路径损耗和阴影衰落
86. 无线通信中的信号衰减模型有哪些?
86. 无线通信中的信号衰减模型有哪些?86、无线通信中的信号衰减模型有哪些?在当今高度依赖无线通信的时代,我们能够随时随地与他人保持联系、获取信息,这都得益于无线通信技术的不断发展。
然而,在无线通信中,信号在传输过程中不可避免地会发生衰减,这会影响通信的质量和可靠性。
为了更好地理解和预测信号衰减的情况,科学家们提出了多种信号衰减模型。
首先,我们来了解一下自由空间传播模型。
这是一种相对简单但基础的模型,它假设信号在没有任何障碍物的理想自由空间中传播。
在这种情况下,信号的衰减与传输距离的平方成正比,与信号的频率也有关系。
自由空间传播模型适用于卫星通信等长距离、无障碍的通信场景。
比如说,当我们通过卫星电视接收信号时,就可以用这个模型来大致估计信号的衰减情况。
路径损耗模型是另一个常见的信号衰减模型。
它考虑了信号在实际环境中传播时,由于建筑物、地形、植被等因素造成的损耗。
路径损耗模型通常比自由空间传播模型更复杂,因为它需要考虑更多的实际因素。
比如在城市环境中,高楼大厦会阻挡信号,导致信号强度大幅下降;在山区,地形的起伏也会对信号传播产生影响。
阴影衰落模型则关注的是由于大型障碍物(如山丘、建筑物等)造成的信号阴影效应。
这种模型认为,即使在同一地点,信号强度也会因为障碍物的遮挡而出现随机的波动。
这种波动通常用对数正态分布来描述。
想象一下,当你在一个高楼林立的城市街道行走时,有时会突然发现手机信号变弱,这可能就是受到了阴影衰落的影响。
多径衰落模型是无线通信中一个非常重要的模型。
当信号在传播过程中遇到多个反射和散射体时,会产生多个路径的信号,这些信号在接收端叠加,可能导致信号幅度和相位的快速变化,从而引起多径衰落。
多径衰落分为快衰落和慢衰落两种情况。
快衰落通常发生在移动速度较快的情况下,比如在行驶的汽车中;慢衰落则与环境的长期变化有关。
瑞利衰落模型是多径衰落模型中的一种常见形式。
它假设信号的多径分量是相互独立的,并且没有直射路径。
路径损耗、阴影衰落和多径衰落
路径损耗、阴影衰落和多径衰落转载▼路径损耗(path loss)是由发射功率的辐射扩散及信道的传输特性造成的。
在路径损耗模型中一般认为对于相同的收发距离,路径损耗也相同。
阴影(shadowing)效应是发射机和接收机之间的障碍物造成的,这些障碍物通过吸收、反射、散射和绕射等方式衰落信号功率,严重时甚至会阻断信号。
多径衰落即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机。
由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。
不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。
这样,接收信号的幅度将会发生急剧变化,就会产生衰落。
路径损耗引起长距离上(100m~1000m)接收功率的变化,而阴影引起障碍物尺度距离上(室外环境是10m~100m,室内更小)功率的变化。
两者在相对较大的距离上引起功率变化,故称其为大尺度传播效应(largescale propagation effect)。
多径信号干扰也会引起接收功率的变化,但这种变化发生在波长数量级距离上,这个距离较短,所以称为小尺度传播效应(smallscale propagation effects)。
多径信号的时延扩展可以导致频率选择性衰落(frequency-selective fading),即针对信号的中不同的频率万分,无线传输信道会呈现不同的随机响应,由于信号中不同频率分量的衰落是不一致的,所以经过衰落之后,信号波形就会发生畸变。
由此可以看到,当信号的速率较高,信号宽带超过无线信道的相干带宽时,信号通过无线信道后各频率分量的变化是不一样的,引起信号波形的失真,造成符号间的干扰,此时就认为发生了频率选择性衰落;反之,当信号的传输速率较低,信道带宽小于相干带宽时,信号通过无线信道后各频率分量都受到相同的衰落,因而衰落波形不会失真,没有符号间干扰,则认为信号只是经历了平衰落,即非频率选择性衰落。
第2章 路径损耗和阴影衰落
|
E
|
2
|
Ed
| sin( )
2
2
|
Ed
| sin( 2 hT hR R
)
PR
Ae
| E |2
0
Ae
4|
R
)
PR
4PT
(
4 R
)2
GT
GR
sin2 ( 2 hT hR R
)
—修正的Friis方程
如果R比hT hR大得多,sin可用来近似,
PR
PT
GT
2
路径损耗、阴影及多径与距离的关系
Pr (dB) Pt
仅路径损耗 阴影及路径损耗 多径、阴影及路径损耗
log(d )
3
2.1 无线电波传播
1)自由空间或视距传输(直射); 2)反射:当无线电波遇到碰到几何尺寸比电磁波波长大
得多的物体,发生反射,如建筑物、山脉和过往车辆等; 3)绕射:当无线电波被尖利边缘阻挡时会发生绕射;
29
2.4.1 地面传播:物理模型
二、绕射
来构造一个圆族,经过每个圆从T到R的路径长度为:
R q / 2 q为整数,额外路径长度为半
波长的整数倍的点的集合;
R h2 d1 d2 , v h (2 d1 d2)
2 d1d2
d1d 2
h rq
qd1d2 ,
d1 d2
vq 2q
即菲涅尔-基尔霍夫绕射参数vq定义了一个额外路径不变的椭圆;
其中:(t) 2 f (t)t (t)
7
2.2 发送和接收信号模型
s(t) (t) cos((t) 0 ) cos(2 fct) (t) sin((t) 0) sin(2 fct) 可定义载频为fc的带通信号s(t) sI (t) cos(2 fct) sQ (t) sin(2 fct)
室内传播模型
下行链路预算模型为:天线口功率(dBm)=路径损耗+阴影衰落余量(dB)+人体损耗(dB)-终端接收增益(dB)+终端接收灵敏度(dBm)1、路径损耗根据室内传播模型Keenan-Motley:LP=32.5+20logf+20logd+pWiLP:路径损耗f:频率(MHz)取值2600Mhzd:发射机与接收机间距离(km)取值0.02P:墙壁的数目取值2Wi:室内墙壁损耗取值20dBLP=32.5+20lg(2600)+20lg(0.02)+2*20=106.822、阴影衰落余量阴影衰落遵循对数正态分布,又称慢衰落。
决定阴影衰落的主要参数有阴影衰落的标准方差和边缘通信概率,阴影衰落标准方差的典型值在5~12dB之间,一般取8dB,边缘通信概率是根据服务质量要求有关,服务质量越高边缘概率越大。
阴影衰落余量=NORMINV(边缘覆盖概率,0,标准方差),其中的0是指正态分布函数的均值。
阴影衰落余量= NORMINV(95%,0,8)=13.163、人体损耗人体对电磁信号的影响,一般取3dB。
4、终端接收增益是指接收机的天线增益,一般取0dB。
5、终端接收灵敏度终端接收灵敏度=噪声功率+噪声系数+信噪比噪声功率=热噪声功率谱密度*带宽热噪声功率谱密度=K*TK:玻尔兹曼常数(J/K)1.38*10-23J/KT:绝对温度(K)300K(27℃)热噪声功率谱密度=10lg(K*T*1000)=-174dBm/Hz带宽(Hz):20*106Hz噪声功率=-174+10lg(20*106)=-174+73=-101dBm噪声系数:输入端信噪比/输出端信噪比,取5dB信噪比:-6dB终端接收灵敏度=-101+5-6=-102dBm天线口功率(dBm)=106.82+13.16+3-102=20.98。
路径损耗和阴影衰落
入了一个复数因子,产生接收信号:
2.3 自由空间的路径损耗
: 视距方向上发射天线和接收天线的
增益之积
:由传播距离d引起的相移
2.3 自由空间的路径损耗
发送信号s(t)功率Pt则有:
接收功率与收发天线间距离d的平方成反比(其
经由反射、绕射和散射到达接收机的信号分量: 多径信号分量
2.4 射线跟踪
接收端收到多径信号cf直射信号:功率衰减、时
延、相移及频移
多径信号和直射信号在接收端叠加信号失真
Q:考虑有限个反射体,if位置和介电性质已知
适当边界条件求解Maxwell方程多径传播路
径
计算复杂,不适于通用建模方法 ☺射线跟踪法:简单几何方程取代Maxwell方程,近
成
障碍物通过吸收、反射、散射和绕射等方式衰减信
号功率,甚至严重时阻断信号。
cf: 路径损耗引起在长距离上;
而阴影引起在障碍物尺寸
的距离上功率变化 (室外:10m-
100m,室内更小)
大尺度传播效应:两者在相对较大距离上 引起的功率变化(cf.小尺度传播效应)
小尺度传播效应:如:多径信号干涉,在 波长数量级距离上引起功率变化。
、形状)
天线增益
该模型假定按自由空间模型从发射体传播到散射 体,在散射体处再以散射体接收功率σ倍向外辐接收到信号:所有多径分量叠加 如果有1条直射路径、Nr条反射路径、Nd条绕射路
径和Ns条散射路径,总的接收信号:
2.4.4 本地接收平均功率
所有射线跟踪模型中路径损耗计算:发射机和接 收机位置固定情况下进行
两径模型、经验模型、统计模型等等
路径损耗和阴影衰落
无线信道的衰落特性无线通信近年来移动通信技术飞速发展,经历了三个发展阶段,第一代模拟系统仅提供语音服务,不能传输数据;第二代数字移动通信系统的数据传输速率也只有9.6Kbit/s,最高可达32kbit/s;第三代移动通信系统数据传输速率可达到2Mbit/s。
随着第三代移动通信(3G)陆续在各国投入商业运营,必将给人们的生活带来更多的方便。
过去所采用的一些成熟的无线技术,例如窄带信道中的调制技术,由于其速率的限制,已渐渐被宽带信道调制技术所代替,对宽带信道的传输性能及调制技术的研究已经达到前所未有的高度。
无线通信的发展目标是使用者能够在任意地点、任何时间与任何人实现即时通信。
无线电波的传播无线信道的电波传输特性与传播环境—地貌、人工建筑、气候特征、电磁干扰情况、通信体移动速度和使用的频段等密切相关。
无线通信系统的通信能力和服务质量、无线通信设备要采用的无线传输技术都与无线移动信道性能的好坏密切相关。
电磁波在空中传播时,墙壁、地面、建筑物和其他物体会对电磁波形成反射、散射、折射和衍射等现象。
无线移动信号的损耗包括自由空间传播损耗与弥散、阴影衰落和多径效应。
无线电波在理想的空间中传播时,电磁波的能量不会被障碍物吸收,也不存在电波的反射、折射、绕射、色散和吸收等现象,但是随着传播距离的增大,电磁能量在扩散过程中产生球面波扩散损耗;由于电波传播遇到的障碍物等阻挡,形成电波阴影区,阴影区的电场强度减弱的现象称为阴影效应。
引起的衰落幅度服从对数正态分布(正态衰落或高斯衰落);由于移动传播环境的多径传播引起的衰落称为多径衰落。
当接收信号中无主导信号时,衰落振幅服从瑞利分布。
当接收信号中有主导信号时,衰落振幅服从莱斯分布。
多径衰落使信号电平起伏不定,严重时将影响通话质量。
无线电波的衰落作用使得到达接收端的信号的功率变小。
在发射机和接收机之间的存在的任何障碍物都会引起信号功率的衰减。
发送和接收信号模型在频率范围为0.3GHz~3GHz的UHF频段和频率范围为3GHz~30GHz的SHF 频段,电波的传播特性良好,天线尺寸也比较小,很适合无线通信。
路径损耗 多径衰落 阴影效应 多普勒效应
路径损耗多径衰落阴影效应多普勒效应路径损耗是指无线信号在传输过程中由于传播距离增加而导致的信号衰减。
在无线通信中,信号在传输过程中会遇到多种因素的影响,其中路径损耗是最主要的因素之一。
路径损耗与传输距离成正比,距离越远,信号衰减越大。
多径衰落是指信号在传输过程中由于经过多条路径到达接收端,不同路径的信号相互干扰而引起的衰落现象。
当信号经过不同路径到达接收端时,由于路径长度和传播时间的不同,信号会出现相位差,导致信号之间相互叠加或相消,从而引起信号强度的变化。
阴影效应是指信号在传输过程中遇到建筑物、地形等物体的阻挡而引起的信号衰减现象。
当信号遇到建筑物等物体时,会发生衍射、反射和绕射等现象,从而使信号强度发生变化。
阴影效应是不可预测的,会导致信号强度在不同位置和时间发生剧烈变化。
多普勒效应是指当信号源或接收器相对于传播介质运动时,引起信号频率发生变化的现象。
根据多普勒效应的原理,当信号源或接收器向远离方向运动时,信号频率会降低;当信号源或接收器向靠近方向运动时,信号频率会升高。
多普勒效应在无线通信中起到重要作用,尤其在移动通信中,需要对多普勒效应进行补偿。
路径损耗、多径衰落、阴影效应和多普勒效应是无线通信中不可避免的现象,对无线信号的传输质量产生重要影响。
在无线通信中,路径损耗是由于信号在传输过程中经过空气、建筑物等介质而导致的信号衰减。
路径损耗与传输距离成正比,同时也受到频率和传输介质的影响。
在传输过程中,信号会经历自由空间损耗、地面反射损耗、穿透损耗等,这些因素都会导致信号强度的减弱。
为了克服路径损耗,可以采用增大发射功率、使用高增益天线、改进调制技术等方法。
多径衰落是由于信号在传输过程中经过多条路径到达接收端而引起的衰落现象。
在城市环境中,由于建筑物的存在,信号会经过多次反射、绕射和散射,从而引起信号强度的变化。
多径衰落会导致接收端接收到的信号出现淡化、增强或失真等现象。
为了克服多径衰落,可以采用等化技术、多天线技术等方法。
信道频率 损耗模型 阴影模型 衰落模型
信道频率损耗模型阴影模型衰落模型本文主要介绍无线通信中常用的四个模型:信道频率模型、损耗模型、阴影模型和衰落模型。
这些模型是对无线信号传输的描述,可用于无线电路设计、无线网络规划、信号覆盖预测等领域。
一、信道频率模型信道频率模型是描述无线信道频率特性的模型。
由于每个频率都有不同的传播特性,因此,无线信道的频率响应是需要建模的一个方面。
信道频率模型主要用于预测在不同频率(即不同带宽)上信道的性能和损失。
其中,常见的信道频率模型有两种:理想无限平坦频率响应模型和实际的有限频带响应模型。
理想的无限平坦频率响应模型假定无线信道对所有频率的信号响应相同,并无任何滚降和干扰。
这种模型主要用于在不同频谱范围内比较不同的无线网络方案,例如Wi-Fi和蜂窝无线电连接。
实际的有限带宽响应模型基于实际信道的复杂特性,由于加性白噪声和多径反射等,信号的响应会随着信号频率而发生变化。
这种模型更加接近实际情况,但是比起理想模型更加复杂。
二、损耗模型在无线通信系统中,有很多因素能够影响信号的传输质量,如空气介质、障碍物、雨雪、建筑物等。
而这些环境因素会因传输距离的不同而导致信号衰减,这就是所谓的信号损耗。
损耗模型主要被用来描述这种随距离而发生变化的信号弱化。
由于信号损耗涉及到多个因素,因此建立一个准确的信号损耗模型是必须的。
普遍采用的损耗模型包括路径损耗模型和自由空间传输损耗模型。
路径损耗模型考虑了多种影响信号强度的因素,包括距离、传播介质、障碍物、频率、传输功率等。
该模型描绘了信号强度沿着直线传输路径的弱化过程,并使用密集度函数表示环境因素对信号传输的影响。
自由空间传输损耗模型是另一种常见的损耗模型,它假定空气介质是完全透明的,没有任何干扰。
这种模型假设无线信号在没有障碍物的情况下沿着一条直线传播,其信号强度随着传输距离的平方根而减弱。
三、阴影模型阴影模型是一种经验模型,用于描述障碍物阻挡无线信号的效果。
在真实环境中,无线信号发射器和接收器之间存在很多干扰,包括建筑物、植被、地形等障碍物,因此阴影模型非常重要。
快衰落与慢衰落
快衰落与慢衰落移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。
其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。
可见快衰落与慢衰落并不是两个独立的衰落(虽然他们的产生原因不同),快衰落反映的是瞬时值,慢衰落反映的是瞬时值加权平均后的中值。
慢衰落(又称阴影衰落):它是由于在电波传输路径上受到建筑物或山丘等的阻挡所产生的阴影效应而产生的损耗。
它反映了中等范围内数百波长量级接收电平的均值变化而产生的损耗,一般遵从对数正态分布。
慢衰落产生的原因:(1)路径损耗,这是慢衰落的主要原因。
(2)障碍物阻挡电磁波产生的阴影区,因此慢衰落也被称为阴影衰落。
(3)天气变化、障碍物和移动台的相对速度、电磁波的工作频率等有关。
快衰落(又称瑞利衰落)定义:移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象叫快衰落快衰落原因(1)多径效应。
1、时延扩展:多径效应(同一信号的不同分量到达的时间不同)引起的接受信号脉冲宽度扩展的现象称为时延扩展。
时延扩展(多径信号最快和最慢的时间差)小于码元周期可以避免码间串扰,超过一个码元周期(WCDMA中一个码片)需要用分集接受,均衡算法来接受。
2、相关带宽:相关带宽内各频率分量的衰落时一致的也叫相关的,不会失真。
载波宽度大于相关带宽就会引起频率选择性衰了使接收信号失真。
(2)多普勒效应。
f频移 = V相对速度/(C光速/f电磁波频率)*cosa(入射电磁波与移动方向夹角)。
多普勒效应引起时间选择性衰落,我的理解是由于相对速度的变化引起频移度也随之变化这是即使没有多径信号,接受到的同一路信号的载频范围随时间不断变化引起时间选择性衰落。
交织编码可以克服时间选择性衰落。
时间选择性衰落用T相关时间来表示=1/相关频率。
例如某移动台速度为540公里/小时那么它的最大频移为1KH相关时间就是1毫秒想要克服这样速度的快衰落就要有1.5倍于衰落变化频率的功控即1500Hz快速功控。
影响慢衰落的因素
二、影响慢衰落的因素:
1、慢衰落产生的原因:
(1)路径损耗,这是慢衰落的主要原因。
(2)障碍物阻挡电磁波产生的阴影区,因此慢衰落也被称为阴影衰落。
(3)天气变化、障碍物和移动台的相对速度、电磁波的工作频率等有关。
2、远近效应
由于接收用户的随机移动性,移动用户与基站间的距离也是在随机的变化,若各用户发射功率一样,那么到达基站的信号强弱不同,离基站近信号强,离基站远信号弱。
通信系统的非线性则进一步加重,出现强者更强、弱者更弱和以强压弱的现象,通常称这类现象为远近效应。
因为CDMA是一个自干扰系统,所有用户共同使用同一频率,所以“远近效应”问题更加突出。
3、多普勒效应
它是由于接收的移动用户高速运动而引起传播频率的扩散而引起的,其扩散程度与用户的运动速度成正比。
随参信道的一般衰落特性和选择性衰落特性,是严重影响信号传输的重要特性。
至于前面所说的慢衰落特性,因为它的变化速度十分慢,通常可以通过调整设备参量(如调整发射功率)来弥补。
而为了抗快衰落,通常可采用多种措施,例如,各种抗衰落的调制解调技术、抗衰落接收技术及扩频技术等。
其中,明显有效且被广泛应用的措施之一,就是分集接收技术。
其基本思想就是,快衰落信道中接收的信号是到达接收机的各径分量的合成,如果在接收端同时获得几个不同路径的信号,将这些信号适当合并构成总的接收信号,则能够大大减小衰落的影响。
4、阴影效应
移动台在运动中,由于大型建筑物和其他物体对电波的传输路径的阻挡而在传播接收区域上形成半盲区,从而形成电磁场阴影,这种随移动台位置的不断变化而引起的接收点场强中值的起伏变化叫做阴影效应。
阴影效应是产生慢衰落的主要原因。
有关衰落的理解汇总
2009年8月23日什么是衰落(fading)?对于S---- D这样一个发送接收系统来说,理想的无线信号传播(自由空间传播模型)是由S发送的电磁信号经过一定衰减(attenuation ) 达到D点,我们可以理解为信号沿着S-D的直线从S传播到D点。
虽然,电磁波实际上是以球面波的形式向周围360度辐射,但是只有沿着S-D 直线传播的信号才能抵达D点,我们也可以把S-D路径称为直射路径。
这是对于自由空间来说的,在自由空间模型里面除了S和D,什么也没有。
而对于实际的大气传播环境,大气中包含着许多的小颗粒(悬浮物),或者其他的小粒子,从S出发,沿着非S-D方向的其他方向传播的电磁波可能经过一系列的反射(散射)后而抵达接收端D,我们把这种路径成为散射路径。
由于大气中存在很多的小颗粒,我们可以猜测将会有很多的散射路径。
由于每一条散射路径经历的路程都不一样,这样,他们抵达接收端的相位各不相同,如果恰巧各个相位相同,这样,多个信号进行叠加会导致总的信号增强,而如果相位互不相同,各个信号叠加则会互相抵消,导致总的信号强度变低。
这样,我们把由于信号经过了多个路径而抵达接收端导致信号强度发生随机变化的现象称为衰落(fading),也称为多径衰落。
广义的衰落还包括由降水、绕射等其他原因引起的非正常衰减引起的衰落。
然而,如果不是特别声明,当我们说衰落的时候,一般特指多径衰落。
由于衰落是个随机现象,对于随机事件,我们一般使用概率分布等统计特性来描述,最常见的是瑞利衰落,也就是说接收信号强度服从瑞利分布。
瑞利衰落是如何来的?假设发射信号经过多条传播路径到达接收点,来自不同的路径信号的相对时延较小,在接收机处不可分辨(即平坦衰落),合成为一条单独的路径,接收的等效低通复信号表示为:u(t)exp(j*p(t))=sigma(K=1->K=N)u(k)(t)*exp(j*p(k)(t))= sigma(K=1->K=N)ui(k)(t)cos(p(k)(t))+ sigma(K=1->K=N)ui(k)(t)sin(p(k)(t))=ui(t)+j*uq(t)u(t)也称为信号的复包络,而p(t)称为信号的相位。
路径损耗和阴影衰落
无线信道的衰落特性无线通信近年来移动通信技术飞速发展,经历了三个发展阶段,第一代模拟系统仅提供语音服务,不能传输数据;第二代数字移动通信系统的数据传输速率也只有9.6Kbit/s,最高可达32kbit/s;第三代移动通信系统数据传输速率可达到2Mbit/s。
随着第三代移动通信(3G)陆续在各国投入商业运营,必将给人们的生活带来更多的方便。
过去所采用的一些成熟的无线技术,例如窄带信道中的调制技术,由于其速率的限制,已渐渐被宽带信道调制技术所代替,对宽带信道的传输性能及调制技术的研究已经达到前所未有的高度。
无线通信的发展目标是使用者能够在任意地点、任何时间与任何人实现即时通信。
无线电波的传播无线信道的电波传输特性与传播环境—地貌、人工建筑、气候特征、电磁干扰情况、通信体移动速度和使用的频段等密切相关。
无线通信系统的通信能力和服务质量、无线通信设备要采用的无线传输技术都与无线移动信道性能的好坏密切相关。
电磁波在空中传播时,墙壁、地面、建筑物和其他物体会对电磁波形成反射、散射、折射和衍射等现象。
无线移动信号的损耗包括自由空间传播损耗与弥散、阴影衰落和多径效应。
无线电波在理想的空间中传播时,电磁波的能量不会被障碍物吸收,也不存在电波的反射、折射、绕射、色散和吸收等现象,但是随着传播距离的增大,电磁能量在扩散过程中产生球面波扩散损耗;由于电波传播遇到的障碍物等阻挡,形成电波阴影区,阴影区的电场强度减弱的现象称为阴影效应。
引起的衰落幅度服从对数正态分布(正态衰落或高斯衰落);由于移动传播环境的多径传播引起的衰落称为多径衰落。
当接收信号中无主导信号时,衰落振幅服从瑞利分布。
当接收信号中有主导信号时,衰落振幅服从莱斯分布。
多径衰落使信号电平起伏不定,严重时将影响通话质量。
无线电波的衰落作用使得到达接收端的信号的功率变小。
在发射机和接收机之间的存在的任何障碍物都会引起信号功率的衰减。
发送和接收信号模型在频率范围为0.3GHz~3GHz的UHF频段和频率范围为3GHz~30GHz的SHF 频段,电波的传播特性良好,天线尺寸也比较小,很适合无线通信。
无线信号传播衰弱浅析
1无线传播简介移动通信中采用无线电波传播信息,即无线信道。
而移动台又经常处于不断运动状态之中,因而导致接收到的信号幅度和相位随时间、地点而不断地变化。
因此,需要对网络所在无线环境进行研究。
从移动信道的电磁波传播上看,有四种传播方式:直射波、反射波、绕射波和散射波。
1.1直射波(自由空间传播模型)自由空间传播是指在理想的、均匀的各向同性的介质中传播,不发生反射、折射、散射和吸收现象,只存在因电磁波能量扩散而引起的传播损耗。
在自由空间中,若发射点处的发射功率为P t ,以球面波辐射接收的功率为P r ,则有P r =P t λ4πd()2g t g r式中,P t 为发射机送至天线的功率,g t 和g r 是发射和接收天线增益,λ为波长,d 为发射天线和接收天线之间的距离。
自由空间传播损耗则可以定义为:L s =P t P r =4πd λ()21g t g r损耗常用分贝表示,则:L s =32.45+20logd+20logf-10log(g t g r )L bs =32.45+20logd+20logf g =g =1式中,距离d 以km 为单位,频率f 以MHz 为单位,L bs 定义为自由空间路径损耗,他表示自由空间中的两个理想电源天线(增益系数g t =g r =1的天线)之间的传输损耗。
1.2反射波反射波是指从不同建筑物或其他反射体反射后到达接收点的传播信号,其信号强度较直射波弱。
接下来,对多径传播模型做如下推导:如果电磁波传播到理想介质表面,则能量都将反射回来,反射系数(入射波与反射波的场强比值)R 为1。
而对于非理想介质的情况下,反射系数R=sinθ-z sinθ+z。
式中z=ε0-cos 2θ√/ε0(垂直极化)或z=ε0-cos 2θ√(水平极化),ε0=ε-j60σλ,其中,θ入射角,ε和σ分别为反射媒质的介电常数和电导率,λ为波长。
两径传播的接收信号强度P r 可以表示为:P r ≈P tλ4πd()2g t gr1+Re-jΔΦ2其中,相位差ΔΦ=2πΔl λ,Δl=(AC+CB)-AB。
2.2移动信道的衰落特性
§2-2 移动信道的衰落特性⏹大尺度传播特性:描述的是发射机与接收机之间长距离上的场强变化⏹路径传播损耗:它反映了传播在宏观大范围(几百米或几千米)的空间距离上的接收信号电平平均值的变化趋势。
⏹由于阴影效应和气象条件变化造成的接收场强中值的缓慢变化,这种损耗是中等范围内(数十至数百个波长范围)接收电平的均值变化而产生的损耗。
一般认为慢衰落与工作频率无关,仅取决于移动台的移动速度,衰落深度取决于障碍物的状态;且衰落后信号的幅度服从于对数正态分布。
移动用户和基站之间的距离为r时,传播路径损耗和阴影衰落用dB可以表示为:10lgl(r,ξ)=10nlgr+ξ⏹小尺度传播特性:描述短距离(几个波长)或短时间(秒级)内的接收场强的快速波动情况。
⏹快衰落损耗:由于多径传播而产生的损耗。
它反映微小范围(几个至数十个波长范围)接收电平的均值变化而产生的损耗。
一、快衰落/多径衰落/瑞利衰落:多径传播是陆地移动通信系统的主要特征。
★多普勒频移⏹成因:路程差造成的接收信号相位变化值,进而产生多普勒频移。
⏹后果:信号经不同方向传播,其多径分量造成接收机信号的多普勒扩展,进而增加信号带宽。
⏹此可得出频率变化值,即多普勒频移fdv 移动环境:⏹基站高、移动台低。
基站天线通常高30 m,可达90 m;移动台天线通常为2~3 m以下。
⏹ 移动台周围的区域称为近端区域,该区域内的物体造成的反射是造成多径效应的主要原因。
⏹ 离移动台较远的区域称为远端区域,在远端区域,只有高层建筑、较高的山峰等的反射才能对该移动台构成多径。
二、多经信号的统计特性1) 瑞利Rayleigh 衰落:在多径传播信道中,若N 条路经彼此相互独立且没有一个信道的信号占支配地位,或者没有直射波信号,仅有很多的反射波,则接收信号的包络将服从瑞利分布。
2) 莱斯Ricean 衰落:在多径传播信道中,若接收信号中有一个信道的信号占支配地位(常常是直射波),则其包络将服从莱斯分布。
路径损耗 多径衰落 阴影效应 多普勒效应
路径损耗多径衰落阴影效应多普勒效应路径损耗、多径衰落、阴影效应和多普勒效应是无线通信中常见的影响因素。
本文将逐一介绍这些因素对无线信号传输的影响及相关应对措施。
一、路径损耗路径损耗是指无线信号在传播过程中因空间传播距离增加而逐渐衰减的现象。
路径损耗的主要原因是信号在传播过程中发生散射、反射、折射和吸收等现象。
路径损耗的大小与传播距离、频率、天线高度以及传播环境等因素有关。
为了应对路径损耗,可以采取以下措施:1. 提高天线高度,以增加信号传播的直射路径;2. 使用高增益天线,以提高信号传输的功率;3. 使用中继站,以延长信号传播的距离;4. 使用信号补偿技术,如功率控制和自适应调制等,以增强信号的传输能力。
二、多径衰落多径衰落是指信号在传播过程中由于经历多条不同路径而导致的信号强度波动现象。
多径衰落的主要原因是信号在传播过程中经历反射、散射和衍射等现象,导致信号在接收端叠加干扰。
为了应对多径衰落,可以采取以下措施:1. 使用均衡技术,如时域均衡和频域均衡等,以消除多径效应;2. 使用编码技术,如卷积码和纠错码等,以提高信号的可靠性;3. 使用分集技术,如空分多址(SDMA)和时分多址(TDMA)等,以增加信号的传输路径;4. 使用自适应调制技术,如自适应调制解调(AMC)和自适应调制速率(AMR)等,以适应信道的变化。
三、阴影效应阴影效应是指由建筑物、地形或其他物体对信号传播造成的衰减现象。
阴影效应的主要原因是信号在传播过程中受到障碍物的遮挡和衍射,导致信号强度不均匀分布。
为了应对阴影效应,可以采取以下措施:1. 合理规划基站的布局,避免建筑物和地形对信号传播的阻挡;2. 使用高频率的信号,以减小阴影效应的影响;3. 使用多天线技术,如MIMO(多输入多输出)等,以增加信号的传输路径;4. 使用信号预测技术,如信号补偿和自适应滤波等,以消除阴影效应的影响。
四、多普勒效应多普勒效应是指信号源和接收器之间相对运动导致信号频率发生变化的现象。
双射线传播模型 路损公式
双射线传播模型路损公式双射线传播模型是一种用于无线通信系统中的路损模型,用于描述信号在传播过程中的衰减情况。
路损是指信号在传输过程中由于各种因素造成的衰减和损耗,包括自由空间路径损耗、多径效应、阴影衰落等。
双射线传播模型是一种简化的模型,通过考虑主要的传播路径和信号衰减因素,可以较为准确地预测信号的强度和传输距离。
双射线传播模型的路损公式可以表示为:L = L0 + 10nlog(d/d0) + Xσ其中,L为信号的路损(dB),L0为参考距离d0处的路损(dB),n 为路径损耗指数,d为传输距离,X为阴影衰落的均值(dB),σ为阴影衰落的标准差(dB)。
在双射线传播模型中,路径损耗指数n是一个重要的参数,它反映了信号衰减随距离增加的速率。
通常情况下,n的取值范围为2到4,取决于传播环境的复杂程度。
当n=2时,表示自由空间传播模型,即信号衰减与距离的平方成正比;当n=4时,表示有阻尼的传播模型,即信号衰减与距离的四次方成正比。
在实际应用中,可以通过实测数据来确定合适的n值。
阴影衰落是指由于环境的不均匀性引起的信号强度的随机变化。
X 表示阴影衰落的均值,σ表示阴影衰落的标准差。
阴影衰落的产生与信号在传播过程中遇到的障碍物和地形等因素有关。
在建筑物密集区域或山区等复杂环境中,阴影衰落的影响更为显著。
双射线传播模型的路损公式中,还包括参考距离d0和参考路损L0两个参数。
参考距离是指与发射源之间的距离,通常取1米或10米。
参考路损是指在参考距离处的路损值,可以通过实测数据或仿真模拟来确定。
参考路损的确定对于预测信号强度和传输距离具有重要意义。
双射线传播模型的路损公式可以用于无线通信系统的规划和设计。
通过对信号的路损进行分析和预测,可以确定合适的传输功率和传输距离,从而提高信号的覆盖范围和传输质量。
在实际应用中,还可以结合其他的衰减模型和算法,如多径效应的补偿和频率选择性衰落的处理,进一步提高通信系统的性能。
路径损耗和阴影衰落
路径损耗和阴影衰落1 概述无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。
因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。
其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。
2 发送信号与接收信号模型调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。
又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。
下面分别给出发送和接收信号模型。
2.1 发送信号发送信号表达式为2()Re{()}c j f t s t u t e π= (1)其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。
发送信号s(t)的功率P t =P u /2。
2.2 接收信号接收信号表达式与发送信号类似,只是叠加了噪声:2()Re{()}()c j f t r t v t e n t π=+ (2)其中n(t)为信道噪声。
v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。
3 路径损耗路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。
显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。
假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。
则定义信道的路径损耗(path loss )为1010log t L r P P dB dB P =(3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。
下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。
3.1 自由空间路径损耗在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号:2()Re ()c j f t r t t e π⎫⎪=⎬⎪⎪⎩⎭ (4)2/j d e πλ-是由传播距离d 引起的相移。
阴影衰落计算公式
阴影衰落计算公式
阴影衰落计算公式是计算电磁波在传播过程中因被障碍物遮挡而
导致信号强度下降的一种方法。
具体来说,阴影衰落是指在信号传输
过程中,由于建筑物、山体、树木等障碍物的阻挡或反射而引起的信
号强度降低的现象。
阴影衰落的计算公式有多种,其中最常用的是雷利衰落模型和对
数正态衰落模型。
在雷利衰落模型中,阴影衰落系数根据路径损耗和
遮挡因素来计算。
其具体公式为:
L = 20log10 (d) + 20log10(f) + S
其中,L表示路径损耗,d表示传输距离,f表示频率,S则是一
个随机变量,用来表示遮挡影响。
S的均值为0,方差为σ^2,符合正态分布,其大小取决于具体的环境因素。
对数正态衰落模型则将S视为一个对数正态分布的随机变量,其
公式为:
L = 10log10(d)+ 20log10(f) + X
其中,X为一个对数正态分布的随机变量,其均值为μ,方差为
σ^2。
其具体含义与雷利衰落模型中的S类似,表示遮挡因素的影响。
无论是雷利衰落模型还是对数正态衰落模型,其计算公式在实际
应用中都具有一定的局限性。
不同的路径环境、遮挡形式、频率等因
素都会对阴影衰落产生影响,使得计算结果与实际情况存在误差。
因此,在实际场景中,还需结合实际测量、模拟等手段进行验证和修正。
总之,阴影衰落计算公式在通信、遥感等领域中具有重要的作用,对于评估信号传输质量、优化网络规划等方面都具有指导意义。
但需
要注意的是,其计算结果仅供参考,实际环境中还需进行综合考虑和
验证。
WCDMA链路预算中阴影衰落余量的计算
∫ P(x ≥ Pmin)= P +m∞ in p(x)dx= 12 +
1
μ -P erf ( m i n )=0.752 (3)
2
σ2
μ -P 经计算,erf ( m i n )=0.752
σ2
查表 2,得出:(μ -Pmin )/(σ 2)= 0.48,变形 为μ -Pmin = 0.68 σ,不难理解 0.68 σ= 0.68 × 8 = 5.43(dB)即为阴影衰落余量。 即接收机收到的信号电
模块化 UPS 系统可以有效地解决传统 UPS 中存在的制约性问题,进而使得用户获得了极佳的扩展性,并且可以在必要 的时候自行对系统进行自主的分配与集成。 ( 本刊讯)
-80-
平至少要比门限值大,才能对抗信号传播中的慢衰落。
表 2 误差函数表
x
0.4 0.45 0.5 0.55 0.6 0.65
erf (x) 0.42839 0.47548 0.5205 0.56332 0.60386 0.64203
虽然在工程上以快捷地得到正确的结果为目标, 但 这两种方法都不能反映阴影衰落余量的内涵, 不利于对 它的理解。以下我们从正态分布的特点出发,通过计算 来理解阴影余量的含义。
Keywords shadow fading loss, central limit theorem, normal distribution
News
GA 新一代模块 UPS 产品
GA 集中精力投入新技术、新应用和新概念,鼎力推出了具有前瞻性的新一代模块 UPS 产品—— POWER+,并推出了 多制式模块 UPS 产品,采用纯在线、双变换的工作模式,全面解决了电源断电、欠压、浪涌、电源干扰、电源尖峰、频率波 动、交换瞬变以及谐波失真带来的问题,保证了输出电压和频率的稳定,也减小了逆变启动时的相位差,允许用户根据需要及 预算进行有效匹配。在降低运输及储藏成本的同时提供更高的效率,具有更灵活的机动性及更好的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路径损耗和阴影衰落
1 概述
无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。
因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。
其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。
2 发送信号与接收信号模型
调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。
又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。
下面分别给出发送和接收信号模型。
2.1 发送信号
发送信号表达式为
2()Re{()}c j f t s t u t e π= (1)
其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。
发送信号s(t)的功率P t =P u /2。
2.2 接收信号
接收信号表达式与发送信号类似,只是叠加了噪声:
2()Re{()}()c j f t r t v t e n t π=+ (2)
其中n(t)为信道噪声。
v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。
3 路径损耗
路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。
显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。
假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。
则定义信道的路径损耗(path loss )为
1010log t L r P P dB dB P =
(3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。
下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。
3.1 自由空间路径损耗
在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号:
2()Re ()c j f t r t t e π⎫⎪=⎬⎪⎪⎩⎭ (4)
2/j d e πλ-是由传播距离d 引起的相移。
由式(4)可得自由空间路径损耗为
()210102410log 10log t L l l d P P dB P G πλ==
(5) 3.2 两径模型
两径模型属于单一的地面反射波在多径效应中起主导作用。
如图1所示,其接收信号由两部分组成:1)经自由空间到达接收端的直射分量和2)经地面反射到达接收端的反射分量。
两径模型中接收信号为
22()Re 4c j f t ray r t e πλπ-⎧⎫⎪⎪=⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭
(6)
其中τ
益乘积,R
x 方向上的发送天线和x’方向上的接收天线增益的乘积。
图1 两径模型
若发射信号是窄带的,即 ()()u t u t τ≈-。
则接收信号功率为 2
24j r t P P φλπ⎛⎫= ⎪⎝⎭
(7)
其中φ表示发射信号与接收信号的相位差,当t r d h h +时,可得 ()2'4=t r x x l h h d ππφλλ+-=
(8) 则由式(7)和式(8)可得,两径模型路径损耗为
2
210410log t r L h h P dB d πλ⎛⎫=- ⎪⎝⎭⎝⎭ (9) 根据式(7)可画出接收功率随距离变化的曲线,如图2所示,这条曲线可分为三段:1)d<h t 时,接收功率随距离缓慢增加;2)h t <d<一个临界值d c 时,两个分量产生干涉形成一系列极大值极小值;3)d>d c 时,功率随d -4减小。
为了清楚起见,将曲线去平均近似值,得到三段折线图:第一段中,功率恒定;第二段中,每10倍距离功率下降20dB ;第三段中,每10倍距离功率下降40dB 。
图2 两径模型中接收功率与距离的关系
3.3十径模型
十径模型是两边是建筑物的街道中无线电的传播,由于反射后信号能量衰减,故我们忽略经三次以上反射的路径。
又由于街道两边各有一条路径,所以该模型中共有十条路径,如图3所示。
图3 十径模型
十径模型中接收信号功率与两径模型计算方法类似,这里不再讨论。
4 阴影衰落
阴影衰落是有发射机和接收机之间的障碍物造成的,这些障碍物会吸收、反射、散射和绕射等方式衰减信号功率,甚至阻断信号。
信号在无线信道传播过程当中遇到的障碍物会导致信号衰减,而这些造成信号衰减的因素,如障碍物位置、大小和介电性质一般都是未知的,因此我们只能用统计模型来表示这种随机衰减。
最常用的模型是对数正态阴影模型,即发射和接收功率之比的分贝值服从正态分布。
假设发射和接收接收功率比值为/t r P P ψ=,1010log dB ψψ=,则dB ψ的概率密度函数为
22()()2dB dB dB dB p ψψψμψσ⎧⎫-⎪⎪=-⎨⎬⎪⎪⎩⎭
(10) 其中dB ψμ为dB ψ的均值,由实测值或解析模型确定。
在实测中,dB ψμ就等于路径
损耗。
对于解析模型,dB ψμ须综合考虑障碍物造成的平均衰减和路径损耗。
dB ψσ为标准差。
多次信道测量表明,dB ψσ围在4dB~13dB 之间。
dB ψμ随距离增大而减小,因
为1)存在路径损耗,2)距离增加障碍物增多,造成的平均衰减增大。
当阴影衰落由阻挡衰减主导时,其衰减可近似为
()d s d e α-= (11)
其中α为衰减系数,d 为障碍物厚度。
若有i 个障碍物衰减系数分别为i α,厚度分别为i d ,则衰减为
()i i
i d s d e α-
∑= (12)
5 路径损耗和阴影衰落的混合模型
将路径损耗模型和阴影衰落模型叠加在一起就可同时反映r t
P dB P 与距离的关系,如图4所示,路径损耗与阴影衰落的混合模型的曲线围绕着路径损耗正好体现了因距离增加,接收信号功率随障碍物增多而发生的随机变化。
图4 路径损耗和阴影衰落随距离变化。