[整理]东南大学信息学院 模电实验四.

合集下载

东南大学信息学院通信电子线路实验实验报告

东南大学信息学院通信电子线路实验实验报告

3.1 常用仪器的使用04012540 印友进一、实验内容1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。

答:(1)频谱仪结构框图为:频谱仪的主要工作原理:①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。

这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。

即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。

得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小(帕斯瓦尔定理)。

(2)示波器的测量精度与示波器带宽、被测信号频率之间的关系:示波器的带宽越宽,在通带内的衰减就越缓慢;示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。

2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。

答:上电时间示意图:工作原理:捕获这个过程需要示波器采样周期小于过渡时间。

示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。

这样,就可以利用游标读出电源上电的上升时间。

3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的?答:载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数)已调的瞬时相角为000t ()()t t c f t dt t k u t dt θωωθΩ=++⎰⎰()=所以FM 已调波的表达式为:000()cos[()]t om c f u t U t k u t dt ωθΩ=++⎰当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即m f fU M k Ω=Ω。

东南大学电路实验实验报告

东南大学电路实验实验报告

电路实验实验报告第二次实验实验名称:弱电实验院系:信息科学与工程学院专业:信息工程:学号:实验时间:年月日实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理一、仿真实验1.电容伏安特性实验电路:图1-1 电容伏安特性实验电路波形图:图1-2 电容电压电流波形图思考题:请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。

解:()()mV wt wt U C cos 164cos 164-=+=π,()mV wt wt U R sin 10002cos 1000=⎪⎭⎫ ⎝⎛-=π,us T 500=;()mA wt RU I I R R C sin 213.0===∴,ππ40002==T w ; 而()mA wt dtdu CCsin 206.0= dtdu CI CC ≈⇒且误差较小,即可验证电容的伏安特性表达式。

2.电感伏安特性实验电路:图1-3 电感伏安特性实验电路波形图:图1-4 电感电压电流波形图思考题:1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。

对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。

2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。

解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=⎪⎭⎫ ⎝⎛-=π,us T 500=; ()mA wt RU I I R R L sin 213.0===∴,ππ40002==T w ; 而()mV wt dtdi LLcos 7.2= dtdi LU LL ≈⇒且误差较小,即可验证电感的伏安特性表达式。

二、硬件实验1.恒压源特性验证表1-1 不同电阻负载时电压源输出电压2.电容的伏安特性测量图1-5 电容电压电流波形图3.电感的伏安特性测量图1-6 电感电压电流波形图4.基尔霍夫定律验证表1-2 基尔霍夫验证电路思考题:1.根据实验数据,选定节点,验证KCL 的正确性。

东南大学模电实验报告-比较器

东南大学模电实验报告-比较器

东南大学电工电子实验中心实验报告课程名称:模拟电路实验第 6 次实验实验名称:比较器电路院(系):专业:姓名:学号:实验室: 实验组别:同组人员:实验时间:评定成绩:审阅教师:实验六 比较器电路一、实验目的1、 熟悉常用的单门限比较器、迟滞比较器、窗口比较器的基本工作原理、电路特性和主要使用场合;2、 掌握利用运算放大器构成单门限比较器、迟滞比较器和窗口比较器电路各元件参数的计算方法,研究参考电压和正反馈对电压比较器的传输特性的影响;3、 了解集成电压比较器LM311的使用方法,及其与由运放构成的比较器的差别;4、 进一步熟悉传输特性曲线的测量方法和技巧。

二、实验原理 三、预习思考1、 用运算放大器LM741设计一个单门限比较器,将正弦波变换成方波,运放采用双电源供电,电源电压为±12V ,要求方波前后沿的上升、下降时间不大于半个周期的1/10,请根据LM741数据手册提供的参数,计算输入正弦波的最高频率可为多少。

答:查询LM74的数据手册,可得转换速率为0.5V/us,电源电压为10V ±左右,计算可得输出方波的最大上升时间为40us,根据设计要求, 方波前后沿的上升下降时间不大于半个周期的1/10,计算可得信号的最大周期为800us,即输入正弦波得到最高频率为1.25KHZ. 2、 画出迟滞比较器的输入输出波形示意图,并在图上解释怎样才能在示波器上正确读出上限阈值电平和下限阈值电平。

答:Ch1接输入信号,ch2接输出信号,两通道接地,分别调整将两个通道的零基准线,使其重合。

用示波器的游标功能,通道选择ch1,功能选择电压,测出交点位置处电压即对应上限和下限阈值。

参数 条件最小值典型值 最大值 输入失调电压(mv) 25,50A S T C R K ︒=≤2.0 7.5 输入失调电流(nA) 25A T C ︒= 6.0 50 输入偏置电流(nA) 25A T C ︒= 100 250 电压增益(V/mV) 25A T C ︒= 40 200 响应时间(ns)25A T C ︒=200饱和电压(V) 10,50IN OUT V mV I mA ≤-=0.75 1.5 选通开关电流(mA)25A T C ︒=1.53.0输出漏电流(nA)10,35,25,35IN OUT A STROBE GRND V mV V V T C I mA V V V︒-≥-=====-0.2 50输入电压范围(V) -14.513.8 -14.715.04、 完成必做实验和选做实验的电路设计和理论计算。

东南大学模拟电子线路实验报告光线强弱测量显示电路的设计

东南大学模拟电子线路实验报告光线强弱测量显示电路的设计

东南大学电工电子实验中心实验报告课程名称:电路与电子线路实验Ⅱ第二次实验实验名称:光线强弱测量显示电路的设计院(系):专业:姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年4月18 日评定成绩:审阅教师:光线强弱测量显示电路的设计一、实验目的1.进一步熟悉Multisim软件仿真功能;2.初步了解和熟悉传感器的检测技术应用;3.掌握利用运算放大器构成单门限比较器、迟滞比较器和窗口比较器电路各元件参数的计算方法;4.掌握V/F转换电路的工作原理和基本电路结构;5.掌握数字信号的计数锁存与显示的方法;6.掌握数字信号与模拟信号的级联、切换的方法。

二、实验内容1. 基本要求(1)研究光敏电阻性能,设计一个放大电路,要求输出电压能随光线的强弱变化而变化。

根据给定的光强变化范围,用万用表显示输出电压值。

要求:参照表1,光照度从260lux到8000lux,对应的输出电压为1V到4V,列表给出显示的电压值与光照度的对应关系;(2)设计一个输入光强分档显示电路,当光照度从260lux到8000lux变化范围内,分4档(参考表1的分档:2、3、4、5),用发光二极管显示对应光照度的范围并列表表示他们的关系。

2. 提高要求(1)设计一个矩形波发生器,要求其输出波形的高电平脉冲宽度随控制电压的变化而变化,控制电压就是在基本部分已经设计完成的随输入光强变化的输出电压值(1V~4V);(2)利用固定时钟信号,对上述可变的输出矩形波的高电平脉冲宽度进行计数,并用数码管显示所计数值。

列表给出显示的数值和光强的对应关系。

3. 发挥要求(1)利用数字系统综合设计中FPGA构建AD采集模块,实现光强的测量并显示。

三、电路设计(预习要求)(1) 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数,并利用Multisim软件进行仿真,并优化设计(对仿真结果进行分析)基础要求光敏电阻测量电路的设计思路1)光敏电阻在不同光照条件下阻值会发生较大的变化,直接利用分压电路测其所占分压;2)将光敏电阻分压后的电压利用同相比例放大电路进行适当放大,方便后期分档显示;光强分档显示电路的设计思路1)利用四个运放构成的窗口比较器来分档;2)设置几个合理的比较器参考电压值;3)通过比较器输出的高低电压使对应的发光二极管点亮或熄灭提高要求可变脉宽矩形波发生器的设计思路1)根据555定时器矩形波产生电路的设计原理,实现根据输出电压的矩形波高电平脉冲宽度的调节计数显示电路的设计思路1)利用74HC161完成对矩形波高电平脉冲宽度的计数和锁存电路原理图I 光敏电阻分压电路1) 直接分压法测量光敏电阻两端分压我们知道,当光照度从260lux 到8000lux 变化时,对应的输出电压为1V 到4V ,设置 根据分压定理*4500*14k RU V R RU V R ⎧=⎪⎪+Ω⎨⎪=⎪⎩+Ω,计算可得=733,=7R U V Ω 故根据实验室所给元器件参数选择电压为7V ,电阻为700Ω 仿真结果仿真分析:由上表可以看出,当光照度从260lux 到8000lux 变化时,光敏电阻的阻值也会随之改变,而仿真电路中光敏电阻所占的分压也基本在1-4V 内变化。

东南大学 信息学院 2018 电子线路 模电实验四报告

东南大学 信息学院 2018 电子线路 模电实验四报告

东南大学模拟电子电路实验实 验 报 告学号 姓名2018年 4 月 21 日实验名称 差分放大器 成 绩【背景知识小考察】根据图4-10所示电路,计算该电路的性能参数。

已知晶体管的导通电压V BE(on)=0.55, β=500,|V A |=150 V ,试求该电路中晶体管的静态电流I CQ ,节点1和2的直流电压V 1、V 2,晶体管跨导g m ,差模输入阻抗R id ,差模电压增益A v d ,共模电压增益A v c 和共模抑制比K CMR ,请写出详细的计算过程,并完成表4-1。

图4-10 差分放大器实验电路表4-1:计算过程如下:581785.0255.010⨯+=⨯++BQ BQ I I β所以,≈BQ I 2.06μAmA 03.1≈=BQ CQ I I β V I V V Q 94.22521=-== S V I g TCQ m m 62.39≈=Ω≈==k R g R r R eb id 16.11//2//27m7)()(,β24.79g //-g 2m 2m v -≈-≈=R r R A ce d )( 22-12vc -==R R A 81.19|2/|vd ==vcCMR A A K【一起做仿真】1. 在Multisim 中设计差分放大器,电路结构和参数如图4-10所示,进行直流工作点分析(DC 分析),得到电路的工作点电流和电压,完成表4-2,并与计算结果对照。

表4-2:仿真设置:Simulate → Analyses → DC Operating Point ,设置需要输出的电压或者电流。

2. 在图4-10所示电路中,固定输入信号频率为2kHz ,输入不同信号幅度时,测量电路的差模增益。

采用Agilent 示波器(Agilent Oscilloscope )观察输出波形,测量输出电压的峰峰值(peak-peak),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益A v d,用频谱仪器观测节点1的基波功率和谐波功率,并完成表4-3(注意选择合适的解析频率)。

东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学模拟电子电路实验报告——波形的产生、分解与合成

东南大学电工电子实验中心实验报告课程名称:模拟电子电路第四次实验实验名称:波形的产生、分解与合成院(系):专业:姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年5月15 日评定成绩:审阅教师:波形的产生、分解与合成一、实验目的1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2.掌握由运算放大器组成的RC有源滤波器的工作原理,熟练掌握RC有源滤波器的基本参数的测量方法和工程设计方法;3.掌握移相电路设计原理与方法4.掌握比例加法合成器的基本类型、选型原则和设计方法。

5.掌握多级电路的级联安装调试技巧;6.熟悉FilterPro、MultiSim软件高级分析功能的使用方法。

二、实验内容设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

(1) 设计一个方波发生器,要求其频率为500Hz,幅度为5V;(2) 设计合适的滤波器,从方波中提取出基波和3次谐波;(3) 设计移相电路,使高次谐波与基波之间的初始相位差为零。

(4) 设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

三、电路设计(1) 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数:I方波发生器电路设计21122122ln 2ln(12)2112ln(12)R R T RC RC R R R f R TRC R =-=++==+这里取R 1= R 3=10k Ω,R 2=9k Ω,C 1=0.1μF , VCC=6V, VEE=-6V ,此时f =500Hz 仿真结果仿真分析由上图可以看出,输出波形为频率为500Hz ,幅度为5V 的方波,符合实验设计要求。

II 滤波器设计思路我们知道,方波信号可以分解为:411()(sin sin 3sin 5......)35Uf t t t t ωωωπ=+++ 这里我们分别采用两个有源带通滤波器来实现基波和三次谐波的提取。

模拟电子技术标准实验报告 实验1-4

模拟电子技术标准实验报告 实验1-4

w.
ibm
14mV 2 18 A 1.16 K I B 18 A 10 A, 选30 A。
I E I C I B 65 30A 2mA
ju
选管 3DG6C,测量其=65。 为求r be ,设I E 2mA,则
st
26mV 1.16k 2mA
I bm 是U i 产生I B 的最大值。为避免产生截止失真,不应使输入信号工作在输入特性的弯 曲部分。故在设置基极电流时最少加 10A的起始电流。
ibm
rbe 300 1 65
ww
核算I E 与初选值是否吻合:
3)选择偏置电阻R b1 和R b2 欲使I B 稳定应使 I 1 I B ,硅管的 I 1 5 10 I B,I B 30 A , 则I 1 150 300 A . 选 I 1 220 A 。 考虑到设计任务对放大器未提出温度等特殊要求,故设计中可作常温(0--45C)处理。 基极电压可选择低一些,使V B =3V,
ww
w.
四、思考题: 1、示波器荧光屏上的波形不断移动不能稳定,试分析其原因。调节哪些旋钮才能使波形稳 定不变。 答:用示波器观察信号波形,只有当示波器内部的触发信号与所测信号同步时,才能在荧光 屏上观察到稳定的波形。 若荧光屏上的波形不断移动不能稳定, 说明触发信号与所测信号不 同步,即扫描信号(X轴)频率和被测信号(Y轴)频率不成整数倍的关系( x n y ),从而使 每一周期的X、Y轴信号的起扫时间不能固定,因而会使荧光屏上显示的波形不断的移动。 此时,应首先检查“触发源”开关(SOURCE)是否与Y轴方式同步(与信号输入通道保持 一致) ;然后调节“触发电平” (LEVEL) ,直至荧光屏上的信号稳定。 2、在测量中交流毫伏表和示波器荧光屏测同一输入电压时,为什么数据不同?测量直流电压 可否用交流毫伏表,为什么? 答: 交流毫伏表和示波器荧光屏测同一输入电压时数据不同是因为交流毫伏表的读数为正弦 信号的有效值,而示波器荧光屏所显示的是信号的峰峰值。 不能用交流毫伏表测量直流电压。 因为交流毫伏表的检波方式是交流有效值检波, 刻度 值是以正弦信号有效值进行标度的,所以不能用交流毫伏表测量直流电压。

东南大学_吴健雄学院_模电试验_信号产生分解及合成

东南大学_吴健雄学院_模电试验_信号产生分解及合成

东南大学电工电子实验中心告验报实模拟电子电路基础课程名称:4 次实验第实验名称:信号的产生、分解与合成电强化专业:院(系):吴健雄号:姓名:学实验组别:/ 实验室: 104 日月15 实验时间:14年05/ 同组人员:审阅教师:评定成绩:1实验四信号的产生、分解与合成一、实验内容及要求设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1. 基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2. 提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 创新要求用类似方式合成其他周期信号,如三角波、锯齿波等。

分析项目的功能与性能指标:1. 能产生稳定的1kHz、幅度为5V的方波;2. 能滤出方波的基波与三次谐波、五次谐波;3. 设计移相电路与加法电路;4. 合成后的波形能够体现出其间相互关系,合成波形接近方波。

二、电路设计(预习要求)(1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述):基本要求:①方波产生用运算放大器产生矩形波。

Vcc=5V,VEE=-5V电路原理图如下:参数选择计算:2T=2*R9*C*ln(1+2*R8/R7),f=1/T。

要使f=1kHz,可取2 ln(1+2*R7/R8)=1,则R7/R8≈0.3243606354 若取R7=10kΩ,则R8=3.245 kΩ≈2.7k+220*2+100。

R9*C=1/1000,取C=1uF,R9=1 kΩ。

仿真结果如下得到的方波只是频率符合要求,还要用电路对其幅度进行调整。

得到的方波高-5V。

,低电平为电平为5V先将电压整体移动为全负,再反相放大即可。

东南大学模电4波形产生电路

东南大学模电4波形产生电路

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 4 次实验实验名称:波形产生电路院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室: 1实验组别:同组人员:实验时间:2016年5月27日评定成绩:审阅教师:一、实验目的1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2.掌握滤波器的工作原理、基本参数的测量方法和工程设计方法;3.掌握多级电路的级联安装调试技巧;4.熟悉 FilterPro、MultiSim 软件高级分析功能的使用方法。

二、实验内容1. 基本要求使用 555 芯片、74LS74 芯片和通用运放等芯片,设计制作一个频率可变的可输出方波 I、方波 II、三角波、正弦波 I、正弦波 II 的多种波形产生电路。

(1)产生频率为 2kHz-5kHz 的方波 I 作为信号源;利用此方波 I,可在四个通道输出4 种波形:每通道输出方波 II、三角波、正弦波 I、正弦波 II 中的一种波形,每通道输出的负载电阻均为 600 欧姆。

(2)五种波形的设计要求:产生频率为 2kHz-5kHz 连续可调,输出电压幅度为 1V 的方波 I;原理图:考虑采用555定时器,利用二极管调整占空比为50%,为提高负载能力,利用分压电路后级联电压跟随器。

仿真波形为:实际波形为:可以看到,实际波形表现出来的是峰峰值,占空比%,频率为,这是精确到不能再精确的设计。

1)利用方波 I,产生频率为 500Hz-1kHz 连续可调,输出电压幅度为 1V 的方波 II;原理图如下:利用74161分频,并在最后输出处将5V分压至1V:仿真为:实际波形为:频率为低频时:频率为高频时:可以看到,幅度均为,堪称完美。

2)利用方波 I,产生频率为 500Hz-1kHz 连续可调,输出电压幅度峰峰值为3V 的三角波;原理图:利用积分电路将方波积分为三角波:仿真结果为:实际经过电位器调整部分阻值和用电容级联使其变为双极性波形,得到波形如下:低频时:高频时:峰峰值也为。

东南大学模电实验报告模拟运算放大电路

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心实 验 报 告课程名称: 模拟电路实验第 一 次实验实验名称: 模拟运算放大电路(一) 院 (系): 专 业: 姓 名:学 号:实 验 室: 实验组别: 同组人员: 实验时间: 评定成绩: 审阅教师:实验一 模拟运算放大电路(一)一、实验目的:1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。

2、 熟练掌握运算放大电路的故障检查与排除方法,以及增益、传输特性曲线的测量方法。

3、 了解运放调零与相位补偿的基本概念。

二、实验原理:1、反向比例放大器反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。

R 的取值则应远大于信号源v i 的内阻。

若R F = R ,则为倒相器,可作为信号的极性转换电路。

2、电压传输特性曲线F V R A =-R双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。

电压传输特性在实验中一般采用两种方法进行测量。

一种就是手工逐点测量法,另一种就是采用示波器X-Y方式进行直接观察。

示波器X-Y方式直接观察法:就是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X通道,电路的输出信号加到示波器的Y通道,利用示波器X-Y图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以测量相关参数。

具体测量步骤如下:(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。

(2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察与读数。

一般取50~500Hz 即可。

(3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的就是在X-Y 方式下,X 通道的耦合方式就是通过触发耦合按钮来设定的,同样也要设成DC。

(4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。

东南大学模电实验报告-实验四-信号的产生、分解与合成

东南大学模电实验报告-实验四-信号的产生、分解与合成

东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第四次实验实验名称:信号的产生、分解与合成院(系):自动化学院专业:自动化姓名:某某学号:*****实验室: 101 实验组别:同组人员:实验时间:2017年5月10日评定成绩:审阅教师:实验四信号的产生、分解与合成一、实验目的1.掌握方波信号产生的基本原理和基本分析方法、电路参数的计算方法、各参数对电路性能的影响;2.掌握由运算放大器组成的RC有源滤波器的工作原理,熟练掌握RC有源滤波器的基本参数的测量方法和工程设计方法;3.掌握移相电路设计原理与方法;4.掌握比例加法合成器的基本类型、选型原则和设计方法;5.掌握多级电路的级联安装调试技巧;6.熟悉FilterPro、Multisim软件高级分析功能的使用方法。

二、预习思考1.方波发生电路(Multisim 仿真)(1)图4.1中R W调到最小值时输出信号频率是多少,调到最大值时输出信号频率又是多少。

(2)稳压管为6V,要求输出方波的前后沿的上升、下降时间不大于半个周期的10%,试估算图4.1电路的最大输出频率。

(3)如果两个稳压管中间有一个开路,定量画出输出波形图,如果两个稳压管中间有一个短路呢?(4)简单总结一下,在设计该振荡器时必须要考虑运算放大器的哪些参数。

(1)R w 最小时,T=2.290ms,f=436.7Hz;R w最大时,T=24.4ms,f=41Hz。

实际设计1kHz,5Vp方波发生器电路时应该选择更小的R1,通过调整R1的阻值获得1kHz的输出信号。

(2)实验中使用的Ua741运放,数据手册中指出转换速率SR为0.5V/μS,于是稳压管为6V情况下,∆U=12V,∆t=12/0.5=24Μs,T min=∆t/10%*2=480Μs,可得f max=2.08kHz。

(3)有一个开路:上短路:下短路:(4)运放的电压转换速率;运放的最大输出电流;运放的增益带宽积(高频时可能产生不了能够使稳压管正常工作的电压)。

东南大学信息学院大四上综合课程设计报告(微波组)

东南大学信息学院大四上综合课程设计报告(微波组)

综合课程设计实验报告课程名称:微波方向综合课程设计实验名称:微波元件设计、仿真与测试院(系):信息科学与工程学院专业班级: 040101姓名: XXXX学号: 040101指导教师:20XX年XX月XX日一、实验目的1. 了解定向耦合电路的原理和设计方法;2. 学习使用Microwave office 软件进行微波电路的设计、优化、仿真;3. 掌握定向耦合器的制作及调试方法。

二、实验原理定向耦合器是一个四端口网络(如图1所示),其中端口1是输入端,端口2是直通端,端口3是耦合端,端口4是隔离端。

分支线定向耦合器(3dB )是一种常用的微带定向耦合器,如图 2.2所示,图中连接四个端口的微带线阻抗为0Z ;串联分支的微带线阻抗为0/2S Z Z =,长度为/4g λ;并联分支的微带线阻抗为0P Z Z =,长度为/4g λ。

图1 分支线定向耦合器由奇偶模分析可知,当信号从1端口输入时,分支线定向耦合器的2端口为直通端、3端口为耦合端、4端口为隔离端,2、3端口之间输出信号的幅度相同、相位相差900。

三、实验内容和设计指标实验内容:1. 了解微带分支线定向耦合器的工作原理;2. 根据指标要求,使用Microwave office 软件设计一个微带分支线定向耦合器,并对其参数进行优化、仿真。

设计指标:在介电常数为4.5,厚度为1mm 的FR4基片上(T 取0.036mm ,Loss tangent 取0.02),设计一个中心频率为f 、相对带宽为10%,用于50欧姆系统阻抗的3dB 微带分支线定向耦合器。

要求:工作频带内各端口的反射系数小于-20dB ,输入端与隔离端的隔离度大于25dB ,直通端与耦合端的传输损耗小于3.5dB 。

定向耦合器的参考结构如图3.1所示,在设计时要保证四个端口之间的距离大于10mm ,以便于测试。

左右端口的距离应为40或50mm 。

微带分支线定向耦合器的结构 在进行设计时,主要是以定向耦合器的S 参数作为优化目标进行优化仿真。

东南大学信息学院大四上综合课程设计报告(微波组)

东南大学信息学院大四上综合课程设计报告(微波组)

综合课程设计实验报告课程名称:微波方向综合课程设计实验名称:微波元件设计、仿真与测试院(系):信息科学与工程学院专业班级:040101姓名:XXXX学号:******指导教师:20XX年XX月XX日一、实验目的1. 了解定向耦合电路的原理和设计方法;2. 学习使用Microwave office 软件进行微波电路的设计、优化、仿真;3. 掌握定向耦合器的制作及调试方法。

二、实验原理定向耦合器是一个四端口网络(如图1所示),其中端口1是输入端,端口2是直通端,端口3是耦合端,端口4是隔离端。

分支线定向耦合器(3dB )是一种常用的微带定向耦合器,如图 2.2所示,图中连接四个端口的微带线阻抗为0Z ;串联分支的微带线阻抗为0/2S Z Z =,长度为/4g λ;并联分支的微带线阻抗为0P Z Z =,长度为/4g λ。

图1 分支线定向耦合器由奇偶模分析可知,当信号从1端口输入时,分支线定向耦合器的2端口为直通端、3端口为耦合端、4端口为隔离端,2、3端口之间输出信号的幅度相同、相位相差900。

三、实验内容和设计指标实验内容:1. 了解微带分支线定向耦合器的工作原理;2. 根据指标要求,使用Microwave office 软件设计一个微带分支线定向耦合器,并对其参数进行优化、仿真。

设计指标:在介电常数为4.5,厚度为1mm 的FR4基片上(T 取0.036mm ,Loss tangent 取0.02),设计一个中心频率为f 、相对带宽为10%,用于50欧姆系统阻抗的3dB 微带分支线定向耦合器。

要求:工作频带内各端口的反射系数小于-20dB ,输入端与隔离端的隔离度大于25dB ,直通端与耦合端的传输损耗小于3.5dB 。

定向耦合器的参考结构如图3.1所示,在设计时要保证四个端口之间的距离大于10mm ,以便于测试。

左右端口的距离应为40或50mm 。

微带分支线定向耦合器的结构 在进行设计时,主要是以定向耦合器的S 参数作为优化目标进行优化仿真。

东南大学信息学院-模电实验四

东南大学信息学院-模电实验四

实验四 差分放大器实验目的:1、掌握差分放大器偏置电路的分析和设计方法;2、掌握差分放大器差模增益和共模增益特性,熟悉共模增益概念;3、掌握差分放大器差模传输特性。

实验内容:一、实验预习根据图4-1所示电路,计算该电路的性能参数。

已知晶体管的导通电压)(on BE V =0.55,β=500,|V |A =150V ,试求该电路中晶体管的静态电流CQ I ,节点1和2的直流电压1V 、2V ,晶体管跨导m g ,差模输入阻抗id R ,差模电压增益d A v ,共模电压增益vc A 和共模抑制比CMR K ,请写出详细的计算过程,并完成表4-1。

图4-1. 差分放大器实验电路CQI (mA ) 1V (V ) 2V (V ) m g (mS ) id R(k Ω) d A vvc ACMR K1.032.942.9439.6211.16-79.24-219.81计算过程如下:581785.0255.010⨯+=⨯++BQ BQ I I β 所以,≈BQ I 2.06μAmA 03.1≈=BQ CQ I I βV I V V Q 94.22521=-==S V I g TCQ m m 62.39≈=Ω≈==k R g R r R eb id 16.11//2//27m7)()(,β24.79g //-g 2m 2m v -≈-≈=R r R A ce d )( 22-12vc -==R R A 81.19|2/|vd ==vcCMR A A K二、仿真实验1、在Multisim 中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析(DC 分析),得到电路的工作点和电压,完成表4-2,并与计算结果对照。

仿真设置:Simulate--Analyses--DC Operating Point ,设置需要输出的电压或者电流。

2、在图4-1所示电路中,固定输入信号频率为2kHz ,输入不同信号幅度时,测量电路的差模增益。

东南大学通电第四次实验实物实验

东南大学通电第四次实验实物实验

4.77
5.75
6.89
8.30
9.95
11.5
13.2 14.8 15.8
248
பைடு நூலகம்
450
750
900
930
880
790
680
490
1) 输出频率 f-压控电压 u 曲线如下:
P24脚输出频率f(MHZ)
18 16 14 12 10 8 6 4 2 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
2) 根据所测电压,分析并判断调幅集成电路内主要晶体管的工作状态。
MC1496 可采用单电源, 也可采用双电源供电系统,其直流偏置用外接元件实 现。 经以上分析,可知晶体管 T1~T4 组成双差分放大器,T5、T6 组成但差分放大 器,用以激励晶体管 T1~T4,晶体管 T7、T8 为恒流电路。 3)fc=2MHz,Vpp=200mV 正弦单音信号, fm=2KHz,Vpp=200mV 正弦单音信号 时, A)分别画出调幅信号的频域及时域波形,计算调制指数。
Ko f f f (13.2 6.89)MHz 2 1 1.578MHz / V uc uc 2 uc1 (2 6)V
压控电压选为-5V,调节 W4,观察 P24 点信号波形的变化: 将 W4 沿着一个方向转动时, 频率基本不改变, 而信号的幅度先变大后变小, 到一定程度会引起失真。因为 W4 改变的时电路的直流工作点电压改变,使双极 性管进入饱和区或者截止区,输出信号也会引起相应的失真。
通信电子线路第四次实物实验
3.2 正弦波压控振荡器实验
一、实验目的 1、通过实验,进一步加深理解 LC 振荡电路的基本工作原理。熟悉震荡电路 的起振条件及影响频率稳定度的因素。 2、理解压控振荡电路的工作原理,加深对压控特性的理解。 二、实验结果及分析 按下表给出的 P23 点的压控电压,调整 W5(用万用表测控) ,用 IST-B 的“频率 测量” (11 号)功能测量所对应电压的 P24 点的频率值,并用 IST-B 的“交流电 压测量” (15 号)功能(或使用毫伏表)测量 P24 点相应的幅值,结果如下表: P23 压 -9 控电压 (v) P24 脚 3.87 输出频 率f (MHZ) 输出电 156 压幅度 (mV) -8 -7 -6 -5 -4 -3 -2 -1 -0.5

最新东南大学-信息学院--电子线路-模电实验五六报告

最新东南大学-信息学院--电子线路-模电实验五六报告

东南大学模拟电子电路实验实验报告学号姓名2018年5月19日实验名称频率响应与失真&电流源与多级放大器成绩【背景知识小考察】考察知识点:放大器的增益、输入输出电阻和带宽计算在图3-5-2所示电路中,计算该单级放大器的中频电压增益A v=-38.59,R i= 10.94kΩ,R=15k。

复习放大器上下限频率概念和计算方法。

图3-5-2电路中,电容oCC2和CE1足够大,可视为短路电容。

具有高通特性的电容CC1和输入电阻R决定了电路i的f L=1/(2πR i CC1);低通特性的电容C1和输出电阻决定了电路的f H=1/(2πR O C1)。

根据图中的标注值,将计算得到的f L、f H和通频带BW,填入表3-5-1。

图3-5-2.晶体三极管放大器频响电路注:为了计算方便,决定该电路高低频的电容CC1和C1远大于晶体管的自身电容。

因此计≈1.43V,R=≈14.29kΩ77=≈1.16μAr+(1+β)R E1cV=31.73dBωL =1≈914.08rad/s 2ππ⋅R,⋅C1算过程中,晶体管电容忽略不计。

计算过程:已知实验二中参数:β=120,VBE(on)=0.7V。

1:忽略沟道长度调制效应,r不计。

ceV= B 10100B直流通路中,有:II EQBQV-V=B BE(on)≈0.140mARE1+RE2IEQ1+βI CQ =βIBQ≈0.139mA在交流通路中,将发射极上的电阻RE1等效到三极管基极。

因此有:r=βb,e VTICQ120⨯26=≈22.44kΩ0.139⨯1000i= bVi,i=βib b,e因此,A=V vo≈-38.59 vi所以,20lgA2:R=R//[r+(1+β)R E1]≈10.94kΩi B beR⋅C C1if=ωLL≈145.48HzR,=RC1=15kΩ1f=≈5305.16HzH考察知识点:多级放大器=图 3-6-8. 单级放大器在图 3-6-8 所示电路中,双极型晶体管 2N3904 的 β≈120,V BE(on)=0.7V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 差分放大器实验目的:1、掌握差分放大器偏置电路的分析和设计方法;2、掌握差分放大器差模增益和共模增益特性,熟悉共模增益概念;3、掌握差分放大器差模传输特性。

实验内容:一、实验预习根据图4-1所示电路,计算该电路的性能参数。

已知晶体管的导通电压)(on BE V =0.55,β=500,|V |A =150V ,试求该电路中晶体管的静态电流CQ I ,节点1和2的直流电压1V 、2V ,晶体管跨导m g ,差模输入阻抗id R ,差模电压增益d A v ,共模电压增益vc A 和共模抑制比CMR K ,请写出详细的计算过程,并完成表4-1。

图4-1. 差分放大器实验电路表4-1:CQI (mA ) 1V (V ) 2V (V ) m g (mS ) id R(k Ω) d A vvc ACMR K1.032.942.9439.6211.16-79.24-219.81计算过程如下:581785.0255.010⨯+=⨯++BQ BQ I I β 所以,≈BQ I 2.06μAmA 03.1≈=BQ CQ I I β V I V V Q 94.22521=-==S V I g TCQ m m 62.39≈=Ω≈==k R g R r R eb id 16.11//2//27m7)()(,β24.79g //-g 2m 2m v -≈-≈=R r R A ce d )( 22-12vc -==R R A 81.19|2/|vd ==vcCMR A A K二、仿真实验1、在Multisim 中设计差分放大器,电路结构和参数如图4-1所示,进行直流工作点分析(DC 分析),得到电路的工作点和电压,完成表4-2,并与计算结果对照。

表4-2:CQ I (mA )1V (V )2V (V )3V (V )5V (V )6V (V )1.001252.997502.997501.003411.576511.55492仿真设置:Simulate--Analyses--DC Operating Point ,设置需要输出的电压或者电流。

2、在图4-1所示电路中,固定输入信号频率为2kHz ,输入不同信号幅度时,测量电路的差模增益。

采用Agilent 示波器(Agilent Oscilloscope )观察输出波形,测量输出电压的峰峰值(peak-peak ),通过“差模输出电压峰峰值/差模输入电压峰峰值”计算差模增益d A v ,用频谱仪器观察节点1的基波功率和谐波功率,并完成表4-3。

表4-3:输入信号单端幅度(mV )1 10 20 d A v145.89140.5126基波功率P1(dBm ) -23.535 -3.792 1.517 二次谐波功率P2(dBm ) -96.401 -56.554 -44.954 三次谐波功率P3(dBm )-103.321-43.822-27.179①输入信号单端幅度1mV :峰峰值为291.78mV ;==idd V V A 2odv 72.945。

②输入信号单端幅度10mV :峰峰值为2.81V ;==idd V V A 2odv 70.25。

③输入信号单端幅度20mV :峰峰值为5.04V ;==idd V V A 2odv 63。

仿真设置:Simulate--Run ,也可以直接在Multisim 控制界面上选择运行。

在示波器中观察输出电压可以采用数学运算方式显示,即用1通道信号减2通道信号,显示设置按钮可以设置数学运算模式下的示波器显示参数。

思考:表4-3中的d A v 在不同输入信号幅度的时候一样吗?若不一样,请解释原因? 答:d A v 在不同输入信号幅度的时候不一样。

可能是因为,当d V i 足够小时,在原点附近d V i 的很小变化范围内差模传输特性曲线可以看作是一段直线,直线的斜率为m g ,但是事实上并不是一条直线,则m g 的值也随着d V i 的不同而略有变化。

并且差模电压增益为,m v -g L d R A ⋅=,m g 的不同会造成d A v 的偏差。

此外,当信号幅度增大时,对直流工作点有影响,增益不同,而且信号幅度越大,失真越严重,产生更多的高频谐波。

3、在图4-1所示电路中,将输入信号V2的信号幅度设置为10mV (Vpk ,信号振幅),频率为2kHz ,输入信号V3的信号幅度设置为0,仿真并测量输出信号幅度。

若输出信号V1和V2的幅度不一致,请解释原因,并写出详细的计算和分析过程,计算过程可以直接采用表4-1中的性能参数。

仿真设置:Simulate--Run ,也可以直接在Multisim 控制界面上选择运行,通过Agilent 示波器测量输出波形幅度。

答:由图中可知,输出信号V1的peak-peak=703.29mV ,V2的peak-peak=741.45mV 。

因此,实际测得电压的峰峰值稍有不同。

原因可能是,测量单端输出电压时需要考虑共模的增益,而双端输出时,不需要考虑共模的增益,而共模增益带来了幅度的略微差别。

将输入信号分解为差模和共模信号后,因为差模信号对于两边是大小相等方向相反的,而且差模增益比较大,所以决定了主要的输出信号的波形,即峰峰值大小相近,相位差180度;而共模信号虽然是大小相等方向相反,但因为共模增益比较小,所以对输出的波形影响比较小,形成了两信号幅度上略微的不一致。

计算过程如下: (1)计算值:mV V V V mV V V V mV V A V mVV A V VV V V V V V V V V mV V o o id vd ic vc 2.386212.406214.79210m 10)(m 5)(21模两者既非差模,也非共,0,10od oc2od oc 1od oc 32id32ic 32-=-=-=+=-=⋅=-=⋅==-==+===(2)仿真值:VV V VV V o o m 725.37045.7412121m 645.35129.70321212211=⨯===⨯==由计算可以发现,两输出端的信号幅度存在差异,方向相反,数值与仿真结果基本一致。

4、在图4-1所示电路中,将输入信号V2和V3设置成共模输入信号--信号频率2kHz ,信号幅度10mV ,相位都为。

0,仿真并测量输出信号的幅度,计算电路的共模增益,并与计算结果对照。

输出信号幅度如下:由于是共模信号,当V2-V3时,输出基本为0。

对于共模信号,输出应为一端的输出电压值,此电路的输出应为38.25mV 。

观察信号输出幅度图,可知: 仿真值:9125.12025.38vc ==A 而计算值:222-12vc -=-==R RR R A SS D 通过比较计算值与仿真值,可以认为计算值与仿真值基本一致。

思考:若需要在保证差模增益不变的前提下提高电路的共模抑制能力,即降低共模增益,可以采取什么措施?请给出电路图,并通过仿真得到电路的共模增益和差模增益。

仿真设置:Simulate--Run,也可以直接在Multisim控制界面上选择运行,通过Agilent示波器测量输出波形幅度。

修改后电路图如下:①差模输出波形:所以,79m 2058.1-vd -==VVA ,即差模增益保持不变。

②共模输出波形:所以,02019.7-vd ≈=mVVA μ,即共模增益大大减小。

由以上计算过程可知,电路满足要求。

5、采用图4-2所示电路对输入直流电压源V2进行DC 扫描仿真,得到电路的差模传输特性。

①电压扫描范围1.35--1.75V ,扫描步进1mV ,得到电阻R2和R3中电流差随V2电压的变化曲线,即输出电流的差模传输特性,并在差模输出电流的线性区中点附近测量其斜率,得到差分放大器的跨导,并与计算结果对照(55.0)on (=BE V ,β=500);图4-2. 差分放大器传输特性实验电路1答:输出电流的差模传输特性:由图知,线性区中点附近斜率为:9.6678m,故差分放大器的跨导为:9.6678mS。

计算值为:39.62mS。

②若将V3电压改为1V,再扫描V2的电压,扫描范围0.8--1.2V,扫描步进1mV,与①中一样,通过仿真得到差模传输特性,在传输特性的线性区测量差分放大器的跨导,并与计算结果对照。

答:输出电流的差模传输特性:由图知,线性区中点附近斜率为:4.5110m,故差分放大器的跨导为:4.5110mS。

计算值为:18.04mS。

③若将图4-2中的电阻R1改为理想直流电流源,如图4-3所示。

与②中一样,固定V3电压为1V,扫描V2的电压,扫描范围0.8--1.2V,扫描步进1mV,通过仿真得到差模传输特性,并与②中仿真结果对照,指出二者结果的异同并给出解释。

答:输出电流的差模传输特性:由图知,线性区中点附近斜率为:9.9466m,故差分放大器的跨导为:9.9466mS。

计算值为:39.79mS。

思考:a.在仿真任务①中,若V2的电压扫描范围改为0V--5V,测量电源电压V2和V3中的电流,即三极管的基极电流,与理论分析一致吗?参考硬件实验中给出的MA T02EH内部电路,给出解释。

硬件实验中,由于误操作,三极管基极可能接地或者接电源,若电流过大,可能导致晶体管损坏,如何避免这种误操作导致的基极电流过大?答:V2和V3基极电流:V2和V3中的电流与理论分析不一致。

因为基极电压过大,导致MAT02EH中的BE两点之间的二极管被击穿,基极电流从而不断变大。

实验时,可以在接入差分对管之前,先测定基极的电压强度,若明显过大则调整至合适的电压时再接入差分对管。

b.比较仿真任务①和②,差模输出电流V2的变化趋势一样吗?若有差异,原因是什么?仿真设置:Simulate--Analyses--DC Operating Point,设置扫描电压源及扫描范围和步进,需要输出的电压或者电流。

差模电流通过表达式计算得到。

在仿真结果中通过标尺完成测量,设置如下:Grapher view--Cursor--Show Cursor,然后拖动标尺测量。

答:仿真①:仿真②:由以上两幅图可知,仿真①和②的变化趋势一样,但斜率不同。

因为设置的基极电压工作点不同,导致直流工作点的电流不同,一个为1mA,一个为0.5mA,使得输出电流的大小有很大的差别。

三、硬件实验1、按照图4-1所示电路在面包板上设计电路,并进行测试和分析。

本实验采用POCKET LAB 实验平台提供的直流+5V电源、信号发生器和示波器。

信号发生器产生差分信号,示波器采用双通道同时显示。

差分对管MAY02EH的封装形式为TO-78,可以参阅该产品的数据手册。

①测量电路各点的直流工作点,完成表4-4。

表4-4:1V (V )2V (V )3V (V )5V (V )6V (V )3.083.070.961.581.55思考:若直流电压V1和V2不一样,可能是什么原因?如何调整电路可以使得输出直流电压V1和V2更加一致?答:直流电压V1和V2不一样。

相关文档
最新文档