单结晶体管触发电路

合集下载

单结晶体管触发电路工作原理

单结晶体管触发电路工作原理

单结晶体管触发电路工作原理单结晶体管触发电路由一个单极性晶体管组成,其结构和工作原理类似于普通的集电极放大电路。

晶体管由三个区域组成:发射区、基区和集结区。

基区接入触发信号电源,而集结区接入电源,形成偏置电压。

当输入信号电压通过基区施加到晶体管时,集结结区的二极管就会被极化。

当输入信号电压高于一定阈值时,集结结区的二极管会开始导通,从而导致晶体管进入饱和状态。

1.稳定偏置:通过集结区的偏置电压来稳定晶体管的工作点。

这个偏置电压可以使集结结区的二极管处于正向偏置状态。

2.输入信号:通过将输入信号电压附加在基区时,可以改变集结结区二极管的电场分布。

当输入信号电压高于一些阈值时,集结结区二极管开始导通。

3.晶体管饱和:当集结结区二极管导通时,基区的电流会极大增加,导致晶体管进入饱和状态。

在饱和状态下,晶体管的集电极电流将近似于直流驱动电流。

4.输出信号:晶体管的饱和状态使得输出电压趋近于接近集电极电流的电源电压。

根据以上的工作原理,单结晶体管触发电路具有以下特点:1.简单:单结晶体管触发电路只需要一个晶体管和少量的外部元件,所以它的设计和实施都相对简单。

2.快速:由于晶体管本身的快速开关特性,单结晶体管触发电路可以实现高速开关操作,适用于需要快速开关的应用领域。

3.高可靠性:晶体管是一种稳定可靠的元件,所以单结晶体管触发电路在稳定性和可靠性方面具有优势。

4.小尺寸:由于单结晶体管触发电路仅由一个晶体管和少量的外部元件组成,所以它的尺寸相对较小,适用于空间有限的应用场景。

此外,单结晶体管触发电路还常用于时序电路和计时器中。

由于其高速开关特性和稳定可靠性,它可以实现精确的时序控制和计时功能。

因此,在电子钟、计时器、频率计等应用中也经常使用单结晶体管触发电路。

总而言之,单结晶体管触发电路是一种功能强大、可靠性高、适用范围广的电子元件。

它的工作原理简单明了,应用场景广泛,是电子电路设计和实施中不可或缺的一部分。

单结晶体管触发电路

单结晶体管触发电路

单结晶体管触发电路看一看单结晶体管触发电路如图3-1所示,注意观察电路中所用的元器件,特别是有关元器件的型号或参数。

三极管9012的管脚图如图3-2所示,单结晶体管BT33的管脚图如图3-3所示。

图3-1 单结晶体管触发电路图3-2 9012的管脚图图3-3 单结晶体管BT33的管脚图知识链接单结晶体管的基本特性:1.等效电路单结晶体管等效电路如图3-4所示。

r b1:E与B1间电阻,随发射极电流而变,即IE上升,r b1下降。

rb2:E与B2间的电阻,数值与IE无关。

rbb:两基极间电阻。

rbb = r b1 + rb2η:称为分压比,r b1与rbb的比值,η一般在0.3 ~ 0.8 之间。

图3-4 单结晶体管等效电路图2.导通条件VEE > ηVBB + VD (VD为PN结的正向电压)想一想如图3-1所示,单结晶体管触发电路是如何工作的?做一做1.检测图3-1所示电路中的元器件。

2.根据图3-1所示电路完成印制板图设计(板子尺寸:100mm×80mm)。

3.根据设计的印制板图在多孔板上完成电路的装接。

注意:电解电容、二极管、稳压二极管、三极管和单结晶体管的极性。

测一测用示波器实测并画出单结晶体管触发电路各点波形图,将结果画入如图3-5所示。

图3-5 测各点波形学一学单结晶体管触发电路工作特点:1.电源变压器的二次侧24V交流电压经单相桥式整流后由稳压管V5削波得到梯形波电压,该电压既作为单结晶体管触发电路的同步电压,又作为单结晶体管的工作电源电压。

2.V7、V8组成直接耦合放大电路,V7采用PNP型管,V8采用NPN型管,触发电路的给定电压(U1)由电位器RP调节,U1经V8放大后加到V7。

三极管V7相当于由U1控制的一个可变电阻,它起到移相的作用。

3.V9~V11是三极管V8的基极正反向电压保护作用。

实验二单结晶体管触发电路实验优秀课件

实验二单结晶体管触发电路实验优秀课件
在dzsz型电机及自动控制实验装置上使用时通过操作控制屏左侧的自藕调压器将输出的线电压调到2v交流电压接到djk0v端按下启动按钮打开djk0电源开关这时挂件中所有的触发电路都开始工作用双踪示波器观察单结晶体管触发电路经半波整点的波形经稳压管削波得到2点的波形调节移相电位器rp1观察4锯齿波的周期变化及5点的触发脉冲波形
(2) GTR
开通驱动电流应使GTR处于准饱 和导通状态,使之不进入放大区 ib 和深饱和区。
关断GTR时,施加一定的负基极
O
电流有利于减小关断时间和关断
t
损耗。
关断后同样应在基射极之间施加 一定幅值(6V左右)的负偏压。
图1-30 理想的GTR基极 驱动电流波形
1.6.3 典型全控型器件的驱动电路
所需发射极电压。
电压、电流。
单结晶体管的特点
(1) UE < UP时单结管截止;
B2
UE > UP时单结管导通,
UE < UV时恢复截止。
E
(2)单结晶体管的峰点电压UP与
B1
外加固定电压UBB及分压比
有关,外加电压UBB或分压比不同,则峰点电
压UP不同。
(3) 不同单结晶体管的谷点电压UV和谷点电流IV
1.6.1 电力电子器件驱动电路概述
分类
按照驱动信号的性质分,可分为电流驱动型和电压驱 动型。 驱动电路具体形式可为分立元件的,但目前的趋势是 采用专用集成驱动电路。
双列直插式集成电路及将光耦隔离电路也集成在内 的混合集成电路。 为达到参数最佳配合,首选所用器件生产厂家专门 开发的集成驱动电路。
1.6.2 晶闸管的触发电路
uL
六、思考题
➢ (1)单结晶体管触发电路的振荡频率与电路 中C1的数值有什么关系?

单结晶体管触发电路的安装与调试

单结晶体管触发电路的安装与调试
单结晶体管触发电路的 安装与调试
单结晶体管触发电路
一、单结晶体管的结构和型号 单结晶体管,它有三个电极,即发射极 e、第一基极 b1、 第二基极 b2,只有一个 PN 结,所以称单结晶体管或双基极二 极管。 单结晶体管的图形符号如图 (b)所示,发射极箭头倾斜指向 b1,表示经 PN 结的电流只流向 b1 极。
当 VEE = VBB 时,二极管 V 反偏,帮 IE = 0。当 VE 继续升 高,使 VE > VBB + VD ( VD 是 PN 结正向压降), PN 结导通后, P 区空穴将注入 N 区,使 e、b1 间空穴浓度增加,导电性能加 Rb1 , VBB VBB ) 强导致 Rbi 的减小,必然使 VB1 减小, ( VB1 Rbb 它导致 PN 结正向电压加大,Rb1 又进一步减小 · · ·· · · 。 急剧上升的 IE 在 RP 上的压降加大,使得 VE 反而减小,呈 现明显的负阻特性。
五、注意事项
1、二极管、电解电容应正向连接,稳压管 应反向连接,单结晶体管的b1、b2、e三个 极不可接错。 2、不可出现虚焊、漏焊和夹生焊接现象。 3、操作时注意安全。
六、评分标准
下节课请同学们自己动手安装和调试 电路。
1
2
3
4561234
5
6
工艺要求:
1 )布局要合理: a. 元件要求从左至右、横平竖直的 排列;b.对于同样的元件要求高度和跨越的宽度一致; c.元件的管脚或引出线在插装时要求弧度一致; d.对 于可调元件,其调节部位尽可能的装在比较空旷的方 向或朝向外围;e.对于大功率或装散热片的元件要求 尽可能的装在电路板的外围. 2)走线要漂亮:a.背面连线要走直线,即横平竖直; b.拐弯要用直角,并在其附近采用支撑点固定;c.连 线与连线之间不能跨越;d.较长的裸露的连线在其中 途要采用支撑点固定;e.电路板与外部的连线必须采 用带绝缘层的导线。

分析单结晶体管触发电路

分析单结晶体管触发电路

谷点电流IV。由于UE随IE增大而减小,动态电阻 reb1
U E I E
为负值,故从P点到V
点这段曲线称为单结晶体管的负阻特性。对应这段负阻特性的区域称为负阻区。
V点以后,当IE继续增大,空穴注入N区增大到一定程度,部分空穴来不及与 基区电子复合,出现空穴剩余,使空穴继续注入遇到阻力,相当于RB1变大,因 此在V点之后,元件又恢复正阻特性,UE随着IE的增大而缓慢增大。这段区域称 为饱和区。显然,UV是维持管子导通的最小发射极电压,一旦UE<UV,管子将 截止。
2020年9月27日星期日
6
学习情第境7一章单相电可控力整电流子电技路术的制作
由上述分析可知,单结晶体管具有以下特点:
பைடு நூலகம்1.当发射极电压UE小于峰点电压UP时,单结晶体管为截 止状态,当UE上升到峰点电压时,单结晶体管触发导通。
2.导通后,若UE低于谷点电压UV,单结晶体管立即转入 截止状态。
3.峰点电压UP与管子的分压比η及外加电压UBB有关。 η
接上外加电源UEE,调整RP使UE由零逐渐加大,在UE<UA+UD=ηUBB+UD时 (UD为等效二极管的正向压降),二极管因反偏而截止,发射极仅有很小的反 向电流流过。E与B1间呈现很大的电阻,管子处于截止状态,这段区域称截止区。 如图b中OP段。
当UE升高到UE=ηUBB+UD时,达到图b中P点,二极管开始正偏而导通。IE随 之开始增加。P点所对应的发射极电压UP和电流IP分别称为单结晶体管的峰点电
2020年9月27日星期日
4
学习情第境7一章单相电可控力整电流子电技路术的制作
当E极开路时,图中A点对B1极间电压(即上压降)为
式中

晶闸管触发电路

晶闸管触发电路
晶闸管触发电路
•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。

实验一 单结晶体管触发电路实验

实验一  单结晶体管触发电路实验

实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK03-1 晶闸管触发电路该挂件包含“单结晶体管触发电路”等模块。

3 双踪示波器自备三、实验线路及原理单结晶体管触发电路的工作原理已在1-3节中作过介绍。

四、实验内容(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察。

五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。

六、思考题(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?(2)单结晶体管触发电路的移相范围能否达到180°?七、实验方法(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相?(2)单结晶体管触发电路各点波形的记录当α=30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图1-9的各波形进行比较。

单结晶体管触发电路

单结晶体管触发电路

U UV U U P RE IV IP
( 2)、电阻的选择 电阻是用来补偿温度对峰点电压的影响,通常取值范围为: 200~ 600。 ( 3)、输出电阻的选择 输出电阻的大小将影响将影响输出脉冲的宽度与幅值,通常取值 范围为:50~100。 ( 4)、电容C的选择 电容 C的大小与脉冲宽窄和的大小有关,通常取值范围为:0.1~ 1。
有合格的元件均能可靠触发,可参考元件出厂的试验数据或产
品目录来设计触发电路的输出电压和电流值。
(3) 触发脉冲应有一定的宽度,脉冲的前沿尽可能陡, 以使元件在触发导通后,阳极电流能迅速上升超过掣住电流 而维持导通。普通晶闸管的导通时间约为6 μs, 故触发脉冲
的宽度至少应有6μs以上。对于电感性负载,由于电感会抵制 电流上升,因而触发脉冲的宽度应更大一些, 通常为0.5~1
ig ig m
0
t1
t
图1-14 强触发电流波形
(4) 触发脉冲必须与晶闸管的阳极电压同步,脉冲移相 范围必须满足电路要求。为保证控制的规律性,要求晶闸管 在每个阳极电压周期都必须在相同的控制角触发导通,这就 要求触发脉冲的频率与阳极电压的频率一致,且触发脉冲的
前沿与阳极电压应保持固定的相位关系,这叫做触发脉冲与 阳极电压同步。不同的电路或者相同的电路在不同负载、不
3.触发电路各元件的选择
( 1)、充电电阻的选择 改变充电电阻的大小,就可以改变张驰振荡电路的频率,但是频 率的调节有一定的范围,如果充电电阻选择不当,将使单结晶体 管自激振荡电路无法形成振荡。 充电电阻的取值范围为: 其中: ——加于图中B-E两端的触发电路电源电压 ——单结晶体管的谷点电压 ——单结晶体管的谷点电流 ——单结晶体管的峰点电压 ——单结晶体管的峰点电流

单结晶体管触发电路

单结晶体管触发电路

(3)移相控制
工作原理: 当Re增大时,单结晶体管发射极充电到峰点电压Up的 时间增大,第一个脉冲出现的时刻推迟,即控制角α 增 大,实现了移相。
(4)脉冲输出 工作原理:
触发脉冲ug由R1直接取出,这种方法简单、经济, 但触发电路与主电路有直接的电联系,不安全。对于晶 闸管串联接法的全控桥电路无法工作。所以一般采用脉 冲变压器输出。
围必须满足电路要求。
图2.4.1
强触发电流波形
特点:
2.4.2 晶闸管触发电路
由单结晶体管构成的 触发电路具有简单、可靠、 抗干扰能力强、温度补偿 性能好,脉冲前沿陡等优 点,在小容量的晶闸管装 置中得到了广泛应用。 组成: 由自激振荡、同步电 源、移相、脉冲形成等 部分组成。
图2.4.2 单结晶体管触发电路及波形
T 1 Re C ln( ) 1
图2.4.2 单结晶体管触发电路及波形
上式中 0.3 ~ 0.9是单结晶体管的分压比,即调节Re,可调节振荡频率。
(2)同步电源 工作原理:
同步电压由变压器TB获得,而同步变压器与主电路接至同一 电源,故同步电压与主电压同相位、同频率。 同步电压经桥式整流、稳压管Dw削波为梯形波uDW,而削波 后的最大值Uw既是同步信号,又是触发电路电源。 当uDW过零时,电容C经e-b1、R1迅速放电到零电压。这就是说, 每半周开始,电容 C 都从零开始充电。进而保证每周期触发电路 送出第一个脉冲距离过零的时刻(即控制角α 1 对触发电路的要求
触发电路对其产生的触发脉冲要求:
1、触发信号可为直流、交流或脉冲电压。 2、触发信号应有足够的功率(触发电压和触发电流)。
3、触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使
元件在触发导通后,阳极电流能迅速上升超过掣住电流而维 持导通。 4、触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范

实验一 单结晶体管触发电路实验 (1)

实验一  单结晶体管触发电路实验 (1)

实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

二、实验所需挂件及附件1. DJK01 电源控制屏2. DJK03-1 晶闸管触发电路3. 双踪示波器三、实验原理图1-1 单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1-1所示。

图中V6为单结晶体管,由等效电阻V5和C1组成组成RC充电回路,由C1,V6和脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出UP脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉电压Uv冲变压器副边输出尖脉冲。

在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。

充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

单结晶体管触发电路的各点波形如图1-2所示。

图1-2 单结晶体管触发电路各点的电压波形(α=900)四、实验内容(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V (不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V ±10%,而“交流调速”侧输出的线电压为240V 。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

实验一 单结晶体管触发电路实验

实验一  单结晶体管触发电路实验

实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK03-1 晶闸管触发电路该挂件包含“单结晶体管触发电路”等模块。

3 双踪示波器自备三、实验线路及原理单结晶体管触发电路的工作原理已在1-3节中作过介绍。

四、实验内容(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察。

五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。

六、思考题(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?(2)单结晶体管触发电路的移相范围能否达到180°?七、实验方法(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相?(2)单结晶体管触发电路各点波形的记录当α=30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图1-9的各波形进行比较。

单结晶体管触发电路

单结晶体管触发电路
IG
0
大容量晶闸管门极触发电流要求脉冲峰值在
t
t1
t2
t3
1A ~ 1.5 A以上,前沿的电流上升率大于1 A s
(4)触发脉冲与主电路电源电压必须同步,并保持与工作状态相适应的相 位关系。 (5)触发电路应保证变流电路各元件触发脉冲的对称性。
(6)相控触发电路应采有良好的抗干扰性能和温度稳定性以及主电路的电 气隔离。采取电磁兼容技术措施和冷却措施。
单相半波可控整流电路
及单结晶体管及触发电路
----单结晶体管触发电路
晶闸管相控触发电路
晶闸管门极驱动电路也称为触发电路; 晶闸管通常采用相位控制方式。
电源 变流电路
触发信号
负载
同步电路
驱动电路
反馈信号
同步信号
移 相 控制电路
相 位 控制信号
控制电路
给定信号
一般晶闸管变流电路的控制框图
晶闸管相控触发电路
V
IP
负阻区
Ie
Re Ee Ue
e
0
U bb
截止区
IV
50 mA
Rb1
I b1
b1
饱和区
Ie
a)单结晶体管测试电路 b)单结晶体管测试等效电路
Rb1 Rb1 Rb 2
c)单结晶体管伏安特性
2.单结晶体管弛张振荡电路
(1).电路结构
U S
Re
(2).工作原理
V
ue ie
C
a.
S断开时,电容C的端电压为零。
满足振荡条件的Re取值为:
Uc UP
0
U UV U UP Re IP U IV
e
UV
t

实验一 单结晶体管触发电路实验

实验一 单结晶体管触发电路实验

实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

二、实验所需挂件及附件DJK01电源控制屏、DJK03-1晶闸管触发电路、双踪示波器三、实验线路及其原理单结晶体管又称双基极二极管,利用单结晶体管的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1所示。

图1 单结晶体管触发电路原理图图中V6为单结晶体管,其常用的型号有BT33和BT55两种,由等效电阻V5和C1组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

单结晶体管触发电路的工作原理为:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压UV,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。

在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。

充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

四、实验内容(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察五、预习要求阅读本实验讲义及电力电子技术教材中有关内容,弄清楚单结晶体管触发电路的工作原理。

六、思考题(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?(2)单结晶体管触发电路的移相范围能够达到180 ?七、实验方法(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30~170。

单结晶体管触发电路实验原理

单结晶体管触发电路实验原理

单结晶体管触发电路实验原理单结晶体管触发电路实验原理单结晶体管触发电路是一种常用的电路,在实际电路中得到广泛应用,主要用于实现时间延迟、脉冲放大、钟形波形产生等功能。

单结晶体管触发电路由一个单结晶体管和少量的外部元件组成,其中单结晶体管作为开关管,在电路中起到触发的作用。

实验目的:1. 掌握单结晶体管的基本性质及其工作原理。

2. 了解单结晶体管触发电路的组成原理及其工作性能。

3. 学会使用示波器和万用表等仪器进行电气测量,掌握电路参数的测量方法。

实验器材:1. 单结晶体管(2N3904)一个2. 电容器(10μF)一个3. 电感线圈(33mH)一个4. 变阻器(10kΩ)一个5. 电源(12V)一个6. 示波器一个7. 万用表一个实验原理:单结晶体管是一种半导体器件,它由一个PN结构组成,该结构具有正极性和负极性两个区域。

当单结晶体管处于正向偏置状态时,P区的空穴和N区的自由电子在PN结处相遇,发生复合现象,并释放出能量。

这些能量以光子的形式从PN结的两侧发射出来,形成光子流。

光子流引起PN结区域的电流急剧上升,使得单结晶体管处于导通状态。

当单结晶体管处于反向偏置状态时,P区的空穴和N区的自由电子被PN结的势垒隔离,不能通过PN结流过去,因此单结晶体管处于截止状态。

单结晶体管触发电路是基于单结晶体管的开关特性设计的电路。

它由单结晶体管、电容器、电感线圈、变阻器和电源组成。

当电源加上电路时,电容器开始充电,直到电压达到单结晶体管的开启电压为止,单结晶体管导通,电容器的电荷被释放,产生一个脉冲输出信号,同时电感线圈的磁场也会随之变化,这会产生一个反向的电压,使得单结晶体管再次处于截止状态。

实验步骤:1. 连接电路:将单结晶体管、电容器、电感线圈、变阻器和电源按照电路图相连接,注意极性。

2. 调节变阻器:使用万用表测量电路中各个元件的参数,并调节变阻器使得单结晶体管触发电路的电压到达开启电压。

3. 测量电路输出波形:将示波器的探头分别接在单结晶体管的发射极和集电极上观察输出波形,并使用示波器测量输出脉冲的频率。

单结晶体管触发电路

单结晶体管触发电路

电力电子实验报告---单结晶体管触发电路专业:计算机控制技术年级:2011 级姓名:樊益明学号: 20113042指导教师:王仕旭阿坝师专电子信息工程系单结晶体管触发电路一、实训目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

(3)熟悉与掌握单结晶体管触发电路及其主要点的波形测量与分析。

二、实训所需挂件及附件三、实训线路及原理利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1-1所示。

图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

图:单结晶体管触发电路原理图图:单结晶体管触发电路仿真工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压U P时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。

同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压U v,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。

在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。

电容C1的充电时间常数由等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。

单结晶体管触发电路的各点波形如图1-2所示。

电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

电源仿真Tp1仿真Tp2仿真Tp3仿真Tp4仿真Tp5仿真图: 单结晶体管触发电路各点的电压波形(α=900)四、实训方法(1) 单结晶体管触发电路波形的观测用两根导线将PDC01A电源控制屏“主电路电源输出”的220V交流电压接到PWD-14的“外接220V”端,按下“启动”按钮,打开PWD-14电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路经半波整流后“1”点的波形,经稳压管削波得到“3”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后用导线将“G”、“K”连接到PWD-11上任一个晶闸管上,观测输出的“G、K”触发脉冲波形,其能否在30°~170°范围内移相?(2) 单结晶体管触发电路各点波形的记录五、实训报告(1) 画出α=60°时,单结晶体管触发电路各点输出的波形及其幅值。

(完整版)单结晶体管触发电路(解析)

(完整版)单结晶体管触发电路(解析)

单结晶体管触发电路浏览2695发布时间2009-03-20单结晶体管触发电路之一图1(a)是由单结晶体管组成的张弛振荡电路。

可从电阻R1上取出脉冲电压ug。

(a) 张弛振荡电路(b) 电压波形图1 单结晶体管张弛振荡电路假设在接通电源之前,图1(a)中电容C上的电压uc为零。

接通电源U后,它就经R向电容器充电,使其端电压按指数曲线升高。

电容器上的电压就加在单结晶体管的发射极E和第一基极B1之间。

当uc等于单结晶体管的峰点电压UP时,单结晶体管导通,电阻RB1急剧减小(约20Ω),电容器向R1放电。

由于电阻R1取得较小,放电很快,放电电流在R1上形成一个脉冲电压ug,如图1(b)所示。

由于电阻R取得较大,当电容电压下降到单结晶体管的谷点电压时,电源经过电阻R供给的电流小于单结晶体管的谷点电流,于是单结晶体管截止。

电源再次经R向电容C充电,重复上述过程。

于是在电阻R1上就得到一个脉冲电压ug。

但由于图1(a)的电路起不到如后述的“同步”作用,不能用来触发晶闸管。

单结晶体管触发电路之二单结晶体管触发电路如图2所示,带有放大器。

晶体管T1和T2组成直接耦合直流放大电路。

T1是NPN型管,T2是PNP型管。

UI是触发电路的输入电压,由各种信号叠加在一起而得。

UI经T1放大后加到T2。

当UI增大时,IC1就增大,而使T1的集电极电位UC1,即T2的基极电位UB2降低,T2更为导通,IC2增大,这相当于晶体管T2的电阻变小。

同理,UI减小时,T2的电阻变大。

因此,T2相当于一个可变电阻,随着UI的变化来改变它的阻值,对输出脉冲起移相作用,达到调压的目的。

输出脉冲可以直接从电阻R1上引出,也可以通过脉冲变压器输出。

图2 单结晶体管触发电路因为晶闸管控制极与阴极间允许的反向电压很小,为了防止反向击穿,在脉冲变压器副边串联二极管D1,可将反向电压隔开,而并联D2,可将反向电压短路。

单结晶体管触发电路之三——单相半控桥式整流电路图3 由单结晶体管触发的单相半控桥式整流电路改变电位器R P的数值可以调节输出脉冲电压的频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优点:单结晶体管触发电路比较简单,温度性能比较好,有一定的抗干扰能力,
缺点:脉冲前沿陡,输入功率较小,脉冲宽度较窄,只能承受调节RP (电位器R2),无法加入其它信号,移相范围≤180°,
一般为150°此电路可以用在单相可控硅整流电路要求不高的场合,能触发50A 以下的晶闸管。

交流电压经桥式整流和稳压后削波后得到梯形电压。

脉冲电压形成时梯形同步电压经R2、R3对电容C 充电,
C 两端电压上升到单结晶体管峰点电压UP(BT33的峰点电压)时,单结晶体管由截止变为导通,通过e---b1---R5放电,
放电电流在电阻RB1(放电电阻R5)上产生一组尖顶脉冲电压,由RB1(放电电阻R5)输出一组触发脉冲,其中第一个脉冲使晶闸管触发导通,后面的脉冲对晶闸管工作没有影响。

随着C 的放电,当电容两端电压下降到单结晶体管谷点电压UV(BT33谷底电压)时单结晶体管重新截止,
C 重新充电,重复上述过程。

RB1(放电电阻R5)上又输出一组峰顶脉冲电压,这个过程重复进行。

当梯形电压过零点时,电容C 两端电压也为零,因此电容每一次连续充放电的起点就是电源电压过零点,这样就保证输出电压的频率和电源频率同步。

移相是通过改变RP(电位器R2)的大小实现的,改变RP(电位器R2)的大小可以改变C 的充电速度,因此就改变了第一个脉冲出现的时间,从而达到了移相的目的。

相关文档
最新文档