焊缝强度(计算书)

合集下载

钢结构计算书

钢结构计算书

一、设计资料1、车间平面尺寸为150m×9m,柱距7.5m,跨度为18m,柱网采用封闭结合。

车间内有两台15t/3t中级工作制软钩桥式吊车。

2、屋面采用长尺复合屋面板,檩距1.5m。

3、檩条采用冷弯薄壁斜卷边 Z 型钢Z250×75×20×2.5,屋面坡度 i=l/8。

4、侧向支撑点间距为3m5、钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.000m,柱上端设有钢筋混凝土连系梁。

上柱截面为400mm×400mm,所用混凝土强度等级为C30,轴心抗压强度设计值fc=14.3N/m2。

抗风柱的柱距为 6m,上端与屋架上弦用板铰连接6、钢材用Q235-B,焊条用E43系列型。

屋架采用平坡梯形屋架,无天窗,外形尺寸如图1。

图1 屋架外形尺寸及腹杆布置形式7、该车间建于深圳近郊。

8、屋盖荷载标准值:(l)屋面活荷载 0.50 kN/m2(2)基本风压w0.75 kN/m2(3)复合屋面板自重 0.15 kN/m2(4)檩条自重 0.084 kN/m2(5)屋架及支撑自重0.12+0.011L kN/m29、运输单元最大尺寸长度为15m,高为4.0m。

二、屋架几何尺寸及檩条布置1、屋架几何尺寸屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。

图2 屋架几何尺寸运输单元的最大尺寸为长度15m,高度4m。

此屋架跨度18m,高度2.3m,所以可将屋架从屋脊处断开,取一半屋架作为运输单元,长度为9m,高为2.3m。

两个运输单元分别在工厂里面制作完成后,再运输至施工现场进行拼接。

2、檩条布置采用长尺复合屋面板,单坡内不需要搭接,在屋架上弦节点设置檩条,水平檩距为1.5m。

檩条跨度l=7.5m>6m ,在跨中三分点处设置两道拉条,为檩条提供两个侧向支撑点。

由于风荷载较大,故在屋檐和屋脊处都设置斜拉条和刚性撑杆,以将拉条的拉力直接传递给屋架。

几种常用焊接焊缝计算书

几种常用焊接焊缝计算书

常用焊缝计算书一、 轴力、剪力作用下的角焊缝计算1. 角焊缝强度计算焊缝受力示意图F: 通过焊缝中心作用的轴向力:23kNθ: 轴向力与焊缝长度方向的夹角为45°N: 垂直于焊缝方向的分力V: 平行于焊缝方向的分力hf:角焊缝的焊脚尺寸为6mmlw:角焊缝的计算长度为100mm焊缝受力示意图Af:角焊缝有效截面面积βf:正面角焊缝(端焊缝)的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取1.22;对直接承受动力荷载的结构取1.0 fwt:角焊缝的强度设计值取160N/mm2N = F×sinθ= 23×sin45×103=16263.5NV = F×cosθ= 23×cos45×103=16263.5NAf = 0.7×hf×(lw-10)= 0.7×6×(100-10)=378mm2ft=(NAf×βf)2+(VAf)2×0.5=(16263.5378×1.22)2+(16263.5378)2×0.5=27.8158N/mm2≤fwt=160N/mm2焊缝强度满足要求二、 轴力作用下的角钢连接的角焊缝计算1. 角焊缝强度计算焊缝受力示意图N: 通过焊缝中心作用的轴向力:20kNhf:角焊缝的焊脚尺寸为6mm角焊缝采用双不等肢短肢角钢三面围焊连接方式lw1:角钢的肢背焊缝长度90mmlw2:角钢的肢尖焊缝长度75mmb:角钢的肢宽45mmβf:正面角焊缝(端焊缝)的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取1.22;对直接承受动力荷载的结构取1.0 fwt:角焊缝的强度设计值取160N/mm 2N3:角钢肢宽分配荷载N3=0.7×hf ×b ×fwt ×βf45m m 焊缝受力示意图=0.7×6×45×160×1.22×10-3=36.8928kNk1 :角钢肢背内力分配系数查表取0.75 k2 :角钢肢尖内力分配系数查表取0.25 N1 :角钢肢背承受的轴心力N1=k1×N/2-0.5×N3=0.75×20/2-0.5×36.8928=-10.9464kN<0 故取0kNN2=k2×N/2-0.5×N3=0.25×20/2-0.5×36.8928=-15.9464kN<0 故取0kN分别计算各条焊缝的强度ft1=N10.7×hf×(lw1-10)=0×1030.7×6×(90-10)=0N/mm2≤fwt=160N/mm2ft2=N20.7×hf×(lw2-10)=0×1030.7×6×(75-10)=0N/mm 2 ≤fwt=160N/mm 2焊缝强度满足要求三、 弯矩轴力剪力作用下的角焊缝计算1. 角焊缝强度计算(1).焊缝受力示意图(2).焊缝形心至竖向焊缝距离x2x2=0.7×hf ×⎝ ⎛⎭⎪⎫2×(L-5)×L-520.7×hf ×()2×(L-5)+B=(120-5)22×(120-5)+80=42.6613x1=L-5-x2=72.3387(3).焊缝几何特征焊缝受力示意图L :焊缝水平长度120mmB :焊缝竖向长度80mmhf:焊缝高度6mmAf:焊缝面积Af=0.7×hf ×[2×(L-5)+B]=0.7×6×[2×(120-5)+80]=1302mm 2Ix:焊缝计算截面对x 轴的惯性矩Ix=⎝ ⎛⎭⎪⎫2×()L-5×⎝ ⎛⎭⎪⎫B 22+112×B 3×0.7×hf =⎝ ⎛⎭⎪⎫2×()120-5×⎝ ⎛⎭⎪⎫8022+112×803×0.7×6 =1.7248e+006mm 4Iy:焊缝计算截面对y 轴的惯性矩Iy=⎝ ⎛⎭⎪⎫2×⎝ ⎛⎭⎪⎫112×(L-5)3+(L-5)×⎝ ⎛⎭⎪⎫x2 - L-522+B ×x22×0.7×hf =⎝ ⎛⎭⎪⎫2×⎝ ⎛⎭⎪⎫112×(120-5)3+(120-5)×⎝ ⎛⎭⎪⎫42.6613 - 120-522+80×42.66132×0.7×6=1.88883e+006mm 4J:焊缝计算截面对形心的惯性矩J=Ix + Iy=3.61363e+006mm 4(4).焊缝应力计算βf:正面角焊缝(端焊缝)的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取1.22;对直接承受动力荷载的结构取1.0 fwt:角焊缝的强度设计值取160N/mm 2从焊缝应力分布来看,最危险点为“1”,“2”两点“1”点的焊缝应力:τn1=N Af=10×1031302=7.68049N/mm 2σv1=V Af=10×1031302=7.68049N/mm 2τmx1=M ×ry J=4×40×1063.61363e+006=44.2768N/mmσmy1=M ×x1J=4×72.3387×1063.61363e+006=80.0732N/mm 2σ1=⎝ ⎛⎭⎪⎫σv1+σmy1βf 2+()τn1+τmx12 =⎝ ⎛⎭⎪⎫7.68049+80.07321.222+()7.68049+44.27682 =88.7321N/mm 2 ≤fwt=160N/mm 2 “2”点的焊缝应力: σn2=N Af=10×1031302=7.68049N/mm 2 τv2=V Af=10×1031302=7.68049N/mm 2σmx2=M ×ry J=4×40×1063.61363e+006=44.2768N/mmτmy2=M ×x2J=4×42.6613×1063.61363e+006=47.2227N/mm 2σ2=⎝ ⎛⎭⎪⎫σn2+σmx2βf 2+()τv2-τmy22 =⎝ ⎛⎭⎪⎫7.68049+44.27681.222+()7.68049-47.22272 =58.1147N/mm 2 ≤fwt=160N/mm 2 所以,焊缝强度满足要求。

焊缝计算书

焊缝计算书

重庆华润中心一期塔楼幕墙施工工程A 标段(A区院落,T2\T3塔楼)T2\T3塔楼埋板与转接件焊缝设计计算书上海旭博幕墙装饰工程有限公司2014-5-4目录第1节计算说明 (2)1.结构设计综述: (2)2.计算对象: (2)第2节 T2塔楼标准层埋板处焊缝 (3)第3节高区焊缝连接节点计算 (5)1.连接计算二 (6)2.连接计算五 (8)第4节 T3塔楼埋板处焊缝计算 (10)1第1节计算说明1.结构设计综述:此处选择T2塔楼以及T3塔楼埋板和转接件之间的焊缝进行计算,计算数据均来自于重庆华润中心一期塔楼幕墙施工工程A标段(A区院落,T2\T3塔楼)设计计算书。

2.计算对象:此部分计算对象包括T2塔楼标准层埋板处焊缝T2塔楼高区幕墙埋板处焊缝T3塔楼标准层埋板处焊缝第2节 T2塔楼标准层埋板处焊缝 焊缝处所受最大支反力为 剪力: V y =RFy =2545.1 N 轴力: N =RFz =10378 N弯矩为:Mx =V ×L =2545.1×272=692267.2 N ×mm埋板处焊缝截面图焊缝采用角焊缝,两个L 型转接件单边焊接,焊脚尺寸为6mm ,由于焊接的不规则,设计的焊缝长度每边减少10mm ,E43型焊条现场手工焊接,焊缝质量等级为三级,其抗拉、抗剪强度设计值均为:ftb =160 N/mm 2。

该节点上转接件的根部焊缝处的最大外荷载大小为: 剪力V =2545.1 N 轴力: N =10378 N弯矩为:Mx =692267.2 N ×mm 则焊缝的强度为: 正应力: σ=N/2A =10378/1316型材X 轴主惯性距: 122.030cm4 X 轴的惯性距: 122.185cm4型材Y 轴主惯性距: 287.170cm4 Y 轴的惯性距: 287.015cm4型材X 轴上抗弯距: 41.847cm3 X 轴下抗弯距: 18.797cm3型材Y 轴左抗弯距: 29.132cm3 Y 轴右抗弯距: 29.936cm3型材X 轴的面积矩: 17.746cm3型材Y 轴的面积矩: 26.884cm3 型材面积:13.160cm2=7.9 N/mm2弯曲应力:σ=M/Wx=692267.2/41847=16.54 N/mm2因此应力σ=7.9+16.54=24.44 N/mm2 < ftb=215 N/mm2剪应力:τ=V/A=2545.1/1316=1.93 N/mm2 < fvb=125 N/mm2所以单面焊两边,焊脚尺寸为6mm的L型焊缝满足要求!第3节高区焊缝连接节点计算根据前节计算所得支点反力,综合选取上述所有连接处框中最不利的连接节点的支点进行计算。

钢结构课设计算书

钢结构课设计算书

1.设计资料(1)某地一金工车间,长96m ,跨度27m ,柱距6m ,采用梯形钢屋架,1.56m ⨯预应力钢筋混凝土大型屋面板,上铺珍珠岩保温层,设计地点哈尔滨地区,保温层厚度为100mm,容重34/kN m ,采用封闭结合,卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级为C20(抗压设计强度fc=10N/mm 2),车间内设有两台30/5t 中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m 。

屋面荷载标准值为20.5kN /m ,雪荷载标准值20.5kN /m ,积灰荷载标准值为0.5kN/m 2。

桁架采用梯形钢桁架,其两端铰支于钢筋混凝土柱上,上柱截面尺寸为400400⨯。

钢材采用Q235-B ,焊条采用E43型,手工焊。

(2) 屋架计算跨度 0l 270.15226.7m =-⨯= (3) 跨中及端部高度:桁架的中间高度 h=3.340m在26.7m 的两端高度 0h 2.006m = 在27.0m 轴线处两端高度 0h 1.990m = 桁架跨中起拱 l/500≈55mm屋架高跨比3340/270001/8≈在经济范围(1/6~1/10)内,为使屋架上弦只受节点荷载,腹杆体系采用人字形式。

2. 结构形式及几何尺寸如图1所示,支撑布置如图2所示图1 桁架形式及几何尺寸根据厂房长度(96m>60m ),跨度及荷载情况,设置三道上下弦水平支撑如图:桁架及桁架上弦支撑布置桁架下弦支撑布置图垂直支撑垂直支撑图2:桁架支撑布置图符号说明:SC—上弦支撑;XC—下弦支撑;CC—垂直支撑;GG—刚性系杆;LG—柔性系杆3. 荷载计算2,等于雪荷载,故取屋面活荷载计算。

沿屋面斜面分布的永久荷载应乘以1/cos 1.005α=,换算为沿水平投影面分布的荷载。

桁架沿水平投影面积分布的自重(包括支撑)按经验公式w P 0.120.011l =+⨯计算,跨度单位为m 。

标准永久荷载:预应力混凝土大型屋面板 221.005 1.4kN / 1.407/m kN m ⨯=三毡四油防水层 221.0050.35kN /0.352/m kN m ⨯=20mm 厚找平层 321.0050.02m 20kN /0.402/m kN m ⨯⨯=80mm 厚珍珠岩制品保温层 321.0050.08m 4kN /0.322/m kN m ⨯⨯=桁架和支撑重 220.120.1127kN/m 0.417kN/m +⨯= ———————————————————————总计 22.900kN/m 标准可变荷载:屋面活荷载 20.5kN /m积灰荷载 20.3kN /m———————————————————————总计 20.8kN /m 桁架设计时,应考虑以下三种荷载组合:(1) 全跨永久荷载+全跨可变荷载(按永久荷载为控制的组合)全跨节点荷载设计值222F kN m kN m kN m 1.5643.05kNm m =⨯⨯⨯⨯⨯⨯⨯=(1.35 2.900/+1.40.70.5/+1.40.90.3/)(由可变荷载为主控制的组合)全跨节点荷载设计值为:'2F 1.2 2.900 1.40.5 1.40.90.3 1.56m 41.02kN =⨯+⨯+⨯⨯⨯⨯=()(2) 全跨永久荷载+半跨可变荷载全跨节点永久荷载设计值:对结构不利时:21.1F 1.35 2.900/ 1.5635.235kN kN m m m =⨯⨯⨯=(永久荷载控制)21.2F 1.22.900/ 1.5631.32kN kN m m m =⨯⨯⨯=(可变荷载控制)对结构有利时: 21.02.900/ 1.5626.10kN kN m m m ⨯⨯⨯= 半跨可变荷载设计值:2.1F 1.4 1.567.81kN =⨯⨯⨯⨯⨯=(0.70.5+0.90.3)(永久荷载控制)2.2F 1.4 1.569.70kN =⨯⨯⨯⨯=(0.5+0.90.3)(可变荷载控制)(3) 全跨桁架包括支撑+半跨屋面板自重+半跨屋面活荷载(按可变荷载为主的组合)全跨节点桁架自重设计值 对结构不利时: 3.1F 1.20.417 1.56 4.50kN =⨯⨯⨯=对结构有利时: 3.2F 1.00.417 1.56 3.75kN =⨯⨯⨯=半跨节点屋面板自重及活荷载设计值 4F kN=⨯⨯⨯⨯(1.2 1.407+1.40.5)1.56=21.50(1)、(2)为使用阶段荷载情况,(3)为施工阶段荷载。

几种常用焊接焊缝计算书

几种常用焊接焊缝计算书

几种常用焊接焊缝计算书常用焊缝计算书一、轴力、剪力作用下的角焊缝计算1.角焊缝强度计算角焊缝受力示意图如下:通过焊缝中心作用的轴向力为F=23kN,轴向力与焊缝长度方向的夹角为45°,垂直于焊缝方向的分力为N,平行于焊缝方向的分力为V。

角焊缝的焊脚尺寸为6mm,计算长度为100mm,有效截面面积为Af,正面角焊缝的强度设计增大系数βf取1.22.角焊缝的强度设计值fwt取160N/mm2,则根据公式计算得到焊缝强度ft为27.8158N/mm2,小于fwt,满足要求。

二、轴力作用下的角钢连接的角焊缝计算1.角焊缝强度计算角焊缝受力示意图如下:通过焊缝中心作用的轴向力为N=20kN,角焊缝的焊脚尺寸为6mm,角钢的肢宽为45mm。

角焊缝采用双不等肢短肢角钢三面围焊连接方式,角钢的肢背焊缝长度为90mm,肢尖焊缝长度为75mm。

正面角焊缝的强度设计增大系数βf取1.22,角焊缝的强度设计值fwt取160N/mm2.根据公式计算得到角钢肢宽分配荷载N3为36.8928kN,角钢肢背内力分配系数k1查表取0.75,角钢肢尖内力分配系数k2查表取0.25.角钢肢背承受的轴心力N1为0,角钢肢尖承受的轴心力N2为-10.9464kN,取0.经计算,角焊缝强度满足要求。

根据计算结果,角焊缝的强度满足要求。

具体来说,根据弯矩轴力剪力作用下的角焊缝计算,首先需要计算各条焊缝的强度。

针对第一条焊缝N1,其强度计算公式为ft1=0.7×hf×(lw1-10)×103,代入实际参数后得到结果为0N/mm2≤fwt=160N/mm2.同理,对于第二条焊缝N2,其强度计算公式为ft2=0.7×hf×(lw2-10)×103,代入实际参数后得到结果为0N/mm2≤fwt=160N/mm2.因此,可以得出结论:焊缝强度满足要求。

接下来,需要进行焊缝几何特征的计算。

按GB150与JB4732编制设备强度计算书

按GB150与JB4732编制设备强度计算书

55.15
mm
δd = δ + C2 =
58.15
mm
名义厚度:
δ'n = δd + C1 =
58.45
mm

δn =
80
mm
有效厚度:
δe = δn - C1 - C2
76.7
mm
1.结构设计时应保证锥段的母线长度≥559.1mm.(本锥体的母线长度约为2252mm)
2.与锥壳大端连接处的圆筒加强段长度应≥316.3mm,此段圆筒厚度应≥37.88mm。(不包义厚度:

有效厚度:
最小厚度: 检验结论:
C = C1 + C2 = δ'nh = δh + C =
δnh =
1.60 10.80
12
δeh = δnh - C1 C2 =
10.4
δmin=
6
满足最小厚度要求
应力校核
mm mm mm
mm
mm 合格
说明: 1、当Ri/ri≤
无数值 mm 51.40
δ/Ri<0.002 mm
不符合
名义厚度:
δ'n = δd + C1 =
51.70
mm

δn =
60
mm
有效厚度:
δe = δn - C1 - C2 =
58
mm
设计
计 算内压 力
计 算外压 力 设计温度 锥壳大端内直径
锥壳小端内直径 锥体切线高度 锥体半顶角 锥壳大端折边半径 (至内壁) 锥壳小端折边半径 (至外壁) 锥壳材料
(适用标准:JB4732-2005)
容器代号: 容器名称: 所属图号: 设 计: 校 对: 审 核: 批 准: 日 期:

钢结构荷载计算书

钢结构荷载计算书

钢结构荷载计算为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。

承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。

当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。

对Q235钢宜选用镇静钢或半镇静钢。

承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。

焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。

对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。

当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。

当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证点这免费下载施工技术资料。

对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。

当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。

钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。

钢铸件的强度设计值应按表2采用。

连接的强度设计值应按表3~5采用。

钢材的强度设计值(N/mm2)表1注:表中厚度系指计算点的钢材厚度,对轴心受力构件系指截面中较厚板件的厚度。

钢结构焊接计算书

钢结构焊接计算书

钢结构焊接计算书
1. 引言
此计算书旨在对钢结构焊接进行计算和设计。

钢结构焊接是一项重要的工程技术,用于连接和加固钢结构的组件。

本计算书将介绍一些基本的焊接计算和设计原则,以确保焊接的强度和可靠性。

2. 焊接材料选择
在进行焊接计算之前,首先需要选择适当的焊接材料。

焊接材料的选择应考虑以下因素:
- 焊接材料的强度和可靠性
- 焊接材料的兼容性
- 焊接材料的成本
3. 焊接强度计算
焊接强度计算是确定焊接接头的强度和可靠性的过程。

以下是一些常见的焊接强度计算原则:
- 考虑焊接材料的强度和断裂韧性
- 确保焊接接头的强度至少满足设计要求
- 考虑焊接材料的热影响区域对强度的影响
4. 焊接设计原则
在进行焊接设计时,应考虑以下原则:
- 确定焊接接头的位置和数量以达到结构强度要求
- 考虑焊接接头的形状和尺寸
- 确保焊接接头的质量和可靠性,包括焊缝的准备和检验
5. 结论
本文档介绍了钢结构焊接计算和设计的基本原则。

在进行钢结构焊接时,应注意选择适当的焊接材料并遵循焊接强度计算和设计原则,以确保焊接的强度和可靠性。

请根据具体的工程要求和实际情况进行计算和设计。

承载力计算书

承载力计算书
受弯构件、焊缝强度及稳定验算与承载力计算书
本工程干挂石材每锚固点取平均荷载值5kn
一、设计资料
依据规范: GB50017-2003《钢结构设计规范》、GB50011-2001《建筑抗震设计规范》
计算方式ห้องสมุดไป่ตู้计算构件承载力设计值
构件参数:
抗震调整系数RE: 0.75
热轧普通槽钢:[10
钢材牌号:Q235
净截面模量:Wnx= 37.72cm3
Wnymin= 7.41cm3
受压翼缘自由长度:l1= 0.50m
截面塑性发展系数:x= 1.05
y= 1.20
二、构件承载力
构件截面的最大厚度为8.50mm,根据表3.4.1-1,f= 215.00N/mm2,fv= 125.00N/mm2
根据GB/T 700-1988及GB/T 1591-1994,fy=235.00N/mm2
对于轧制槽钢,无论荷载的形式和荷载作用点在截面高度上的位置,均可按下式计算:
b> 0.6,根据(B.1-2)式,得
整体稳定控制的单向弯矩承载力设计值(绕x-x轴):
Mx2= 1.00×f×b×Wx/1000. = 1.00 × 215.00 × 1.000 × 39.70 /1000. = 8.54 kN·m
综上,若该构件只承受与腹板平行的剪力时,可承受的剪力设计值为55.90kN
Mx1<Mx2,受弯正应力起控制作用,构件受弯承载设计值为Mx1= 8.51kN·m
实际弯矩
M=pl=5x0.5=2.5 kN·m <8.54 kN·m满足要求
三、焊缝验算:
焊脚尺寸4mm,正面角焊缝长度48mm,共两条
бf=N/(helw)≤βfffw

笼梯计算书

笼梯计算书

一、 笼梯做法 笼梯采用直径为48mm 壁厚为3.5mm 的脚手架钢管焊接而成,每隔5米(具体度可根据现场实际情况调整但高差不得超过5米)设置一休息平台,同时在梁的节点下方设置一安全操作平台,操作平台做法同休息平台。

梯笼截面尺寸为1000mm*1000mm ,梯步间距0 300mm ,梯笼横杆间距为600mm ,具体做法如下图所示:二、焊缝计算2.1计算部位选择由图可知,笼梯所有焊缝中,受力最位于以下两个部位:部位一:梯步杆件与竖杆向连接部位,上人过程中单根梯步杆件承载重量为一个人的重量,其两端焊缝各承载一半;部位二:井架梯笼竖向杆件与挂钩相连接的焊缝,四根竖杆与挂钩相连接的焊缝承载了整个井架自身重量及施工载荷重量。

2.2力学计算2.2.1梯步焊缝计算以单个人重为1.5kN 考虑(即150kg ),取动载系数1.4,则梯步杆件承受的重量为F=1.4×1.5=2.1kN ,则梯步两端焊缝各承受N=1.05kN=1050N ;焊缝尺寸以h e =4mm 计算,焊缝长度为l w =3.14×48=150.7mm ,钢管材质为Q235B ,焊材采用E43型普通焊条,手工焊接。

由于受动载作用,βf =1.0,焊缝抗剪强度f w =160N/mm 2;验算如下: 验算公式:w f we f l h N βσ≤=; w e l h N =σ=7.15041050⨯=1.742N/mm 2,小于w f f β=160N/mm 2,即梯步与竖杆相连接的焊缝承载力满足要求。

2.2.2竖杆焊缝力学计算以单个人重1.5kN (即150kg ),同时有4人在梯笼上作业考虑,荷载统计如下:施工荷载:1.5×4=6kN ;梯笼自重载荷:梯步:50m ×0.038kN/m=1.9kN横杆围栏:77m ×0.038kN/m=2.93kN竖杆:60.4 m ×0.038kN/m=2.30kN钢跳板:8 m ×0.08kN/m=0.64kN合 计 6+1.9+2.93+2.30+0.64=13.77kN ;取1.4动载系数,有F=13.77×1.4=19.28kN ,则每根竖杆与挂钩相连接焊接承受拉力N=19.28÷4=4.82kN=4820N 。

预埋悬挑梁锚固件验算

预埋悬挑梁锚固件验算

水平钢梁与楼板压点如果采用定型化预埋件,预埋件焊缝强度计算如下:
焊缝强度计算公式:
其中N——作用于楼板螺栓的轴向拉力(参考悬挑架计算书内:九、锚固段与楼板连接的计算);
h
e ——焊缝计算厚度,对直角角焊缝等于0.7h
f
,h
f
为焊角尺寸;
l w——焊缝长度;
β
f
——正面角焊缝的强度设计值增大系数:对承受静力荷载和间接承受动
力荷载的结构,β
f =1.22;对直接承受动力荷载的结构,β
f
=1.0;
f
f
w——角焊缝的强度设计值,Q235钢、E43型焊条的手工焊,角焊缝抗拉强度设计值160N/mm2。

经过计算得到=60.92 N/mm2≤195.2 N/mm2。

(此处N取值20m高悬挑架、16号工字钢做主梁、单立管、立杆的纵距1.50米,立杆的横距0.80米,内排架距离结构0.30米,立杆的步距1.20米,计算得出N=8.58kN)
预埋件焊缝强度满足要求!。

几种常用焊接焊缝计算书

几种常用焊接焊缝计算书

常用焊缝计算书一、轴力、剪力作用下的角焊缝计算1.角焊缝强度计算焊缝受力示意图F: 通过焊缝中心作用的轴向力:23kNθ: 轴向力与焊缝长度方向的夹角为45°N: 垂直于焊缝方向的分力V: 平行于焊缝方向的分力hf:角焊缝的焊脚尺寸为6mmlw:角焊缝的计算长度为100mmAf:角焊缝有效截面面积βf:正面角焊缝端焊缝的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取;对直接承受动力荷载的结构取fwt:角焊缝的强度设计值取160N/mm2N = F×sinθ= 23×sin45×103=V = F×cosθ= 23×cos45×103=Af = ×hf×lw-10= ×6×100-10=378mm2ft=错误!×=错误!×=mm2≤fwt=160N/mm2焊缝强度满足要求二、轴力作用下的角钢连接的角焊缝计算1.角焊缝强度计算焊缝受力示意图N: 通过焊缝中心作用的轴向力:20kNhf:角焊缝的焊脚尺寸为6mm角焊缝采用双不等肢短肢角钢三面围焊连接方式 lw1:角钢的肢背焊缝长度90mmlw2:角钢的肢尖焊缝长度75mmb:角钢的肢宽45mmβf:正面角焊缝端焊缝的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取;对直接承受动力荷载的结构取fwt:角焊缝的强度设计值取160N/mm2N3:角钢肢宽分配荷载N3=×hf×b×fwt×βf=×6×45×160××10-3=k1 :角钢肢背内力分配系数查表取k2 :角钢肢尖内力分配系数查表取N1 :角钢肢背承受的轴心力N1=k1×N/×N3=×20/×=<0 故取0kNN2=k2×N/×N3=×20/×=<0 故取0kN分别计算各条焊缝的强度ft1=错误!=错误!=0N/mm2≤fwt=160N/mm2ft2=错误!=错误!=0N/mm2≤fwt=160N/mm2焊缝强度满足要求三、弯矩轴力剪力作用下的角焊缝计算1.角焊缝强度计算1.焊缝受力示意图2.焊缝形心至竖向焊缝距离x2x2=错误!=错误!=x1=L-5-x2=3.焊缝几何特征L :焊缝水平长度120mmB :焊缝竖向长度80mmhf:焊缝高度6mmAf:焊缝面积Af=×hf×2×L-5+B=×6×2×120-5+80=1302mm2Ix:焊缝计算截面对x轴的惯性矩Ix=错误!××hf=错误!××6=+006mm4Iy:焊缝计算截面对y轴的惯性矩Iy=错误!××hf=错误!××6=+006mm4J:焊缝计算截面对形心的惯性矩J=Ix + Iy=+006mm44.焊缝应力计算βf:正面角焊缝端焊缝的强度设计增大系数,对承受静力荷载和间接承受动力荷载的结构取;对直接承受动力荷载的结构取fwt:角焊缝的强度设计值取160N/mm2从焊缝应力分布来看,最危险点为“1”,“2”两点“1”点的焊缝应力:τn1=错误!=错误!=mm2σv1=错误!=错误!=mm2τmx1=错误!=错误!=mm2σmy1=错误!=错误!=mm2σ1=错误!=错误!=mm2≤fwt=160N/mm2“2”点的焊缝应力:σn2=错误!=错误!=mm2τv2=错误!=错误!=mm2σmx2=错误!=错误!=mm2τmy2=错误!=错误!=mm2σ2=错误!=错误! =mm2≤fwt=160N/mm2所以,焊缝强度满足要求。

焊缝计算书模板

焊缝计算书模板

焊缝计算书模板一、工程概况本工程为XXX项目,位于XXX,主要涉及钢结构焊接施工。

本次计算书主要针对钢结构梁、柱等主要构件的焊缝进行计算。

二、焊缝类型及参数1. 焊缝类型:对接焊缝、角焊缝2. 焊缝参数:焊缝长度、焊缝厚度、焊接电流、焊接电压、焊接速度等三、焊缝承载能力计算1. 对接焊缝承载能力计算公式:承载能力 = 焊接材料强度× 焊缝截面积× 焊接系数其中,焊接材料强度根据焊接材料的质量证明书确定;焊缝截面积根据焊缝的实际尺寸计算;焊接系数根据焊接工艺确定。

2. 角焊缝承载能力计算公式:承载能力 = 焊接材料强度× 焊缝有效截面积× 焊接系数其中,焊缝有效截面积根据角焊缝的实际尺寸计算;其他参数同对接焊缝承载能力计算。

四、焊缝长度及数量计算1. 对接焊缝长度及数量计算公式:焊缝长度 = 钢材长度 / (钢板宽度× 钢板厚度× 钢板数量) × (钢板宽度 + 钢板厚度) × 2 × N其中,钢材长度根据设计要求确定;钢板宽度、厚度根据实际采购的钢板尺寸确定;钢板数量根据实际需要确定;N为焊缝数量。

2. 角焊缝长度及数量计算公式:焊缝长度 = 钢材长度 / (角钢边长× 角钢数量) × (角钢边长 + 角钢厚度) × N其中,钢材长度根据设计要求确定;角钢边长、厚度根据实际采购的角钢尺寸确定;角钢数量根据实际需要确定;N为焊缝数量。

五、结论通过上述计算,得出各构件所需的焊缝长度及数量,并以此为依据进行施工安排。

同时,施工过程中应严格控制焊接质量,确保焊缝的承载能力满足设计要求。

槽钢焊接焊缝的计算

槽钢焊接焊缝的计算

钢结构连接计算书
一、连接件类别:
焊缝连接中的直角焊缝
二、计算公式:
1,在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:
2,在其它力或各种综合力作用下,f,f共同作用处。

式中──对接焊缝强度
N──构件轴心拉力或轴心压力,取 N=3430N;
l w──对接焊缝或角焊缝的计算强度,取l w=200mm;
──作用力与焊缝方向的角度=0度;
t──在对接接头中为连接件的最小厚度;在T形接头中为腹板的厚度,取 t=
15mm;
f──按焊缝有效截面(h e l2)计算,垂直于焊缝长度方向的应力;
h e──角焊缝的有效厚度,对直角焊缝等于0.7h f=3.5mm f;
h f──较小焊脚尺寸,取 h f=5mm;
t──正面角焊缝的强度设计值增大系数;对承受静荷载或间接承受动力荷载结构取1.22,
对直接承受动荷载结构取1.0;
f──按焊缝有效截面计算,沿焊缝长度方向的剪应力;
f f w──角焊缝的强度设计值。

三、计算结果:
1, 正应力f=N×sin(γ * PI / 180)/(l w×h e)=3430×sin(0.000)/(200×
3.5)=0.00N/mm2;
2, 剪应力f=N×cos(γ * PI / 180)/(l w×h e)=3430×cos(0.000)/(200×3.5)=4.90N/mm2;
3, 综合应力 [(f/t)2+f2]1/2=8.49N/mm2;
结论:力平行于焊缝长度,计算得出的剪应力小于或等于对接焊缝的抗拉抗压强度设计值
f t w=185N/mm2,所以满足要求!。

直角角焊缝的强度计算公式, 式中符号表示

直角角焊缝的强度计算公式, 式中符号表示

直角角焊缝是一种常见的焊接连接方式,其强度计算公式主要涉及到焊缝的几何形状、焊缝的尺寸以及材料的力学性能等因素。

下面将介绍直角角焊缝的强度计算公式,并逐一解释相关参考内容。

1.直角角焊缝的截面面积计算公式:直角角焊缝的截面为三块板材的交叉部分,其截面面积可以通过几何计算得到,即焊缝有效截面积的总和。

可以使用焊缝尺寸的定义来计算,例如焊缝的高度、宽度等。

2.直角角焊缝的拉伸强度计算公式:直角角焊缝在拉伸过程中主要受到截面的剪切和拉伸力。

剪切力与截面面积的乘积成正比,拉伸力与焊缝的拉伸强度成正比。

因此,直角角焊缝的拉伸强度可以使用下列公式计算:F = τ × As其中,F表示拉伸力,τ表示焊缝的拉伸强度,As表示焊缝的有效截面积。

这一公式的参考内容可以来自焊接技术标准或手册,其中规定了不同材料和连接方式的焊缝拉伸强度的数值范围。

3.直角角焊缝的剪切强度计算公式:直角角焊缝在剪切过程中主要受到截面的剪切力。

剪切力与截面面积的乘积成正比,因此直角角焊缝的剪切强度可以使用下列公式计算: F = τ × As其中,F表示剪切力,τ表示焊缝的剪切强度,As表示焊缝的有效截面积。

这一公式的参考内容同样可以来自焊接技术标准或手册。

4.直角角焊缝的疲劳强度计算公式:直角角焊缝在疲劳加载下会发生疲劳破坏,因此需要考虑疲劳强度。

直角角焊缝的疲劳强度可以使用以下公式计算: S = k × Sf × Se × Sp × Sc × Sh其中,S表示焊缝的疲劳强度,k表示安全系数,Sf表示基本疲劳强度,Se表示环境系数,Sp表示加载方式系数,Sc表示焊缝形状系数,Sh表示应力集中系数。

这些系数的数值可以参考焊接技术标准或手册的相关表格。

总结:直角角焊缝的强度计算公式主要包括截面面积、拉伸强度、剪切强度和疲劳强度等方面。

这些公式需要考虑焊缝尺寸、焊缝形状以及材料的机械性能等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全焊透的对接焊缝和T形连接焊缝设计计算书
Ⅰ.设计依据:
《钢结构设计手册上册》(第三版)
《钢结构设计规范》 GB 50017-2003
Ⅱ.计算公式和相关参数的选取方法
一、焊缝质量等级的确定方法:
焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质星等级:
1在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质缝等级为:1)作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级;
2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。

2不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级。

3重级工作制和起重量Q≥50t的中级工作制吊车梁的腹板与上翼缘之间以及吊车衔架上弦杆与节点板之间的T形接头焊缝均要求焊透,焊缝形式一般为对接与角接的组合焊缝.其质量等级不应低于二级。

4不要求焊透的T形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为:
1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50 t的中级工作制吊一车梁,焊缝的外观质量标准应符合二级;
2)对其他结构,焊缝的外观质量标准可为三级。

——(GB50017—2003 7.1.1)
二、焊缝连接计算公式
1、完全焊透的对接接头和T形接头焊缝计算公式
1)在对接接头和T形接头中,垂直于轴心拉力或轴心压力的对接焊缝或对接与角接组合焊缝,其强度应按下式计算:
拉应力或压应力:c t w
f f tl 或≤=σ ( GB 50017-2003 7.1.2 -1) 参数:N ——轴心拉力和轴心压力(N );
w l
——焊缝计算长度,为设计长度减2t (有引弧板时可不减)(mm ); t ——对接接头中连接件的较小厚度;T 形接头中为腹板的厚度(mm );
w c w t f f 、——对接焊缝的抗拉、抗压强度设计值(查表2-5可得)(N/mm 2
);
2)在对接接头和T 形接头中,承受弯矩和剪力共同作用的对接焊缝或对接与角接组合焊缝,其正应力和剪应力应分别进行计算。

但在同时受有较大正应力和剪应力处(例如梁腹板横向对接焊缝的端部),应按下式计算折算应力:
w t f 1.13221≤+τσ (GB55017—2003 7.1.1.2-2)
注:1当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角θ符合,当tg θ≤1.5时焊缝的强度可不计算.
2 当对接焊缝和T 形对接焊缝与角接组合焊缝无法采用引弧板和引出板施焊时每条焊缝的长度计算时应减去2t
附表1-1 焊缝的强度设计值
自动焊、半自
动焊和E43型焊条的手工焊Q235钢
>16~40 205 205 175 120 160
>40~60 200 200 170 115
>60~100 190 190 160 110
自动焊、半自
动焊和E50型焊条的手工焊Q345钢
≤16 310 310 265 180
200 >16~35 295 295 250 170
>35~50 265 265 225 155
>50~100 250 250 210 145
自动焊、半自动焊和E55型焊条的手工焊Q390钢
≤16 350 350 300 205
220 >16~35 335 335 285 190
>35~50 315 315 270 180
>50~100 295 295 250 170
Q420钢
≤16 380 380 320 220
220 >16~35 360 360 305 210
>35~50 340 340 290 195
>50~100 325 325 275 185
注:1. 自动焊和半自动焊所采用的焊丝和焊剂,应保证其熔敷金属的力学性能不低于《埋弧焊用碳钢焊丝和焊剂》GB/T 5293—1999和《低合金钢埋弧焊用焊剂》GB/T 12470—2003中相关规定。

2. 焊缝质量等级符合《钢结构工程施工质量验收规范》GB 50205—2001的规定。

其中厚度小于8mm
钢材的对接焊缝,不应采用超声波探伤确定焊缝质量等级。

3. 对接焊缝在受压区的抗弯强度设计值取w c f,在受拉区的抗弯设计值取w t f。

4. 表中厚度系指计算点的钢材厚度,对轴心受拉和轴心受压构件系指截面中较厚板件的厚度。

Ⅲ. 完全焊透的对接焊缝和T形接头焊缝计算:
一、计算参数:
N---轴心拉力: 3.000 KN
θ---焊缝与轴线的夹角(0°< θ≤90°): 60.000°
l w---焊缝计算长度,为设计长度减2t(有引弧板时可不减):3000.000 mm
t---在对接接头中连接件的较小厚度;T形接头中为腹板的厚度:30.000 mm
完全焊透的焊逢及其受力示意图
二、焊缝强度校核
钢材牌号:Q235钢
焊缝质量等级:一级
f W t---焊缝抗拉强度设计值: 205.000 N/mm2
f W c---焊缝抗压强度设计值: 205.000 N/mm2
f W v---焊缝抗剪强度设计值: 120.000 N/mm2
焊接方法和焊条型号:自动焊、半自动焊和E43型焊条手工焊
受力方式:轴向拉力
正应力:σ=N*sinθ/t/l w=0.029 N/mm2
σ≤f W t=205.000 N/mm2
剪应力:τ=N*cosθ/t/l w=0.017 N/mm2
τ≤f W v=120.000 N/mm2
【焊缝强度设计值满足要求】。

相关文档
最新文档