物理学习中的常见运动模型

物理学习中的常见运动模型
物理学习中的常见运动模型

物理学习中的常见运动模型

高中物理知识就是在初中物理知识基础上进行延伸与发展的,其主要就是从表面的物理现象转向更加深入的物理研究。我们在对其进行学习的时候,可以清楚感受到物理运动知识的逐渐深入。本文就结合实际的例题,对高中物理中常见的一些运动模型进行分析。

物理这门学科中的知识点就是建设在现实客观事物上的,所以我们在对其进行学习的时候需要学习观察与思考,在实际中逐渐地总结经验,对一些物理的定义以及定律进行深入了解与掌握。这样才能够对运动相关的问题进行有效解答,并以此提升自己的解题效率与物理学习水平。

圆周运动模型

圆周运动就是曲线运动中十分关键的一个部分,我们在对其进行学习的时候已经先对曲线运动的相关规律进行了理解,在学习与解答圆周运动时就比较简单。而匀速圆周运动就是圆周运动知识点中比较常见的部分,在对其进行学习的时候我们要掌握线速度、角速度以及周期等相关的概念与之间的关系,这样才能够将定律使用到实际的例题中。在这里主要就是将匀速圆周运动作为例子进行讲解。

例题1:在地球的表面上有纬度不同的两个点,其分别就是a与b。若就是将地球当做一个球体,则ab两个点随着地球进行自转,同时进行匀速性的圆周运动,那么?@两个点在下面

哪个方面的大小就是一样的?

A、线速度

B、角速度

C、加速度

D、轨道半径

解析:这道题目就是一道十分典型的运动问题,我们在对这种题型进行解答的时候,要首先对这种运动的相关规律进行理解。我们在学习匀速圆周运动的时候就知道:线速度V、角速度,周期T以及频率f之间的相互关系,在物理教材中也有详细的描写:v=2πr/T,ω=2π/T=2πf,v=rω等等相关的式子。因此在解答这道题目的时候我们就能够根据V=rω来断定AC都不正确,因此正确的答案只有B选项。

直线运动模型

高中物理中的直线运动分成了匀速直线运动与匀变速

直线运动。我们在对其进行学习的时候首先就需要对相关的基础性定义进行理解。例如其中将速度不变的直线运动称之为匀速直线运动,其特点就是物体在任何时间中经过的路程与时间的比值就是一定的,其中瞬时速度的大小与方向都不变,速度也不会发生变化,其中合外力就是零,公式就是:s=vt。但就是在实际生活化中就是不存在绝对匀速直线运动的,其只就是将一个实际运动进行相似的处理,这就是一种被理想化的运动模型。在这里主要就是将匀速直线运动进行阐述。

例题2:在一个匀速行驶的大巴中,一位同学正在往各个方向使用一样的力进行立定跳远,根据这个现象在以下选项中找出正确的说法。

A、朝着与大巴行驶方向一致跳的最远

B、朝着与大巴行驶方向相反进行立定跳最远

C、朝着与大巴行驶方一致跳的最近

D、朝各个方向跳都就是一样的距离

解析:我们在对这道题进行解答的时候,首先需要了解的就是大巴与人一起进行了匀速直线运动,而人在进行竖直跳

的时候,因为受到了惯性的原因,人在空中的时候还需要在水平方向上与大巴用一样的速度进行运动,而这个时候与人站

在静止大巴上就是相同的。因此我们就可以将题目中的运动当做就是在静止的大巴上进行运动,在这种情况下朝着各个

方向跳的距离都就是一样的,所以正确的答案就是D。

平抛运动模型

例题3:标准排球场总长度就是18米,女排比赛网就是2、24m,在一场市级比赛中,女排运动员A在后排起跳强攻位置正好在距离网3米的正上方。之后A击球速度不管多大,不就是下网则就是出界,试着分析出现这个现象的原因。

我们在对高中物理中一些运动规律与知识定义进行学

习的时候,要多在实际的例题基础上进行锻炼,对一些常见的运动模型问题进行深入的解析,研究其中运动现象产生的原因。然后综合相关的定义来对题目进行解析,在解答的过程中我们就能够更加深入地对相关的概念进行记忆,进而真正达

到学习的最终目的。

(完整word版)高中物理传送带模型总结

“传送带模型” 1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示. 2.建模指导 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. 水平传送带模型: 1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端; (2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少? 2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运, 传送带下表面离地面的高度h不变。如果物体开始沿曲面下滑时距传送带表面 的高度为H,初速度为零,g取10m/s2.求: (1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。 (2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。 (3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

高中物理牛顿运动定律问题中的几个常见模型专题辅导

高中物理牛顿运动定律问题中的几个常见模型 在有关牛顿运动定律的问题中,我们会经常遇到一些相似情景的问题,如果我们能够将这些常见的模型加以归纳、总结,就可以举一反三,达到做题少、见效快的目的了。 本文就一些常见模型进行归纳,希望能够给大家一点启发。 (1)几种自由滑行的加速度大小 注:①对图二、图三:若斜面光滑,则有a =gsin θ ②对图三:若a=0,即物块恰能沿斜面匀速下滑,有θμtan = ③若物块在同一斜面上既上滑又下滑,则有θ2gsin a a =+下上 ④对于阻力不变的上抛和下落,类似有g 2a a =+下上(相当于 90=θ) 例:如下图所示,粗糙的斜坡倾角α=30°,有一物体从点A 以某一初速度开始向上运动,经过2s 到达B 点速度恰好为零,然后从点B 返回点A 。已知点A 、B 间距离为16m ,求从点B 返回点A 所需的时间。(g=10m/s 2) 解:将第一过程逆向考虑,运动变成初速度为零,加速度为上a 的匀加速直线运动 由2t a 21s 上上=,即2t a 2 116上上= 解得:2s /m 8a =上 由下上和ma gcos m -mgsin ma cos mg sin mg ==+θμθθμθ(这两个表达式必须要交待) 知2s /m 105.0102sin g 2a a =??==+θ下上 从而解得2s /m 2a =下 由2t a 21s 下下=,即2t a 2 116下下= 解得:s 4t =下

※本题在解题过程中,好多资料往往都是先解出摩擦因数μ,然后再去解下a ,这样一方面更为麻烦,另一方面也增加了出错的机会。显然,如果知道了上滑和下滑时加速度间的关系,问题就大为简便了。但由于这个结论不是课本上的,不可直接拿出来用,就如在圆周运动中常常要用到gr v =,如果直接用经结论就要被扣分一样, 这一点是我们今后在解题时必须要时刻加以注意的(下同)。 (2)图中水平桌面光滑,两种情况下加速度的区别在图四中,很容易知道M 的加速度为M mg a a M == 而在图五中,却容易错误地认为加速度大小与图四相同,实际上两者相差很大。 仔细分析后就会发现图五中的m 向下加速时,m 处于失重状态,其对绳子的拉力一定小于自身重力,加速度就不可能与图四相同了。只要设绳子上的拉力大小为T ,分别对M 、m 运用牛顿第二定律即可解出加速度大小为 m M mg a a a M m +=== (3)物体只受两个力作用下的两种加速度物体只受如图六F 、mg 两个力的作用,则 若加速度沿①方向,则a 1=gtan α 若加速度沿②方向,则a 2=gsin α 这种模型在作变速运动的车厢内悬挂小球(含圆锥摆类问题)、物块沿光滑斜面滑行、放在斜面上在推力作用下与斜面保持相对静止一起加速运动、火车转弯问题的讨论、单摆回复力等问题中经常碰到,我们应该能够做到非常熟练。 (4)光滑水平面上,一物体由静止开始在恒力F 1作用下运动时间t ,后将F 1反向,大小变为F 2,经相同时间回到原出发点,则有F 2=3F 1(证明略)。 该结论非常有用,如将力改为加速度则变为运动学问题,也可将其放到机械能的做功问题中去,还可放到电场的电容器求两次电量之比问题中去等。 (5)一小球由静止开始从斜面上滑下,到达斜面底部不计能量损失地进入同种材料的水平面上滑行一段距离后停止运动,若始末两点的连线与水平面的夹角为θ(如图所示),则有:θμtan =

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

物理学习中的常见运动模型

物理学习中的常见运动模型 高中物理知识就是在初中物理知识基础上进行延伸与发展的,其主要就是从表面的物理现象转向更加深入的物理研究。我们在对其进行学习的时候,可以清楚感受到物理运动知识的逐渐深入。本文就结合实际的例题,对高中物理中常见的一些运动模型进行分析。 物理这门学科中的知识点就是建设在现实客观事物上的,所以我们在对其进行学习的时候需要学习观察与思考,在实际中逐渐地总结经验,对一些物理的定义以及定律进行深入了解与掌握。这样才能够对运动相关的问题进行有效解答,并以此提升自己的解题效率与物理学习水平。 圆周运动模型 圆周运动就是曲线运动中十分关键的一个部分,我们在对其进行学习的时候已经先对曲线运动的相关规律进行了理解,在学习与解答圆周运动时就比较简单。而匀速圆周运动就是圆周运动知识点中比较常见的部分,在对其进行学习的时候我们要掌握线速度、角速度以及周期等相关的概念与之间的关系,这样才能够将定律使用到实际的例题中。在这里主要就是将匀速圆周运动作为例子进行讲解。 例题1:在地球的表面上有纬度不同的两个点,其分别就是a与b。若就是将地球当做一个球体,则ab两个点随着地球进行自转,同时进行匀速性的圆周运动,那么?@两个点在下面

哪个方面的大小就是一样的? A、线速度 B、角速度 C、加速度 D、轨道半径 解析:这道题目就是一道十分典型的运动问题,我们在对这种题型进行解答的时候,要首先对这种运动的相关规律进行理解。我们在学习匀速圆周运动的时候就知道:线速度V、角速度,周期T以及频率f之间的相互关系,在物理教材中也有详细的描写:v=2πr/T,ω=2π/T=2πf,v=rω等等相关的式子。因此在解答这道题目的时候我们就能够根据V=rω来断定AC都不正确,因此正确的答案只有B选项。 直线运动模型 高中物理中的直线运动分成了匀速直线运动与匀变速 直线运动。我们在对其进行学习的时候首先就需要对相关的基础性定义进行理解。例如其中将速度不变的直线运动称之为匀速直线运动,其特点就是物体在任何时间中经过的路程与时间的比值就是一定的,其中瞬时速度的大小与方向都不变,速度也不会发生变化,其中合外力就是零,公式就是:s=vt。但就是在实际生活化中就是不存在绝对匀速直线运动的,其只就是将一个实际运动进行相似的处理,这就是一种被理想化的运动模型。在这里主要就是将匀速直线运动进行阐述。 例题2:在一个匀速行驶的大巴中,一位同学正在往各个方向使用一样的力进行立定跳远,根据这个现象在以下选项中找出正确的说法。

2010年经典高中物理模型--常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义 进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =2 1kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质 弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴 接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离 开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧 形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

经典高中物理模型--打木块模型之一

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022 121mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121202202220v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

高中物理常见的物理模型及分析

高三物理总复习 专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2 (1)向下的加速度a=g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a>g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a<g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): 图9-3 (1)落到斜面上的时间t= 2v0tan θ g ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c= v0tan θ g 小球距斜面最远,最大距离d= (v0sin θ)2 2g cos θ . 6.如图9-4所示,当整体有向右的加速度a=g tan θ时,m能在斜面上保持相对静止. 图9-4 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab棒所能达到的稳定速度v m= mgR sin θ B2L2 .

高中常用物理模型及解题思路

高中常用物理模型及解题思路 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

高考物理知识归纳力学模型及方法

╰ α 高中物理知识归纳(二) ----------------------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv E m L · m2 m1 F B A F1 F2 B A F

F m 整体下摆2mgR=mg 2R +'2 B '2A mv 21mv 2 1+ 'A 'B V 2V = ? ' A V = gR 53 ; 'A 'B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0< gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失 即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒 例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少? 4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动 用同体积的水去补充 5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大; ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。 ◆弹性碰撞:m 1v 1+m 2v 2=' 22' 11v m v m +(1) '222'12221mv 2 1mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换 大碰小一起向前;质量相等,速度交换;小碰大,向后返。 ◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)' v 20mv 21='2M)v m (2 1++E 损 E 损=20mv 21一'2 M)v (m 2 1+= 0202 0E m M M m 21m)(M M M)2(m mM k v v +=+=+ a 图9 θ

高考常用24个物理模型

F m 高考常用24个物理模型 物理复习和做题时需要注意思考、善于归纳整理,对于例题做到触类旁通,举一反三, 把老师的知识和解题能力变成自己的知识和解题能力,下面是物理解题中常见的24个解题 模型,从力学、运动、电磁学、振动和波、光学到原子物理,基本涵盖高中物理知识的各个 方面。主要模型归纳整理如下: 模型一:超重和失重 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y) 向上超重(加速向上或减速向下)F=m(g+a); 向下失重(加速向下或减速上升) F=m(g-a) 难点:一个物体的运动导致系统重心的运动 绳剪断后台称示数铁木球的运动 系统重心向下加速用同体积的水去补充 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 模型二:斜面 搞清物体对斜面压力为零的临界条件 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) a θ

模型三:连接体 是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法:指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程。 隔离法:指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N=212 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (2 0F =是上面的情 况) F=2 11221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

高中物理中常用的三角函数数学模型!!!

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 2、由斜边求直角边 3、两直角边互求 (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】 2所示。 θtan 1?=mg F 经典例题2 如图3所示,质量为,挡 挡板和使球压紧斜面,重力的分解如图4所示。 二、三角函数求物理极值 因正弦函数和余弦函数都有最大值(为1) 本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然后在确 定极值。现将两种三角函数求极值的常用模型归纳如下: 1.利用二倍角公式求极值 图 3 图 4

高中物理基础知识 总结18 几种典型的运动模型

高考物理知识点总结18 几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 两个基本公式(规律):V t = V 0 + a t S = v o t + 12 a t 2 及几个重要推论: (1)推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: V t/ 2 = V V t 02+=s t (若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度:V s/2 = v v o t 2 2 2 + V t/ 2 =V =V V t 02+=s t =T S S N N 21++= V N ≤V s/2 = v v o t 222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2

相关文档
最新文档