八年级入学数学测试题 (含答案)-

合集下载

八年级数学上册--全等三角形测试题(含答案)

八年级数学上册--全等三角形测试题(含答案)

八年级数学上册--全等三角形测试题(含答案)一、选择题(每小题3分,共30分)1.如图所示,,,,AB DE AC DF AC DF =∥∥下列条件中,不能判断ABC DEF △≌△的是( )A .AB=DE B.∠B=∠E C.EF=BC D.EF ∥BC2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列等式不正确的是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE 4.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌ △A B C ''',则补充的这个条件是( )A.BC =B C ''B.∠A =∠A 'C.AC =A C '' D.∠C =∠C ' 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等第3题图第5题图第2题图第1题图边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A.∠A 与∠D 互为余角 B.∠A =∠2C.△ABC ≌△CEDD.∠1=∠28.在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条 件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,其中一定正确的是( )第7题图第6题图A.①②③B.②③④C.①③⑤D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠ 二、填空题(每小题3分,共24分)11. (2014·福州中考)如图所示,在Rt △ABC 中,∠ACB =90︒,点D ,E 分别是边AB ,AC 的中点, 延长BC 到点F ,使CF = BC .若AB =10,则EF 的长是 .12.如图所示,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 . 13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE= 度. 15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= .第9题图第14题图第10题图第13题图第15题图16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm,BD =5cm,那么点D 到直线AB 的距离是cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18.如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm,则△DEB 的周长为 cm . 三、解答题(共46分)19.(6分)(2014·福州中考)如图所示,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.(8分)如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.21.(6分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF.第16题图第17题图第20题图第21题图22.(8分)如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.第22题图23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.第23题图24.(9分)(2014•湖南邵阳中考)如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.第十二章全等三角形检测题参考答案1. C 解析:由AB∥DE,AC∥DF,可得∠A=∠D,添加AB=DE,可利用“SAS”判断△ABC≌△DEF;添加∠B=∠E,可利用“AAS” 判断△ABC≌△DEF;添加EF∥BC,可得∠B=∠E或∠C=∠F,可利用“AAS”或“ASA” 判断△ABC≌△DEF;而添加EF=BC,利用“SSA”无法判断△ABC≌△DEF.2. B 解析:A.与三角形有两边相等,而夹角不一定对应相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不对应相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵ △ABE≌△ACD,∠1=∠2,∠B=∠C,∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析:∵ △ABC和△CDE都是等边三角形,∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴ 在△BCD和△ACE中,∴ △BCD≌△ACE(SAS),故A成立.∵ △BCD≌△ACE,∴ ∠DBC=∠CAE.∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.在△BGC和△AFC中,∴ △BGC≌△AFC,故B成立.∵ △BCD≌△ACE,∴ ∠CDB=∠CEA,在△DCG和△ECF中,∴ △DCG≌△ECF,故C成立.6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE.又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA).故选B.7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°.∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2.在△ABC和△CED中,∴ △ABC≌△CED,故选项B、C正确.∵ ∠2+∠D=90°,∴ ∠A+∠D=90°,故选项A正确.∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故选项D错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB 的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB.∵ BD平分∠ABC,CE平分∠ACB,∴ ∠ABD=∠CBD=∠ACE=∠BCE.∴ ①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. C 解析:A.∵ ∥,∴ ∠=∠.∵ ∥∴ ∠=∠.∵ ,∴ △≌△,故本选项可以证出全等.B.∵ =,∠=∠,∴ △≌△,故本选项可以证出全等.C.由∠=∠证不出△≌△,故本选项不可以证出全等.D.∵ ∠=∠,∠=∠,,∴ △≌△,故本选项可以证出全等.故选C.11.5 解析:根据三角形的中位线性质定理和全等三角形的判定与性质进行解答.∵点D,E分别是边AB,AC的中点,∴AE=CE=AC,DE是△ABC的中位线,∴DE=BC,DE∥BC.∵ CF BC ,∴DE=CF.又∵∠AED=∠ECF=90°,∴△ADE≌△EFC,∴EF=AD=AB=5.12.因为所以△BDE≌△CDA.所以在△ABE中,.13. 135° 解析:观察图形可知:△ABC≌△BDE,∴ ∠1=∠DBE.又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14. 60 解析:∵ △ABC是等边三角形,∴ ∠ABD=∠C,AB=BC.∵ BD=CE,∴ △ABD≌△BCE,∴ ∠BAD=∠CBE.∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°,∴ ∠APE=∠ABE+∠BAD=60°.15. 55° 解析:在△ABD与△ACE中,∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE.又∵ AB=AC,AD=AE,∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD.∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴ ∠3=55°.16. 3 解析:如图所示,作DE⊥AB于E,因为∠C=90°,AD平分∠CAB,所以点D到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以点D到直线AB的距离是3 cm.17. 31.5 解析:如图所示,作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA ,∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF . ∴=×OD ×BC +×OE ×AC +×OF ×AB =×OD ×(BC +AC +AB ) =×3×21=31.5.18. 15 解析:因为CD 平分∠ACB ,∠A =90°,DE ⊥BC , 所以∠ACD =∠ECD ,CD =CD ,∠DAC =∠DEC , 所以△ADC ≌△EDC ,所以AD =DE , AC =EC , 所以△DEB 的周长=BD +DE +BE =BD +AD +BE .又因为AB =AC ,所以△DEB 的周长=AB +BE =AC +BE =EC +BE =BC =15(cm ).19.分析:由已知BE =CF 证得BF =CE ,从而根据三角形全等SAS 的判定,证明△ABF ≌△DCE ,再利用全等三角形的对应角相等得出结论.证明:∵ BE =CF ,∴ BE +EF =CF +EF , 即BF =CE .又∵ AB =DC ,∠B =∠C , ∴ △ABF ≌△DCE . ∴ ∠A =∠D .点拨:一般三角形全等的判定方法有:SAS,ASA,AAS,SSS,证明三角形全等时,要根据题目已知条件灵活选用.20.分析:由△ABC ≌△ADE ,可得∠DAE =∠BAC =(∠EAB -∠CAD ),根据三角形外角性质可得∠DFB =∠FAB +∠B .因为∠FAB =∠FAC +∠CAB ,即可求得∠DFB 的度数;根据三角形外角性质可得∠DGB =∠DFB -∠D ,即可得∠DGB 的度数.第16题答图第17题答图解:∵ △ABC≌△ADE,∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=,∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°, ∠DGB=∠DFB-∠D=90°-25°=65°.21. 分析:首先根据角之间的关系推出再根据边角边定理,证明△≌△,最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为 ,所以.又因为在△与△中,,,,AE ABEAC BAFAC AF=⎧⎪∠=∠⎨⎪=⎩所以△≌△.所以.(2)因为△≌△,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ △ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°.∴ 在△ACE与△ABD中,∴ △ACE≌△ABD(AAS),∴ AD=AE.∴ 在Rt△AEF与Rt△ADF中,,, AE AD AF AF=⎧⎨=⎩∴ Rt△AEF≌Rt△ADF(HL),∴ ∠EAF=∠DAF,∴ AF平分∠BAC.24. 分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.解:(1)△ABE≌△CDF,△AFD≌△CEB.(2)选△ABE≌△CDF进行证明.∵AB∥CD,∴∠1=∠2.∵AF=CE,∴AF+EF=CE+EF, 即AE=FC,在△ABE和△CDF中,1=2,,,ABE CDF AE CF⎧⎪=⎨⎪=⎩∠∠∠∠∴△ABE≌△CDF(AAS).点拨:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS.注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.第24题答图。

人教版 八年级数学上册 14.1 --14.3基础测试题(含答案)

人教版 八年级数学上册  14.1 --14.3基础测试题(含答案)

人教版 八年级数学上册 14.1 --14.3基础测试题(含答案) 14.1 整式的乘法一、选择题(本大题共12道小题) 1. 计算a 3·a 2正确的是( )A. ɑB. ɑ5C. ɑ6D. ɑ92. 单项式乘多项式运算法则的依据是( )A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 54. 下列运算正确的是() A .(x 3)3=x 6 B .x 7·x 2=x 9 C .3x -x =3D .x 4+x 2=x 65. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( )A .b 2+2abB .4b 2+4abC .3b 2+4abD .a 2+2ab6. 下列计算错误的是( )A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=7. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .178. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( )A .4B .-4C .8D .-89. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .1610. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx11. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=12. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题) 13. 填空:54x x x ÷⨯= ;14. 填空:()()()324a a a -⋅-⋅-= ;15. 计算:(103)5=________.16. 填空:()()2322a b b ⋅-=;17. 计算:(2x +1)·(-6x )=____________.18. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)19. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.20. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a 的值应该是多少?21. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.人教版八年级数学14.1 整式的乘法课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B【解析】原式=a3+2=a5.2. 【答案】C3. 【答案】B4. 【答案】B[解析] (x3)3=x9,3x-x=2x,x4与x2不是同类项,不能合并,因此只有选项x7·x2=x9正确.5. 【答案】A[解析] 因为一个长方形的周长为4a+4b,若它的一边长为b,则另一边长=2a+2b-b=2a+b,故面积=(2a+b)b=b2+2ab.6. 【答案】C【解析】根据积的乘方运算法则,应选C7. 【答案】C[解析] 因为x a=2,x b=3,所以x3a+2b=(x a)3·(x b)2=23×32=72.8. 【答案】C[解析] (x+1)(2x2-ax+1)=2x3-ax2+x+2x2-ax+1=2x3+(-a+2)x2+(1-a)x+1.因为运算结果中,x2的系数是-6,所以-a+2=-6,解得a=8.9. 【答案】D[解析] 由于a m=4,因此a2m=(a m)2=42=16.10. 【答案】B [解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.11. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C12. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题) 13. 【答案】8x【解析】原式448x x x =⋅=14. 【答案】9a -【解析】原式()99a a =-=-15. 【答案】1015[解析] (103)5=1015.16. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-17. 【答案】-12x 2-6x18. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)19. 【答案】解:(2a 3b 2-3a 2b +4a)·(-2b) =-4a 3b 3+6a 2b 2-8ab =-4(ab)3+6(ab)2-8ab =-4×33+6×32-8×3 =-108+54-24 =-78.20. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.21. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.:14.2 乘法公式一.选择题1.下列各式中,能用平方差公式计算的是()A.(p+q)(p+q)B.(p﹣q)(p﹣q)C.(p+q)(p﹣q)D.(p+q)(﹣p﹣q)2.若(2a+3b)()=9b2﹣4a2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a3.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy4.若多项式x2+kx+9是一个完全平方式,则常数k的值是()A.6B.3C.±6D.±35.计算(x+1)(x﹣1)(x2+1)的结果是()A.x2﹣1B.x3﹣1C.x4+1D.x4﹣16.已知a+b=5,ab=3,则a2+b2=()A.25B.22C.19D.137.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为()A.100B.32C.144D.368.如图,从边长为m的大正方形中剪掉一个边长为n的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(m﹣n)2=m2﹣2mn+n2B.m2﹣n2=(m+n)(m﹣n)C.(m﹣n)2=m2﹣n2D.m(m﹣n)=m2﹣mn二.填空题9.x2﹣4x+k是完全平方式,则k=.10.(2x+3y)2=;(2a﹣b)(﹣b﹣2a)=.11.若x2+y2=10,xy=3,则(x﹣y)2=.12.如果(2x+2y+1)(2x+2y﹣1)=15,那么x+y的值是.13.已知a+=3,则a2+的值是.14.计算:12(1+72)(1+74)(1+78)(1+716)的结果为.三.解答题15.计算:9(x﹣2)2﹣(3x+2)(3x﹣2)16.199.5×200.5(运用公式简便运算)17.先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=.18.已知x+y=4,xy=3,求下列各式的值:(1)2x2y+2xy2;(2)x﹣y19.图1是一个长为2a,宽为2b的长方形图中,沿着虚线用剪刀均分成4块小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的正方形边长等于多少?(2)请你用两种不同的方法表示图2中阴影部分的面积,并用等式表示.(3)根据(2)中的等量关系解决下面问题,若a+b=5,ab=3,求(a﹣b)2的值.20.如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积:图1得:;图2得;(2)由图1与图2面积关系,可以得到一个等式:;(3)利用(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案一.选择题1.解:(p+q)(p+q)=(p+q)2=p2+2pq+q2;(p﹣q)(p﹣q)=(p﹣q)2=p2﹣2pq+q2;(p+q)(p﹣q)=p2﹣q2;(p+q)(﹣p﹣q)=﹣(p+q)2=﹣p2﹣2pq﹣q2.故选:C.2.解:∵(2a+3b)(3b﹣2a)=9b2﹣4a2即(3b+2a)(3b﹣2a)=(3b)2﹣(2a)2∴括号内应填的代数式是3b﹣2a.故选:D.3.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.4.解:∵a2+ka+9=a2+ka+32,∴ka=±2×a×3,解得k=±6.故选:C.5.解:原式=(x2﹣1)(x2+1)=x4﹣1.故选:D.6.解:∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab=25﹣2×3=19,故选:C.7.解:S阴影=a2+b2﹣a2﹣(a+b)•b,=a2﹣ab+b2,=(a2﹣ab+b2),=[(a+b)2﹣3ab],当a+b=10,ab=12时,原式=(100﹣36)=32.故选:B.8.解:左边图形的阴影部分可表示为:m2﹣n2右边图形可表示为:(m﹣n)(m+n)由于阴影部分面积相等,故m2﹣n2=(m+n)(m﹣n),故选:B.二.填空题9.解:∵x2﹣4x+k是完全平方式,∴k=22=4,故答案为:410.解:(2x+3y)2=(2x)2+2•2x•3y+(3y)2=4x2+12xy+9y2;(2a﹣b)(﹣b﹣2a)=(﹣b+2a)(﹣b﹣2a)=b2﹣4a2.故答案为:4x2+12xy+9y2,b2﹣4a2.11.解:∵x2+y2=10,xy=3,∴(x﹣y)2=x2﹣2xy+y2=x2+y2﹣2xy=10﹣6=4,故答案为:4.12.解:(2x+2y+1)(2x+2y﹣1)=15,(2x+2y)2﹣12=15,(2x+2y)2=16,2x+2y=±4,x+y=±2,故答案为:±2.13.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.14.解:原式=×(1+72)(1+74)(1+78)(1+716)=×(1+74)(1+78)(1+716)=×(1+78)(1+716)=(1+716)=.故答案为:.三.解答题15.解:原式=9(x2﹣4x+4)﹣(9x2﹣4)=9x2﹣36x+36﹣9x2+4=﹣36x+40.16.解:原式=(200﹣0.5)×(200+0.5)=40000﹣0.25=39999.75.17.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2,∵a=,∴原式=1+2=3.18.解:(1)∵x+y=4,xy=3,∴2x2y+2xy2=2xy(x+y)=2×4×3=24;(2)∵x+y=4,xy=3,∴(x﹣y)2=(x+y)2﹣4xy=42﹣4×3=4.∴.19.解:(1)根据拼图可知,阴影正方形的边长为(a﹣b),(2)阴影正方形的边长为(a﹣b),因此S阴影正方形的面积=(a﹣b)2,S阴影正方形的面积=S大正方形的面积﹣S图1的面积=(a+b)2﹣4ab,故有(a﹣b)2=(a+b)2﹣4ab;(3)由(2)得(a﹣b)2=(a+b)2﹣4ab,当a+b=5,ab=3时,(a﹣b)2=(a+b)2﹣4ab=52﹣4×3=25﹣12=13.即(a﹣b)2的值为13.20.解:(1)图1中阴影部分的面积为:a2﹣b2,图2中阴影部分的面积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2面积关系,可以得到一个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.14.3因式分解一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.12ab=3a•4bB.(a+b)2=a2+2ab+b2C.a2﹣b2+1=(a+b)(a﹣b)+1D.3(a﹣b)﹣c(a﹣b)=(a﹣b)(3﹣c)2.下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x﹣1=x(1﹣)(x≠0)C.x3+2x2+1=x2(x+2)+1D.x2﹣9=(x+3)(x﹣3)3.下列多项式可以用平方差公式进行因式分解的有()①﹣a2+b2;②x2+x+;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣121a2+36b2;⑥﹣s2+2s.A.2个B.3个C.4个D.5个4.因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)5.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.把多项式(a+b)(a+4b)﹣9ab分解因式正确的是()A.(a﹣2b)2B.(a+2b)2C.a(a﹣3b)2D.ab(a+3)(a﹣3)8.下列因式分解正确的是()A.x2﹣x+=(x﹣)2B.a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)C.x2﹣2x+4=(x﹣2)2D.4x2﹣y2=(4x+y)(4x﹣y)9.把多项式x2+mx﹣5因式分解成(x+5)(x﹣1),则m的值为()A.m=6B.m=﹣6C.m=﹣4D.m=410.分解因式a3﹣4a的结果正确的是()A.a(a2﹣4)B.a(a﹣2)(a+2)C.a(a﹣2)2D.a(a+2)2二.填空题(共5小题)11.分解因式:ab3﹣4a=.12.分解因式:m2﹣m=.13.分解因式:16x4﹣81=.14.因式分解:2m2﹣12m+18=.15.把多项式m2n+6mn+9n分解因式的结果是.三.解答题(共3小题)16.分解因式:(1)36﹣25x2;(2)x2y﹣4xy﹣5y.17.因式分解(1)x3﹣4x2+4x(2)a2(x﹣y)﹣4(x﹣y)18.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、十字相乘法等等,其中十字相乘法在高中应用较多.十字相乘法:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图).如:将式子x2+3x+2和2x2+x﹣3分解因式,如图:x2+3x+2=(x+1)(x+2);2x2+x﹣3=(x﹣1)(2x+3)请你仿照以上方法,探索解决下列问题:(1)分解因式:y2﹣7y+12;(2)分解因式:3x2﹣2x﹣1.参考答案1.解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.2.解:A.从左边到右边的变形,不属于因式分解,故本选项不符合题意;B.从左边到右边的变形,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形,不属于因式分解,故本选项不符合题意;D.从左边到右边的变形,属于因式分解,故本选项符合题意;故选:D.3.解:①﹣a2+b2=(b+a)(b﹣a),可以用平方差公式进行因式分解;②x2+x+=(x+)2,不可以用平方差公式进行因式分解;③x2﹣4y2=(x+2y)(x﹣2y),可以用平方差公式进行因式分解;④(﹣m)2﹣(﹣n)2=(m+n)(m﹣n),可以用平方差公式进行因式分解;⑤﹣121a2+36b2=(6b﹣11a)(6b+11a),可以用平方差公式进行因式分解;⑥﹣s2+2s=﹣s(s﹣4),不可以用平方差公式进行因式分解;故选:C.4.解:原式=(a+2)(a﹣2),故选:A.5.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:原式=a2+5ab+4b2﹣9ab=a2﹣4ab+4b2=(a﹣2b)2.故选:A.8.解:A、x2﹣x+=(x﹣)2,正确;B、a4b﹣6a3b+9a2b=a2b(a2﹣6a+9)=a2b(a﹣3)2,故此选项错误;C、x2﹣2x+4,无法运用公式法分解因式,故此选项错误;D、4x2﹣y2=(2x+y)(2x﹣y),故此选项错误;故选:A.9.解:由题意,得m=5﹣1=4.故选:D.10.解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故选:B.11.解:ab3﹣4a=a(b3﹣4).故答案为:a(b3﹣4).12.解:m2﹣m=m(m﹣1).故答案为:m(m﹣1).13.解:16x4﹣81=(4x2+9)(4x2﹣9)=(4x2+9)(2x+3)(2x﹣3).故答案为:(4x2+9)(2x+3)(2x﹣3).14.解:原式=2(m2﹣6m+9)=2(m﹣3)2.故答案为:2(m﹣3)2.15.解:原式=n(m2+6m+9)=n(m+3)2.故答案为:n(m+3)2.16.解:(1)36﹣25x2=(6+5x)(6﹣5x);(2)x2y﹣4xy﹣5y=y(x2﹣4x﹣5)=y(x﹣5)(x+1).17.解:(1)x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2;(2)a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).18.解:(1)y2﹣7y+12=(y﹣3)(y﹣4)(2)3x2﹣2x﹣1=(x﹣1)(3x+1).。

沪科版数学八年级上学期全册综合测试试卷(含答案)

沪科版数学八年级上学期全册综合测试试卷(含答案)

沪科版数学八年级上学期全册综合测试试卷(含答案)八年级数学试题时间:120分钟满分150分一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在()A.第一象限B.第二象限 C.第三象限 D.第四象限2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为() A.(-4,3) B.(-3,-4) C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3不经过()%A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.下列图形中,为轴对称图形的是()5.函数y=21x 的自变量x 的取值范围是() ]A .x ≠2 B. x <2 C. x ≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么() A. k ﹥0,b ﹥0 B. k ﹥0,b ﹤0 C. k ﹤0,b ﹥0D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是() A. x ﹥-2 B. x ﹥3 C. x ﹤-2 D. x ﹤3)9.如图所示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对|10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.某地雪灾发生之后,灾区急需帐篷。

八年级数学上册测试题及答案(1-6章)

八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

八年级上册数学 全册全套试卷测试卷(含答案解析)

八年级上册数学 全册全套试卷测试卷(含答案解析)
故答案为21°.
2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.
【答案】105°.
【解析】
【分析】
先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
如图,∠ECD=45°,∠BDC=60°,
【详解】
设这个三角形的第三边为x.
根据三角形的三边关系定理,得:9-4<x<9+4,
解得5<x<13.
故选A.
【点睛】
本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.
11.若一个凸多边形的内角和为720°,则这个多边形的边数为
A.4B.5C.6D.7
【答案】C
八年级上册数学 全册全套试卷测试卷(含答案解析)
一、八年级数学三角形填空题(难)
1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21°
【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC= ∠ACD− ∠ABC= ∠A=21°.
∴∠COB=∠ECD+∠BDC=45°+60°=105°.
故答案为:105°.
【点睛】
此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.
3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.
【答案】160.
【解析】
【详解】
解:根据三角形的三边关系可得:8-3<a<8+3,

八年级数学上册--三角函数测试题(含答案)

八年级数学上册--三角函数测试题(含答案)

八年级数学上册--三角函数测试题(含答案)一、单选题1. 在直角三角形中,已知一个锐角的正弦值为$\frac{1}{2}$,则这个锐角的值为多少?A. 30°B. 45°C. 60°D. 90°正确答案:C. 60°2. 已知一个角的余割值为2,求这个角的正切值。

A. $\sqrt{3}$B. $\sqrt{2}$C. 1D. $\frac{1}{\sqrt{3}}$正确答案:D. $\frac{1}{\sqrt{3}}$二、填空题1. 一个角的正弦值为0.6,求这个角的余割值。

答案:$\frac{5}{3}$2. 已知一个角的正切值为$-\frac{3}{4}$,求这个角的余弦值。

答案:$\frac{4}{5}$三、解答题1. 已知一条直角边长为3,斜边长为5,求另一条直角边的长度。

解答:根据勾股定理,设另一条直角边为x,可以得到以下方程:$$x^2 + 3^2 = 5^2$$化简以后得到:$$x^2 = 25 - 9 = 16$$取正根得到:$$x = 4$$所以另一条直角边的长度为4。

2. 已知一个锐角的余弦值为$\frac{1}{\sqrt{2}}$,求这个锐角的正弦值。

解答:根据三角函数的定义,余弦值为$\frac{1}{\sqrt{2}}$对应的锐角为45°,而45°的正弦值为$\frac{1}{\sqrt{2}}$。

所以这个锐角的正弦值为$\frac{1}{\sqrt{2}}$。

以上为八年级数学上册三角函数测试题及答案。

---注意事项:- 在解答题中,请注意给出详细的解题步骤。

- 在填空题中,请直接写出答案。

- 如果有需要验证的内容,请参考教材或其他可靠来源。

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)

八年级数学上册第一单元测试题(含答案)满分120分, 考试时间120分钟一、单选题(30分)1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 12. 如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A.三角形具有稳定性B.两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.55.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12第8题图 第9题图 第10题图9. 如图, 点B.C.D 在同一直线上, AB CE, 若∠A =55°, ∠ACB =65°, 则∠1的值为( ) A. 80° B. 65° C. 55° D. 60° 10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C 为顶点的三角形与△ABO 全等, 则点C 的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4) 二、填空题(24分)11. 如图, 七边形ABCDEFG 的对角线共有 ________条.第11题图 第13题图 第14题图 12. 已知BD 是 的中线, , , 且 的周长为16, 则 的周长为________. 13. 如图, 是直角三角形, , 是 的高, , , , 则AD 的长为_______.14. 如图, 在△ABC 中, D, E 分别是边AB, AC 上一点, 将△ABC 沿DE 折叠, 使点A 落在边BC 上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.15.如图, 点F 是△ABC 的边BC 延长线上一点, DF ⊥AB 于点D, ∠A =30°, ∠F =50°, ∠ACF 的度数是_____.第15题图 第16题图16. 如图, 一种测量工具, 点O 是两根钢条AC.BD 中点, 并能绕点O 转动.由三角形全等可得内槽宽AB 与CD 相等, 其中△OAB ≌△OCD 的依据是 (写出全等的简写)17.如图, ∠1, ∠2, ∠3是五边形ABCDE 的3个外角, 若 , 则 ________.第17题图 第18题图18. 如图, 方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC 全等的格点三角形共有__________个(不含△ABC). 三、解答题(66分)19. (8分)如图, 已知: AD 是△ABC 的角平分线, CE 是△ABC 的高, ∠BAC =60°, ∠BCE =40°, 求∠GABCD EFB C DAADB 的度数.20.(8分)如图, D 是AC 上一点, AB=DA,DE ∥AB, ∠B=∠DAE,求证: BC=AE21. (8分)如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE.22.(8分)如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求的度数.23. (8分)如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD.24. (8分)某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.DE A B C25. (9分)将一个凸边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求的值.26.(9分)如图, 在四边形ABCD 中, AD∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ.设点 P 运动时间为 t 秒, 问当 t 为何值时, △PDQ ≌△CQD , 并证明△PDQ ≌△CQD答案一、单选题1. 现有3cm、4cm、5cm、7cm长的四根木棒, 任选其中三根组成一个三角形, 那么可以组成三角形的个数是()A. 4B. 3C. 2D. 1答案: B2.如图, 工人师傅在安装木制门框时, 为防止变形常常钉上两根木条, 这样做的依据是()A. 三角形具有稳定性B. 两点之间, 线段最短C. 直角三角形的两个锐角互为余角D. 垂线段最短答案: A第2题图第3题图第4题图3. 如图, 在△ABC中, ∠1=∠2, G为AD的中点, BG的延长线交AC于点E, F为AB上的一点, CF与AD垂直, 交AD于点H, 则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 2个B. 3个C. 4个D. 1个答案: A4.如图, 若△ABC≌△DEF, 且BE=5, CF=2, 则BF的长为()A. 5B. 3C. 2D. 1.5答案: D5.将一副常规的三角尺按如图方式放置, 则图中的度数为()A. B. C. D.答案: D第5题图第6题图第7题图6. 如图所示, △ABC≌△BAD, 点A与点B, 点C与点D是对应顶点, 如果∠DAB=50°, ∠DBA=40°, 那么∠DAC的度数为()A. 5°B. 10°C. 40°D. 50°答案: B7.如图, 若, 则添加下列一个条件后, 仍无法判定的是()A. B. C. D.答案: C8.如图, 、、分别是、、的中点, 若△BFD的面积是3, 则的面积是( )A. 6B. 18C. 24D. 12答案: C第8题图第9题图第10题图9. 如图, 点B.C.D在同一直线上, AB CE, 若∠A=55°, ∠ACB=65°, 则∠1的值为()A. 80°B. 65°C. 55°D. 60°答案: D10.如图, 在平面直角坐标系中, 点A(2, 0), B(0,4), 若以B, O, C为顶点的三角形与△ABO全等, 则点C的坐标不能为( )A.(-2,0)B.(0,-4)C.(2,4)D.(-2,4)答案: B二、填空题11. 如图, 七边形ABCDEFG的对角线共有________条.答案: 14第11题图第13题图第14题图12. 已知BD是的中线, , , 且的周长为16, 则的周长为________.答案: 1313.如图, 是直角三角形, , 是的高, , , , 则AD的长为_______.答案: 4.814.如图, 在△ABC中, D, E分别是边AB, AC上一点, 将△ABC沿DE折叠, 使点A 落在边BC上, 若∠A =60°, 则∠1+∠2+∠3+∠4=______.答案: 240°15.如图, 点F是△ABC的边BC延长线上一点, DF⊥AB于点D, ∠A=30°, ∠F=50°, ∠ACF的度数是_____.答案: 70°第15题图第16题图16. 如图, 一种测量工具, 点O是两根钢条AC.BD中点, 并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等, 其中△OAB≌△OCD的依据是(写出全等的简写)答案: SAS17.如图, ∠1, ∠2, ∠3是五边形ABCDE的3个外角, 若, 则________.答案: 210°第17题图第18题图18. 如图, 方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上, 这样的三角形叫格点三角形, 图中与△ABC全等的格点三角形共有__________个(不含△ABC).答案: 7三、解答题19. 如图, 已知: AD是△ABC的角平分线, CE是△ABC的高, ∠BAC=60°, ∠BCE=40°, 求∠ADB的度数.【解析】∵CE是△ABC的高∴∠BEC=90°△BEC为直角三角形∵∠BCE=40°∴∠B=90°-∠BCE=90°-40°=50°∵∠BAC=60°, AD是△ABC的角平分线∴1302BAD BAC∠=∠=︒在△ADB 中, ∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°20.如图,D 是AC 上一点,AB=DA,DE ∥AB, ∠B=∠DAE,求证:BC=AE 【解析】 ∵DE ∥AB∴∠EDA=∠CAB在△ADE 和△BAC 中EDA CAB DA AB DAE B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BAC(ASA) ∴AE=BC21. 如图所示, AC=AE, ∠1=∠2, AB=AD. 求证: BC=DE. 【解析】 ∵∠1=∠2∴∠1+∠EAB=∠2+∠EAB 即∠CAB=∠EAD 在△CAB 和△EAD 中AC AE CAB EAD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAB ≌△EAD(SAS) ∴BC=DE22.如图所示, 是 的角平分线, 是 的外角平分线, 、 交于点 , 若 , 求 .【解析】∵ACE A ABC ∠=∠+∠∵ ,∴12DCE A DBC ∠=∠+∠∵DCE D DBC ∠=∠+∠ ∴ , 即 . 【答案】35︒23. 如图, 四边形ABCD 中, BC=CD, CB ⊥AB 于B, CD ⊥AD 于D, 求证: AB=AD. 【解析】连接AC ∵CB ⊥AB, CD ⊥AD∴△CBA 和△CDA 为直角三角形 在Rt △CBA 和Rt △CDA 中AC AC BC DC =⎧⎨=⎩∴Rt △CBA ≌Rt △CDA (HL) ∴AB=AD24. 某建筑测量队为了测量一栋居民楼ED 的高度, 在大树AB 与居民楼ED 之间的地面上选了一点C, 使B, C, D 在一直线上, 测得大树顶端A 的视线AC 与居民楼顶端E 的视线EC 的夹角为90°, 若AB=CD=24米, BD=64米, 请计算出该居民楼ED 的高度.【解析】根据题意∠ABC=∠CDE=∠ACE=90°DEABC∴∠ACB+∠ECD=90°在Rt △ABC 中, ∠ACB+∠CAB=90° ∴∠CAB=∠ECD 在△ABC 和△CDE 中CAB ECD AB CDABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE(ASA) ∴BC=DE∵BC=BD-CD=64-24=40 ∴DE=4025. 将一个凸 边形剪去一个角得到一个新的多边形, 其内角和为1620°, 求 的值. 【解析】分三张情况,(1)剪去一个角后得到的新多边形边数少1, 如图所示:(3)1801620n -⋅︒=︒解得n=12(2)剪去一个角后得到的新多边形边数不变, 如图所示:(2)1801620n -⋅︒=︒解得n=11(3)剪去一个角后得到的新多边形边数多1, 如图所示:(21)1801620n -+⋅︒=︒解得n=10所以n 的值为12, 11或1026.如图, 在四边形ABCD 中, AD ∥BC, ∠ABC=90°, AD=12, BC=24, 动点 P 从点 A 出发以每秒1个单位的速度沿 AD 向点 D 运动, 动点 Q 从点 C 出发以每秒 2 个单位的速度沿 CB 向点 B 运动, P, Q 同时出发, 当点 P 停止运动时, 点 Q 也随之停止, 连接PQ, DQ 。

四川省绵阳市涪城区2024-2025学年八年级上学期开学数学试题(含答案)

四川省绵阳市涪城区2024-2025学年八年级上学期开学数学试题(含答案)

2024年秋绵阳市涪城区八年级入学考试数学试卷一.选择题(共36分)1.下列调查中,最适宜采用普查的是( )A.调查全国中学生的睡眠时间B.调查一批灯泡的使用寿命C.调查府南河现有鱼的种类D.调查某校七年级学生的体重2.下列各数中,是无理数的是( )A.0.45B.﹣πC.D.183.下列运算中,正确的是( )A.﹣(﹣2)2=4B.|﹣2|=﹣2C.D.4.如果x<y,那么下列不等式正确的是( )A.x﹣1>y﹣1B.x+1>y+1C.2x>2y D.﹣2x>﹣2y 5.不等式x<1解集在数轴上表示正确的是( )A.B.C.D.6.如图,已知a∥b,∠1=70°,则∠2=( )A.40°B.70°C.110°D.130°7.点B的坐标为(﹣6,4),直线AB平行于y轴,那么A点的坐标可能为( )A.(﹣4,6)B.(6,﹣4)C.(4,6)D.(﹣6,﹣4)8.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为( )A.B.C.D.9.下列命题:①若|a|=|b|,则a=b;②同旁内角互补,两直线平行;③相等的角是对顶角;④无限小数是无理数.其中假命题的是( )A.①③B.②④C.①③④D.③④10.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( )A.c(a﹣b)>0B.b(a﹣c)>0C.a(b+c)>0D.a(b﹣c)>011.二元一次方程组的解是( )A.B.C.D.12.如图,已知平行四边形OABC的顶点A(0.4,1.2).若将平行四边形先沿着y轴进行第一次轴对称变换,所得图形再沿着x轴进行第二次轴对称变换,轴对称变换的对称轴遵循y轴、x轴、y轴、x轴……的规律进行,则经过第2022次变换后,平行四边形的顶点A的坐标为( )A.(﹣0.4,1.2)B.(﹣0.4,﹣1.2)C.(1.2,﹣0.4)D.(﹣1.2,﹣0.4)二.填空题(共18分)13.若abc<0,且m=,则关于x的一元一次方程(m+3)x=8的解是 .14.今年我区约有7800名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,这次调查的样本是 .15.在平面直角坐标系中,请写出一个在y轴上的点的坐标 .16.已知a,b为两个连续的整数,且a<<b,则a+b的平方根为 .17.某工程队计划在5天内修路6km,施工第一天修完1.2km,计划发生变化,需至少提前1天完成修路任务,则后期每天至少修路 千米.18.对于任意实数p、q,定义一种运算p※q=p﹣q+pq﹣2,等式的右边是通常的加减和乘法运算,例如:4※5=4﹣5+4×5﹣2=17,请根据上述定义解决问题:若关于x的不等式组有3个整数解,则m的取值范围是 .三.解答题(共46分)19.(8分)(1)解方程组:;(2)解不等式组:.20.(7分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目(单位:颗)进行调查,从试验田中随机抽取了30株,并对抽取的30株水稻稻穗谷粒数进行统计分析,得到不完整的统计表频数分布直方图和扇形统计图.(1)请补全下表中空格谷粒颗数175≤x <185185≤x <195195≤x <205205≤x <215215≤x <225 频数3 8 10 3 对应扇形图中区域 D E C(2)补全频数分布直方图;(3)如图所示的扇形统计图中,扇形B 的百分比是 ,扇形A 对应的圆心角度数为 ;(4)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻大约有多少株?21.(6分)如图,在平面直角坐标系中,三角形ABC 的顶点都在网格格点上,其中B点坐标为(6,4).(1)请写出点A ,点C 的坐标;(2)将△ABC 先向左平移1个单位长度,再向上平移3个单位长度,得到△A ′B ′C ′.请画出平移后的三角形,并写出△A ′B ′C ′的三个顶点的坐标;(3)求△ABC 的面积.22.(9分)已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,求证:∠A +∠C =90°;(2)如图2,过点B作BD⊥MA的延长线于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,且BF平分∠DBC,BE平分∠ABD,若∠AFC=∠BCF,∠BFC=3∠DBE,求∠EBC的度数.23.(7分)某学校举行跳绳比赛需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)该学校计划购买A、B两种奖品共100件,购买费用不超过1200元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W (元)与m(件)之间的函数关系式,求出自变量m的取值范围,确定最少费用W的值和最少费用方案.24.(9分)如图,在平面直角坐标系中,点A(a,0),B(m,b),且,m是64的立方根.(1)直接写出:a= ,b= ,m= ;(2)将线段AB平移得到线段CD,点B的对应点是点C(8,0),点A的对应点是点D.①在平面直角坐标系中画出平移后的线段CD,直接写出点D的坐标;②若点M在y轴上,且三角形ACM的面积是6,求点M的坐标;(3)在(2)的条件下,点E在y轴负半轴上运动,但不与点D重合,直接写出∠BEC、∠ABE、∠DCE之间的数量关系.2024年秋绵阳市涪城区八年级入学考试数学参考答案1.D2. B3.D4.D5.C6.B7.D8.C9.C 10.D 11.B 12.B13. x =214. 200名考生的数学成绩15. (0,1)(答案不唯一)16. ±317. 1.618.19.解:(1),①×2+②,得:7x =14,解得x =2,将x =2代入①,得:2﹣y =3,解得y =﹣1,∴方程组的解为;(2)解不等式2x ﹣(x ﹣2)≤4,得:x ≤2,解不等式﹣1>,得:x >﹣1,则不等式组的解集为﹣1<x ≤2.20.解:(1)请补全下表中空格:谷粒颗数175≤x<185185≤x <195195≤x <205205≤x <215215≤x <225频数381063对应扇形图中区域BDEAC(2)补全频数分布直方图;(3)扇形B的百分比是×100%=10%,扇形A对应的圆心角度数为360°×=72°,故答案为:10%、72°;(4)3000×=900(株),答:即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.21.解:(1)A(3,﹣1),C(2,3);(2)如图,△A′B′C'即为所求;A′(2,2),B′(5,7),C′(1,6);(3)22.证明:(1)∵AM∥NC,∴∠ADB=∠C,又∵AB⊥BC,∴∠A+∠ADB=90°,∴∠A+∠C=90°;(2)过点B作BE∥CN,如图4,∵BE∥CN,∴∠C=∠CBE,又∵BD⊥MA,∴∠DBE=∠BDA=90°,∴∠ABD+∠ABE=90°,又∵AB⊥BC,∴∠ABE+∠CBE=90°,∴∠ABD=∠C;(3)设∠DBE=α,则∠BFC=3α,∵BE平分∠ABD,∴∠ABD=∠C=2α,又∵AB⊥BC,BF平分∠DBC,∴∠BDC=∠ABD+∠ABC=2α+90°,∴∠FBC=∠DBC=α+45°,又∵∠BFC+∠FBC+∠BCF=180°,即3α+α+45°+∠BCF=180°,∴∠BCF=135°﹣4α,∴∠AFC=∠BCF=135°﹣4α,又∵AM∥CN,∴∠AFC+∠NCF=180°,即∠AFC+∠BCN+∠BCF=180°,135°﹣4α+135°﹣4α+2α=180,解得α=15°,∴∠AEB=15°,∴∠EBC=∠AEB+∠ABC=15°+90°=105°.23.解:(1)设A奖品的单价为x元,B奖品的单价为y元,由题意得,,解得,答:A奖品的单价为10元,B奖品的单价为15元;(2)由题意得,W=10m+15(100﹣m)=﹣5m+1500,∴,解得60≤m≤75,∵m为整数,∴m为60至75之间的整数(含60,75),∵W=﹣5m+1500,∴k<0,W随m的增大而减小,∴当m=75时,W最小,W最小费用为﹣5×75+1500=1125,∴当A种奖品购买75件,B种奖品购买25件时,花费最少,最少费用为1125元.24.解:(1)由题意得,a+4=0,b﹣5=0,解得:a=﹣4,b=5,∵m是64的立方根,∴m=4,∴A(﹣4,0),B(4,5);故答案为:﹣4,5,4.(2)①如图,线段CD即为所求,点D的坐标为D(0,﹣5);②设点M的坐标为(0,m),∵A(﹣4,0),C(8,0),且三角形ACM的面积是6,∴∴解得:m=±1∴点M的坐标为(0,1)或(0,﹣1);(3)如图,当点E在OD之间时,过点E作EF∥AB∥CD,∴∠ABE=∠BEF,∠DCE=∠CEF,∴∠BEC=∠ABE+∠DCE;如图,当点E在D点的下方时,过点E作EF∥AB∥CD,∴∠ABE=∠BEF,∠DCE=∠CEF,∠BEC=∠BEF﹣∠CEF,∴∠BEC=∠ABE﹣∠DCE.综上所述,∠BEC=∠ABE+∠DCE或∠BEC=∠ABE﹣∠DCE.。

八年级上册数学 全册全套试卷测试卷(含答案解析)

八年级上册数学 全册全套试卷测试卷(含答案解析)

八年级上册数学 全册全套试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,(1) 求证:点A 为BE 的中点 (2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C△POQ=2 HI.【答案】(1)证明见解析;(2)22(0,)7F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作EG ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.试题解析:(1)过E 点作EG⊥x 轴于G ,∵B (0,-4),E (-6,4),∴OB=EG=4,在△AEG 和△ABO 中,∵90EGA BOAEAG BAOEG BO∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEG≌△ABO(AAS),∴AE=AB∴A为BE中点(2)过A作AD⊥A E交EF延长线于D,过D作DK⊥x轴于K,∵∠FEA=45°,∴AE=AD,∴可证△AEG≌△DAK,∴D(1,3),设F(0,y),∵S梯形EGKD=S梯形EGOF+S梯形FOKD,∴()()() 111347463222y y +⨯=+⨯++∴227y=∴220,7F⎛⎫⎪⎝⎭(3)连接MI、NI∵I 为△MON 内角平分线交点,∴NI 平分∠MNO,MI 平分∠OMN,在△MIN 和△MIA 中,∵MN MA NMI AMI MI MI =⎧⎪∠=∠⎨⎪=⎩∴△MIN ≌△MIA (SAS ),∴∠MIN=∠MIA ,同理可得∠MIN=∠NIB,∵NI 平分∠MNO,MI 平分∠OMN,∠MON=90°,∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,∴∠AIB=135°×3-360°=45°,连接OI ,作IS⊥OM 于S, ∵IH⊥ON,OI 平分∠MON,∴IH=IS=OH=OS ,∠HIS=90°,∠HIP+∠QIS=45°,在SM 上截取SC=HP ,可证△HIP≌△SIC,∴IP=IC,∠HIP=∠SIC ,∴∠QIC=45°,可证△QIP≌△QIC,∴PQ=QC=QS+HP ,∴C △POQ =OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.2.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。

人教版八年级上册数学试卷(含答案)

人教版八年级上册数学试卷(含答案)

xx 学校八年级下模拟入学试卷数 学 试 题(时间:90分钟 满分:110分 测试围:八年级上数学书)一.选择题(每小题3分,共36分)1.下列长度的三条线段能组成三角形的是( C )A.3cm,4cm,8cm B.5cm,6cm,11cm C.5cm,6cm,10cm D.3cm,8cm,12cm2.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E 且AB=6 cm ,则△DEB 的周长为 ( B ) A .40 cm B .6 cm C .8 cm D .10 cm第2题3.等腰三角形的两边长分别为5和8,则这个等腰三角形的周长为( C ) A .13 B .18 C .18或21 D.214.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( B ) A .AB =AC B .BD =CDC .∠B =∠CD .∠BDA =∠CDA8. 如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( D ) A 、1处 B 、2处 C 、3处 D 、4处第4题21DCBAC Al 2l 1l 3第8题 第10题 第11题9.若把分式xy yx 2+中的x 和y 都扩大3倍,且0≠+y x ,那么分式的值( C )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍10. 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( B )A. 11B. 5.5C. 3.5D. 711.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A=50°,∠D=10°,则∠P 的度数为( B )A.15°B.20°C.30°D.25°12.已知a 、b 、c 、d 都是正数,且,则与0的大小关系是(C )A.B.C.D.二.填空题(每小题3分,共18分) 13.分解因式:a 3b-2a 2b 2+ab 3=.{ab (a-b )2 }14. 如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分∠BAC ,那么图中全等三角形共有 4 对。

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)

2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)

第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。

湘教版八年级数学上册第一章测试题(含答案)

湘教版八年级数学上册第一章测试题(含答案)

湘教版八年级数学上册第一章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷 (选择题 共36分) 一、选择题(本大题共12小题,每小题3分,共36分) 1.下列各式中是分式的是( C ) A .y +x2B.x 3C.x x +2D.x +1-22.要使分式4x -3有意义,x 应满足的条件是( D )A .x>3B .x =3C .x<3D .x ≠33.若分式|x|-32x +6的值为零,则x 的值是( A )A .3B .-3C .±3D .44.下列分式中是最简分式的是( A ) A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +125.计算x a +1·a 2-12x 的结果正确的是( A )A.a -12B.a +12C.a -12xD.a +12a +26.若a =-22,b =2-2,c =⎝⎛⎭⎫12-2,d =⎝⎛⎭⎫120,则a ,b ,c ,d 的大小关系是( A ) A .a <b <d <c B .a <b <c <dC .b <a <d <cD .a <c <b <d7.(丹江口市期末)下列各式中从左到右的变形一定正确的是( C ) A.0.2a +b a +0.2b =2a +b a +2bB.-a +b c =a +b cC.a 2-4(a -2)2=a +2a -2D.b 2a =bc 2ac8.若关于x 的方程x +4x -3=mx -3+2有增根,则m 的值是( A )A .7B .3C .4D .09.方程12x =2x +3的解为( D )A .x =-1B .x =0C .x =35D .x =110.某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( A )A.30x -361.5x =10B.36x -301.5x =10C.361.5x -30x=10D.30x +361.5x=10 11.若a +b =5,则代数式⎝⎛⎭⎫b 2a -a ÷⎝⎛⎭⎫a -b a 的值为( B ) A .5B .-5C .-15D.1512.已知a ,b 为实数且满足a ≠-1,b ≠-1,设M =a a +1+b b +1,N =1a +1+1b +1. ①若ab =1时,M =N ;②若ab >1时,M >N ;③若ab <1时,M <N ;④若a +b =0时,M ·N ≤0,则上述四个结论中正确的有( B ) A .1个 B .2个C .3个D .4个第Ⅱ卷 (非选择题 共84分) 二、填空题(本大题共6小题,每小题3分,共18分) 13.如图,是我国成功分离的第一株新型冠状病毒电镜照片,该病毒的直径大概是0.000 1毫米,该病毒结构简单、成分简单,但传染性很强,可通过飞沫传播与接触传播,经研究表明佩戴口罩能有效抑制病毒传播.把0.000 1用科学记数法表示为 1×10-4.14.三个分式:1x 2-1,x -1x 2-x ,1x 2+2x +1的最简公分母是 x(x -1)(x +1)2 .15.若分式方程x 2x -5+a5-2x =1的解为x =0,则a 的值为 5 .16.已知x 2n =3,则(-x 3n )4÷4(x 3)2n 的值为274. 17.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程120x +300-120(1+20%)x =30或120x +1801.2x=30 .18.已知y 1=1x -1,y 2=11-y 1,y 3=11-y 2,y 4=11-y 3,…,y n =11-y n -1,请计算y 2 020=1x -1.(用含x 的代数式表示)三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分10分,每小题5分)计算: (1)0.25×(-2)-2÷16-1-(π-3)0; 解:原式=14×14÷116-1=1-1 =0.(2)(6x 2y -1)-2÷(-4xy -2)-2(结果化为只含正整数指数幂的形式). 解:原式=136x -4y 2÷116x -2y 4=49x -2y -2 =49x 2y 2.20.(本题满分5分)解关于x 的方程:3x -1+2xx +1=2.解:方程两边同乘(x +1)(x -1)得 3(x +1)+2x (x -1)=2(x +1)(x -1) 去括号得3x +3+2x 2-2x =2x 2-2 解得x =-5.经检验,x =-5为原方程的解.21.(本题满分6分)阅读下列计算过程,回答问题:x2x+1-x+1=x2x+1-(x+1)①=x2x+1-(x+1)2x+1②=x2-x2+2x+1x+1③=2x+1 x+1.(1)以上过程有两处关键性错误,分别是①③(填序号);(2)请写出此题的正确解答过程.解:正确的解答为:x2x+1-x+1=x2x+1-(x-1)=x2x+1-(x-1)(x+1)x+1=x2-x2+1 x+1=1 x+1.22.(本题满分8分)已知分式:A=4x2-4,B=1x+2+12-x,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?请说明理由.解:丙的结论正确.理由:∵B=1x+2+1 2-x=1x+2-1x-2=x-2-(x+2)(x+2)(x-2)=-4x2-4,A=4x2-4,比较可知,A与B只是分式本身的符号不同,∴A,B互为相反数,故丙的结论正确.23.(本题满分8分)甲、乙两位采购员同去一家饲料公司买了两次饲料,两次饲料的价格有变化,两位采购员的购货方式也不同.其中,甲每次购买1 000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?解:设第一次的单价为x 元,第二次的单价为y 元.则甲的平均价是:1 000x +1 000y 2 000=x +y2,乙的平均价是: 1 600800x +800y =2xyx +y.∵x ≠y 且x >0,y >0. ∴x +y 2-2xy x +y =(x -y )22(x +y )>0.∴乙的购货方式更合算.24.(本题满分8分)化简:⎝ ⎛⎭⎪⎫2x 2+2x x 2-1-x 2-x x 2-2x +1÷x x +1,并解答: (1)当x =3时,求原式的值;(2)原式的值能等于-1吗?请说明理由.解:(1)原式=⎣⎢⎡⎦⎥⎤2x (x +1)(x +1)(x -1)-x (x -1)(x -1)2·x +1x =⎝⎛⎭⎫2x x -1-x x -1·x +1x =x x -1·x +1x =x +1x -1. 当x =3时,原式=42=2.(2)不能,理由:如果 x +1x -1=-1, 即x +1=-x +1, ∴x =0,而当x =0时,除式xx +1=0, ∴原代数式的值不能等于-1. 25.(本题满分11分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①x -1x 2+1;②a -2b a 2-b 2;③x +y x 2-y 2;④a 2-b 2(a +b )2.其中是“和谐分式”是 ② (填写序号即可);(2)若a 为正整数,且x -1x 2+ax +4为“和谐分式”,请写出a 的值;(3)在化简4a 2ab 2-b 3-a b ÷b4时, 小东和小强分别进行了如下三步变形:小东:原式=4a 2ab 2-b 3-a b ×4b=4a 2ab 2-b3-4a b 2 =4a 2b 2-4a (ab 2-b 3)(ab 2-b 3)b 2小强:原式=4a 2ab 2-b 3-a b ×4b=4a 2b 2(a -b )-4ab2 =4a 2-4a (a -b )(a -b )b 2显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是: 小强通分时,利用和谐分式找到了最简公分母 ,请你接着小强的方法完成化简.解:(1)②分式a -2b a 2-b 2=a -2b (a +b )(a -b ),不可约分,∴分式a -2ba 2-b 2是和谐分式,故答案为②.(2)∵分式x -1x 2+ax +4为和谐分式,且a 为正整数,∴a =4,a =-4(舍),a =5.(3)原式=4a 2-4a 2+4ab(a -b )b 2=4ab(a -b )b 2=4a(a -b )b=4aab -b 2.26.(本题满分10分)多好佳水果店在批发市场购买某种水果销售,第一次用1 500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1 694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果. (1)求第一次购买的水果的进价是每千克多少元;(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解:(1)设第一次购买的水果的进价是每千克x 元,则第二次购买的水果的进价是每千克1.1x 元,根据题意,得1 6941.1x -1 500x=20, 解得x =2,经检验,x =2是原方程的解,且符合题意. 答:第一次购买的水果的进价是每千克2元. (2)第一次购买水果1 500÷2=750(千克), 第一次利润为750×(9-2)=5 250(元). 第二次购买水果750+20=770(千克),第二次利润为100×(10-2.2)+(770-100)×(10×55%-2.2)=2 991(元).5 250+2 991=8 241(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了8 241元.。

北师大版八年级上册数学第一章单元测试题(含答案)

北师大版八年级上册数学第一章单元测试题(含答案)

试卷第1页,共8页 北师大版八年级上册数学第一章单元测试题(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.学习了勾股定理之后,老师给大家留了一个作业题,小明看了之后,发现三角形各边都不知道,无从下手,心中着急.请你帮助一下小明.如图,ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD AC ⊥于点D ,则BD 的长为( )A .45B .85C .165D .2452.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,小正方形的面积为5,则大正方形的面积为( )A .12B .13C .14D .153.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中5AE =,13BE =,则2EF 的值是( )试卷第2页,共8页A .128B .64C .32D .1444.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )A .4B .8C .12D .165.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示.若水面宽24cm AB =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm6.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .试卷第3页,共8页A .14B .12C .10D .87.观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a ,b ,a b >,根据图中图形面积之间的关系及勾股定理,可直接得到等式( )A .2()a a b a ab -=-B .22()()a b a b a b +-=-C .222( )2a b a ab b -=-+D .222()2a b a ab b +=++8.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:①m 为正整数,则3m ,4m ,5m 为一组勾股数;①1,2,3是一组广义勾股数;①13是广义斜边数;①两个广义斜边数的和是广义斜边数;①若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;①两个广义斜边数的积是广义斜边数.依次正确的是( )A .①①①B .①①①①C .①①①D .①①①9.如图, Rt AED △中,90,,3,11AED AB AC AD EC BE ∠=====,则ED 的值为( )试卷第4页,共8页ABCD110.如图,在①ABC 中,AB =2,①ABC =60°,①ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ①l ,BF ①l ,垂足分别为E ,F ,则AE +BF 的最大值为( )AB .C .D .11.在Rt①ABC 中,①C =90°,AC =10,BC =12,点D 为线段BC 上一动点.以CD 为①O 直径,作AD 交①O 于点E ,则BE 的最小值为( )A .6B .8C .10D .1212.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;①两个“整弦数”之和一定是“整弦数”;①若c 2为“整弦数”,则c 不可能为正整数;①若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;①若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,共24分)试卷第5页,共8页 13.如图,OE ①AB 于E ,若①O 的半径为10,OE =6,则AB =_______.14.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米15.学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为______米.16.已知2(4)5y x x -+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.17.一个数的平方根是4a 和25a +,则=a _________,这个正数是_________.18.已知a、b、c是一个三角形的三边长,如果满足2(3)50a c--=,则这个三角形的形状是_______.19732x y--,则2x﹣18y2=_____.20.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm三、解答题(本大题共5小题,每小题8分,共40分)21.长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;①根据手中剩余线的长度计算出风筝线BC的长为25米;①牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;试卷第6页,共8页试卷第7页,共8页 (2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?22.在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于种种原因,由C 到A 的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H (A ,H ,B 在一条直线上),并新修一条路CH ,测得CB =3千米,CH =2.4千米,HB =1.8千米.(1)问CH 是不是从村庄C 到河边的最近路,请通过计算加以说明;(2)求原来的路线AC 的长.23.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C 处吹折,竹子的顶端A 刚好触地,且与竹子底端的距离AB 是4米.求竹子折断处与根部的距离CB .24.太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE ,他们进行了如下操作: ①测得BD 的长为15米(注:BD CE );①根据手中剩余线的长度计算出风筝线BC的长为25米;①牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH BC⊥,垂足为H,求BH的长度.25.(12,其中4x=.(2)已知x=y=,求22x xy y-+值.试卷第8页,共8页参考答案1.C2.B3.A4.B5.A6.C7.C8.D9.A10.A11.B12.C13.1614.815.7.5;16.203217.-3118.直角三角形19.2220.1621.(1)风筝的高度CE为21.6米;(2)他应该往回收线8米.22.(1)是;(2)2.5米.23.3米24.(1)风筝的高度CE为21.7米(2)BH的长度为9米25.(1)62,122x(2)11答案第9页,共1页。

新人教版八年级数学上册第十一章三角形单元测试题含答案

新人教版八年级数学上册第十一章三角形单元测试题含答案

新人教版八年级数学上册第十一章三角形单元测试题含答案新人教版八年级数学上册第十一章三角形单元测试题(上)一、选择题(30分)1.从五边形的一个顶点出发的对角线,把这个五边形分成()个三角形。

A.5B.4C.3D.22.以下列各组线段长为边能组成三角形的是()。

A.1cm,2cm,4cmB.2cm,4cm,6cmC.4cm,6cm,8cmD.5cm,6cm,12cm3.下列图形中一定能说明∠1>∠2的是()。

1.211.22.12A。

B.CD4.一个三角形的三条角平分线的交点在()A.三角形内B.三角形外C.三角形的某边上D.以上三种情形都有可能5.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()。

A.正三角形B.矩形C.正六边形D.正八边形6.能把一个任意三角形分成面积相等的两部分的是()。

A.角平分线B.中线C.高D.A、B、C都可以7.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为()。

A.70°和110°B.80°和120°C.40°和140°D.100°和140°8.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()。

A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形9.(n+1)边形的内角和比n边形的内角和大()。

A.180°B.360°C.n·180°D.n·360°10.如图,把△XXX纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律。

你发现的规律是()。

BA.∠1+∠2=2∠AB.∠1+∠2=∠AC.∠A=2(∠1+∠2)D.∠1+∠2=∠A/2二、填空题(每题2分,共16分)1.在图1中,∠A+∠B+∠C+∠D+∠E=_____°。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

八年级上册数学三角形测试题(含答案)

八年级上册数学三角形测试题(含答案)

八年级数学第11章三角形一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是().A.3B.4C.5D.62.下面四个图形中,线段BE是⊿ABC的高的图是()3(.2008年?福州市)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、第5题图(∠C除外)相等的角的个数是(A、3个B、4个C、5个D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,-1-第6题图则∠A O C ∠+D=)0B 、1200C 、1600D 、1800A 、90 7.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段 为边,可以画出三角形的个数是()(A)1个(B)2 个(C)3个(D)4个8.给出下列命题:①三条线段组成的图形叫三角形②三 角形相邻两边组成的角叫三角形的内角③三角形的角平 分线是射线④三角形的高所在的直线交于一点,这一点不 在三角形内就在三角形外⑤任何一个三角形都有三条高、 三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有()A.1个B.2个C.3个D.4 个二、填空题9.如图,一面小红旗其中∠A=60°,∠B=30°,则∠ BCD=。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉 了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是度。

-2-12.如图,∠1=_____.AD ACBD第9题图第10题图EBC第11题图A80140IB12C1DE 第12题图16题图M第14题图13.若三角形三个内角度数的比为2:3:4,则相应的外角比是.14.如图,⊿ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
a
八年级入学数学测试题
一、选择题:(每小题3分,共30分) 1.16的算术平方根是( )
A.4
B.±4
C.2
D.±2
2.如果a ∥b, b ∥c, d ⊥a,那么( )
⊥d B.a ⊥c C.b ∥d D.c ∥d 3.如图,化简:-2)(a b +|b+a-1|得( )
A.1
B.1-2b-2a
C.2a-2b+1
D.2a+2b-1
4.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是( )
A .a>-1 B.a>2 C.a>5 D.无法确定 5.下列命题中,假命题的个数是( ) ①x=2是不等式x+3≥5的解集
②一元一次不等式的解集可以只含一个解 ③一元一次不等式组的解集可以只含一个解 ④一元一次不等式组的解集可以不含任何一个解 A.0个 B.1个 C.2个 D.3个 在实数
21,2π2
2中,分数的个数是( ) A.0个 B.1个 C.2个 D.3个
一个四边形,截一刀后得到的新多边形的内角和将( )
增加180º B.减少180º C.不变 D.以上三种情况都有可能 横坐标与纵坐标互为相反数的点在( )
A.第二象限的角平分线上
B.第四象限的角平分线上
C.原点
D.前三种情况都有可能 9.下列命题中是真命题的是( )
A.同位角都相等
B.内错角都相等
C.同旁内角都互补
D.对顶角都相等
10.用两个正三角形与下面的( )若干个可以形成平面镶嵌. A.正方形 B.正六边形 C.正八边形 D.正十二边形 二、填空题:(每小题3分,共18分)
1.如果点A(x-2,2y+4)在第二象限,那么x 的取值范围是________,y 的取值范围是_______
2.比较大小:7____328
3.计算:32
27-)
(=_______. 4.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是_______. 5. 鑫都大酒店在装修时,准备在主楼梯上铺上红地毯,已知这种地毯每平方米售价35元.
楼梯宽2米,则购买这种地毯至少需_____ 元。

6.如右上图,已知P 是△ABC 的内角平分线的交点,且∠BPC=118°,则∠A= 。

三、解下列不等式组或方程组:(本题8分)
(1) ⎪⎩⎪⎨⎧>-≤
-1
434
3132x x x (2) ⎩⎨⎧=+-=-12532y x y x
四、解答题:(共44分)
1.(8分)如图,已知直线AB ∥CD,求∠A+∠C 与∠AEC 的大小关系并说明理由.
E C
D B
A
2.(10分)已知点A(-1,-2),点B(1,4)
(1)试建立相应的平面直角坐标系;
(2)描出线段AB的中点C,并写出其坐标;
(3)将线段AB沿水平方向向右平移3个单位长度得到线段A
1B
1
,写出线段A
1
B
1
两个端点及线段中点C
1
的坐标
3.(8分)如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F. 已知∠A=30°,∠FCD=80°,求∠D和∠B。

F
E
D
C
A
4.(9分)(列二元一次方程组解答)某书店的两个下属分店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店该种图书的数量仍比甲书店该种图书的数量的一半还少400册.求这两个书店原有该种图书的数量差.
5.(9分)某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住.如果将某班男生都安排到甲种客房,将有一间客房住不满;若都安排到乙种客房,还有2人没处住.已知该旅店两种客房的数量相等,求该班男生人数.
参考答案: 一、 CAACD BDDDB
二、1.x<2 y>-2 ;2.< ;3.9 ;4.7 ;5.630º ;6. 56 º 三、(1)-12≤x<
2
1
(2) 11=-=y x
四、1、∠A+∠C=∠AEC
理由:过E 作EF ∥AB ∵EF ∥AB ∴∠A=∠AEF
∵AB ∥CD ,EF ∥AB ∴EF ∥CD
∴∠C=∠CEF
∵∠AEC=∠AEF+∠CEF ∴∠AEC=∠A+∠C
2、(1)略
(2)C (0,1) (3)A 1(2,-2) B 1 (4,4) C 1 (3,1) 3、∠B=40º,∠D=50º
4、设甲书店原有图书x 册,乙书店原有图书y 册,根据题意得:
⎪⎩⎪
⎨⎧+=--=+400400)400(2
15000y x y x 解得:x=4000,y=1000
x-y=3000
答:这两个书店原有该种图书的数量差为3000册。

5、设甲、乙两种客房各有x 间,则该班男生人数为(3x+2)人,根据题意得:
⎩⎨
⎧<--+>--+4
)1(4)23(0
)1(4)23(x x x x 解得:2<x<6
因为x 为整数,所以x=3,4,5 当x=3时,3x+2=11
当x=4时,3x+2=14 当x=5时,3x+2=17
答:该班男生人数为11人。

相关文档
最新文档