第五章第一节单因素方差分析
单因素方差分析(one-wayANOVA)
单因素方差分析(one-wayANOVA)单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⽅)单因素⽅差分析概念是⽅来研究⽅个控制变量的不同⽅平是否对观测变量产⽅了显著影响。
这⽅,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⽅的⽅育率,研究学历对⽅资收⽅的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⽅)单因素⽅差分析步骤第⽅步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⽅⽅育率、⽅资收⽅;控制变量分别为施肥量、地区、学历。
第⽅步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⽅的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽅数学形式表述为:SST=SSA+SSE。
第三步是通过⽅较观测变量总离差平⽅和各部分所占的⽅例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽅例较⽅,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽅例⽅,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽅平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽅差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽅的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽅的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽅平,并作出决策(五)单因素⽅差分析的进⽅步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⽅个重要分析,主要包括⽅差齐性检验、多重⽅较检验。
单因素试验的方差分析——概率论与数理统计(李长青版)
其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)
SPSS 教程 第五章 方差分析
目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
单因素方差分析
当 H 0 不真时,
SE 2 而不管 H 0 是否为真, E n s
当 H 0 为真时:
S A ( s 1) F 不能过大 S E (n s)
当 H0
S A ( s 1) ~ F ( s 1, n s ) 为真时: F S E (n s)
(i 1,2,, s;
j 1,2,, ni )
i 为第 i 个总体的均值 , ij 为相应的试验误差。
记
1 s ni i ,称为总平均, n i 1
i i 称为水平 Ai 的效应。
从而模型可以写为:
yij i ij 2 ~ N ( 0 , ) ij ni i 0 i
因此,给定检验水平 时,拒绝域为:
F F ( s 1, n s )
表2 方差分析表
来源 因子 平方和 自由度 均方
2 i 2
F
S A ( s 1) S E (n s)
S A ni y ny
i 1
s
s 1
SA s1
SE n s
误差
总和
S E ST S A
2、方差分析的基本思想: 从所有观测值的总变差中分析出系统变差和随机误差, 通过比较二者的大小关系, 说明试验因素的不同水平对试验结果影响的大小。 即若两个变差差别不大, 各个水平差异不大; 若两个变差差别较大,则不同水平存在显著差异。
3、平方和的分解 记
1 y yij n i 1 j 1
由因素A的各个不同的水平引起的差异。
4、 S A 和 S E 的统计特性
1 y ij y i ni 1 j 1
ni
第五章方差分析
5.1.3方差分析的原理
方差分析认为,如果控制变量的不同水平对观测变量产生了显著影 响,那么它和随机变量共同作用必然使得观测变量值显著变动;反之, 如果控制变量的不同水平没有对观测变量产生显著影响,那么观测变量 值的变动就不明显,其变动可以归结为随机变量影响造成的。 建立在观测变量各总体服从正态分布和同方差的假设之上,方差 分析的问题就转化为在控制变量不同水平上的观测变量均值是否存在显 著差异的推断问题了。 综上所述,方差分析从对观测变量的方差分解入手,通过推断控 制变量各水平下各观测变量的均值是否存在显著差异,分析控制变量是 否给观测变量带来了显著影响,进而再对控制变量各个水平对观测变量 影响的程度进行剖析。 根据控制变量的个数可将方差分析分为单因素方差分析、多因素 方差分析;根据观测变量的个数可将方差分析分为一元方差分析(单因 变量方差分析)和多元方差分析(多因变量方差分析)。
从左侧的变量列表中选择观测变量“胰岛质量”到 Dependent List框中,选择控制变量“药物组”到 Factor框中。
10
选择各组间两两比较的方法,单击“One-Way ANOVA”对 话框下方的“Post Hoc…”按钮,出现上图对话框,在Equal Variances Assumed复选框中选择“LSD”。
协变量“原工资”的相伴概率Sig为0.000,即 协变量对青年教师现工资的影响显著;“教师 级别”的相伴概率为0.997,大于0.05,即对青 年教师的工资影响不显著;“政策实施”的相 伴概率0.029,小于0.05,对青年教师工资影响 显著;两因素的交互作用的相伴概率为0.551, 大于0.05,即交互作用没有对结果造成显著影 响。
5.4.2 协方差分析的基本步骤 • 提出原假设:协变量对观测变量的线性影响是不显著的 ;在扣除协变量的影响条件下,控制变量各水平下观测 变量的各总体均值无显著差异。 • 计算检验统计量和概率P值 给定显著性水平与p值做比较:如果p值小于显著性水平 ,则应该拒绝原假设,反之就不能拒绝原假设。
第五章方差分析[统计学经典理论]
第五章方差分析•如果要检验两个总体的均值是否相等,我们可以用t检验。
当要检验多个总体的均值是否相等,则需要采用方差分析。
•方差分析是R.A.Fister发明的,它是通过对误差的分析研究来检验两个或多个正态总体均值间差异是否具有统计意义的一种方法。
•由于各种因素的影响,研究所得的数据呈现波动,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果造成影响的可控因素,方差分析认为不同处理组的均值间的差异基本来源有两个:•组内差异:由随机误差造成的差异,用变量在各组的均值与该组内变量值之差平方和的总和表示,记作SSE。
•组间差异:由因素中的不同水平造成的差异,用变量在各组的均值与总均值之差平方和的总和表示,记作SSA。
•方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
•方差分析的三个条件:•被检验的各总体均服从正态分布;•各总体的方差皆相等;•从每一个总体中所抽出的样本是随机且独立的;方差分析的基本步骤:建立原假设H0:两个或多个总体均值相等。
将各不同水平间的总离差分成两个部分:组间差异SSA组内差异SSE构造检验统计量: F= MSA / MSE判断:在零假设为真时,F~F[(k-l),(n-k)]的F分布。
若各样本平均数的差异很大,则分子组间差异会随之变大,而F值也随之变大,故F检验是右尾检验。
当检验统计量F大于临界值时则拒绝原假设;或者根据 p值来判断,若p<α,则拒绝原假设§5.1 单因素方差分析(One-Way ANOVA过程)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即成组设计的方差分析,如果做了相应选择,还可进行随后的两两比较,甚至于在各组间精确设定哪几组和哪几组进行比较。
5.1.1 界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(应变量)。
方差分析
假设从总体中抽取容量为 n i 的样本: X i 1 , X i 2 ,..., X in , i 1,2,3,4
i
• 假设4个样本相互独立,则 X ij相互独立, 这里 4
n ni
i 1
• 提出假设:
H0 : 1 2 3 4
原假设等价于
H0 : 1 2 ... r 0
5.4
5.1.3. 统计分析
(一)假设检验 • 构造(5.4)的统计量。 n 1 记 X X ,
i
ni
j 1 ni j 1
i
ij
1 2 Si ni
(X
ij
Xi ) ,
2
i 1,2,...,r
分别为第i个总体的样本均值和方差。
——单因素方差分析数学模型
• 假设
H 0 : 1 2 ... r
• 引入记号: n ni(总次数)
i 1 r
1 r ni i n i 1
(理论总均值)
i i
(因素对指标的效应)
•
i 之间的差异等价于 i 之间的差异,
且
n
Tests of Between-Subjects Effects Dep endent Variable: 杀 虫率 Source Corrected Model Intercept 农药 Error Total Corrected Total Type III Sum of Squares 3794.500a 95340.115 3794.500 178.000 118693.000 3972.500 df 5 1 5 12 18 17 Mean Square 758.900 95340.115 758.900 14.833 F 51.162 6427.424 51.162 Sig . .000 .000 .000
单因素方差分析(详细版) ppt课件
本例数据箱线图无圆点或星号,因此无异常值。
假如数据中存在异常值和极端异常值,其箱线图 如右:
箱线图是一种比较简单和流行的异常值检验方法, 当然同样存在一些更为复杂的方法,这里不过多 介绍。
ppt课件
11
如何处理数据中存在的异常值
导致数据中存在异常值的原因有3种: (1) 数据录入错误:首先应该考虑异常值是否由于数据录入错误所致。如果是,用正确值进行替换并重新进行检验; (2) 测量误差:如果不是由于数据录入错误,接下来考虑是否因为测量误差导致(如仪器故障或超过量程); (3) 真实的异常值:如果以上两种原因都不是,那最有可能是一种真实的异常数据。这种异常值不好处理,但也没有理由将其当作无效值看 待。目前它的处理方法比较有争议,尚没有一种特别推荐的方法。 需要注意的是,如果存在多个异常值,应先把最极端的异常值去掉后,重新检查异常值情况。这是因为有时最极端异常值去掉后,其他异 常值可能会回归正常。
(6) 点击ppOt课K件,输出结果。
9
根据如下输出的箱线图,判断每个组别内是否存在异常值。
ppt课件
10
SPSS中将距离箱子边缘超过1.5倍箱身长度的数 据点定义为异常值,以圆点表示;
单因素方差分析 非参数检验用 ppt课件
a. Lilliefors Significance Correction
Sh ap i ro-Wi lk
Stati sti c
df
.918
10
.929
10
.972
10
Si g. .341 .436 .913
单因素方差分析
注意分组检验正态性后,要先回到data菜单下的split file , 如下操作取消拆分后才能进行后续的方差分析:
治疗后(Y):23.10 20.40 17.70 20.70 42.1 36.10 21.80 40.30 26.00 15.50 35.40 25.50
配对样本的非参数检验
配对样本的非参数检验
Wilcoxon符号检验 适用于连续变量 sign符号检验 适用于对无法用数字计量的情况进行比较,如两分类,对于 连续资料最好不要使用 McNemar 实际上就是常用的配对χ2检验,只适用于二分类资料 Marginal Homogeneity 是McNemar法向多分类情形下的扩展,适用于资料为有序 分类情况
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由 两列数据构成,其中一列是观察指标的变量值,另一列是用 以表示分组变量。实际上,几乎所有的统计分析软件,包括 SAS,STATA等,都要求方差分析采用这种数据输入形式, 这一点也暗示了方差分析与线性模型间千丝万缕的联系。
单因素方差分析 预分析(重要):检验其应用条件
方差分析入门
❖ R.A.Fisher 提出的方差分析的理论基础: 将总变异分解为由研究因素所造成的部分和由抽样误差 所造成的部分,通过比较来自于不同部分的变异,借助 F分布作出统计推断。后人又将线性模型的思想引入方 差分析,为这一方法提供了近乎无穷的发展空间。
单因素方差分析 PPT课件
解:
ssA
5 i1
1 m
10 l1
2 xil
1 510
5 i1
10 l1
2 xil
22.865
fA 51 4
ssE
5 i1
10 l1
x
2 il
1 510
5 i1
10 xil 2 l1
53.055
fE 510 5 45
s 2A
ssA fA
22.865 4
5.71
1 m
m L1
xiL
2
fE km k
m
有km个数据,但存在 k个约束条件,即有 k个 xiL xi 0 L1
3.总离差平方和ssT、自由度fT
• 它反映了全部数据的波动程度。
k m
2
ssT
xiL x
i1 L1
k m
2 km
2
xiL xi
xi x
i1 L1
试验次数
1
2
34
水平
A1
38
36
35 31
A2
20
24
26 30
A3
21
22
31 34
样本 X1 X2
试验数据 X11,X12,..X1L…X1m X21,X22,…X2L,…X2m
.
Xi
Xi1,Xi2,…XiL…Xim
.
.Xk
Xk1,Xk2,…XkL,…Xkm
样本平均值
x1
x2
xi
xk
m
xiL
L1
因素A第i个水平平均值为
xi
1 m
m
xiL
L1
1.因素A离差平方和 ssA、自由度fA
田间统计第5章_方差分析(第1节)
在计算处理内平方和时,kn个离均差
( xij xi ) 要受k个条件的约束,即
(x
j 1
n
ij
xi ) 0 (i=1,2,…,k)
故处理内自由度为资料中观测值的总个数
减 k ,即 kn - k 。 处理内自由度记为 dfe
dfe=kn-k=k(n-1)
因为
nk 1 (k 1) (nk k ) (k 1) k (n 1)
F 分布密度曲线是随自由度df1、df2的
变化而变化的一簇偏态曲线,其形态随着df1、 df2的增大逐渐趋于对称,如图3-15所示。
特点:1、F分布的平均数μ F=1; 2、取值范围[0,+∞]; 3、只有一尾概率,右尾概率; 4、F分布是一组曲线系,当V1、V2都 趋近于+∞时,F分布趋于对称分布。
(二)、F检验
用 F 值出现概率的大小推断一个总
体方差是否大于另一个总体方差的方法
称为F检验(F-test)。F检验是一尾检验。
对于单因素完全随机设计试验资料的方差
分析:
无效假设H0:μ1=μ2=…=μk
备择假设HA:各μi不全相等 或 假设 H0:σt2=σe2 对 HA:σt2﹥σe2, F=MSt / MSe,也就是要判断处理间均方
j
Hale Waihona Puke LSDa t a ( dfe ) S xi x j
t ( df e ) 为在F 检验中误差项自由度下,显著水平
为α的临界t 值, S x x 为均数差数标准误, i j
S xi x j
2MS e / n
MS e 为F 检验中的误差均方,n为各处理的重复数。
当显著水平α=0.05和0.01时,从t 值表中查出
第五章方差分析
SAS软件与统计应用教程
STAT
5.2
单因素方差分析
5.2.1 用INSIGHT作单因素方差分析
5.2.2 用“分析家”作单因素方差分析
5.2.3 用过程进行单因素方差分析
SAS软件与统计应用教程
STAT
5.2.1 用INSIGHT作单因素方差分析
1. 实例
【例5-1】消费者与产品生产者、销售者或服务的提供 者之间经常发生纠纷。当发生纠纷后,消费者常常会向 消费者协会投诉。为了对几个行业的服务质量进行评价, 消费者协会在零售业、旅游业、航空公司、家电制造业 分别抽取了不同的企业作为样本。每个行业各抽取5家 企业,所抽取的这些企业在服务对象、服务内容、企业 规模等方面基本上是相同的。然后统计出最近一年中消 费者对总共20家企业投诉的次数,结果如表5-4。
SAS软件与统计应用教程
STAT
3. 方差分析表
通常将上述计算结果表示为表5-1所示的方差分析表。
表5-1 单因素方差分析表
来源Source 自由度DF 平方和Sun of Square 平均平方和 Mean Square F统计量 F value p值Pr > F
组间
组内 全部(C-tatol)
对于给定的显著性水平α 当值p = P{FA > FA0} < α时拒绝H0A; 当值p = P{FB > FB0} < α时拒绝H0B。 其中,FA0为FA统计量的观测值,FB0为FB统计量的观 测值。
SAS软件与统计应用教程
STAT
2. 有交互作用的多因素方差分析
对于有交互作用的观测{xijk},采用以下的模型: xijk= + i + j + ij + ijk, 1≤i≤l,1≤j≤m,1≤k≤n 其中表示平均的效应,i和j分别表示因素A的第i个 水平和因素B的第j个水平的附加效应, ij 表示因素A的 第i个水平和因素B的第j个水平交互作用的附加效应。 ijk为随机误差,这里也假定它是独立的并且服从等方差 的正态分布。 注意,其中n必须大于1,即为了检验交互作用,必须 有重复观测。
方差分析ppt课件
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2
若
x1
x 2 >t0.05
s x1
x2
或
x1
ห้องสมุดไป่ตู้
x2
>
t0.01
s x1 x2
第一节 单因素试验的方差分析
第九章方差分析在生产过程和科学实验中,我们经常遇到这样的问题:影响产品产量、质量的因素很多.例如,在化工生产中,影响结果的因素有:配方、设备、温度、压力、催化剂、操作人员等.我们需要通过观察或试验来判断哪些因素对产品的产量、质量有显著的影响.方差分析(Analysis of variance)就是用来解决这类问题的一种有效方法.它是在20世纪20年代由英国统计学家费舍尔首先使用到农业试验上去的.后来发现这种方法的应用范围十分广阔,可以成功地应用在试验工作的很多方面.第一节单因素试验的方差分析在试验中,我们将要考察的指标称为试验指标,影响试验指标的条件称为因素.因素可分为两类,一类是人们可以控制的;一类是人们不能控制的.例如,原料成分、反应温度、溶液浓度等是可以控制的,而测量误差、气象条件等一般是难以控制的.以下我们所说的因素都是可控因素,因素所处的状态称为该因素的水平.如果在一项试验中只有一个因素在改变,这样的试验称为单因素试验,如果多于一个因素在改变,就称为多因素试验.本节通过实例来讨论单因素试验.1.数学模型例9.1某试验室对钢锭模进行选材试验.其方法是将试件加热到700℃后,投入到20℃的水中急冷,这样反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表9-1.表9-1试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异.这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水平,这项试验叫做4水平单因素试验.例9.2考察一种人造纤维在不同温度的水中浸泡后的缩水率,在40℃,50℃, (90)的水中分别进行4次试验.得到该种纤维在每次试验中的缩水率如表92.试问浸泡水的温度对缩水率有无显著的影响?表9-2 (%)单因素试验的一般数学模型为:因素A 有s 个水平A 1,A 2,…,A s ,在水平A j (j =1,2,…,s )下进行n j (n j ≥2)次独立试验,得到如表9-3的结果:表9-3假定:各水平A j (j =1,2,…,s )下的样本x ij ~N (μj ,ζ),i =1,2,…,n j ,j =1,2,…,s ,且相互独立.故x ij -μj 可看成随机误差,它们是试验中无法控制的各种因素所引起的,记x ij -μj =εij ,则⎪⎩⎪⎨⎧==+=.,),0(~,,,2,1;,,2,1,2相互独立各ij ij j ij j ij N s j n i x εσεεμ (9.1) 其中μj 与ζ2均为未知参数.(9.1)式称为单因素试验方差分析的数学模型.方差分析的任务是对于模型(9.1),检验s 个总体N (μ1,ζ2),…,N (μs ,ζ2)的均值是否相等, 即检验假设012112:;:,,,s s H H μμμσσσ===⎧⎨⎩ 不全相等. (9.2) 为将问题(9.2)写成便于讨论的形式,采用记号μ=11sj j j n nμ=∑,其中n =1sj j n =∑,μ表示μ1,μ2,…,μs 的加权平均,μ称为总平均.δj =μj -μ, j =1,2,…,s ,δj 表示水平Aj 下的总体平均值与总平均的差异.习惯上将δj 称为水平A j 的效应.利用这些记号,模型(9.1)可改写成:x ij =μ+δj +εij ,x ij 可分解成总平均、水平A j 的效应及随机误差三部分之和120,~(0,),.1,2,,;1,2,,.sj j j ijij j n N i n j s δεσε=⎧=⎪⎨⎪==⎩∑ 各相互独立 (9.1)′ 假设(9.2)等价于假设012112:0;:,,,s s H H δδδδδδ====⎧⎨⎩ 不全零.(9.2)′ 2.平方和分解我们寻找适当的统计量,对参数作假设检验.下面从平方和的分解着手,导出假设检验(9.2)′的检验统计量.记S T =211()jn sijj i xx ==-∑∑, (9.3)这里111jn sij j i x x n===∑∑,S T 能反应全部试验数据之间的差异.又称为总变差.A j 下的样本均值 11jn j ij i jx x n ∙==∑. (9.4)注意到2222()()()()2()()ij ij j j ij j j ij j j x x x x x x x x x x x x x x ∙∙∙∙∙∙-=-+-=-+-+--,而1111()()()()jj n nssijj j jij j j i j i xx x x xx x x ∙∙∙∙====⎡⎤--=--⎢⎥⎣⎦∑∑∑∑=11()0.jnsjij j jj i x x x n x ∙∙==⎛⎫--= ⎪ ⎪⎝⎭∑∑记 S E =211()jn sijj j i xx ∙==-∑∑, (9.5)S E 称为误差平方和;记 S A =22111()()jn ssjjj j i j xx nx x ∙∙===-=-∑∑∑, (9.6)S A 称为因素A 的效应平方和.于是S T =S E +S A . (9.7)利用εij 可更清楚地看到S E ,S A 的含义,记111jn sijj i nεε===∑∑为随机误差的总平均,11jn j iji jn εε∙==∑, j =1,2,…,s .于是S E =221111()()jjn n ssijj ijj j i j i xx εε∙∙====-=-∑∑∑∑; (9.8)S A =2211()()ssj j jj j j j n x x nδεε∙∙==-=+-∑∑. (9.9)平方和的分解公式(9.7)说明.总平方和分解成误差平方和与因素A 的效应平方和.(9.8)式说明S E 完全是由随机波动引起的.而(9.9)式说明S A 除随机误差外还含有各水平的效应δj ,当δj 不全为零时,S A 主要反映了这些效应的差异.若H 0成立,各水平的效应为零,S A 中也只含随机误差,因而S A 与S E 相比较相对于某一显著性水平来说不应太大.方差分析的目的是研究S A 相对于S E 有多大,若S A 比S E 显著地大,这表明各水平对指标的影响有显著差异.故需研究与S A /S E 有关的统计量.3.假设检验问题当H 0成立时,设x ij ~N (μ,ζ2)(i =1,2,…,n j ;j =1,2,…,s )且相互独立,利用抽样分布的有关定理,我们有22~(1)AS s χσ-, (9.10) 22~()ES n s χσ-, (9.11) F =()(1)A En s S s S -- ~F (s -1,n -s ). (9.12)于是,对于给定的显著性水平α(0<α<1),由于P {F ≥F α(s -1,n -s )}=α, (9.13)由此得检验问题(9.2)′的拒绝域为F ≥F α(s -1,n -s ).(9.14)由样本值计算F 的值,若F ≥F α,则拒绝H 0,即认为水平的改变对指标有显著性的影响;若F <F α,则接受原假设H 0,即认为水平的改变对指标无显著影响. 上面的分析结果可排成表9-4的形式,称为方差分析表.当F ≥F 0.05(s -1,n -s )时,称为显著, 当F ≥F 0.01(s -1,n -s )时,称为高度显著.在实际中,我们可以按以下较简便的公式来计算S T ,S A 和S E .记T ·j =1jn ij i x =∑, j =1,2,…,s ,T ··=11jn sij j i x ==∑∑,即有22221111222211,,.j j n ns sT ij ij j i j i s sj A j j j j j E T AT S x n x x n T T S n x n x n n S S S ∙∙====∙∙∙∙==⎧=-=-⎪⎪⎪⎪=-=-⎨⎪⎪=-⎪⎪⎩∑∑∑∑∑∑(9.15) 例9.3 如上所述,在例9.1中需检验假设H 0:μ1=μ2=μ3=μ4;H 1:μ1,μ2,μ3,μ4不全相等.给定α=0.05,完成这一假设检验.解 s =4,n 1=7,n 2=5,n 3=8,n 4=6,n =26.S T =22211(4257)69895926jn sij j i T x n∙∙==-=-∑∑=1957.12,S A =2221(4257)697445.4926sj j jT T n n∙∙∙=-=-∑=443.61,S E =S T -S A =1513.51.得方差分析表9-5.表9-5因 F (3,22)=2.15<F 0.05(3,22)=3.05. 则接受H 0,即认为4种生铁试样的热疲劳性无显著差异.例9.4 如上所述,在例9.2中需检验假设H 0:μ1=μ2=…=μ6; H 1:μ1,μ2,…,μ6不全相等.试取α=0.05,α=0.01,完成这一假设检验.解 s =6, n 1=n 2=…=n 6=4,n =24.S T =2211jn sij j i T x n∙∙==-∑∑=112.27,S A =221sj j jT T n n∙∙∙=-∑=56,S E=S T-S A=56.27.得方差分析表9-6.0.050.01由于 4.25=F0.01(5,18)>F A=3.583>F0.05(5,18)=2.77,故浸泡水的温度对缩水率有显著影响,但不能说有高度显著的影响.本节的方差分析是在这两项假设下,检验各个正态总体均值是否相等.一是正态性假设,假定数据服从正态分布;二是等方差性假设,假定各正态总体方差相等.由大数定律及中心极限定理,以及多年来的方差分析应用,知正态性和等方差性这两项假设是合理的.。
第5章 方差分析
x1
x2
xi
K xk
1 xi = ni
∑x
j =1
ni
ij
1 总均数 x = N
1 ∑∑ xij = N i j
∑n x
i =1
k
i i
总离差平方和: 总离差平方和:即所有样本值与其总均数偏差的平方和
SS = ∑∑ ( xij − x ) = ∑∑ ( xij − xi ) + ( xi − x )
有六种不同的中药杀虫剂,为了分析它们的杀虫效果, 例2 有六种不同的中药杀虫剂,为了分析它们的杀虫效果,对其 杀虫率做了如下试验, 杀虫率做了如下试验,推断这六种杀虫剂的效果差异是否有显 著意义. 著意义. 药物
杀 虫 率 一 87.4 85.0 80.2 二 90.5 88.5 87.3 94.7 361.0 三 56.2 62.4 四 55.0 48.2 五 92.0 99.2 95.3 91.5 378.0 六 75.2 72.3 81.3
∑n (x − x)
i =1 i i
2
它表示系统误差, 它表示系统误差,即各组均数对总均数的离差平方和 结论:总离差平方和=组内离差平方和+ 结论:总离差平方和=组内离差平方和+组间离差平方和
根据:自由度=统计量中独立变量的个数根据:自由度=统计量中独立变量的个数-约束条件个数
SSe中
∑( x
j =1
− xi ) + ∑ ni ( xi − x )
2 k i =1
2
从上式可看出,SS可分解成两项之和 从上式可看出,SS可分解成两项之和 组内离差平方和: 组内离差平方和: =1 j =1
k
ij
− xi
单因素方差分析
•1 问题的提出 某灯泡厂用四种不同的配料方案制成的灯丝, 生产了四批灯泡.在每批灯泡中随机抽取若干 灯泡测得其使用寿命(单位:小时) 数据如表1所示 :
灯丝类别 甲 乙 丙
表1 灯泡的使用寿命 1600 1610 1650 1680 1700 1720 1800
1580 1640 1640 1700 1750 1460 1550 1600 1640 1660 1740 1620 1820
由于 ( X i 1 , X i 2 , , X in ) 是来自总体
i
X
i
~ N ( i ,
2
)
的样本,故
1
2
X
j 1
ni
ij
X
i
2
~ ( n i 1)
2
( i 1, 2 , , r )
由
2
分布的可加性可以得到,
Se
2
2 2 ~ ( n i 1) ( n r ) i 1
其中εij 相互独立.
单因素方差分析的主要任务 检验
H 0 : 1 2 r H 1 : 1 , 2 , , r
不全相等.
或等价地检验检验
H 0 : 1 2 r 0 H 1 : 1 , 2 , , r
不全为零.
ST
r
i 1 jj x )
2
2
i 1 j 1
r
( xi x )
ni
i 1 j 1
2
r
ni
( x ij x i )
2
第五章第一节单因素方差分析
5.1.2
单因素方差分析的数学模型
进行单因素方差分析时,需要得到如表1所示 的数据结构.
表1 单因素方差分析中数据结构
观测值(j) A1
A因素(i)
A2 … Am
1
2
x11
x12
x21
x22
…
…
x m1
x m2
…
ni
…
…
…
…
x1n1
x1.
x2n2
x2.
…
xmnm
xm .
平均值
表中用A表示因素,A的m个取值称为m个水平分别用 A1,A2,…,Am表示,每个水平对应一个总体. 从不同水平(总体)中抽出的样本容量可以相同,也 可以不同.若不同水平抽出的样本容量相同则称为均衡 数据,否则称非均衡数据.
因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验 H0: 1 = 2 = 3 象这类检验若干同方差的正态总体均值是否相等的 一种统计分析方法称为方差分析. 当只有两个正态总体时,这类问题也可以用第八章 讲过的两正态总体均值比较的方法来解决.
来源 Source 组间 组内 平方和 Sun of Square SSMA SSE 自由度 DF m–1 n–m 平均平方和 Mean Square SSMA / (m – 1) SSE / (n – m) F统计量 F value MSA / MSE P值 Pr > F P
全部
SSMA+SSE
n–1
n i= 1 2n 1 + n 2
Õ f (x ; q) = (q )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验 H0: 1 = 2 = 3 象这类检验若干同方差的正态总体均值是否相等的 一种统计分析方法称为方差分析. 当只有两个正态总体时,这类问题也可以用第八章 讲过的两正态总体均值比较的方法来解决.
SSM A (m 1) F (m 1,n m ) F SSE (n m )
另外,F统计量的P值为P=P{F F0},在显著水平 下,若P=P{F F0} < , 则拒绝原假设H0, 可以认为 所考虑的因素对响应变量有显著影响;否则不能拒 绝H0, 认为所考虑的因素对响应变量无显著影响. 通常将上述计算结果表示为方差分析表.
来源 Source 组间 组内 平方和 Sun of Square SSMA SSE 自由度 DF m–1 n–m 平均平方和 Mean Square SSMA / (m – 1) SSE / (n – m) F统计量 F value MSA / MSE P值 Pr > F P
全部
SSMA+SSE
n–1
产量 甲化肥 乙化肥 丙化肥 50 49 51 46 50 50 49 47 49 52 47 46 48 46 50 48 49 50
试根据试验数据推断甲乙丙三种化肥的肥效是否存 在差异.
本例中,只考虑化肥这一个因素(记为A)对粮食产量 的影响,三种不同的化肥称为该因素的三个不同水平 (分别记为A1,A2,A3). 从表中数据看出,即使是施同一种化肥,由于随机因素 (温度,湿度等)的影响,产量也不同.
5.1.2
单因素方差分析的数学模型
进行单因素方差分析时,需要得到如表1所示 的数据结构.
表1 单因素方差分析中数据结构
观测值(j) A1
A因素(i)
A2 … Am
1
2
x11
x12
x21
x22
…
…
x m1
x m2
…
ni
…
…
…
…
x1n1
x1.
x2n2
x2.
…
xmnm
xm .
平均值
表中用A表示因素,A的m个取值称为m个水平分别用 A1,A2,…,Am表示,每个水平对应一个总体. 从不同水平(总体)中抽出的样本容量可以相同,也 可以不同.若不同水平抽出的样本容量相同则称为均衡 数据,否则称非均衡数据.
i 1 j1
称为总离差平方和,或简称总平方和. 它反映了全部试 验数据之间的差异.
另外 SSM A
2 2 ( x x ) n ( x x ) i . i i. i 1 j 1 i 1
m
ni
m
反映了每组数据均值和总平均值的误差,称为组间离差 平方和,简称组间平方和,或称因素A平方和.
(4) 结果分析.
第一部分“SUMMARY”提供拟合模型的一般信息, 包括各分组的名称、观测数、和、均值和方差,如图3 所示. 第二部分为方差分析表,其中各项含义可参见表的 说明.最右边多了一列:在 = 0.05的显著水平下,单 因素方差分析F检验的临界值(即F统计量的上分位点: F).
X
1
2
2q(1 - q)
3
(1 - q)2
P
q
2
其中0 < q < 1为未知参数
求q的极大似然估计 ?
解:设(X 1, X 2 , L , X n )是X 的一个样本,(x 1, x 2, L , x n )为样本值, x 1, x 2 , L , x n 取值于1, 2, 3; 其中取1的有n 1个, 取2的有n 2个, 取3的有n - n 1 - n 2个 L (q) = = 2 2q
如果不能得到完全样本, 就考虑截尾寿命试验.
3. 两种常见的截尾寿命试验
(1) 定时截尾寿命试验
假设将随机抽取的 n 个产品在时间 t 0 时 同时投入试验 , 试验进行到事先规定的 截尾时 间 t0 停止, 如试验截止时共有 m 个产品失效, 它们的失效时间分别为 0 t1 t 2 t m t0 , 此时 m 是一个随机变量, 所得的样本 t1 , t 2 , , t m 称为定时截尾样本 .
因而有: (1) 粮食产量是随机变量,是数值型的变量; (2) 把同一化肥(A的同一水平)得到的粮食产量看作同 一总体抽得的样本,施用不同化肥得到的粮食产量视为 不同总体下抽得的样本,表中数据应看成从三个总体 X1, X2,X3中分别抽了容量为6的样本的观测值. 推断甲乙丙三种化肥的肥效是否存在差异的问题, 就是要辨别粮食产量之间的差异主要是由随机误差造成 的,还是由不同化肥造成的,这一问题可归结为三个总 体是否有相同分布的讨论.
n i= 1 2n 1 + n 2
Õ f (x ; q) = (q )
i
n
2 n1
[2q(1 - q)] [(1 - q)]
n2
n - n1 - n 2
(1 - q)
2n - 2n 1 - n 2
ln L = ln 2 + (2n 1 + n 2 ) ln q + (2n - 2n 1 - n 2 ) ln(1 - q) d ln L 2n 1 + n 2 2n - 2n 1 - n 2 = = 0 dq q 1- q 2n 1 + n 2 ˆ ? q 为q的极大似然估计 。 2n
第五章 方 差 分 析
5.1 单因素方差分析
5.1.1
单因素方差分析的问题
单因素方差分析用来检验根据某一个分类变量得到 的多个分类总体的均值是否相等.下面以一简例说明方 差分析的原理.
5.1.1 单因素方差分析的问题
【例1】某化肥生产商要检验三种新产品的效果,在同 一地区选取18块大小相同,土质相近的农田中播种同 样的种子,用等量的甲乙丙化肥各施于六块农田,试验 结果每块农田的粮食产量如下所示.
可以证明,在H0成立下
当原假设成立时,各总体均值相等,各样本均值间的差 异应该较小,模型平方和也应较小,F统计量取很大值 应该是稀有的情形. 所以对给定显著性水平 (0, 1),H0的拒绝域为:
若由观测数据xij(j = 1, 2, …, ni,i = 1, 2, …, m)计算得 到F的观测值为F0, 当F0落入拒绝域时拒绝原假设H0, 可 以认为因素A对响应变量有显著影响;否则不能拒绝H0, 认为因素A对响应变量无显著影响.
5.1.3
方差分析的方法
为了方便起见,可将i记为:i = + i
m 1 其中 i 称为总均值, i = i – (i = 1, 2, …, m i1 m)
称为因素A的第i个水平的附加效应. 对不同水平下均值是否相同的检验 H0:1 = 2 = … = m, H1:1,2,…,m不全相等; 就可以表示为: H0:1 = 2 = … = m = 0, H1:1,2,…,m不全为零.
【实验2】利用Excel的数据分析工具对例2作方差分 析. (1) 将数据输入Excel中, 如图所示.
(2) 在Excel主菜单中选择“工具”“数据分析”, 打开“数据分析”对话框,在“分析工具”列表中选择 “方差分析:单因素方差分析”选项,单击“确定”按 钮.
(3) 在打开的“方差分析:单因素方差分析”对话框中, 输入“输入区域”:A2:D7,“分组方式”取默认的 “列”方式,选中“标志位 于第一行”复选框,如图 所示,单击“确定”按钮.
由于在实际中有充分的理由认为粮食产量服从正态 分布, 且在安排试验时, 除所关心的因素(这里是化肥)外, 其它试验条件总是尽可能做到一致. 这使我们可以认为每个总体的方差相同 即 Xi~N(i,σ2) i = 1, 2, 3 因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验 H0: 1 = 2 = 3
设xij表示第i个总体的第j个观测值(j = 1, 2, …,ni, i = 1,2,…,m), 由于 xij ~ N(i, 2 ,i = 1, 2, …, m ) 单因素方差分析模型常可表示为: xij = i + ij ,相互独立,1≤i≤m,1≤j≤ni. 其中i表示第i个总体的均值,ij为随机误差.
n2
第一节(续)基于截尾样本的 最大似然估计
一、基本概念 二、基于截尾样本的最大似然估计 三、小结
一、基本概念
1. 寿命分布的定义
产品寿命T 是一个随机变量,它的分布称为寿 命分布.
பைடு நூலகம்
2. 完全样本的定义
将随机抽取的n 个产品在时间t 0 时, 同时 投入试验直到每个产品 都失效. 记录每一个产 品的失效时间 , 这样得到的样本(即由所有产品 的失效时间 0 t1 t 2 t n 所组成的样本) 叫完全样本. (一种典型的寿命试验)
(4) 结果分析: 从方差分析表可以看出,P值 = 0.047647 < 0.05(显著 水平),所以拒绝原假设,即4个行业之间的服务质量 有显著差异.从平均投诉的次数来看,家电制造业最高 (59),航空公司最低(35),从各分组的方差来看, 航空公司的服务最稳定(方差最小).
例 设总体X 的分布律为
行业 零售业 旅游业 航空公司 家电制造业 投诉次数 57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 44 56 40 58