运放组成电压跟随器-要注意的问题
使用运算放大器需要注意这6个事项!
![使用运算放大器需要注意这6个事项!](https://img.taocdn.com/s3/m/a46393aeb9d528ea81c77957.png)
使用运算放大器需要注意这6个事项!运算放大器是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
它是一种带有特殊耦合电路及反馈的放大器。
其输出信号可以是输入信号加、减或微分、积分等数学运算的结果,广泛用于信号变换调理、ADC采样前端、电源电路等场合中。
那么使用运算放大器需要注意哪些事项呢?1、注意输入电压是否超限图1是ADI的OP07数据表中的输入电气特性的一部分,可以看到在电源电压15V的条件下,输入电压的范围是13.5V,如果输入电压超出范围,那么运放就会工作不正常,出现一些意料不到的情况。
而有一些运放标注的不是输入电压范围,而是共模输入电压范围,如图1-2是TI的TLC2272数据表的一部分,在单电源+5V的条件下,共模输入范围是0-3.5V.其实由于运放正常工作时,同相端和反相端输入电压基本是一致的(虚短虚断),所以输入电压范围与共模输入电压范围都是一样的意思。
图1-1图1-22、不要在运放输出直接并接电容在直流信号放大电路中,有时候为了降低噪声,直接在运放输出并接去耦电容(如图2-1)。
虽然放大的是直流信号,但是这样做是很不安全的。
当有一个阶跃信号输入或者上电瞬间,运放输出电流会比较大,而且电容会改变环路的相位特性,导致电路自激振荡,这是我们不愿意看到的。
正确的去耦电容应该要组成RC电路,就是在运放的输出端先串入一个电阻,然后再并接去耦电容(如图2-2)。
这样做可以大大削减运放输出瞬间电流,也不会影响环路的相位特性,可以避免振荡。
3、不要在放大电路反馈回路并接电容如图3-1所示,同样是一个用于直流信号放大的电路,为了去耦,不小心把电容并接到了反馈回路,反馈信号的相位发生了改变,很容易就会发生振荡。
所以,在放大电路中,反馈回路不能加入任何影响信号相位的电路。
由此延伸至稳压电源电路,如图3-2,并接在反馈脚的C3是错误的。
为了降低纹波,可以把C3与R1并联,适当增大纹波的负反馈作用,抑制输出纹波。
运放及使用时的注意事项
![运放及使用时的注意事项](https://img.taocdn.com/s3/m/4c09d71aee06eff9aef807f9.png)
及使用时的注意事项集成运算放大器是可以进行运算的直流放大器,但开发它的主要目的是左右的交流信号也能处理。
与用为了进行模拟计算。
如果放大倍数为1,连1MHZ分立元件构成的电路相比,它具有稳定性好、电路计算容易、成本低等很多优点,因而被广泛应用于许多领域。
那么,这种集成运算放大器究竟是怎样构成的呢?本章不打算从深层次角度去解答这一问题,而是从知道后会觉得方便些的想法来探讨它的内部构造。
在用运算放大器组装电路时,经常会碰到一些麻烦,这时,希望大家能参考本章介绍的关于运算放大器各个方面的注意事项。
7.1 运算放大器的内部构造7.1.1 集成运算放大器的演变历史集成运算放大器是线性集成电路中最通用的一种。
线性集成电路的使用范围很广,但要标准化比较困难。
而集成运算放大器与整个线性集成电路相比,在使用范围上相对较窄,因而标准化比较容易。
按照标准化要求,集成运算放大器中有相当大的一部分产品都是非原创品,甚至可以说使用的都是这些非原创品。
集成运算放大器的第一个实用产品μA702的内部电路如图7.1所示。
这种集成运算放大器不使用pnp晶体管制作。
该集成运放具有共模输入电压低、输出振幅小、容易振荡等缺点。
后来发表了改进这些缺点的μA709产品。
μA709的内部电路如图7.2所示。
μA709用得很广泛,至今仍在使用。
但是,μA709有如表7.1所示的许多问题。
μA709推出大约3年后,发表了解决这些问题的运算放大器μA741。
这个产品能进行输出短路保护,消除了锁死现象,可以在内部进行相位补偿,失调补偿可以简单地通过在外部连接可变电阻来进行没有输出短路保护电路需要外接3个元件进行相位补偿,转换速率小,仅为0.25V/μs,共模输入电压小,仅为±10V,没有用于失调补偿的端子,差动输入电压小,仅为±5V,常常发生锁死现象.就在同一时期,国家半导体公司发表了LM301产品。
这个产品差不多与μA741具有相同的特性,但相位补偿需要在外面连接一个电容器,通过改变这个电容器的值来改变带宽,也可以通过前馈相位补偿的方法来扩展带宽,因此有比μA741容易使用的地方。
集成运放的一些注意问题及应用
![集成运放的一些注意问题及应用](https://img.taocdn.com/s3/m/128c54c7aa00b52acfc7ca41.png)
集成运放的一些注意问题1、差动输入级使运放具有尽可能高的输入电阻及共模抑制比。
2、中间放大级由多级直接耦合放大器组成,以获得足够高的电压增益。
3、输出级可使运放具有一定幅度的输出电压、输出电流和尽可能小的输出电阻。
在输出过载时有自动保护作用以免损坏集成块。
输出级一般为互补对称推挽电路。
4、偏置电路为各级电路提供合适的静态工作点。
为使工作点稳定,一般采用恒流源偏置电路。
需要注意的问题(也有误差产生的原因):1) 输入信号选用交、直流量均可,但在选取信号的频率和幅度时,应考虑运放的频响特性和输出幅度的限制。
2) 调零。
为提高运算精度,在运算前,应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。
当运放有外接调零端子时,可按组件要求接入调零电位器RW,调零时,将输入端接地,调零端接入电位器RW,用直流电压表测量输出电压U0,细心调节RW,使U0为零(即失调电压为零)。
如运放没有调零端子,若要调零,可按图7-7所示电路进行调零。
一个运放如不能调零,大致有如下原因:①组件正常,接线有错误。
②组件正常,但负反馈不够强(RF/R1 太大),为此可将RF短路,观察是否能调零。
③组件正常,但由于它所允许的共模输入电压太低,可能出现自锁现象,因而不能调零。
为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况。
④组件正常,但电路有自激现象,应进行消振。
⑤组件内部损坏,应更换好的集成块。
3) 消振。
一个集成运放自激时,表现为即使输入信号为零,亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。
在实验中,可用示波器监视输出波形。
为消除运放的自激,常采用如下措施①若运放有相位补偿端子,可利用外接RC补偿电路,产品手册中有补偿电路及元件参数提供。
②电路布线、元、器件布局应尽量减少分布电容。
③在正、负电源进线与地之间接上几十μF的电解电容和0.01~0.1μF 的陶瓷电容相并联以减小电源引线的影响。
电压跟随器电路工作条件
![电压跟随器电路工作条件](https://img.taocdn.com/s3/m/7675749629ea81c758f5f61fb7360b4c2f3f2a64.png)
电压跟随器电路工作条件电压跟随器是一种常见的电子电路,它的作用是将输入电压的变化复制到输出电压上。
本文将介绍电压跟随器的基本工作原理、工作条件及其应用。
一、电压跟随器的基本工作原理电压跟随器是一种基本的模拟电路,主要由一个晶体管和几个电阻构成。
它的工作原理基于负反馈电路的基本原理。
当输入电压发生变化时,晶体管的工作状态也会随之改变,从而使输出电压跟随着输入电压的变化。
通过适当的设计,可以实现输入与输出电压之间的近乎完全的对应关系。
二、电压跟随器的工作条件1. 适当的电源电压:电压跟随器需要适当的电源电压来确保晶体管和其他元件能够正常工作,一般在设计电路时需要根据元件的规格和参数来确定电源电压。
2. 合适的控制电压范围:电压跟随器的输入电压范围需要在设计时明确,确保输入电压变化时,输出电压能够准确地跟随。
3. 稳定的温度环境:温度对电子元件的性能有很大影响,为了确保电压跟随器的稳定工作,需要保持相对稳定的温度环境。
4. 适当的负载条件:电压跟随器的负载条件也需要考虑,合适的负载可以确保输出电压的稳定性。
5. 合理的元件选择和设计:在设计电压跟随器时需要选择合适的电子元件,并合理设计电路结构以满足工作条件的要求。
三、电压跟随器的应用1. 信号跟随:在一些需要信号跟随的场合,电压跟随器可以起到很好的作用,确保信号的一致性和稳定性。
2. 信号缓冲:电压跟随器也可用于信号缓冲,将输入信号缓冲输出,减小对负载的影响。
3. 电源稳压:电压跟随器还可用于电源稳压电路中,以保证输出电压的稳定性。
4. 温度补偿:在一些需要温度补偿的电路中,电压跟随器可以通过调节输入电压来实现温度补偿效果。
以上就是关于电压跟随器的基本工作原理、工作条件及其应用的介绍。
电压跟随器在各种电子电路中都有着广泛的应用,对于电子工程师和电子爱好者来说是一种非常重要的电路。
希望本文能对您有所帮助。
使用运放构成电压跟随器的稳定性问题
![使用运放构成电压跟随器的稳定性问题](https://img.taocdn.com/s3/m/c1d9d7cfec3a87c24128c41a.png)
[转载]使用运放构成电压跟随器的稳定性问题[转载]使用运放构成电压跟随器的稳定性问题题外话:a:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
(fig1.)运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。
(成为正反溃的状态。
)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。
fig1.电压跟随器和反馈环路2.输入输出端出现相位差的主要原因其原因大致可分为两种:1,由于运算放大器固有的特性2,由于运算放大器以外的反馈环路的特性2.1.运算放大器的特性fig2a及fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。
数据手册中也有这两张曲线图。
如图所示,运算放大器的电压增益和相位随频率变化。
运算放大器的增益与反馈后的增益(使用电压跟随器时为0db)之差,即为反馈环路绕行一周的增益(反馈增益)。
如果反馈增益不足1倍(0db),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中逐渐衰减,理论上不会引起震荡。
反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。
在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。
为此,当环路增益为0db时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。
(fig2b.)如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。
注:数据手册注明「建议使用6db以上的增益」的放大器,不可用作电压跟随器。
运放电压跟随器原理
![运放电压跟随器原理](https://img.taocdn.com/s3/m/7a8b48b0fbb069dc5022aaea998fcc22bdd1437e.png)
运放电压跟随器原理
运放电压跟随器是一种基于运算放大器的电路,其主要功能是将输入信号的电压完全复制到输出端,实现电压的跟随。
运放电压跟随器由一个运放电路组成,通常由一个差分输入级、一个共模输入级和一个输出级构成。
运放电压跟随器的原理是利用运放的差分放大特性来实现输入电压与输出电压的完全一致。
当输入信号施加到差分输入级时,差分输入级会将信号放大,然后将其传递到输出级,再经过输出级的放大,以确保输出电压与输入电压一致。
共模输入级的作用是提供稳定的工作点,增强对输入信号的跟随能力。
实际应用中,运放电压跟随器常用于信号传输、电压匹配和缓冲放大等场合。
其优点是输入阻抗高、输出阻抗低,能够减小负载对输入信号的影响,并确保信号传输的准确性和稳定性。
同时,由于运放电压跟随器能够提供大的放大倍数,也可用于放大微弱信号。
需要注意的是,在实际应用中,为了达到最佳的跟随效果,需要根据具体的应用需求选择合适的运放电路和元件,并进行适当的参数调整和补偿。
巧用LM324运放搭建电压跟随器
![巧用LM324运放搭建电压跟随器](https://img.taocdn.com/s3/m/0721603df18583d049645947.png)
巧用LM324运放搭建电压跟随器LM324四运算放大器要怎么样搭建电压跟随器呢?下面我们用简单的几个范例与电压跟随器电路图与大家讲解下。
示例一:首先是把LM324两个输入端短接,输出有1个mv左右。
但是这个电路有个问题,就是电压跟随器的跟随电压与输入电压之间有着少量的误差值,大概是输出比输入大400mv这样子。
还有5V供电的,当输出端输出值达到3.9v就不能输入端再提升电压输出端也不会再升高了。
示例二:我们先用LM324电压跟随器做一个简略的草图,图片如下所示:上面这个线路图,其实就说明了im324电压跟随器在设计的电路需要非常专业的电子知识才能完成,本文中下面介绍的可以看到当信号在10K以内(-3DB),特性还算可以,10k以后,运放特性急剧下降。
导致波形失真。
另外,这个运放的摆率是0.3V/us。
当输入信号VPP是10MS是输出放大1000倍,其峰值是5V。
由SR=2f*v。
可得f在10K左右。
再一次说明了上述出现的问题,说明了如果电压的板子测试BG,则这个是不通过的如图:这lm324电压跟随器的电压图有个特点内部频率补偿直流电压增益高(约100dB) 电源电压范围宽:单电源(332V) 双电源(1.516V) OPA637,至于参数什么的就不说了,看价格就知道差距了,做的放大电路感觉很简单,做出来效果也很不错。
但今天用了不到1块钱的片子做就感觉问题多。
后来我请教了一个做lm324电压跟随器的朋友,他告诉我应该先把电源安装上电调试,如果是信号又变形了,到50K的时候几乎成斜三角。
那么就应该加大电阻电容的量,这样才能完全形成一个正在的电压跟随器。
至于LM324电压跟随器要怎么做,选择那一套方案比较行之有效,问题解决方法比较简单易行,就看你的选择了。
用运放构成电压跟随器应注意的几问题
![用运放构成电压跟随器应注意的几问题](https://img.taocdn.com/s3/m/fc5211ad453610661ed9f4f1.png)
题外话:用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。
(电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
)图一Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
(Fig1.)运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。
用运放构成电压跟随器应注意的几个问题
![用运放构成电压跟随器应注意的几个问题](https://img.taocdn.com/s3/m/af317aff2b160b4e777fcf24.png)
题外话:用运放构成电压跟随器的电路, 传统教科书仅是简单的把输岀和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本 IC 厂家网站上找到的,希望对实际应用有一点帮助。
(电压跟随器,顾名思义,就是输岀电压与输入电压是相同的,就是说, 数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高, 而输岀阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输岀阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输岀阻抗一般比较高, 通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输岀电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
随器的另外一个好处就是,提高了输入阻抗,这样, 输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在如果真的没有负反馈的作用, 环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊, 度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路, 消除大环路负反馈的带来的弊端。
保证。
图一Q.用电压跟随器使运算放大器保持稳定,须注意哪些问题?A :对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电 压跟随器电压跟随器的电压放大倍 应用电压跟 HI-FI 电路中,关于负反馈的争议已经很久了,其实, 相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大试图通过断开负反馈回路来 但是,由于放大器的末级的工作电流变化很大, 其失真度很难Vout也不例外。
(Figi.)运算放大器理想的运行状态是输出电压和输入电压为同相, 即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算 放大器的输入端和输出端的相位总有差异。
电压跟随器要点
![电压跟随器要点](https://img.taocdn.com/s3/m/51a1969e55270722182ef72b.png)
问题:什么是电位器?电位器是什么意思?电位器是可变电阻器的一种。
通常是由电阻体与转动或滑动系统组成,即靠一个动触点在电阻体上移动,获得部分电压输出。
电位器的作用——调节电压(含直流电压与信号电压)和电流的大小。
电位器的结构特点——电位器的电阻体有两个固定端,通过手动调节转轴或滑柄,改变动触点在电阻体上的位置,则改变了动触点与任一个固定端之间的电阻值,从而改变了电压与电流的大小。
电位器是一种可调的电子元件。
它是由一个电阻体和一个转动或滑动系统组成。
当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。
它大多是用作分压器,这是电位器是一个四端元件。
电位器基本上就是滑动变阻器,有几种样式,一般用在音箱音量开关和激光头功率大小调节电位器是一种可调的电子元件。
它是由一个电阻体和一个转动或滑动系统组成。
当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。
电位器的分类和相关型号(一)按电阻体材料分类:1.线绕电位器:它的电阻体是用电阻丝绕在涂有绝缘材料的金属或非金属板上制成的。
它又可分为通用、精密、大功率、预调试线绕电位器—型号为WX;2.非线绕电位器:可分为实心电位器、膜式电位器。
实心电位器:它又可分为①有机合成—WS,②无机合成—WN,③导电塑料—WD;膜式电位器:它又可分为①碳膜电位器—WT,②金属膜电位器—WJ。
(二)按调节方式分类:①旋转式,②推拉式,③直滑式电位器(三)按电阻值变化规律分类:①直线式,②指数式,③对数式(四)按结构特点分类:单圈,多圈,单联,双联,多联,抽头式,带开关,锁紧型,非锁紧型,贴片式电位器;(五)按驱动方式不同分类:①手动调节电位器,②电动调节电位器。
(六)其它分类方式:①普通,②磁敏,③光敏,④电子,⑤步进电位器。
运算放大器时需要注意的几个重要问题
![运算放大器时需要注意的几个重要问题](https://img.taocdn.com/s3/m/dc61e57cf242336c1eb95e5c.png)
运算放大器时需要注意的几个重要问题以下是我们在使用运算放大器时需要注意的几个重要问题。
1)首先应该好好理解运放的最简模型:从运放的原理来说,我们可以将运放看成是一个压控电压源,其中,运放的输出由受控电压源提供,而受控电压源的控制电压就是输入端的差分电压,如下图所示:2)运放输出端的电流约束仍然遵循Kirchhoff电流定律这里不能认为流过反馈电阻Rf的电流和流过负载电阻RL的电流是相等的,因为电流i是“有机会”流入运放的输出端的,这是由芯片内部的构造决定的,尤其是高精度应用时应该好好提防这一点。
3)使用运放时需要注意由电阻自身杂散电容而产生的影响这个反向比例运算电路的增益函数如下:这里,C1会使得频率特性出现尖峰脉冲,而C2会使得高频领域的增益下降,从而导致频率特性恶化!对于一般的低频应用而言,这个因素是可以“视而不见”的,但是如果需要低噪声环境的话,就需要尽量减小Ri和Rf的阻值,因为这样可以减小杂散电容的影响,或者干脆使用高精度的电阻也行,如果开发成本允许的话。
4)对于反馈系数的量化问题不应该含糊:从这两个图可以看出,虽然他们的增益绝对值是一样的,都是1,说白了这两个电路都可以看作是一个电压跟随器。
显然图(b)的负反馈系数要大,性能应该会更好,但是它防止振荡的能力却不如图(a)的电路,因为它对于信号的变化过于“敏感”。
所以在实际设计电路时,对于反馈系数的量化问题是不能含糊的,它很大程度地决定了系统的“稳”、“快”、“准”这三个方面。
最终的电路设计应该是这三个方面的折中,以此达到传说中的性能最优化。
5)单电源供电时需注意输出电压摆幅的问题:如上图所示,由于是单电源供电,那么运放的两个输入端必须加有直流偏压,而且为了使电路的输出电压的动态范围最大化,一般要求VP=VN=VCC/2。
此外,这里运放的输入、输出端的直流电位不为零,So,需要采用电容(C1、C2)来耦合信号。
6)得注意运放的输入寄生电容:由于运放的内部结构因素,导致运放具有数pF~数十pF的输入寄生电容,这自然使得运放的稳定性变差了,输入寄生电容会和输入电阻一起形成一个容易被人忽略的LPF,倘若输入信号的频率超过一定值,则就会丢失信息。
电压跟随器的问答汇总
![电压跟随器的问答汇总](https://img.taocdn.com/s3/m/1986d33443323968011c9270.png)
电压跟随器的问答汇总Q:电压跟随器的作用?A:电压跟随器提高输入阻抗,降低输出阻抗。
Q:LM2902运放电压跟随器问题请教:输入端是悬空的,而且有10M的电阻作为下拉电阻,输出串联一个10k的电阻,在电阻后边还添加了10uF的电容滤波。
在无任何输入的条件下,输入输出的电压相同,都有0.13V左右。
在没有接入信号时,就有了一定的电压输出,请问怎么消除运放的浮空电压呢?A:我判断你可能是把双电源运放作单电源运放使用了,因为运放的输入失调电压不会有0.13V那么大。
双电源运放通常不是满幅度输出运放,在单电源下工作其输出是不可能到零的,这不是靠调零或下拉电阻之类的办法能够解决的。
看来确实是由于你在单电源条件下使用了不是满幅度输出的双电源运放,建议你改用TLC2274(或TLC2264),这两款运放和LM2902的管脚兼容,在单电源下最大工作电源电压为16V,是满电源幅度输出运放,在轻负载下,它的高、低电平输出电压极其接近工作电源的幅值。
下图是参数表部分(测试条件为﹢5V电源下)——Q:我用的是OPA4132UA运算放大器在前端做了个电压跟随器,在同相端接个电阻接到输入,输出接到反相端,可是在没有输入的情况下(输入端悬空),输出竟然为-14V(OPA4132是用的双电源±15V供电的),测量运放的同相端输入为0,但反相端竟然为-14V,这显然不符合“虚短”。
但是一旦有输入就是正确的,这是什么原因?运放后面连的是一个ADC,当输入运放的同相输入端悬空时,运放的输出端输出的电压高出了ADC允许输入的最大电压,这样当运放同相端没有输入的时候很有可能就会烧坏ADC芯片,这个问题应该怎么解决,有没有方法当同相端输入悬空的时候,运放的输出近似为0???A:因为这种运放输入阻抗很高,同相输入端悬空的时候,它上面的电压是不确定的,所以输出有可能不为0,具体输出多少,具体每个运放可能都不一样。
你要检查它是否正常,只需要把同相输入端接地,如果输出对地电压不是太高,就没什么问题。
电压跟随器的设计技巧
![电压跟随器的设计技巧](https://img.taocdn.com/s3/m/e316da85ab00b52acfc789eb172ded630a1c984d.png)
电压跟随器的设计技巧在电路设计中,电压跟随器是一种用于跟随输入电压变化的电路。
它通常用于驱动高阻抗负载或者需要输入和输出电压一致的场合。
在实际应用中,设计一个稳定可靠的电压跟随器需要考虑一些重要的技巧。
首先,一个基本的电压跟随器的设计包括一个差分放大器和一个输出级别移位电路。
差分放大器通常由两个普通的放大器组成,一个接收输入电压,另一个接收反馈的输出电压。
通过调节放大器的增益和偏置电压,可以实现输入电压和输出电压之间的高度对应关系。
而级别移位电路则用于将差分放大器的输出电压移位,以匹配需要的输出电压范围。
在设计电压跟随器时,需要考虑的第一个技巧是选择合适的放大器。
差分放大器的性能对电压跟随器的稳定性和精确度有着重要的影响。
因此,需要选择具有高共模抑制比和低漂移的运算放大器。
这可以保证差分放大器具有良好的抑制共模噪声的能力,并且在长时间使用中能够保持输出的稳定性。
其次,对于级别移位电路的设计也需要特别注意。
级别移位电路一般采用电阻分压或者运算放大器来实现。
在选择电阻数值或者调节运算放大器的增益时,需要考虑输入电压和输出电压的范围,以及系统的输入阻抗和负载要求。
此外,级别移位电路的线性度和漂移也需要得到足够的考虑,以保证输出电压与输入电压的准确对应关系。
另外,为了提高电压跟随器的响应速度和稳定性,还需要注意电源稳定性和输出负载的影响。
电源的稳定性对于差分放大器和级别移位电路都有着重要的影响,需要选择低噪声、低漂移的电源以保证系统的稳定性。
同时,输出负载对于电压跟随器的响应速度和稳定性也有重要影响,需要选择合适的输出级驱动电路以提高系统的带载能力。
此外,为了实现更高的精度和稳定性,还可以考虑采用外部校准电路或者数字校准技术。
通过外部校准电路可以实时监测差分放大器和级别移位电路的输出,并在需要时进行手动或自动的校准,以提高系统的精度和稳定性。
而数字校准技术则可以通过微处理器或FPGA实时监测并校准系统的输出,从而实现更高的精度和稳定性。
用运放构成电压跟随器应注意的几个问题
![用运放构成电压跟随器应注意的几个问题](https://img.taocdn.com/s3/m/99e03417866fb84ae45c8d93.png)
用运放构成电压跟随器应注意的几个问题(转)用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。
电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
)图一Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题?A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
(Fig1.)运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。
使用运算放大器时需要注意的几个重要问题
![使用运算放大器时需要注意的几个重要问题](https://img.taocdn.com/s3/m/d3a24bea84254b35eefd34e2.png)
使用运算放大器时需要注意的几个重要问题
引言
运算放大器最初诞生时是用来作为各种模拟信号的运算,这个名字后来一直沿用至今,但是现在已经不仅仅是所谓的“运算”了,如今它充当的角色更多的是“信号调理兼放大”。
信号放大可以说是对模拟信号最基本的处理了,放大的本质是能量的控制和转换,它在输入信号的作用下,通过放大电路将直流电源的能量转化成负载所获得的能量,使得负载从电源获得的能量大于信号源所提供的能量,这也就说明,负载上总是获得比输入信号大得多的电压或者电流,有时这两种情况都发生。
以下是我们在使用运算放大器时需要注意的几个重要问题,我争取用最简单的原理图以“看图说话”的方式来说清楚我要表达的意思,以免给工程师朋友带来不必要的视觉疲劳.
1、首先应该好好理解运放的最简模型
从运放的原理来说,我们可以将运放看成是一个压控电压源,其中,运放。
运算放大器使用注意事项(转载)
![运算放大器使用注意事项(转载)](https://img.taocdn.com/s3/m/b4d5783054270722192e453610661ed9ad5155a6.png)
运算放大器使用注意事项(转载)节约您宝贵的时间应用一主要是帮助您节约宝贵的时间,避免在设计功率电路中出现问题。
我们建议您花一点时间阅读这篇文章, 至少应该阅读文章中的斜体字和每一章的开头.对于大多数的问题APEX 已经通过实际电路验证,而且这里涉及的范围比您预想到的问题更全面.1.0 静电问题(ESD)APEX 的所有运算放大器都应该注意静电保护,MOSFET 放大器尤其易被静电损坏,我们的许多放大器都是MOSFET 设计。
大多数的双极型设计都是选用小体积晶体管作为输入级,它也易受静电的影响。
ESD 会使放大器的失调电压升高,静态电流增大或完全损坏,APEX 的产品是在防静电很好的环境下生产的,运输过程中也采用防静电包装。
在整个过程中您都应注意静电问题,一些地方要求静电测量,包括人、工作台、地板、容器及测试设备等。
2.0 加电前在设计或者实验阶段可能存在的许多问题在准备投入生产前应被排除。
管脚的连接顺序或许接反了,需要联接的没有连接,测试探头或许导致瞬间短路。
任何一种错误都可能损坏放大器或其它元件。
下面的五个步骤将充分减少这些危险:1)根据放大器的参数将电源电压设置到最小。
2)将限流值设置到最小(大电流放大器用2.2ohm 的电阻,高电压放大器用47 ohm)。
参看5.0“电流限制”及每个放大器的参数来选择合适的限流电阻。
不要用试验室的电源限流功能来保护放大器。
采用限流电阻比利用电源限流功能更安全。
用电源限流并不能保护放大器克服电源输出滤波电容引起的浪涌电流,即使平均功耗很低,但由于双极型输出级的二次击穿,SOA 工作区依然会被违反。
这是因为输出晶体管上的电源和电流同时达到最大而导致放大器损坏。
参看6.0 来更好的理解SOA 限制。
3)检测振荡。
用低电源供电并将电流限制到最小.在输入信号等于零时,用100MHZ 或更高的示波器检测放大器的输出,将示波器的时间设置到微秒范围,调整示波器的幅度旋钮,检测是否振荡。
运放组成电压跟随器_要注意的问题
![运放组成电压跟随器_要注意的问题](https://img.taocdn.com/s3/m/251451ccd5bbfd0a795673e7.png)
用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。
(电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
)图一Q.用电压跟随器使运算放大器保持稳定,须注意哪些问题?A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。
运放电压跟随电路(精选6篇)
![运放电压跟随电路(精选6篇)](https://img.taocdn.com/s3/m/e1baf7437fd5360cba1adb4b.png)
运放电压跟随电路(精选6篇)以下是网友分享的关于运放电压跟随电路的资料6篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一:电压跟随电路电压跟随电路uA741M,uA741I,uA741C(单运放)是高增益运算放大器,用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。
一.uA741M,uA741I,uA741C芯片引脚和工作说明:1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源8空脚Package 封装Part Number零件型号Temperature Range 工作温度范围N D UA741C 0℃- +70℃• • UA741I -40℃- +105℃• • UA741M-55℃- +125℃• •例如: UA741CNABSOLUTE MAXIMUM RATINGS最大额定值Symbol符号Parameter 参数UA741MUA741I UAVCC Supply voltage 电源电压±22 Vid Differential Input Voltage 差分输入电压±30 Vi Input Voltage 输入电压±15 PtotPower Dissipation 功耗500ToperOutput Short-circuit Duration输出短路持续时间Infinite无限制Operating Free-air Temperature Range工作温度-55 to +125 -40 to +105 0 tTstgStorage Temperature Range储存温度范围-65 to +150ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) 电气特性虚拟通道连接= ± 15V ,Tamb = 25 ℃(除非另有说明)Symbol符号Parameter 参数最小. 典型. 最大.VioInput Offset Voltage (Rs ≤ 10KΩ) 输入失调电压-Tamb = +25℃- 1 5 Tmin ≤ Tamb ≤ Tmax-- 6 IioInput Offset Current 输入失调电流Tamb = +25℃- 2 30 Tmin ≤ Tamb ≤ Tmax--70 IibInput Bias Current 输入偏置电流Tamb = +25℃- 10 100 Tmin ≤ Tamb ≤ Tmax-200AvdLarge Signal Voltage G ain (Vo=±10V, RL=2KΩ) 大信号电压增益Tamb = +25℃50 200 -Tmin ≤ Tamb ≤ Tmax25 -SVRSupply Voltage Rejection Ratio (Rs ≤ 10KΩ) 电源电压抑制比Tamb = +25℃77 90 - Tmin ≤ Tamb ≤ Tmax- Supply Current, no load 电源电流(空载)mATamb = +25℃- 1.7 2.8 Tmin ≤ Tamb ≤ T max -3.3Vicm Input Common Mode Voltage Range 输入共模电压范围VTamb = +25℃±12 - - Tmin ≤ Tamb ≤ Tmax±12 - - CMR Common Mode Rejection Ratio (RS ≤ 10KΩ)共模抑制比dB Tamb = +25℃70 90 - Tmin ≤ Tamb ≤ Tmax70 - - IOSOutput short Circuit Current输出短路电流10 25 40 mA二.UA741/ LM741应用电路:1.非反相放大电路:使用反馈方式将输出电压引回反相输出端形成负反馈电路,其输出信号与输入同相,可得到(1+R1/R2)倍的输出,其电路如图10所示。
电压跟随器要点
![电压跟随器要点](https://img.taocdn.com/s3/m/4f75eb791ed9ad51f01df266.png)
问题:什么是电位器?电位器是什么意思?电位器是可变电阻器的一种。
通常是由电阻体与转动或滑动系统组成,即靠一个动触点在电阻体上移动,获得部分电压输出。
电位器的作用——调节电压(含直流电压与信号电压)和电流的大小。
电位器的结构特点——电位器的电阻体有两个固定端,通过手动调节转轴或滑柄,改变动触点在电阻体上的位置,则改变了动触点与任一个固定端之间的电阻值,从而改变了电压与电流的大小。
电位器是一种可调的电子元件。
它是由一个电阻体和一个转动或滑动系统组成。
当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。
它大多是用作分压器,这是电位器是一个四端元件。
电位器基本上就是滑动变阻器,有几种样式,一般用在音箱音量开关和激光头功率大小调节电位器是一种可调的电子元件。
它是由一个电阻体和一个转动或滑动系统组成。
当电阻体的两个固定触电之间外加一个电压时,通过转动或滑动系统改变触点在电阻体上的位置,在动触点与固定触点之间便可得到一个与动触点位置成一定关系的电压。
电位器的分类和相关型号(一)按电阻体材料分类:1.线绕电位器:它的电阻体是用电阻丝绕在涂有绝缘材料的金属或非金属板上制成的。
它又可分为通用、精密、大功率、预调试线绕电位器—型号为WX;2.非线绕电位器:可分为实心电位器、膜式电位器。
实心电位器:它又可分为①有机合成—WS,②无机合成—WN,③导电塑料—WD;膜式电位器:它又可分为①碳膜电位器—WT,②金属膜电位器—WJ。
(二)按调节方式分类:①旋转式,②推拉式,③直滑式电位器(三)按电阻值变化规律分类:①直线式,②指数式,③对数式(四)按结构特点分类:单圈,多圈,单联,双联,多联,抽头式,带开关,锁紧型,非锁紧型,贴片式电位器;(五)按驱动方式不同分类:①手动调节电位器,②电动调节电位器。
(六)其它分类方式:①普通,②磁敏,③光敏,④电子,⑤步进电位器。
运放电压跟随器原理
![运放电压跟随器原理](https://img.taocdn.com/s3/m/a102de3d8f9951e79b89680203d8ce2f006665ec.png)
运放电压跟随器原理运放电压跟随器是一种常见的电路,它的作用是将输入电压的变化准确地传递到输出端,实现电压的跟随。
在很多电子设备中,我们都会用到运放电压跟随器,因此了解它的原理和工作方式是非常重要的。
首先,让我们来看一下运放电压跟随器的基本原理。
运放电压跟随器一般由一个运算放大器和若干个电阻组成。
当输入电压发生变化时,运放会将这个变化放大,并通过电阻网络传递到输出端。
这样,输出端的电压就会跟随输入端的电压变化,实现了电压的跟随。
在实际的电路中,我们可以通过简单的电阻网络来实现运放电压跟随器。
这种电路结构简单,成本低廉,因此被广泛应用在各种电子设备中。
通过合理选择电阻的数值,我们可以调节运放电压跟随器的增益和带宽,从而满足不同的应用需求。
除了基本的运放电压跟随器外,还有一些改进型的电路结构,比如带有负反馈的运放电压跟随器。
这种电路可以进一步提高跟随精度和稳定性,适用于一些对电压跟随要求较高的场合。
在实际的电子设计中,我们还需要考虑一些其他因素,比如输入阻抗、输出阻抗、共模抑制比等。
这些因素会影响运放电压跟随器的性能和稳定性,因此在设计电路时需要进行综合考虑。
总的来说,运放电压跟随器是一种非常实用的电路,它可以准确地将输入电压的变化传递到输出端,满足各种电子设备对电压跟随的需求。
通过合理的设计和选择,我们可以实现不同性能要求的运放电压跟随器,为电子设备的稳定工作提供可靠的支持。
在实际的应用中,我们需要根据具体的需求选择合适的运放电压跟随器,并结合其他电路和元器件进行整体设计。
通过深入理解运放电压跟随器的原理和工作方式,我们可以更好地应用它,为电子设备的设计和制造提供技术支持。
总之,运放电压跟随器是一种非常重要的电路,它在各种电子设备中都有着广泛的应用。
通过深入了解它的原理和工作方式,我们可以更好地应用它,为电子设备的设计和制造提供技术支持。
希望本文对您有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用运放构成电压跟随器的电路,传统教科书仅是简单的把输出和反相输入端连接起来完事儿(如图一),而实际电路要复杂的多,稳定性问题不可忽视!本文是在一家日本IC厂家网站上找到的,希望对实际应用有一点帮助。
(电压跟随器,顾名思义,就是输出电压与输入电压是相同的,就是说,电压跟随器的电压放大倍数恒小于且接近1。
电压跟随器的显著特点就是,输入阻抗高,而输出阻抗低,一般来说,输入阻抗要达到几兆欧姆是很容易做到的。
输出阻抗低,通常可以到几欧姆,甚至更低。
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多
数的放大电路是不能很好的工作的。
但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加。
造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。
但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。
)
图一
Q. 用电压跟随器使运算放大器保持稳定,须注意哪些问题?
A:对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。
电压跟随器也不例外。
运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。
不过,运算放大器的输入端和输出端的相位总有差异。
当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原
本应该减少的输出却得到了增强。
(成为正反溃的状态。
)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。
2. 输入输出端出现相位差的主要原因
其原因大致可分为两种:
1,由于运算放大器固有的特性
2,由于运算放大器以外的反馈环路的特性
2.1. 运算放大器的特性
Fig2a 及Fig2b分别代表性地反映了运算放大器的电压增益—频率特性和相位—频率特性。
数据手册中也有这两张曲线图。
如图所示,运算放大器的电压增益和相位随频率变化。
运算放大器的增益与反馈后的增益(使用电压跟随器时为0dB)之差,即为反馈环路绕行一周的增益(反馈增益)。
如果反馈增益不足1倍(0dB),那么,即使相位变化180o,回到正反馈状态,负增益也将在电路中
逐渐衰减,理论上不会引起震荡。
反而言之,当相位变化180o后,如频率对应的环路增益为1倍,则将维持原有振幅;如频率对应的环路增益为大于1倍时,振幅将逐渐发散。
在多数情况下,在振幅发散过程中,受最大输出电压等非线性要素的影响,振幅受到限制,将维持震荡状态。
为此,当环路增益为0dB时的频率所对应的相位与180o之间的差是判断负反馈环路稳定性的重要因素,该参数称为相位裕度。
如没有特别说明,单个放大器作为电压跟随器时,要保持足够相位裕度的。
注:数据手册注明「建议使用6dB以上的增益」的放大器,不可用作电压跟随器。
2.2. 运算放大器周边电路对反馈环路的影响
在实际应用中,构成电压跟随器并非象Fig1.那样简单地将输入端和输出端直接连接在一起。
至少输出端是与某个负载连接在一起的。
因此,必须考虑到该负载对放大器的影响。
例如,如Fig3.所示,输出端和接地之间接电容时,这一容量与运算放大器的输出电阻构成的常数造成相位滞后。
(Fig2b.所示之状态可能变化为Fig2c所示之状态)这时,环路增
益在输出电阻和C的作用下降低。
同时,相位和增益之间不再有比例关系,相位滞后成为决定性因素,使反馈环路失去稳定,最糟糕时可能导致震荡。
单纯地在输出端和接地之间连接电容,构成电压跟随器时,每种运算放大器之间的稳定性存在差异。
Fig4.为输入端需要保护电阻的运算放大器可能发生的问题。
为解决Fig3.出现的问题,可采用Fig5.(a)、(b)所示之方法。
(a)图中插入R,消除因CL而产生的反馈环路相位滞后。
(在高频区,R作为运算放大器的负荷取代了CL而显现出来。
)(b)则用C1来消除CL造成的相位滞后。
为解决Fig4.的问题,则可在输入保护电阻上并联一个尺寸适当的电容。
一般被叫做“输入电容取消值”的近似值约为10pF~100pF。