《大学物理》下册试卷及答案
大学物理考卷答案(下学期)
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大学物理学专业《大学物理(下册)》期末考试试卷B卷 附答案
大学物理学专业《大学物理(下册)》期末考试试卷B卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
2、质量分别为m和2m的两物体(都可视为质点),用一长为l的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O转动,已知O轴离质量为2m的质点的距离为l,质量为m的质点的线速度为v且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
3、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
4、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
5、设描述微观粒子运动的波函数为,则表示_______________________;须满足的条件是_______________________;其归一化条件是_______________________。
6、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
7、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
8、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
9、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
大学物理下期末试题及答案
一、选择题(共30分,每题3分) 1. 设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]2. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为:(A) 0. (B)0.(C)0 (D)0 [ ]3. 一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍. (C)4倍.(D)42倍. [ ]4. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0.x3q2(C) E = 0,U = 0.(D) E > 0,U < 0.[]电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.[]6. 对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[]7. 有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关.(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同.若问其中哪些说法是正确的, 答案是 (A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D)三种说法都是正确的. [ ]8. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 (A) 2倍. (B) 1.5倍.(C) 0.5倍. (D) 0.25倍. [ ]9. 已知粒子处于宽度为a 的一维无限深势阱中运动的波函数为 axn a x n π=sin2)(ψ , n = 1, 2, 3, …则当n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率为(A) 0.091. (B) 0.182. (C) 1. . (D) 0.818. [ ]10. 氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21-). (B) (1,1,1,21-). (C) (2,1,2,21). (D) (3,2,0,21). [ ]二、填空题(共30分)11.(本题3分)一个带电荷q 、半径为R 的金属球壳,壳内是真空,壳外是介电常量为ε 的无限大各向同性均匀电介质,则此球壳的电势U =________________.12. (本题3分)有一实心同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则在r < R 1处磁感强度大小为________________. 13.(本题3分)磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F为__________________.(基本电荷e =1.6×10-19C)14.(本题6分,每空3分) 四根辐条的金属轮子在均匀磁场B中转动,转轴与B平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处.15. (本题3分) 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO ′上,则直导线与矩形线圈间的互感系数为_________________.16.(本题3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4.当它们通以相同电流时,两螺线管贮存的磁能之比为W1 / W2=___________.17. (本题3分)静止时边长为50 cm的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108m·s-1运动时,在地面上测得它的体积是____________.18. (本题3分)以波长为λ= 0.207 μm的紫外光照射金属钯表面产生光电效应,已知钯的红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a| =_______________________V.(普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C) 19. (本题3分)如果电子被限制在边界x与x+∆x之间,∆x=0.5 Å,则电子动量x分量的不确定量近似地为________________kg·m/s.(取∆x·∆p≥h,普朗克常量h =6.63×10-34 J·s)20. (本题10分)电荷以相同的面密度σ 分布在半径为r1=10 cm和r2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U0=300 V.(1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上电荷面密度应为多少,与原来的电荷相差多少?[电容率ε0=8.85×10-12 C 2 /(N ·m 2)] 21. (本题10分)已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径. 22.(本题10分)如图所示,一磁感应强度为B 的均匀磁场充满在半径为R 的圆柱形体内,有一长为l 的金属棒放在磁场中,如果B 正在以速率dB/dt 增加,试求棒两端的电动势的大小,并确定其方向。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
大学物理下册习题及答案
大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。
大学临床医学与医学技术专业《大学物理(下册)》期末考试试卷 含答案
大学临床医学与医学技术专业《大学物理(下册)》期末考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。
2、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
3、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
4、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()5、如图所示,一束自然光入射到折射率分别为n1和n2的两种介质的交界面上,发生反射和折射.已知反射光是完全偏振光,那么折射角r的值为_______________________。
6、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
7、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为(SI),(SI).其合振运动的振动方程为x=____________。
8、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
大学物理2试卷二带答案
大学物理2试卷二一、填空题(共21分)1(本题3分)两种不同的理想气体,若它们的最概然速率相等,则它们的 (A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ] 2(本题3分)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大.(C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]3(本题3分)一辆汽车以25 m/s 的速度远离一辆静止的正在鸣笛的机车.机车汽笛的频率为600 Hz ,汽车中的乘客听到机车鸣笛声音的频率是(已知空气中的声速为330 m/s ) (A) 550 Hz . (B) 645 Hz .(C) 555 Hz . (D) 649 Hz . [ ] 4(本题3分)如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动.(E) 向左平移. [ ]5(本题3分)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(D) 是部分偏振光. [ ]6(本题3分)用频率为的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . . (B) 2h - E K .(C) h - E K . (D) h + E K . [ ] 7(本题3分)不确定关系式h p x x ≥⋅∆∆表示在x 方向上(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定. (C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]空气单色光i 012二、填空题(共19分)8(本题3分)1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为________________J ;分子的平均平动动能为____________J;分子的平均总动能为_____________________J.9(本题4分)现有两条气体分子速率分布曲线(1)和(2),如图所示. 若两条曲线分别表示同一种气体处于不同的温度下的速率分布,则曲线_____表示气体的温度较高. 若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线_____表示的是氧气的速率分布. 10(本题3分)一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________. 11(本题3分)在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为_______________________.(真空介电常量 0 = ×10-12 F/m ,真空磁导率 0 =4×10-7 H/m ) 12(本题3分)一束光垂直入射在偏振片P 上,以入射光线为轴转动P ,观察通过P 的光 强的变化过程.若入射光是__________________光,则将看到光强不变;若入 射光是__________________,则将看到明暗交替变化,有时出现全暗;若入射光 是_________________,则将看到明暗交替变化,但不出现全暗. 13(本题3分)根据氢原子理论,若大量氢原子处于主量子数n = 5的激发态,则跃迁辐射的谱线可以有________条,其中属于巴耳末系的谱线有______条.三、计算题(共60分)14(本题10分)0.32kg 的氧气作如图所示的ABCDA 循环,设212V V =,1300K T =,2200K T =,求循环效率。
大学物理学专业《大学物理(下册)》期末考试试卷A卷 附答案
大学物理学专业《大学物理(下册)》期末考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
2、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
3、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
4、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
5、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
6、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________8、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理下练习题答案
大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A ) i a02πελ.(B) 0.(C)i a 04πελ. (D) )(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为)2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ-λ∙ (0, a ) xy O图1.1图1.2图1.3(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
(完整版)《大学物理》下期末考试有答案
《大学物理》(下)期末统考试题(A 卷)说明 1考试答案必须写在答题纸上,否则无效。
请把答题纸撕下。
一、 选择题(30分,每题3分)1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为:(A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ参考解:v =dx/dt = -Aωsin (ωt+φ),cos )sin(424/ϕωϕωπA A v T T T t -=+⋅-== ∴选(C)2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(2212421221221221=-=kA k kA kA mv A ∴选(E )3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.参考解:这里的条件是“平面简谐波在弹性媒质中传播”。
由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。
质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。
∴选(D )4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。
《大学物理》下册试卷及答案解析
2008-2009《大学物理》(下)考试试卷一、选择题(单选题,每小题3分,共30分):1、两根无限长平行直导线载有大小相等方向相反的电流I ,I 以dI/dt 的变化率增长,一矩形线圈位于导线平面内(如图所示),则 。
(A),矩形线圈中无感应电流;(B),矩形线圈中的感应电流为顺时针方向;(C),矩形线圈中的感应电流为逆时针方向; (D),矩形线圈中的感应电流的方向不确定;2,如图所示的系统作简谐运动,则其振动周期为 。
(A),k m T π2=;(B), k m T θπsin 2=;(C), k m T θπcos 2=; (D), θθπcos sin 2k m T =;3,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz ,则垂直方向的振动频率为 。
(A),200Hz ;(B), 400Hz ;(C), 900Hz ; (D), 1800Hz ;4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm 的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波? 。
(A),λ=50cm ;(B), λ=100cm ;(C), λ=200cm ;(D), λ=400cm ;5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是 。
(A),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的; (B), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量。
所以波的传播过程实际上是能量的传播过程;(C), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒;(D), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振幅的平方成正比;6,以下关于杨氏双缝干涉实验的说法,错误的有 。
(A),当屏幕靠近双缝时,干涉条纹变密; (B), 当实验中所用的光波波长增加时,干涉条 纹变密;(C),当双缝间距减小时,干涉条纹变疏;(D),杨氏双缝干涉实验的中央条纹是明条纹,当在上一个缝S 1处放一玻璃时,如图所示,则整个条纹向S 1所在的方向移动,即向上移动。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2009《大学物理》(下)考试试卷一、选择题(单选题,每小题3分,共30分):1、两根无限长平行直导线载有大小相等方向相反的电流I ,I 以dI/dt 的变化率增长,一矩形线圈位于导线平面内(如图所示),则 。
(A),矩形线圈中无感应电流;(B),矩形线圈中的感应电流为顺时针方向;(C),矩形线圈中的感应电流为逆时针方向;(D),矩形线圈中的感应电流的方向不确定;2,如图所示的系统作简谐运动,则其振动周期为 。
(A),km T π2=;(B),km T θπsin 2=; (C), km T θπcos 2=; (D), θθπcos sin 2k m T =;3,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz ,则垂直方向的振动频率为 。
(A),200Hz ;(B), 400Hz ;(C), 900Hz ;(D), 1800Hz ;4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm 的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波 。
(A),λ=50cm ;(B), λ=100cm ;(C), λ=200cm ;(D), λ=400cm ;5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是。
(A),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的;(B), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量。
所以波的传播过程实际上是能量的传播过程;(C), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒;(D), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振幅的平方成正比;6,以下关于杨氏双缝干涉实验的说法,错误的有。
(A),当屏幕靠近双缝时,干涉条纹变密;(B), 当实验中所用的光波波长增加时,干涉条纹变密;(C),当双缝间距减小时,干涉条纹变疏;(D),杨氏双缝干涉实验的中央条纹是明条纹,当在上一个缝S 1处放一玻璃时,如图所示,则整个条纹向S 1所在的方向移动,即向上移动。
7,波长为600nm 的单色光垂直入射在一光栅上,没有缺级现象发生,且其第二级明纹出现在sin θ=处,则不正确的说法有 。
(A),光栅常数为6000nm ;(B),共可以观测到19条条纹;(C),可以观测到亮条纹的最高级数是10;(D),若换用500nm 的光照射,则条纹间距缩小;8,自然光通过两个偏振化方向成60°角的偏振片,透射光强为I1。
今在这两个偏振片之间再插入另一偏振片,它的偏振化方向与前两个偏振片均成30°角,则透射光强为 。
(A), 189I ;(B), 149I ;(C), 129I ;(D),13I ;9,观测到一物体的长度为,已知这一物体以相对于观测者的速率离观测者而去,则这一物体的固有长度为。
(A),;(B),;(C),;(D),;10,某宇宙飞船以的速度离开地球,若地球上接收到已发出的两个信号之间的时间间隔为10s,则宇航员测出的相应的时间间隔为。
(A), 6s; (B), 8s; (C), 10s; (D), ;二、填空题(每小题4分,共20分):1,如图所示,aOc为一折成∠形的金属导线(aO=Oc=L)位于XOY平面内,磁感应强度为B的均匀磁场垂直于XOY平面。
当aOc以速度v沿OX轴正方向运动时,导线上a、c两点的电势差为,其中点的电势高。
2,把一长为L的单摆从其平衡位置向正方向拉开一角度α(α是悬线与竖直方向所呈的角度),然后放手任其自由摆动。
其来回摆动的简谐运动方程可用)cos(ϕωθθ+=t m 式来描述,则此简谐运动的振幅m θ= ;初相位ϕ= ;角频率ω= 。
3,已知一平面简谐波的波函数为)cos(Cx Bt A y +=,式中A 、B 、C 均为正常数,则此波的波长λ= ,周期T= ,波速u= ,在波的传播方向上相距为D 的两点的相位差△φ= 。
4,当牛顿环装置中的透镜与玻璃片间充以某种液体时,观测到第十级暗环的直径由变成,则这种液体的折射率为 。
5,已知一电子以速率运动,则其总能量为 Mev ,其动能为 Mev 。
(已知电子的静能量为)三、计算题(每小题10分,共50分):1,截面积为长方形的环形均匀密绕螺线环,其尺寸如图中所示,共有N 匝(图中仅画出少量几匝),求该螺线环的自感L 。
(管内为空气,相对磁导率为1)。
2,一质量为的物体作简谐运动,其振幅为,周期为4s ,起始时刻物体在x=处,向ox 轴负方向运动,如图所示。
试求:(1)、求其简谐运动方程;(2)、由起始位置运动到x=处所需要的最短时间;3,有一平面简谐波在介质中向ox 轴负方向传播,波速u=100m/s ,波线上右侧距波源O (坐标原点)为处的一点P 的运动方程为]2)2cos[()30.0(1ππ+=-t s m y p ,求:(1)、P 点与O 点间的相位差;(2)、波动方程。
4,用波长为600nm 的光垂直照射由两块平玻璃板构成的空气劈尖,劈尖角为2×10-4rad 。
改变劈尖角,相邻两明纹间距缩小了,试求劈尖角的改变量为多少5,单缝宽,缝后透镜的焦距为50cm,用波长λ=的平行光垂直照射单缝,求:(1)、透镜焦平面处屏幕上中央明纹的宽度;(2)、第四级暗纹的位答案:选择:1,B ;2,A ;3,B ;4,D ;5,C ;6,B ;7,C ;8,B ;9,A ;10,A ;填空:1,vBLsin θ,a ; 2,α,0,lg; 3,C π2,B π2,C B ,CD ;4,121λλkR r r n kR r =⇒=/27.140.1=n kR λ,22.1215.1)27.140.1(2≈==n ; 5,,;计算:1,2,《物理学》下册p10,例题2部分内容。
解题过程简述:解:由简谐运动方程)cos(ϕω+=t A x ,按题意,A=,由T=4s 得,122-==s T ππω, 以t=0时,x=,代入简谐运动方程得ϕcos )08.0(04.0m m =,所以3πϕ±=,由旋转矢量法,如图示,知3πϕ=。
故]3)2cos[()08.0(1ππ+=-t s m x ;(2),设物体由起始位置运动到x=处所需的最短时间为t ,由旋转矢量法得s s t t 667.0323==⇒=πω 3,《物理学》下册p84,题15-7部分内容。
23πϕ=∆;])100)(2cos[()30.0(11ππ-⋅+=--s m xt s m y ; 解题过程简述:231007522ππλπϕ=⨯=∆=∆m m x; 法1:设其波动方程为])(cos[0ϕω++=uxt A y ,代入u=100m/s,x=75m 得P 点的振动方程为]43cos[0ϕωπω++=t A y ,比较P 点的振动方程]2)2cos[()30.0(1ππ+=-t s m y p ,,故其波动方程为得πϕπω-=⋅==-01),(2),(30.0s rad m A ])100)(2cos[()30.0(11ππ-⋅+=--sm xt s m y 法2:如图示,取点P 为坐标原点O ’,沿O ’X 轴向右为正方向,当波沿负方向传播时,由P点的运动方程可得以P (O ’) 点为原点的波动方程为]2)100(2cos[30.0ππ++=x t y ,其中各物理量均为国际单位制单位,下同。
代入x=-75m 得O 点的运动方程为]2cos[30.0ππ-=t y ,故以O 点为原点的波动方程为)]()100(2cos[30.0m xt y ππ-+=。
法3:由(1)知P 点和O 点的相位差为23πϕ=∆,且知波向OX 负方向传播时点O 落后于点P 为23πϕ=∆的相位差,所以由P 点的运动方程的O 点的运动方程为:)](2cos[30.0]2322cos[30.0m t t y πππππ-=-+=,故以O 为原点的波动方程为)]()100(2cos[30.0m xt y ππ-+=4,将条纹间距公式计算劈尖角改变量。
时,;当得rad lmm l mm l l 42110625.05.12,2-⨯======λθθλθλ 所以,改变量为:4×10-4rad 。
5,中央明纹的宽度即两个一级暗纹的间距。
对于第一级暗纹λθ=sin d ,所以,中央明纹的宽度mm d f f ftg x 46.5101.0101.5465.022sin 2239=⨯⨯⨯⨯==≈=∆--λθθ(2)第四级暗纹λθ4sin 4=d ,d λθ4sin 4=⇒,由于14sin 4<<=dλθ,所以,mm mm dff ftg x 119.104sin 444≈==≈=λθθ选择:1,B,楞茨定律,互感;网上下载;2,A,简谐运动,弹簧振子,参考书B的P116题13-3(3);3,B,波的合成,李萨如图;参考书B的P126题13-22;4,D,驻波,自编;5,C,波的能量,自编;6,B,杨氏双缝,自编;7,C, 光栅衍射,参考书B的P146题115-27改编;8,B,偏振光,参考书B的P149题15-37;;9,A,尺缩效应,《物理学》下册p215的题18-14改编;10,A,时间延缓,去年考题;填空:1,动生电动势的求解及方向判断,网络下载;2,单摆,振动的各物理量。
参考书B的P227题13-2;3,波的各物理量。
课件摘录;4,牛顿环,参考书B的P143题15-16;5,质能关系;计算:1,自感的求解;《物理学》中册p243的题13-18;2,简谐运动的方程及其意义,旋转矢量法;《物理学》下册p10,例题2部分内容。
3,波动方程的求解及相位差的求解;《物理学》下册p84,题15-7部分内容。
4,劈尖,摘自重庆大学考试题5,单缝衍射,参考书B的P145题15-25改编;2009-2010《大学物理》下考试试卷一、选择题(单选题,每小题3分,共30分), 实际得分1、关于自感和自感电动势,以下说法中正确的是 。
(A )自感系数与通过线圈的磁通量成正比,与通过线圈的电流成反比;(B )线圈中的电流越大,自感电动势越大;(C )线圈中的磁通量越大,自感电动势越大;(D )自感电动势越大,自感系数越大。
2、两个同方向、同频率的简谐运动,振幅均为A ,若合成振幅也为A ,则两分振动的初相差为 。
(A )6π (B )3π (C )32π(D )2π 3、一弹簧振子作简谐运动,当位移为振幅的一半时,其动能为总能量的 。
(A )41 (B )21(C )22(D )43 4、当波在弹性介质中传播时,介质中质元的最大变形量发生在 。