米,再根据路程,速度和时间的关系,即可求出两学生的速度.【解答】解:64÷8﹣(64﹣12)÷8=8﹣52÷8=8﹣6.5=1.5(米);答:快者的速度比慢者的速度每秒快1.5米.故选B二、填空题(本大题共有9小题,每小题2分,共18分)10.0.0000235用科学记数法可表示为 2.35×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 023 5用科学记数法可表示为2.35×10﹣5.故本题答案为:2.35×10﹣5.11.计算:2m=3,4n=8,则2m+2n=24.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】直接利用幂的乘方运算法则将原式变形,进而结合同底数幂的乘法运算法则求出答案.【解答】解:∵4n=8,∴22n=8,∴2m+2n=2m•22n=3×8=24.故答案为:24.12.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.13.已知:m2+n2=2,m+n=3,则mn=.【考点】完全平方公式.【分析】把m+n=3两边同时平方后将m2+n2=2整体代入可求得结论.【解答】解:m+n=3,两边同时平方得:(m+n)2=9,m2+2mn+n2=9,把m2+n2=2代入得:2+2mn=9,∴mn=,故答案为:.14.如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是30°.【考点】平行线的性质;直角三角形的性质.【分析】根据三角形外角性质得到∠1=∠A+∠B,则∠B=120°﹣90°=30°,然后根据平行线的性质即可得到∠2的度数.【解答】解:∵∠1=∠A+∠B,∴∠B=120°﹣90°=30°,又∵DE∥BC,∴∠2=∠B=30°.故答案为30°.15.已知:x2+y2+2x+4y+5=0,则x﹣y=1.【考点】配方法的应用;非负数的性质:偶次方.【分析】先将x2+y2+2x+4y+5=0,整理成平方和的形式,再根据非负数的性质可求出x、y的值,进而可求出x﹣y的值.【解答】解:由题意得:x2+y2+2x+4y+5=0=(x+1)2+(y+2)2=0,由非负数的性质得x=﹣1,y=﹣2.则x﹣y=1.故答案为:1;16.如图,AB∥CD且∠A=25°,∠C=45°,则∠E=70°.【考点】平行线的性质.【分析】过点E作EF∥AB,根据两直线平行,内错角相等可得∠AEF=∠A,∠CEF=∠C,再根据∠E=∠AEF+∠CEF计算即可得解.【解答】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠AEF=∠A,∠CEF=∠C,∴∠E=∠AEF+∠CEF=25°+45°=70°.故答案为:70°.17.某三角形中一个内角为80°,第二个内角为x°,第三个内角为y°,则y与x之间的关系式为y=﹣x+100.【考点】三角形内角和定理.【分析】由三角形内角和定理可求得答案.【解答】解:在三角形中,由三角形内角和为180°可得:x+y+80=180,∴y=﹣x+100,故答案为:y=﹣x+100.18.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有①,②,④(填序号).【考点】函数的图象.【分析】根据图象的纵坐标,可判断①,根据图象的横坐标,可判断②,根据图象的横坐标、纵坐标,可判断②③.【解答】解:①由图象的纵坐标可以看出学校离小明家1000米,故①正确;②由图象的横坐标可以看出小明用了20到家,故②正确;③由图象的纵横坐标可以看出,小明前10分钟走的路程较少,故③错误;④由图象的纵横坐标可以看出,小明后10分钟比前10分钟走得快,故④正确;故答案为:①,②,④.三、计算(本大题共有1小题,共10分)19.计算:(1)()﹣2+0÷(﹣2)﹣2﹣32;(2)(﹣ab3c)•ab3c•(﹣8abc)2.【考点】单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质分别化简求出答案;(2)利用积的乘方运算法则以及结合单项式乘以单项式运算法则求出答案.【解答】解:(1)()﹣2+0÷(﹣2)﹣2﹣32=9+1÷﹣9=4;(2)(﹣ab3c)•ab3c•(﹣8abc)2=(﹣ab3c)•ab3c•64a2b2c2=﹣32a4b8c4.四、先化简,再求值(本大题共有1小题,共12分)20.先化简,再求值:(1)(a+2b)(a﹣2b)+(a+2b)2+4ab,其中a=1,b=;(2)(﹣a2b+2ab﹣b2)÷b+(a+b)(a﹣b),其中a=,b=﹣1.【考点】整式的混合运算—化简求值.【分析】(1)原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a 与b的值代入计算即可求出值;(2)原式利用多项式乘以单项式,平方差公式化简,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【解答】解:(1)原式=a2﹣4b2+a2+4ab+4b2+4ab=2a2+8ab,当a=1,b=时,原式=2;(2)原式=﹣a2+2a﹣b+a2﹣b2=2a﹣b﹣b2,当a=,b=﹣1时,原式=1+1﹣1=1.五、作图题(本大题共有1小题,共6分)21.作图题:已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.【考点】作图—基本作图.【分析】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【解答】解:作法:①做∠DO'B'=∠AOB;②在∠DO'B'的外部做∠A'OD=∠AOB,∠A'O'B'就是所求的角.六、解答题22.某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)【考点】整式的混合运算;代数式求值.【分析】把阴影部分上移与右移,得出长为3a+4a,宽为a+2a的长方形,由此求得面积即可.=(a+2a)(3a+4a)=3a•7a=21a2(平方米),【解答】解:根据题意得:S阴影则修建草坪投资的数为100×21a2=2100a2(元)答:学校为是设草坪一共需投资2100a2元.23.如图,∠ABC=90°,∠BCD=120°,∠CDE=30°,试说明AB∥DE.【考点】平行线的判定.【分析】先由平角的定义求得∠DCE,然后依据三角形的内角和定理求得∠BED=90°,最后依据平行线的判定定理证明即可.【解答】解:∠DCE=180°﹣120°=60°,又∵∠CDE=30°,∴∠DEB=180°﹣30°﹣60°=90°.∴∠ABC+∠DEB=180°.∴AB∥DE.24.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行与同一条直线的两条直线平行)【考点】平行线的判定.【分析】依据同角的补角相等可证明∠1=∠4,依据平行线的判定定理可证明a∥c,依据对顶角的性质和等量代换可证明∠2+∠6=180°,最后依据平行线的判定定理和平行公理的推论进行证明即可.【解答】解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行与同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行与同一条直线的两条直线平行.25.如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)【考点】函数的图象.【分析】(1)根据图象看相对应的y的值即可.(2)休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行.(3)这段时间的平均速度=这段时间的总路程÷这段时间.【解答】解:(1)看图可知y值为:4km,9km,15km,故9时,10时30分,12时所走的路程分别是4km,9km,15km;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:10.5﹣10=0.5小时=30分钟;(3)根据求平均速度的公式可得:(15﹣9)÷(12﹣10.5)=4千米/时.26.一辆汽车油箱内有油48L,从某地出发,每行1km耗油0.6L,如果设剩油量为y(L),行驶路程x(km),根据以上信息回答下列问题:(1)自变量和因变量分别是什么?(2)写出y与x之间的关系式;(3)这辆汽车行驶35km时,剩油多少升?(4)汽车剩油12L时,行驶了多少千米?【考点】一次函数的应用.【分析】(1)根据自变量、因变量的定义即可得出结论;(2)根据“剩油量=原有油量﹣每千米耗油量×路程”即可得出y关于x的关系式,令y=0,可求出自变量x的最大值;(3)将x=35代入(2)中的函数关系式中,求出y值即可;(4)将y=12代入(2)中的函数关系式中,求出x值即可.【解答】解:(1)自变量为行驶的路程;因变量为油箱剩油量.(2)由已知得:y=48﹣0.6x,令y=0,则有48﹣0.6x,解得:x=80.故y与x之间的关系式为y=﹣0.6x+48(0≤x≤80).(3)将x=35代入到y=﹣0.6x+48中得:y=﹣0.6×35+48=27.故这辆汽车行驶35km时,剩油27升.(4)将y=12代入到y=﹣0.6x+48中得:12=﹣0.6x+48,解得:x=60.故汽车剩油12L时,行驶了60千米.2016年9月19日。

人教版数学七年级下学期期中测试卷三(含答案及解析)

人教版数学七年级下学期期中测试卷三(含答案及解析)

人教版数学七年级下学期期中测试卷三一、选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.个B.2 个C.3 个D.4 个4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a65.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)26.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.18.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()种B.3 种C.4 种D.5 种9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为.14.(3 分)分解因式:ax2﹣ax=.15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为平方米.三、解答题(共72 分)17.(8 分)(1)计算:﹣+ ;(2)计算:(+2)﹣18.(8 分)解方程组:(1);(2).19.(8 分)请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(),∴∠ADC=∠EGC=90°(),∴AD∥EG(),∴∠1=∠2(),=∠3(),又∵∠E=∠1(已知),∴∠2=∠3(),∴AD 平分∠BAC()20.(10 分)如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.21.(10 分)三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是.(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为.22.(10 分)疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?23.(12 分)用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1 块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?24.(14 分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.人教版数学七年级下学期期中测试卷三参考答案与试题解析一.选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.【分析】根据含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.逐一判断可得.【解答】解:A.x+2y=5 是二元一次方程;B.xy=3 中xy 的指数为2,不是二元一次方程;C.3x+y2=5 中y2 的指数为2,不是二元一次方程;D.中不是整式,不是二元一次方程;故选:A.3.(3 分)如图,直线AB 与直线CD 相交于点O,OE⊥3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.A.1个B.2 个C.3 个D.4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0. 是循环小数,属于有理数;0.202020 是有限小数,属于有理数;是分数,属于有理数.无理数有:、共2个.故选:B.4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a6【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a3×a4=a7,故此选项错误;B、a5÷a=a4,故此选项错误;C、(ab2)3=a3b6,故此选项错误;D、(a3)2=a6,正确.故选:D.5.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2【分析】直接利用因式分解的意义分析得出答案.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.6.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,,故选:B.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.1【分析】原式利用多项式乘多项式法则计算,根据结果不含x 的一次项,确定出m 的值即可.【解答】解:原式=x2+(m+8)x+8m,由结果不含x 的一次项,得到m+8=0,解得:m=﹣8,故选:A.8.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3 种C.4 种D.5 种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y 的方程,由x、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=,∵x、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4.所以购买资金恰好用尽的情况下,购买方案有3 种,故选:B.9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第 2 次跳动至点的坐标是(2,1),第4 次跳动至点的坐标是(3,2),第6 次跳动至点的坐标是(4,3),第8 次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n),∴第124 次跳动至点的坐标是(63,62).故选:A.10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【分析】根据平行线的性质即可求解.【解答】解:过E 作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF 内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是﹣2 .【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于 a 的方程,求得a 的值.【解答】解:解不等式5(x﹣2)+8<6(x﹣1)+7 得:x>﹣3.则最小整数解是:﹣2,把x=﹣2 代入方程得:﹣4+2a=3,解得:a=.故答案是:.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为55°.【分析】延长ED 与BC 相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF 和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,延长ED 与BC 相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∵∠CDE=160°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF 中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.14.(3 分)分解因式:ax2﹣ax=ax(x﹣1).【分析】提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为﹣5<m≤﹣1 .【分析】根据已知得出不等式m+1≤2 且m+7≤6,求出两不等式的公共解集,即可得出答案.【解答】解:∵不等式组的解集是2<x<m+7,∴m+1≤2 且m+7≤6 且m+7>2,解得:﹣5<m≤﹣1,故答案是:﹣5<m≤﹣1.16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为56 平方米.【分析】依据平移变换,长草部分可以组成一个长为8 米,宽为7 米的长方形,即可得到其面积.【解答】解:长草部分的面积为7×(10﹣2)=7×8=56(平方米),即长草部分的面积为56 平方米.故答案为:56.三、解答题(共72 分)17.(1)计算:﹣+ ;(2)计算:(+2)﹣.【分析】(1)利用二次根式的性质和立方根的性质进行计算,再算加减即可;(2)首先利用乘法分配律计算乘法,再算加减即可.【解答】解:(1)原式=2﹣2﹣=﹣;(2)原式=2+2 ﹣=2+ .18.解方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:10+6y+3y=1,解得:y=﹣1,把y=﹣1 代入②得:x=2,则方程组的解为;(2),①×2+②×3 得:13x=38,解得:x=,把x=代入①得:y=﹣,则方程组的解为.19.请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E =∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)【分析】根据垂直的定义得出∠ADC=∠EGC=90°,进而利用平行线的判定和性质解答即可.【解答】证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)故答案为:已知;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;等量代换;角平分线的定义.20.如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.【分析】(1)根据角平分线定义和∠ABE=∠BED,即可判断BC 与DE 的位置关系;(2)结合(1)的结论,根据∠ABE=25°,即可求∠ADE 的度数.【解答】解:(1)BC∥DE,理由如下:∵BE 平分∠ABC,∴∠ABE=∠EBC,∵∠ABE=∠BED,∴∠EBC=∠BED,∴BC∥DE;(2)∵BE 平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵BC∥DE,∴∠ADE=∠ABC=50°.21.三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为(5,0)或(﹣1,0).【分析】(1)根据A,B 两点坐标画出坐标系即可.(2)分别作出A,B,C 的对应点A1,B1,C1 即可.(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,求出m 即可.【解答】解:(1)平面直角坐标系如图所示,C(2,1).(2)如图△A1B1C1,即为所求,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).故答案为(a+3,b+2).(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,解得m=5 或﹣1,∴D(5,0)或(﹣1,0).22.疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?【分析】设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由“A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元”列出方程组可求解.【解答】解:设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由,解得:,答:A 品牌一次性医用口罩单价是 2.4 元/个,B 品牌免洗消毒液的单价是60 元/瓶.23.用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?【分析】(1)设恰好用A 型钢板x 块,B 型钢板y 块,根据要制成150 块C 型钢板、180 块D 型钢板,即可得出关于x,y 的二元一次方程组,解之即可得出结论;(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,根据“现需C 型钢板至多150 块,D 型钢板不超过204 块”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出方案的种数;(3)设需要a 块A 型钢板,则需要块B 型钢板,根据D 型钢板不多于45 块,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 和均为正整数,即可得出结论.【解答】解:(1)设恰好用A 型钢板x 块,B 型钢板y 块,依题意,得:,解得:.答:恰好用A 型钢板42 块,B 型钢板54 块.(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,依题意,得:,解得:50≤m≤52,又∵m 为正整数,∴m 可以取50,51,52,∴共有3 种方案.(3)设需要a 块A 型钢板,则需要块B 型钢板,依题意,得:3a+ ≤45,解得:a≤2,又∵a 和均为正整数,∴a=2,∴=39.答:需要2 块A 型钢板,39 块B 型钢板.24.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6| =0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.【分析】(1)根据非负数的性质得a+b=0,a﹣b+6=0,然后解方程组求出a 和 b 即可得到点A 和B 的坐标;(2)由AB∥DE 得∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,所以∠ODE+90°﹣∠FAO=180°,再根据角平分线定义得∠OAN=∠FAO,∠NDM=∠ODE,则∠NDM﹣∠OAN=45°,接着利用∠OAN=90°﹣∠ANO=90°﹣∠DNM,得到∠NDM﹣(90°﹣∠DNM)=45°,所以∠NDM+∠DNM=135°,然后根据三角形内角和定理得180°﹣∠NMD=135°,所以∠NMD=45°;(3)①连接OB,如图3,设F(0,t),根据△AOF 的面积+△BOF 的面积=△AOB 的面积得到•3•t+ •t•3=•3•3,解得t=,则可得到F 点坐标为(0,);②先计算△ABC 的面积=,分类讨论:当P 点在y 轴上时,设P(0,y),利用△ABP 的三角形=△APF 的面积+△BPF 的面积得到•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,所以此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),根据三角形面积公式得•|x+3|•3=,解得x=﹣10 或x=4,从而得到此时P 点坐标.【解答】解:(1)∵(a+b)2+|a﹣b+6|=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,∵AB∥DE,∴∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,∴∠ODE+90°﹣∠FAO=180°,∵AM,DM 分别平分∠CAB,∠ODE,∴∠OAN=∠FAO,∠NDM=∠ODE,∴∠NDM﹣∠OAN=45°,而∠OAN=90°﹣∠ANO=90°﹣∠DNM,∴∠NDM﹣(90°﹣∠DNM)=45°,∴∠NDM+∠DNM=135°,∴180°﹣∠NMD=135°,∴∠NMD=45°,即∠AMD=45°;(3)①连接OB,如图3,设F(0,t),∵△AOF 的面积+△BOF 的面积=△AOB 的面积,∴•3•t+ •t•3=•3•3,解得t=,∴F 点坐标为(0,);②存在.△ABC 的面积=•7•3=,当P 点在y 轴上时,设P(0,y),∵△ABP 的三角形=△APF 的面积+△BPF 的面积,∴•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,∴此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),则•|x+3|•3=,解得x=﹣10 或x=4,∴此时P 点坐标为(﹣10,0),(4,0)综上所述,满足条件的P 点坐标为(0,5);(0,﹣2);(﹣10,0),(4,0).。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

七年级下册期中数学试卷(有答案) (4)

七年级下册期中数学试卷(有答案) (4)

七年级(下)期中数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.07.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y 的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。

七年级下册 期中数学试卷(有答案) (2)

七年级下册 期中数学试卷(有答案) (2)

七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x62.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣57.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.139.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为.12.∠1=35°,则∠1的余角为,补角为.13.计算:a m=3,a n=8,则a m+n=.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为.15.若x2﹣mx+25是完全平方式,则m=.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是.(填序号)能够得到AB∥CD的条件是.(填序号)三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×11118.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+=180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg弹簧长度1212.51313.51414.515y/cm(1)由表格知,弹簧原长为cm,所挂物体每增加1kg弹簧伸长cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为,图2中阴影部分面积为,对照两个图形的面积可以验证公式(填公式名称)请写出这个乘法公式.(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x6【分析】依据同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方法则计算即可.【解答】解:A、x6÷x3=x3,故A错误;B、(﹣2x)3=﹣8x3,故B正确;C、x6•x4=x10,故C错误;D、(x3)3=x9,故D错误.故选:B.【点评】本题主要考查的是同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方,熟练掌握相关法则是解题的关键.2.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选:A.【点评】此题考查常量和变量问题,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可.【解答】解:根据分析可得D的画法正确,故选:D.【点评】此题主要考查了垂线的画法,同学们应熟练掌握垂线画法,此知识考查较多.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;B、原式可化为﹣(x﹣2)(x﹣2),不能用平方差公式计算,故本选项错误;C、原式可化为﹣(2x+1)(2x+1),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选:A.【点评】本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定【分析】直接利用垂线段最短进而得出小明跳远成绩.【解答】解:过点P作PE⊥AC,垂足为E,∵AP=2.3米,∴这次小明跳远成绩小于2.3米.故选:C.【点评】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣5【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴m=1、n=﹣6,则m+n=﹣5,故选:D.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.7.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】依据对顶角的性质、补角的定义、平行线的性质、垂线段的性质以及平行线的定义进行判断即可.【解答】解:①相等的两个角不一定是对顶角,故错误;②若∠1+∠2=180°,则∠1与∠2互为补角,故正确;③同位角不一定相等,故错误;④垂线段最短,故正确;⑤在同一平面内,两条直线的位置关系有平行、相交,故错误;⑥过直线外一点,有且只有一条直线与这条直线平行,故正确;故选:C.【点评】本题主要考查了对顶角的性质、补角的定义、平行线的性质、垂线段的性质,解题时注意:同一平面内,两条直线的位置关系:平行或相交.8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.13【分析】根据完全平方公式即可求出答案.【解答】解:当a+b=3时,原式=(a+b)2=32=9,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.【分析】根据动点P在正方形各边上的运动状态分类讨论△APD的面积即可.【解答】解:有点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8当8≤x≤12时,点P在CB上运动,△APD的面积y=8当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32故选:B.【点评】本题为动点问题的函数图象探究题,考查了当动点到达临界点前后的图象变化,解答时根据临界点画出一般图形分段讨论即可.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为 1.56×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=1.56,10的指数为﹣6.【解答】解:0.000 001 56=1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.∠1=35°,则∠1的余角为55°,补角为145°.【分析】根据余角和补角的定义求出即可.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,补角为180°﹣∠1=145°,故答案为:55°,145°.【点评】本题考查了余角与补角,知道∠1的余角为90°﹣∠1和∠1的补角为180°﹣∠1是解此题的关键.13.计算:a m=3,a n=8,则a m+n=24.【分析】同底数幂相乘,底数不变指数相加.【解答】解:∵a m=3,a n=8,∴a m+n=a m•a n=3×8=24.故答案是:24.【点评】考查了同底数幂的乘法.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为y =4x.【分析】根据三角形的面积公式求出即可.【解答】解:∵△ABC底边BC上的高是8,三角形的底边BC长为x,∴三角形的面积y可以表示为y==4x,故答案为:y=4x.【点评】本题考查了列代数式和三角形的面积,能熟记三角形的面积公式是解此题的关键.15.若x2﹣mx+25是完全平方式,则m=±10.【分析】原式利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2﹣mx+25是完全平方式,∴m=±10,故答案为:±10【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是①④.(填序号)能够得到AB∥CD的条件是②③⑤.(填序号)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为:①④,②③⑤.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×111【分析】(1)根据多项式除以多项式和合并同类项可以解答本题;(2)根据多项式乘多项式、单项式乘多项式可以解答本题;(3)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2=﹣3x2+2x﹣1+3x2=2x﹣1;(2)(x﹣5)(2x+5)+2x(3﹣x)=2x2﹣5x﹣25+6x﹣2x2=x﹣25;(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0=1+4﹣1=4;(4)1122﹣113×111=1122﹣(112+1)×(112﹣1)=1122﹣1122+1=1.【点评】本题考查整式的混合运算、实数的运算、幂的乘方、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.18.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.【分析】分两种情况:①根据同位角相等两直线平行,过D点作AD的平行线即可.②当所作的角在BC下方.【解答】解:(2)EB与AD不一定平行.①当所作的角在BC上方时平行.∵∠EBC=∠A,∴EB∥AD.当所作的角在BC下方,所作的角对称时EB与AD就不平行.【点评】此题主要考查学生对平行线的判定和尺规作图相关知识的理解和掌握,此题难度不大,属于基础题.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=a2﹣4b2﹣a2﹣4ab﹣4b2+4ab=﹣8b2,当b=时,原式=﹣8×=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等)【分析】根据平行线的性质与判定即可求出答案.【解答】解:故答案为:对顶角;DMN;同为角相等,两直线平行;同旁内角互补;已知;∠D;同旁内角互补;两直线平行,内错角相等【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)【分析】(1)根据图象看相对应的y的值即可.(2)休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行.(3)这段时间的平均速度=这段时间的总路程÷这段时间.【解答】解:(1)看图可知y值为:4km,9km,15km,故9时,10时30分,12时所走的路程分别是4km,9km,15km;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:10.5﹣10=0.5小时=30分钟;(3)根据求平均速度的公式可得:(15﹣9)÷(12﹣10.5)=4千米/时.【点评】本题主要考查了实际问题的函数图象,正确理解函数的图象所表示的意义是解决问题的关键,注意休息时表现在函数图象上是与x轴平行的线段.22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.【分析】过P作PG∥AB或延长AP交直线CD于M或延长CP交直线AB于N,利用平行线的性质以及三角形外角性质进行计算即可.【解答】解:(1)过P作PG∥AB,∵AB∥CD,∴AB∥CD∥PG,∴∠A=∠APG,∠C=∠CPG,∴∠APC=APG+∠CPG=∠A+∠C=50°+45°=95°;(2)延长AP交直线CD于M;∵AB∥CD,∴∠A=∠AMC=50°,又∵∠C=45°,∴∠APC=∠AMC+∠C=50°+45°=95°;(3)延长CP交直线AB于N.∵AB∥CD,∴∠C=∠ANC=45°,又∵∠A=50°,∴∠APC=∠ANC+∠A=45°+50°=95°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目的难点在于过拐点作辅助线.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg1212.51313.51414.515弹簧长度y/cm(1)由表格知,弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式.(3)令x=10时,求出y的值即可.(4)令y=20时,求出x的值即可.【解答】解:(1)由表可知:弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm,故答案为:12,0.5;(2)弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(3)当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧总长为17cm.(4)当y=20kg时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点评】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式(填公式名称)请写出这个乘法公式a2﹣b2=(a+b)(a﹣b).(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;②利用平方差公式化成式子相乘的形式即可求解.【解答】解:(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b),平方差,a2﹣b2=(a+b)(a﹣b).(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴15=3(x﹣2y),∴x﹣2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(264﹣1)(264+1)+1=2128﹣1+1=2128.【点评】本题主要考查了平方差公式的几何表示,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.表示出图形阴影部分面积是解题的关键.。

广西南宁市青秀区南宁三中初中部2022-2023学年七年级下学期数学期中试题(含答案)

广西南宁市青秀区南宁三中初中部2022-2023学年七年级下学期数学期中试题(含答案)

2022~2023学年度春季学期期中学业质量监测七年级数学(考试时间:120分钟 满分:120分)注意事项:1.答题前,考生务必将姓名、座位号、考籍号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效。

第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.下列各数中是无理数的是()C.3.14D.2.下列各图中,与互为邻补角的是()A. B. C. D.3.地球上的陆地面积约为,数字149000000用科学记数法A. B. C. D.4.下列方程是一元一次方程的是( )A. B. C. D.5.下列各式正确的是( )6.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,如图,根据刘徽的这种表示方法,观察图①,可推算图②所得到的数值为( )A.2B.C.8D.7.如图,射线,分别与直线交于点A ,B ,,,将射线沿直线向右平移过点时,则的度数是()131∠2∠2149000000km 71.4910⨯81.4910⨯91.4910⨯101.4910⨯2210x -=1y x =+211x =+21x -=3=-2=4=±4=2-8-a b l 144∠=︒266∠=︒a l B 3∠A.66°B.68°C.70°D.72°8.如图,点在的延长线上,下列条件不能判定的是()A. B. C. D.9.平面直角坐标系中,点在轴上,则的值为()A. B. C.2 D.310.已知方程组,则的值是( )A.1 B.2 C.4 D.511.中国古典文学名著《西游记》讲述了孙悟空、猪八戒、沙和尚保护唐僧西天取经,沿途降妖除魔,历经九九八十一难,到达西天取得真经修成正果的故事.现请你欣赏下列描述孙悟空追妖精的数学诗:悟空顺风探妖踪,千里只行四分钟,归时四分行六百,风速多少才称雄?解释:孙悟空顺风去查妖精的行踪,4分钟就飞跃1000里,逆风返回时4分钟走了600里,问风速是多少?()A.50里/分 B.150里/分 C.200里/分 D.250里/分12.折纸是我国的传统文化,折纸不仅和自然科学结合在一起,还发展出了折纸几何学,成为现代几何学的一个分支,折纸过程中既要动脑又要动手.如图,将一长方形纸条首先沿着EF 进行第一次折叠,使得C ,D 两点落在、的位置,再将纸条沿着GF 折叠(GF 与BC 在同一直线上),使得、分别落在、的位置.若,则的度数为( )A.30°B.36°C.45°D.60°第Ⅱ卷二、填空题(本大题共6小题,每小题2分,共12分.)E BC AB CD ∥24∠=∠5B ∠=∠5D ∠=∠180D DAB ︒∠+∠=()2,3M m m -+x m 3-2-2314412x y x y +=⎧⎨+=⎩x y -1C 1D 1C 1D 2C 2C 2D 23EFB EFC ∠=∠GEF ∠13.4的平方根是______.14.如图,按角的位置判断与______是内错角.15.在平面直角坐标系中,把点向右平移1个单位后所得的点的坐标是______.16.把命题“对顶角相等”改写成“如果…那么…”的形式:______.17.某学校将“抖空竹”引入校园大课间活动,如图1是一位同学抖空竹时的一个瞬间,小丽把它抽象成图2的数学问题:已知,,,则的度数是______.图1图218.如图,一只蚂蚁在平面直角坐标系中按箭头所示方向作折线运动,即第一次从原点运动到,第二次从运动到,第三次从运动到,第四次从运动到,第五次从运动到……,按这样的运动规律,经过2023次运动后,蚂蚁所处的坐标是______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)计算:20.(本题满分6分)解方程组:21.(本题满分10分)如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:1∠()2,1-AB CD ∥80EAB ∠=︒110ECD ∠=︒E ∠()2,2H ()2,2H ()4,6I ()4,6I ()6,0J ()6,0J ()8,2K ()8,2K ()10,6L ()()223344-+⨯--÷415343x y x y +=⎧⎨-=-⎩xOy(1)写出三个顶点的坐标;(2)画出向右平移6个单位,再向下平移2个单位后的图形;(3)求的面积.22.(本题满分10分)如图,直线AB ,CD 相交于点O ,OA 平分,,.(1)求的度数;(2)求的度数.23.(本题满分10分)问题情境:活动课上,老师提出如下问题:有一块如图1所示的不规则七边形木板,其边缘,.,是画在该木板上的两条线段,仅用量角器,设计一种方案,说明.下面是“兴趣小组”和“智慧小组”的探究交流过程,请认真阅读并解决所提出的问题.图1展示交流:兴趣小组:如图2,我们小组经过测量,发现,可证.图2ABC △ABC △111A B C △ABC △EOC ∠70EOC ∠=︒OF OE ⊥BOD ∠DOF ∠FE GH ∥90E ∠=︒AB CD AB CD ∥90FBA CDP ︒∠+∠=AB CD ∥理由如下:过点作.则.(依据1)因为,所以.因为,所以.所以,所以.(依据2)所以.(依据3)智慧小组:如图3,我们小组通过测量,发现,也可证明.图3理由如下:连接.因为,所以数学思考(1)请你写出“兴趣小组”交流过程所需要填写的依据:依据1:__________________;依据2:__________________;依据3:__________________;问题解决(2)请你帮助“智慧小组”把未完成的说理过程补充完整.24.(本题满分10分)阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际问题中往往只需求出其正整数解.例:由,得:(、为正整数).要使为正整数,则为正整数,可知:为3的倍数,从而,代入.所以的正整数解为.问题:(1)求方程的正整数解.(2)已知一根木条长7m ,现将木条截成2m 长和1m 长这两种规格,为了不造成浪费,结合上述材料,试说明有几种不同的截法(两种规格均有),并一一列出.25.(本题满分10分)阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:等,而常用的“…”或者“≈”的表示方法都不够百分百准确.E EM CD ∥CDP MEP ∠=∠90FBA CDP ︒∠+∠=90MEP FBA ︒∠+∠=90FED ∠=︒90BEM MEP ︒∠+∠=FBA BEM ∠=∠EM AB ∥AB CD ∥ABE GCD ∠=∠AB CD ∥BC FE GH ∥CBE ∠=⋯2312x y +=2312x y +=1222433x y x -==-x y 243y x =-23x x 3x =2423y x =-=2312x y +=32x y =⎧⎨=⎩328x y +=π材料一:,即,.的整数部分为1.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2可画出如图示意图.解:由图中面积计算,,,.的小数部分,小数部分的平方很小,直接省略,得方程,解得.解决问题:(1的小数部分;(2)利用材料二中的方法,借助面积为5.(画出示意图,标明数据,并写出求解过程)26.(本题满分10分)问题情境在综合与实践课上,同学们以“平行线图形中的角平分线”为背景开展数学活动。

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

云南省昆明市第三中学2023-2024学年七年级下学期期中数学试题

云南省昆明市第三中学2023-2024学年七年级下学期期中数学试题

云南省昆明市第三中学2023-2024学年七年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.16 的平方根是( )A .8B .256C .±4D .42.在平面直角坐标中,点(2,3)M -在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在5π-这6个数中,无理数有( ) A .4个 B .3个C .2个D .1个 4.下列哪个数是不等式2(1)30x -+<的一个解?( )A .-3B .12-C .13D .25.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >6.用代入消元法解关于x ,y 的方程组43231x y x y =-⎧⎨-=-⎩时,代入正确的是( ) A .2(43)31y y --=-B .4331y y --=-C .4331y y --=D .2(43)31y x y --=7.过A(4,-2)和B(-2,-2)两点的直线一定( )A .垂直于x 轴B .与y 轴相交但不平行于x 轴C .平行于x 轴D .与x 轴,y 轴平行8.《孙子算经》中这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.求笼中各有几只鸡和兔?设鸡为x 只,兔为y 只,下列方程组正确的是( )A .352494x y x y +=⎧⎨+=⎩B .35494x y x y +=⎧⎨+=⎩C .235494x y x y +=⎧⎨+=⎩D .243594x y x y +=⎧⎨+=⎩ 9.已知63483(1)x x x -≤-<-,其解集在数轴上表示正确的是( )A .B .C .D .102的值是在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 11.某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A .8B .6C .7D .912.方程组3522718x y a x y a -=⎧⎨+=-⎩的解x ,y 的值互为相反数,则a 的值为( ) A .12 B . 3.6- C .8 D .2.513.对于二元一次方程组2516x y x y +=⎧⎨-=⎩①②,我们把x ,y 的系数和方程右边的常数分离出来组成一个矩阵251116⎛⎫ ⎪-⎝⎭,用加减消元法解二元一次方程组的过程,就是对方程组中各方程中未知数的系数和常数项进行变换的过程,若将②×5,则得到矩阵2515530⎛⎫ ⎪-⎝⎭,用加减消元法可以消去y ,如解二元一次方程组341232x y x y -=⎧⎨-=⎩时,我们用加减消元法消去x ,得到的矩阵应是( )A .341232-⎛⎫ ⎪-⎝⎭B .91238128-⎛⎫ ⎪-⎝⎭C .682696-⎛⎫ ⎪-⎝⎭D .2515530⎛⎫ ⎪-⎝⎭14.用大小、形状完全相同的长方形纸片在直角坐标系中摆成如图所示的图案,已知()1,5A -,则点B 的坐标为( )A .()4,2-B .2014,33⎛⎫- ⎪⎝⎭C .()6,5-D .1411,33⎛⎫- ⎪⎝⎭15.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟它从原点运动到()1,0,然后按箭头所示的路线运动,且每分钟运动1个单位长度,则在2023分钟后这个粒子所处位置的坐标是( )A .()44,1B .()15,1C .()44,43D .()45,43二、填空题16.()32A -,向右平移3个单位,再向下平移5个单位得到B 点,则点B 的坐标是 .17 4.868≈≈ .18.满足不等式组2501x x -≤⎧⎨>⎩的整数解是 . 19.小亮解方程组2212x y x y +=⎧⎨-=⎩● 的解为5x y ★=⎧⎨=⎩,由于不小心,滴上了两滴墨水刚好遮住了两个数●和★,请你帮他找回●这个数, ●= .三、解答题20()202411-+21.解下列方程组:(1)416y x x y =-⎧⎨+=-⎩; (2)435328x y x y +=⎧⎨-=⎩. 22.已知1x =,y 是4的平方根,且y x x y -=-,求x y +的值.23.解不等式(组).(1)243x x +≥,并在数轴上表示出它的解集. (2)()3532231318x x x x --⎧≤-⎪⎨⎪--<-⎩,并在数轴上表示出它的解集.24.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及ABC V 的顶点都在格点上.(1)点A 的坐标为______.(2)将ABC V 先向下平移2个单位长度,再向右平移5个单位长度得到111A B C △,画出111A B C △.(3)计算111A B C △的面积.25.汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲、乙两种货车的运货情况(每辆车都满载)如下表:(1)甲、乙两种货车每辆满戟分别可装多少吨货物?(2)若货主需要租用该公司的甲种货车8辆,乙种货车6辆,刚好运完这批货物(每辆车都满载),若按每吨付运费50元,则货主应付运费多少元?(3)若货主共有20吨货,计划租用该公司的货车(每辆车都满载)正好把这批货运完,则该汽车公司共有哪几种运货方案?26.云路中学计划在百日誓师大会中奖励学习成绩进步的学生,决定购买某一品牌的钢笔和自动铅笔,到文教店查看定价后发现,购买1支钢笔和5支自动铅笔共需50元,购买3支钢笔和2支自动铅笔共需85元.(1)求该品牌的钢笔、自动铅笔每支的定价分别是多少元;(2)如果学校需要自动铅笔的个数是钢笔的个数的2倍还多5个,且学校购买钢笔和自动铅笔的总费用不超过550元,那么该校最多可购买多少支该品牌的钢笔?27.某家电商场计划用9万元从生产厂家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

2022-2023学年云南省昆明三中七年级(下)期中数学试卷(含解析)

2022-2023学年云南省昆明三中七年级(下)期中数学试卷(含解析)

2022-2023学年云南省昆明三中七年级(下)期中数学试卷一、单项选择题:本大题共8小题,每小题4分,共32分。

1.下列各数中:﹣,,3.14159,,,0.,,,2.121122111222…无理数有()个.A.3B.4C.5D.62.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40°B.50°C.60°D.140°3.将点P(﹣2,﹣3)向左平移1个单位长度,再向上平移3个单位长度,则所得的点的坐标为()A.(﹣3,﹣6)B.(﹣1,6)C.(﹣3,0)D.(﹣1,0)4.有下列四个命题:①对顶角相等;②等角的补角相等;③如果b∥a,c∥a,那么b∥c;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.其中是真命题的有()A.4个B.3个C.2个D.1个5.如果3x3m﹣2n﹣4y n﹣m+12=0是二元一次方程,那么m、n的值分别为()A.2、3B.2、1C.﹣1、2D.3、46.如图,数轴上,AB=AC,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.B.C.D.7.将周长为7的△ABC沿BC方向平移,得到△DEF,若四边形ABFD的周长为13,则△ABC沿BC方向平移的距离为()A.4B.3C.2D.18.将一张面值100元的人民币,兑换成10元或20元的零钱,总换方案有()A.9种B.8种C.7种D.6种二、填空题:本大题共6小题,每小题3分,共18分。

9.如果的平方根是±3,则a=.10.把命题“等角的补角相等”改写成“如果…那么…”的形式是.11.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=15°,则∠2=度.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =70°,则∠AED′等于.14.甲乙两人同时解方程组,甲正确解得,乙因抄错了c,解得.则a=,b=,c=.三.解答题:共50分。

2020-2021学年黑龙江省齐齐哈尔三中七年级第二学期期中数学试卷及参考答案

2020-2021学年黑龙江省齐齐哈尔三中七年级第二学期期中数学试卷及参考答案

齐齐哈尔三中2020—2021学年度初一下学期数学期中考试题一、选择题(每题3分,共计30分)1.在同一平面内,不同的两条直线的位置关系是( )A .平行、相交B .平行、垂直C .相交、垂直D .相交、垂直、平行2.若一个数的平方根等于它本身,则这个数是( )A .0B .1C .0或1D .0或1±3.下列式子正确的是( )A 1.1=±B 2=-C .23=± D 92= 4.P 为直线l 上的一点,Q 为l 外一点,下列说法不正确的是( )A .过P 可画直线垂直于lB .过Q 可画直线垂直于lC .过P 可画直线平行于lD .过Q 可画直线平行于l5.如图,在下列四组条件中,能判定AB CD ∥的是( )A .12∠=∠B .34∠=∠C .180BAD ABC ∠+∠=︒D .ABD BDC ∠=∠6.设n 为正整数,且1n n <<+,则n 的值为( )A .5B .6C .7D .87.下列命题中,真命题的个数是( )①对顶角相等②同位角相等③经过一点有且只有一条直线与已知直线垂直④经过一点有且只有一条直线与这条直线平行A .1个B .2个C .3个D .4个8.已知:如图,12∠=∠,若要有34∠=∠,则需要( )A .13∠=∠B .23∠=∠C .14∠=∠D .AB CD ∥9.如图:AB DE ∥,45B ∠=︒,140D ∠=︒,C ∠的度数为( )A .75°B .80°C .85°D .90°10.如图,OP QR ST ∥∥下列各式中正确的是( )A .23180∠+∠+∠=︒B .12390∠+∠-∠=︒C .12390∠-∠+∠=︒D .231180∠+∠-∠=︒二、填空题(每题3分,共计30分)11的平方根是______.12______.13.点()2,1P -向上平移2个单位后的点的坐标为______.14.如图,AB CD ∥,139∠=︒,C ∠和D ∠互余,则B ∠=______°.15.如图,已知AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,EG 平分BEF ∠,若150∠=︒,则2∠=______°.16.若3270a b +-==______.17.若点M 到x 轴的距离为3,到y 轴的距离为5,则点M 的坐标为______.18.如图,90C ∠=︒,将直角三角形ABC 沿着射线BC 方向平移5cm ,得A B C '''△,已知3BC cm =,4AC cm =,则阴影部分的面积为______2cm .19.21a -与4a +都是x 的平方根,则x =______.20.在平面直角坐标系中,对于点(),P a b ,我们把()1,1Q b a -++叫做点P 的伴随点,已知1A 的伴随点为2A ,2A 的伴随点为3A ,…,这样依次下去得到1A ,2A ,3A ,…,n A ,若1A 的坐标为()3,1,则2019A 的坐标为______.三、解答题(60分)21.计算(本题8分)(123.14π-+(2))11 22.解方程组(本题10分)(1)34225x y x y +=⎧⎨-=⎩(2)1323334m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩ 23.(本题8分)已知:如图,把△ABC 向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''△.(1)直接写出A ',B ',C '的坐标;(2)画出A B C '''△;(3)直接写出A B C '''△的面积;(4)点P 在y 轴上,若△BCP 与△ABC 的面积相等,直接写出点P 的坐标.24.(本题8分)如图,已知BD AC ⊥,EF AC ⊥,垂足为D 、F ,12∠=∠.请将证明ADG C ∠=∠过程填写完整.证明:∵BD AC ⊥,EF AC ⊥(已知)∴BDC EFC ∠=∠= ① °(垂直定义)∴BD ∥ ② ( ③ )∴23∠=∠( ④ )又∵12∠=∠(已知)∴1∠= ⑤ (等量代换)∴DG ∥ ⑥ ( ⑦ )∴ADG C ∠=∠( ⑧ )数学期中考试题答案一、选择题A A D C D D A D C D二、填空题11. 124 13.()2,3-14.129 15.65 16.1 17.()5,3或()5,3-或()5,3-或()5,3--18.14 19.9或81 20.()3,1- 三、解答题21.(1) 3.14π-(222.(1)21x y =⎧⎨=-⎩ (2)1812m n =⎧⎨=⎩23.(1)()4,0A '()1,1B '-- ()3,1C ' (2)略 (3)6 (4)()0,1或()0,5- 24.(1)90(2)EF (3)同位角相等,两直线平行 (4)两直线平行,同位角相等 (5)3∠ (6)BC(7)内错角相等,两直线平行 (8)两直线平行,同位角相等 25.(1)略(2)65° 26.(1)BAE ∠ CAD ∠ (2)略 (3)65 2152n ⎛⎫- ⎪⎝⎭。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

河北省2021年七年级下学期期中测试数学试卷3 (2)

河北省2021年七年级下学期期中测试数学试卷3 (2)

河北省七年级下学期期中测试数学试卷一、选择题(1-6小题,每小题2分,7-12小题,每小题2分,共30分)1.点(﹣2,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在所标识的角中,互为对顶角的两个角是()A.∠2和∠3 B.∠1和∠3 C.∠1和∠4 D.∠1和∠23.方程x2﹣4=0的解是()A.x=2 B.x=﹣2 C.x=±2 D.x=±44.下列实数中,无理数是()A.﹣2 B.0 C.π D.5.计算的结果是()A.±3B.3C.±3 D.36.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150° B.130° C.120° D.100°7.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4 B. 3 C. 2 D. 18.的平方根是()A.3 B.±3 C.D.±9.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65° B.50° C.35° D.25°10.已知平面直角坐标系中两点A(﹣1,O)、B(1,2).连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(2,﹣1),则B的对应点B1的坐标为()A.(4,3)B.(4,1)C.(﹣2,3)D.(﹣2,1)11.如图,下列能判定AB∥CD的条件的个数是()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个12.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.二、填空题(每小题3分,共计24分)13.的相反数是.14.点(﹣3,5)到x轴上的距离是,到y轴上的距离是.15.命题“对顶角相等”的题设是,结论是.16.将点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,则点A′的坐标是.17.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是.18.已知点P(a+3b,3)与点Q(﹣5,a+2b)关于x轴对称,则a=b=.19.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为.20.把一张宽度相等的纸条按如图所示的方式折叠,则∠1=.三、解答题21.已知a=,b3=﹣1,c=,求a﹣b+c的值.22.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.23.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标为A(0,﹣2),B(3,﹣1),C(2,1).(1)请在图中画出△ABC向左平移4个单位长度的图形△A′B′C′;(2)写出点B′和C′的坐标.24.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.25.(10分)(202X春•魏县期中)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,),A12(,).(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.26.(10分)(202X春•魏县期中)如图所示,已知AB∥CD,分别探索下列两个图形中∠P,∠A,∠C的关系,请你写出来,并证明你的结论.七年级(下)期中数学试卷参考答案与试题解析一、选择题(1-6小题,每小题2分,7-12小题,每小题2分,共30分)1.点(﹣2,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:应用题.分析:根据点在第二象限内的坐标特点解答即可.解答:解:∵A(﹣2,1)的横坐标小于0,纵坐标大于0,∴点在第二象限,故选B.点评:本题主要考查了四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.如图,在所标识的角中,互为对顶角的两个角是()A.∠2和∠3 B.∠1和∠3 C.∠1和∠4 D.∠1和∠2考点:对顶角、邻补角.分析:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解答:解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A、∠2和∠3是对顶角,正确;B、∠1和∠3是同旁内角,错误;C、∠1和∠4是同位角,错误;D、∠1和∠2的邻补角是内错角,错误.故选A.点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.方程x2﹣4=0的解是()A.x=2 B.x=﹣2 C.x=±2 D.x=±4考点:解一元二次方程-直接开平方法.专题:计算题.分析:方程变形为x2=4,再把方程两边直接开方得到x=±2.解答:解:x2=4,∴x=±2.故选C.点评:本题考查了直接开平方法解一元二次方程:先把方程变形为x2=a(a≥0),再把方程两边直接开方,然后利用二次根式的性质化简得到方程的解.4.下列实数中,无理数是()A.﹣2 B.0 C.π D.考点:无理数.专题:存在型.分析:根据无理数的定义进行解答即可.解答:解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选C.点评:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.计算的结果是()A.±3B.3C.±3 D.3考点:立方根.专题:探究型.分析:根据立方根的定义进行解答即可.解答:解:∵33=27,∴=3.故选D.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.6.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150° B.130° C.120° D.100°考点:平行线的性质;角平分线的定义.专题:计算题;压轴题.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB 的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选C.点评:此题比较简单,考查的是平行线及角平分线的性质,比较简单.7.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中正确的个数为()A.4 B.3 C. 2 D. 1考点:垂线;角平分线的定义;对顶角、邻补角.分析:对每个命题仔细分析,判断其对错.解答:解:①、两条直线相交,同角的补角一定相等,这两条直线不一定垂直,错误;②、两条直线相交,一角与其邻补角互补且相等,则这两条直线垂直;正确.③、内错角相等,则它们的角平分线互相平行,错误.④、同旁内角互补,则它们的角平分线互相垂直,正确;故选C.点评:本题主要考查角平分线的定义、邻补角的性质和垂线等知识点,不是很难,但是要细心分析.8.的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根.分析:首先根据平方根概念求出=3,然后求3的平方根即可.解答:解:∵=3,∴的平方根是±.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.9.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65° B.50° C.35° D.25°考点:平行线的性质.分析:首先由AC丄AB与∠1=65°,求得∠B的度数,然后由a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∴∠1+∠B=90°,∵∠1=65°,∴∠B=25°,∵a∥b,∴∠2=∠B=25°.故选D.点评:此题考查了平行线的性质与垂直的定义.题目比较简单,解题时要注意数形结合思想的应用.10.已知平面直角坐标系中两点A(﹣1,O)、B(1,2).连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(2,﹣1),则B的对应点B1的坐标为()A.(4,3)B.(4,1)C.(﹣2,3)D.(﹣2,1)考点:坐标与图形变化-平移.分析:根据平移的性质,结合已知点A,B的坐标,知点A的横坐标加上了3,纵坐标减小了1,所以A点的平移方法是:先向右平移3个单位,再向下平移1个单位,则B的平移方法与A点相同,即可得到答案.解答:解:∵A(﹣1,0)平移后对应点A1的坐标为(2,﹣1),∴A点的平移方法是:先向右平移3个单位,再向下平移1个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,2)平移后的坐标是:(4,1).故选B.点评:此题主要考查了点的平移规律与图形的平移,关键是掌握平移规律,左右移,纵不变,横减加,上下移,横不变,纵加减.11.如图,下列能判定AB∥CD的条件的个数是()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个考点:平行线的判定.专题:常规题型.分析:根据平行线的判定定理分别进行判断即可.解答:解:当∠B+∠BCD=180°,AB∥CD;当∠1=∠2时,AD∥BC;当∠3=∠4时,AB∥CD;当∠B=∠5时,AB∥CD.故选C.点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.考点:算术平方根.专题:压轴题;图表型.分析:根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.解答:解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.点评:本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.二、填空题(每小题3分,共计24分)13.的相反数是.考点:实数的性质.分析:求(﹣2)的相反数,根据a的相反数就是﹣a,直解写出然后化简即可.解答:解:的相反数是﹣(﹣2)=﹣+2.故答案为:﹣+2.点评:本题主要考查了相反数的意义,任何数a的相反数就是﹣a,是需要熟练掌握的内容.14.点(﹣3,5)到x轴上的距离是5,到y轴上的距离是3.考点:点的坐标.分析:根据点的横纵坐标确定点到坐标轴x、y的距离.解答:解:∵点的坐标为(﹣3,5),∴点到x轴上的距离等于其纵坐标5的绝对值,即等于5;点到y轴上的距离等于其横坐标﹣3的绝对值,即等于3.所以答案分别填5,3.点评:解答此题的关键是熟记点的横纵坐标的绝对值分别代表点到y轴距离和点到x轴的距离.15.命题“对顶角相等”的题设是两个角是对顶角,结论是这两个角相等.考点:命题与定理.分析:任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论.解答:解:命题“对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题“对顶角相等”的题设是“两个角是对顶角”,结论是“这两个角相等”.点评:本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.16.将点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,则点A′的坐标是(﹣7,3).考点:坐标与图形变化-平移.分析:根据点的平移规律,左右移,横坐标减加,纵不变,上下移,纵坐标加减,横不变即可解的答案.解答:解:点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,∴A′的坐标是(﹣3﹣4,﹣2+5),即:(﹣7,3).故答案为:(﹣7,3).点评:此题主要考查了点的平移规律,正确掌握规律是解题的关键.17.已知:一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是2.考点:平方根.专题:计算题.分析:根据正数有两个平方根,它们互为相反数.解答:解:∵一个正数的两个平方根分别是2a﹣2和a﹣4,∴2a﹣2+a﹣4=0,整理得出:3a=6,解得a=2.故答案为:2.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.已知点P(a+3b,3)与点Q(﹣5,a+2b)关于x轴对称,则a=1b=﹣2.考点:关于x轴、y轴对称的点的坐标.分析:本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于x轴的对称点是(x,﹣y),即关于x轴的对称点,横坐标不变,纵坐标都变成相反数.这样就可以得到关于a,b的方程组,解方程组就可以求出a,b的值.解答:解:根据题意得解得:.点评:这一类题目是需要识记的基础题.解决的关键是对知识点的正确记忆.这类题目一般可以转化为方程或方程组的问题.19.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为30°.考点:平移的性质.分析:根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.解答:解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故答案为:30°.点评:此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.20.把一张宽度相等的纸条按如图所示的方式折叠,则∠1=65°.考点:平行线的性质;翻折变换(折叠问题).专题:计算题.分析:先利用折叠的性质得到∠1=∠2,再根据平行线的性质得∠1+∠2=∠DGE=130°,于是可计算∠1的度数.解答:解:如图,∵矩形ABCD沿EF折叠,∴∠1=∠2,∵AE∥DF,∴∠1+∠2=∠DGE=130°,∴∠1=×130°=65°.故答案为65°.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.三、解答题21.已知a=,b3=﹣1,c=,求a﹣b+c的值.考点:实数的运算.专题:计算题.分析:利用算术平方根,立方根的定义求出a,b,c的值,代入原式计算即可得到结果.解答:解:∵a==3,b=﹣1,c=﹣2,∴a﹣b+c=3+1﹣2=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.考点:平行线的判定与性质.分析:根据平行线的判定得出AB∥CD,从而得出∠3=∠4,即可得出答案.解答:解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠4=∠3=75°(两直线平行,内错角相等).点评:本题主要考查了平行线的判定与性质,比较简单.23.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标为A(0,﹣2),B(3,﹣1),C(2,1).(1)请在图中画出△ABC向左平移4个单位长度的图形△A′B′C′;(2)写出点B′和C′的坐标.考点:作图-平移变换.分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)根据点B′和C′在坐标系中的位置写出两点坐标即可.解答:解:(1)如图所示;(2)由图可知B′(﹣1,﹣1),C′(﹣2,1).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.24.如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B 落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.考点:全等三角形的判定与性质.分析:(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)利用平行线的性质和全等三角形求解.解答:解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.点评:本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.25.(10分)(202X春•魏县期中)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4((2,0),A8(4,0),A12(6,0).(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.考点:规律型:点的坐标.分析:(1)在平面直角坐标系中可以直接找出答案;(2)根据求出的各点坐标,得出规律;(3)点A100中的n正好是4的倍数,根据第二问的答案可以分别得出点A100和A101的坐标,所以可以得到蚂蚁从点A100到A101的移动方向.解答:解:(1)A1(0,1),A3(1,0),A12(6,0);(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.点评:本题主要考查的是在平面直角坐标系中确定点的坐标和点的坐标的规律性.运用由特殊到一般的数学思想方法得到一般规律是解决问题的关键.26.(10分)(202X春•魏县期中)如图所示,已知AB∥CD,分别探索下列两个图形中∠P,∠A,∠C的关系,请你写出来,并证明你的结论.考点:平行线的性质.分析:过点P作PE∥AB,然后根据平行线的性质解答即可.解答:解:如图1,∠A+∠P+∠C=360°,如图2,∠A+∠C=∠P;证明如下:过点P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,如图1,∵∠A+∠APE=180°,∠C+∠CPE=180°,∴∠A+∠P+∠C=360°;如图2,∵∠A=∠APE,∠C=∠CPE,∴∠A+∠C=∠P.点评:本题考查了平行线的性质,此类题目,过拐点作平行线是解题的关键.。

广西壮族自治区南宁市第三中学2021-2022学年七年级下学期期中数学试卷

广西壮族自治区南宁市第三中学2021-2022学年七年级下学期期中数学试卷

…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………2021-2022学年广西南宁三中七年级(下)期中数学试卷第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 下列四个选项中,为无理数的是( )A. −√3B. 13 C. 0 D. −32. 在平面直角坐标系中,点P(−2,√3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 将军要从村庄A 去村外的河边饮马,有三条路可走AB 、AC 、AD ,将军沿着AB 路线到的河边,他这样做的道理是( )A. 两点之间线段最短B. 点到直线的距离C. 两点确定一条直线D. 直线外一点与直线上各点连接的所有线段中,垂线段最短4. 下列方程中,为二元一次方程的是( )A. 2x =3yB. 2x +y =zC. 2x +1=5D. xy =45. 下列说法中,正确的是( )A. 0.4的算术平方根是0.2B. 16的平方根是4C. √64的立方根是4D. (−2)3的立方根是−26. 下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )A. 1个B. 2个C. 3个D. 4个7. 如图,在下列给出的条件中,不能判定AB//DF 的是( )A. ∠A =∠3B. ∠A +∠2=180°○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………C. ∠1=∠4D. ∠1=∠A8. 将一条两边沿互相平行的纸带如图折叠,已知∠α比∠1大30°,则∠α的度数为( )A. 69°B. 70°C. 71°D. 72°9. 若方程组{4x −2y =k +1x −y =2的解x 和y 满足x +y =0,则k 的值为( )A. 4B. 5C. 6D. 710. 在平面直角坐标系中,平行于坐标轴的线段PQ =5,若点P 坐标是(−2,1),则点Q 的坐标不可能是( )A. (3,1)B. (−7,1)C. (−2,−4)D. (2,−6)11. 《孙子算经》是中国古代重要的数学著作,成书大约一千五百年前.卷中举例说明筹算分数算法和筹算开平方法,其中“物不知数”的问题,在西方的数学史里将其称为“中国的剩余定理”.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设木条长x 尺,绳子长y 尺,则根据题意所列方程组是( )A. {y =x +4.50.5y =x −1 B. {y =x +4.5y =2x −1 C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −112. 已知AB//CD ,点E 在BD 连线的右侧,∠ABE 与∠CDE 的角平分线相交于点F ,则下列说法正确的是( )…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………①∠ABE +∠CDE +∠E =360°; ②若∠E =80°,则∠BFD =140°;③如图(2)中,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,则6∠BMD +∠E =360°; ④如图(2)中,若∠E =m°,∠ABM =1n ∠CDF ,则∠M =(m2n )°.A. ①②④B. ②③④C. ①②③D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为______. 14. √5的小数部分是______ .15. 已知在平面直角坐标系中,点M(x +2y,x −y)在第一象限,且点M 到x 轴的距离为2,到y 轴的距离为5,则2x +y 的值为______.16. 如图,点O 是直线AB 上一点,OC 是一条射线,且∠AOC =32°,若过点O 作射线OD ,使OD ⊥OC ,则∠BOD 的度数为______. 17. 如图,在长方形草地内修建了宽为2米的道路,则草地面积为______ 米 2.18. 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列.如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2022个点的坐标为______.三、计算题(本大题共1小题,共6.0分)○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………19. 计算:−12+(−2)3×18−√−273×(−√19).四、解答题(本大题共7小题,共60.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三中七年级下学期期中数学试卷
一、选择题
1. 下面四个图形中,∠1与∠2是对顶角的图形的个数是()
A . 0
B . 1
C . 2
D . 3
2. 的算术平方根是()
A . ±4
B . 4
C . ±2
D . 2
3. 下列各组数中互为相反数的是()
A . ﹣2与
B . ﹣2与
C . ﹣2与
D . 2与|﹣2|
4. 与无理数最接近的整数是()
A . 4
B . 5
C . 6
D . 7
5. 有下列两个命题:①若两个角是对顶角,则这两个角相等;②若一个三角形的两个内角分别为30°和60°,则这个三角形是直角三角形.说法正确的是()
A . 命题①正确,命题②不正确
B . 命题①、②都正确
C . 命题①不正确,命题②正确
D . 命题①、②都不正确
6. 如图,AB∥CD,∠D=∠E=35,则∠B的度数为()
A . 60°
B . 65°
C . 70°
D . 75°
7. 已知点P到x轴距离为3,到y轴的距离为2,则P点坐标可以为()
A . (3,2)
B . (2,3)
C . (﹣3,﹣2)
D . (3,﹣2)
8. 已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
9. 如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()
A . 2个
B . 3个
C . 4个
D . 5个
10. 如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()
A . 50°
B . 55°
C . 60°
D . 65°
二、填空题
11. 27的立方根为________.
12. 如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________
13. 如图,已知直线a∥b,且∠1=60°,则∠2=________.
14. 将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是________.
15. 如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则
﹣|a﹣b|=________.
16. 如果=1.732,=5.477,那么0.0003的平方根是________.
17. 如果a+6和2a﹣15是一个数的平方根,则这个数为________.
18. 已知AB∥x轴,A点的坐标为(3,2),且AB=4,则B点的坐标为________.
三、解答题
19. 计算:
(1)﹣+ ;
(2)+| ﹣1|﹣(+1).
(3)(﹣)2+ ﹣(2﹣)+|2﹣|
20. 求下列各式中x的值.
(1)(x﹣3)2﹣4=21
(2)64x3﹣27=0
(3)125(x+1)3=8.
21. 如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:
①BD∥CE
②DF∥AC.
22. 如图,四边形ABCD各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0).
(1)求这个四边形的面积.
(2)如果把原来的四边形ABCD向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A1B2C3D4,请直接写出平移后的四边形各点的坐标和新四边形的面积.
23. 如图,有三个论断①∠1=∠2;②∠B=∠D;③∠A=∠C,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.
24. 已知点A(﹣5,0),B(3,0).
(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标(要有必要的步骤);
(2)在直角坐标平面上找一点C,能满足S△ABC=16的C有多少个?这些点有什么特征?
25. 已知|2a+b|与互为相反数.
(1)求2a﹣3b的平方根;
(2)解关于x的方程ax2+4b﹣2=0.
26. 如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.。

相关文档
最新文档