大学物理-二阶线性常微分方程例题

合集下载

大学物理-二阶线性常微分方程的一般性质

大学物理-二阶线性常微分方程的一般性质

设方程 (7-1-6) 的正则解为:
(7-1-7)
(7-1-8)
将 (7-1-7)、(7-1-8) 代入 (7-1-6) 式中,得到
消去因子 z ,有
(7-1-9)
要使上式在 |z| < R 的区域内成立,左边 z 的各次幂的 系数必须等于零。
由 z 的最低次幂的系数为零,得到
(a0,b0为已知)
(7-1-11) 一般可以得到两组系数。
(7-1-1)
(7-1-2)

(7-1-3)
其中:
是常数
可以看到,在 z0 是方程的奇点的情形下,如果 1 或 者 2 不是整数,或者 g ≠ 0,方程都有多值函数解。
显然,把解 (7-1-1), (7-1-2) 或 (7-1-3) 代入方程中去确
定 1, 2 , g, Ck , Dk 时会发现所得到的是一组无穷多个未
性、单值性等) 由方程的系数 p(z) 和 q(z) 的解析性确定。
设 p(z) 和 q(z) 在一定的区域中,除若干个孤立奇点外, 是 z 的单值解析函数。区域中的点可分为两类:
1. 方程的常点:如果 p(z) 和 q(z) 都在点 z0 的邻域解析, 则 z0 称为方程的常点。
2. 常点邻域的级数解
以 z2 乘方程
(7-1-5)
得到
(7-1-6)
其中
p1(z) zp(z) q1(z) ห้องสมุดไป่ตู้2q(z)
(7-1-6)
由条件 (7-1-4) 可知:p1(z) , q1(z) 在 z = 0 点及其邻域内是解 析的,将它们分别作泰勒展开,有
q1(z) bs zs s0
p1(z) as zs s0
(z – z0) p(z) 和 (z – z0)2 q(z) 在 0 < |z – z0| < R 中解析。(7-1-4)

二阶偏微分方程的常规解与特殊解

二阶偏微分方程的常规解与特殊解

株洲师范高等专科学校2010届毕业论文材料系、部:物理与电子工程系学生姓名:刘进萍指导教师:周昕职称:讲师专业:物理教育班级:07 物理教育2010年5月目录1、毕业论文课题任务书 (2)2、毕业论文开题报告 (4)3、指导教师评阅表 (8)4、评阅教师评阅表 (9)5、答辩及最终成绩评定表 (10)6、毕业论文 (11)2010届毕业论文课题任务书系:物理与电子工程系专业:物理教育株洲师范高等专科学校毕业论文开题报告系部_______物理与电子工程系____ 专业物理教育题目二阶偏微分方程的常规解与特殊解学生姓名__刘进萍学号04107103_指导教师周昕___职称__ 讲师_____2010年5月20日说明:开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一,此报告应在导师指导下,由学生填写,将作为毕业论文(设计)成绩考查的重要依据,经导师签署意见及系审查后生效。

株洲师专2010届毕业论文指导教师评阅表系:物理与电子工程系株洲师专2010届毕业论文评阅教师评阅表系:物理与电子工程系株洲师专2010届毕业论文答辩及最终成绩评定表系(公章):物理与电子工程系株洲师范高等专科学校2007届毕业论文弦振动二阶偏微分方程的常规解与特殊解系、部:物理与电子工程系学生姓名:刘进萍指导教师:周昕职称讲师专业:物理教育班级:物理教育班完成时间:2010年5月弦振动二阶偏微分方程的常规解与特殊解物理与电子工程系物理教育专业2007级刘进萍指导老师周昕摘要:对于弦振动的二阶偏微分方程,一般采用分离变法来解。

如果我们考虑其物理意义,波在离振源X0处的振动就是振源在时间上推迟了t=X0/v, 从而将振源的振动方程引入推迟因子后代入偏微分方程中,一定会满足方程,则该振动方程就是此偏微分方程的解。

该种方法物理意义明确,求解过程相对简化。

关键词:二阶偏微分方程;推迟因子;弦振动;波的传播Abstract: For the partial differential equation of two ranks, we often use separation reform to solution. If we consider its physical significance, from the source X0 wave is the source of vibration in time delayed t = X0 / v, which will be the source of vibration equation introduced delay partial differential equations, the factor of offspring will meet equation, the vibration equation is the partial differential equations of the solution. This method has clear physical meaning and the solving process is relatively simple.Keywords:partial differential equation of two ranks; suspend gene; libration of string; transmit ion of wave前言在解弦振动的二阶偏微分方程时, 在数学上,一般采用分离变法来解,这是一种纯数学的方法。

中北大学数学物理方程典型例题与解法范例

中北大学数学物理方程典型例题与解法范例

例1下列各方程是线性的, 还是非线性的? 如果是线性的, 指出是齐次的,还是非齐次的, 并确定它的阶数. (1) 22sin sin 0xx xy yy u xu xu ++=, (2) 12=+y x u u u (3) 320xxxx xxyy yyyy u u u ++=(4)0ln =++u u u xyy xxx , (5) 5352sin xxx xy yy y u u xu u u x -+++=解:(1) 原方程为二阶齐次线性方程(2) 由于2,x y u uu 都为非线性项,因此原方程为一阶非线性方程(3) 原方程为四阶齐次线性方程(4) 由于ln u 为非线性项,因此原方程为三阶非线性方程 (5) 原方程为三阶非齐次线性方程(非齐次项2sin x ) 例2 验证函数 (3)u f x y =+ 是方程: 30x y u u -=的解, 其中f 为任意连续可微函数.证:左(3)3(3)f x y f x y x y ∂∂=+-+∂∂()(3)3()(3)f x y f x y x y ξξ∂∂''=+-+∂∂ 3()3()0f f ξξ''=-==右 (3)x y ξ=+例3 验证函数 22ln()u x y =+是方程: 0xx yy u u +=的一个解证: 222222,x y x y u u x y x y ==++,2222222222222(02)24,()()xx yy x x y u u x y x y x y x y -=+=-++++ 左22222222222224240()()x y x y x y x y x y =-+-==++++右 例4 (1) 长为l 的弦, 两端点固定, 且在初始时刻0=t 处于水平状态, 初始速度为23sinxlπ, 作微小横振动, 试写出此定解问题.(2) 设有一长度为l 的杆, 它的表面是绝热的, 在0=x 的一端温度为5C ,另一端l x=处外界媒介的温度为5C ,且初始温度分布为)(x ϕ, 试写出此定解问题.解:(1) 定解问题为 0(0,)(,)02(,0)0,3s i n t t x x t u u u t u l t u x u x t lπ==⎧⎪==⎪⎨∂⎪==⎪∂⎩(2) 定解问题为 (0,)5,[(,)]5(,0)()t x x x lu u u u t u x t x u x x κϕ==⎧⎪∂⎪=+=⎨∂⎪⎪=⎩例5 将下列二阶线性偏微分方程化为标准型(1)22222320u u u x x y y∂∂∂++=∂∂∂∂,解:(1)特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x yx yξη=-⎧⎨=-⎩2,x y u u u u u u ξηξη=+=-- , 22444xx u u u u u u u u ξξξηηξηηξξξηηη=+++=++ 32xy u u u u ξξξηηη=---,2yy u u u u ξξξηηη=++代入原方程,化为0u ξη-=, 所以原方程的标准型为 0u ξη=(2) 22222u u a t x∂∂=∂∂ 解 :特征方程22()dx a dt =,特征线12,x at C x at C +=-=, 作变量代换x at x atξη=+⎧⎨=-⎩, 原方程化为 2222a u a u ξηξη-=,所以原方程的标准型为 0u ξη=(3)22222320u u u u u x x y y x y∂∂∂∂∂++++=∂∂∂∂∂∂解:特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x y x y ξη=-⎧⎨=-⎩原方程化为0u u ξηη-+=, 所以原方程的标准型为 0u u ξηη-=例6.证明直角坐标系下的拉普拉斯方程: 22220u ux y∂∂+=∂∂在极坐标系下为01122222=∂∂+∂∂+∂∂θu r r u r ru证:cos ,sin tan r x r y y r x θθθ⎧==⎧⎪⎨⎨=⎩=⎪⎩2()x r x y u u u r r θ=+- , 2y r y xu u u r rθ=+222234412[]xx rr r x x x xyu u u u u r r r r r θθθ=+-++222234412[]yy rr r y y y xyu u u u u r r r r rθθθ=+-+-2222222342[]xx yy rr r x y x y x y u u u u u r r r rθθ++++=+-+222()r x y =+2221111[]rr r rr r u u u u u u r r r r rθθθθ=+-+==++,所以拉普拉斯方程:22220u ux y ∂∂+=∂∂在极坐标系下为 01122222=∂∂+∂∂+∂∂θu r r u r r u。

大学物理-常微分方程的本征值问题

大学物理-常微分方程的本征值问题

类型
定解问题中的 边界条件
分离变量后的 边界条件
本征函数系
(1)
(2) (3) (4)
利克莱条件:(1) 连续或只有有限个第一类间断点;(2) 只 有有限个极值点,则 f (x) 在 [–l, l ] 上可展开为傅里叶级数
利用三角函数的正交关系,可得
量子力学中的正交完备矢量组: 设 F 为厄米算符,则 F 对应于不同本征值的本征矢
相互正交,这些本征矢构成正交完备矢量组。记正交完 备矢量组为 { | i > (i =1, 2, …)},有
数集的正交性只是这里的特殊例子。
等本征函
4. 完备性定理 若函数 f (x) 在区间 [a,b] 有连续的一阶导数和分段连
续的二阶导数,且满足本征值问题的边界条件,则可利用 本征函数系{yn(x)} 将它展开为绝对且一致收敛的广义傅 里叶级数,即
其中展开式的系数为
备忘:傅里叶级数 一个以 2l 为周期的函数 f (x),若在区间 [–l, l ] 满足狄
二阶线性常微分方程的普遍形式为 (6-4-1)
其中:A(x), B(x), C(x)——已知函数
—— 分离变量过程中引入的常数
方程 (6-4-1) 化为以下施图姆—刘维尔方程 (施—刘型方程)
(6-4-2)
其中:
核函数
已知函数
权函数
参数 勒让德方程、连带勒让德方程、贝塞尔方程均可化 为施—刘型方程:
(1) 存在无穷多个实的、分立的本征值 = n (n = 1,2,…),
且对应着无穷多个本征函数 yn (x) (n = 1,2,…); (2) 当同一本征值对应的本征函数不止一个时,称为简并。
证明:本征值 是实的。 若 为复数,施—刘型方程及其复共轭为

国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案

国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案

国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案国家开放大学电大本科《常微分方程》网络课形考任务1-6试题及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有6个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×50%+终结性考试×50%形考任务1题目1本课程的教学内容共有五章,其中第三章的名称是().选择一项:A.一阶线性微分方程组B.定性和稳定性理论简介C.初等积分法D.基本定理题目2本课程安排了6次形成性考核任务,第2次形成性考核作业的名称是().选择一项:A.第一章至第四章的单项选择题B.第二章基本定理的形成性考核书面作业C.初等积分法中的方程可积类型的判断D.第一章初等积分法的形成性考核书面作业题目3网络课程主页的左侧第3个栏目名称是:().选择一项:A.课程公告B.自主学习C.课程信息D.系统学习题目4网络课程的“系统学习”栏目中第一章初等积分法的第4个知识点的名称是().选择一项:A.一阶隐式微分方程B.分离变量法C.全微分方程与积分因子D.常数变易法题目5网络课程的“视频课堂”栏目中老师讲课的电视课共有()讲.选择一项:A.18B.20C.19D.17题目6网络课程主页的左侧“考试复习”版块中第二个栏目名称是:().选择一项:A.考核说明B.复习指导C.模拟测试D.各章练习汇总题目7请您按照课程的学习目标、学习要求和学习方法设计自己的学习计划,并在下列文本框中提交,字数要求在100—1000字.答:常微分方程是研究自然现象,物理工程和工程技术的强有力工具,熟练掌握常微分方程的一些基本解法是学习常微分方程的主要任务,凡包含自变量,未知函数和未知函数的导数的方程叫做微分方程。

(整理)微分方程详解

(整理)微分方程详解

第二章 微分方程本章学习目的:本章的主要目的在于:学习微分方程模型的建立、求解方法、分析结果及解决实际问题的全过程。

1.知道求解微分方程的解析法、数值解法以及图形表示解的方法;2.理解求微分方程数值解的欧拉方法,了解龙格——库塔方法的思想;3.熟练掌握使用MATLAB 软件的函数求微分方程的解析解、数值解和图形解;4.通过范例学习怎样建立微分方程模型和分析问题的思想。

§2.1 引例 在《大学物理》中,我们曾学习过简谐振动(如:弹簧振子、单摆)0222=+x dtx d ω,那就是一个典型的二阶常微分方程的模型。

这里我们讨论“倒葫芦形状容 器壁上的刻度问题”。

对于圆柱形状容器壁上的容积刻度,可以利用圆柱体体积公式:4/2H D V π=,其中容器的直径D 为常数,体积V 与相对于容器底部的任意高度H 成正比,因此在容器壁上可以方便地标出容积刻度。

而对于几何形状不规则的容器,比如“倒葫芦形状”的容器壁上如何标出容积刻度呢?如图所示,建立坐标系,由微元法分析可知:dx x D dV 2)(41π=,其中x 表示高度,直径是高度的函数,记为D (x )。

可得微分方程:0)0()(412==V x D dx dV π如果该方程中的函数D(x)无解析表达式,只给出D(x)的部分测试数据,如何求解此微分方程呢?h=0.2;d=[0.04,0.11,0.26,0.56,1.04,1.17];x(1)=0;v(1)=0;for k=1:5x(k+1)=x(k)+h;v(k+1)=v(k)+(h/2)*(pi/4)*(d(k)^2+d(k+1)^2);endx=x(1:6),v=v(1:6),plot(x,v)x =Columns 1 through 50 0.2000 0.4000 0.6000 0.8000 Column 61.0000v =Columns 1 through 50 0.0011 0.0073 0.0373 0.1469 Column 60.3393§2.2 微分方程模型的建立在工程实际问题中,“改变”、“变化”、“增加”、“减少”等关键词提示我们注意什么量在变化,关键词“速率”、“增长”、“衰变”、“边际的”等常涉及到导数。

第七章常微分方程练习题(含答案)

第七章常微分方程练习题(含答案)

第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。

试题一-数学物理方法-西北师范大学

试题一-数学物理方法-西北师范大学

西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A 卷)系别:专业:级别:班级:学号:姓名:任课教师:题号一二三四五六七八总分得分一、(10分)在经典数学物理方程中,以二阶线性偏微分方程为主要研究对象.请问二阶线性偏微分方程从数学上分为哪几类?在物理上分别对应于什么过程?并写出各类方程的标准形式.二、(10分)数学物理方程有两大基本任务:导出定解问题和求解相应的定解问题.请问什么是定解问题?定解问题包括哪些要素?我们学习了哪些定解问题?以及求解这些定解问题的主要方法有哪些?三、(10分)定解问题的适定性对于导出定解问题和求解定解问题具有重要的指导意义.请问什么是定解问题的适定性?适定性包括哪些方面?并从物理角度分析如下定解问题是不适定的(提示:可以从温度场或静电场出发,解可能不存在).∆u =f (f =0)(在区域D 内)∂u ∂n S =0(S 为区域D 的边界,n 为边界S 的外法线方向)四、(5分)一根长为l 的均匀细杆,其温度分布满足如下定解问题:u t −a 2u xx =0(0<x <l,t >0)u (0,t )=0,u x (l,t )=0(t ≥0)u (x,0)=200(0≤x ≤l )《数学物理方法》试卷(A 卷)第1页(共3页)不求解定解问题,从物理角度直观分析细杆上温度随时间的变化情况,并考察t →+∞时细杆上的温度.五、(30分)分离变量法是求解定解问题的重要方法之一.请问分离变量法对定解问题有什么要求?分离变量法有哪些基本步骤?关键的步骤是什么?请用分离变量法求解如下弦振动方程的混合问题(要求写出完整的求解过程),并分析解的物理意义.u tt =a 2u xx (0<x <l,t >0)u (0,t )=0,u (l,t )=0(t ≥0)u (x,0)=sin 2πx l ,u t (x,0)=0(0≤x ≥l )六、(15分)一根无限长的均匀细杆,其振动满足如下定解问题:u tt =a 2(u xx +2x u x )(−∞<x <∞,t >0)u (x,0)=ϕ(x )(−∞<x <∞)u t (x,0)=ψ(x )(−∞<x <∞)其中ϕ(x ),ψ(x )为充分光滑的已知函数.请求解该定解问题,并说明解的物理意义(提示:令v (x,t )=xu (x,t )).七、(10分)格林函数又称点源影响函数,请用镜像法求出Laplace 方程上半空间Dirichlet 问题的格林函数,并说明其物理意义.同时请写出Laplace 方程上半空间Dirichlet 问题∆u =0(z >0,−∞<x <∞,−∞<y <∞)u (x,y,0)=f (x,y )(−∞<x <∞,−∞<y <∞)解的积分公式.八、(10分)求解常微分方程的本征值问题时,会得到各种各样的特殊函数,诸如Legendre(勒让德)多项式、Bessel(贝塞耳)函数、Hermite(厄密)多项式《数学物理方法》试卷(A 卷)第2页(共3页)和Laguerre(拉盖尔)多项式等.对连带Legendre多项式,请填空(每空2分):l阶连带Legendre微分方程的一般形式为,其中有两个本征值l(l+1)和m.l的取值范围为,相应m的取值范围为.l阶连带Legendre微分方程的解为l阶连带Legendre多项式,连带Legendre多项式的性、性和完备性是使它成为一个坐标函数系的三个重要性质.《数学物理方法》试卷(A卷)第3页(共3页)西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A卷)参考答案一、(10分)二阶线性偏微分方程从数学上分为双曲型、抛物型、椭圆型三类,在物理上,双曲型方程对应于波动过程,抛物型方程对应于传输和扩散过程,椭圆型方程对应于稳定场过程.双曲型方程的标准形式为u tt−a2∆u=f,抛物型方程的标准形式为u t−a2∆u=f,椭圆型方程的标准形式为∆u=f.二、(10分)物理问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程.数学物理方程加上相应的定解条件就构成定解问题.定解问题包括泛定方程和定解条件.物理规律用偏微分方程表达出来,叫作数学物理方程.数学物理方程,作为同一类物理现象的共性,反映的是矛盾的普遍性,与具体条件无关,是解决问题的依据,所以又称为泛定方程.定解条件包括边界条件和初始条件,有时还需要衔接条件.边界条件和初始条件反映了具体问题特定的环境和历史,即矛盾的特殊性.泛定方程提供解决问题的依据,定解条件提出具体的物理问题,泛定方程和定解条件作为一个整体,合称为定解问题.学习的定解问题有:对波动过程:针对有界弦,提出了弦振动方程的混合问题;针对无界弦,提出了弦振动方程的初值问题(或Cauchy问题).对传输和扩散过程:针对有界杆,提出了热传导方程的混合问题;针对无界杆,提出了热传导方程的初值问题;针对一端有界的杆,提出了热传导方程的半无限问题.对稳定场过程:提出了Laplace方程圆、球、半空间、半平面的Dirichlet问题.求解这些定解问题的主要方法有:分离变量法(有界空间、无界空间、极坐标系、球坐标系)、Fourier级数法(齐次泛定方程、非齐次泛定方程)、行《数学物理方法》试卷(A卷)参考答案第1页(共4页)波解法(或D’Alembert解法)、冲量定理法、格林函数法(波动、热传导、镜像法)等.三、(10分)定解问题是对真实的物理问题经过一定的近似后得到的,近似就涉及到是否合理的问题,即定解问题是否提的正确,这一问题称为定解问题的适定性.定解问题的适定性包括解的存在性、解的唯一性和解的稳定性三个方面.该定解问题如果从温度场来考虑,反映的是这样一种温度场:区域D内存在热源,而边界上是绝热的.热源不停的放出热量,而热量又不能经由边界散发出去,D内的温度必然要不停的升高,其温度分布不可能是稳定的,故该问题不能由Possion方程来描述,因此该定解问题的解是不存在的.从而该定解问题是不适定的.(注:从静电场分析类似,只不过内部有电荷分布,而电场的法向分量为零.)四、(5分)从该定解问题可以看出:杆的左端温度为0,右端绝热,杆内部没有热源,杆上初始时刻各处温度均为常数200.根据热传导规律,杆上的温度将随时间降低,越靠近左端,温度降得越快,最后当t→+∞时细杆的温度将和左端的温度相等,即杆上各处的温度均为0.五、(30分)分离变量法要求定解问题的泛定方程与边界条件必须是齐次的.分离变量法其基本步骤为:1、变量分离;2、求解本征值问题;3、求解另外的常微分方程;4、特解的叠加;5、利用定解条件确定叠加系数.分离变量法关键的步骤是求解本征值问题.1.变量分离设u(x,t)=X(x)T(t),代入泛定方程得X +λX=0T +λa2T=0,其中λ为分离常数.将u(x,t)=X(x)T(t)代入边界条件得X(0)=0,X(l)=0.《数学物理方法》试卷(A卷)参考答案第2页(共4页)2.求解本征值问题X +λX =0X (0)=0,X (l )=0本征值λn =n 2π2l 2,本征函数X n (x )=sin nπxl ,n =1,2,···.3.求解常微分方程T+n 2π2a 2l 2T =0,n =1,2,···T n (t )=C n cos nπa l t +D n sin nπalt ,n =1,2,···.其中C n ,D n 为任意常数.得一系列特解u n (x,t )=X n (x )T n (t )=C n cos nπa l t +D n sin nπa l t sin nπxl,n =1,2,···.4.特解的叠加u (x,t )=∞ n =1u n (x,t )=∞ n =1C n cos nπal t +D n sin nπa l t sin nπx l.5.利用初始条件确定叠加系数C n ,D nu (x,0)=∞ n =1C n sinnπx l =sin 2πxl =⇒C 2=1C n =0,n =2.u t (x,0)=∞ n =1D n nπa l sin nπxl=0=⇒D n =0,n =1,2,···.所以该定解问题的解为u (x,t )=cos2πa l t sin 2πxl.解的物理意义:该Fourier 级数解在物理上表示驻波.六、(15分)令v (x,t )=xu (x,t ).化原定解问题为:v tt =a 2v xx (−∞<x <∞,t >0)v (x,0)=xϕ(x )(−∞<x <∞)v t (x,0)=xψ(x )(−∞<x <∞)利用D’Alembert 公式,有《数学物理方法》试卷(A 卷)参考答案第3页(共4页)v(x,t)=(x−at)ϕ(x−at)+(x+at)ϕ(x+at)2+12ax+atx−atαψ(α)dα.所以,u(x,t)=1xv(x,t)=12x(x−at)ϕ(x−at)+(x+at)ϕ(x+at)+1ax+atx−atαψ(α)dα.解的物理意义:f(x−at)表示右行波(或右传播波、正行波),f(x+at)表示左行波(或左传播波、逆行波),u(x,t)表示沿x轴正、负方向传播的行波,其中前一项来源于初始位移ϕ(x),后一项来源于初始速度ψ(x).七、(10分)Laplace方程上半空间Dirichlet问题的格林函数为:G(M,M0)=1r MM−g(M,M0)=1r MM−1r MM1=1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2,其中1r MM=1(x−x0)2+(y−y0)2+(z−z0)2在静电学上表示M0(x0,y0,z0)处单位正电荷在M(x,y,z)处产生的电势,−g(M,M0)表示接地导体平面z=0上感应负电荷在M(x,y,z)处产生的电势,其可以用镜像点M1(x0,y0,−z0)处单位负电荷产生的电势−1(x−x0)2+(y−y0)2+(z+z0)2来代替.Laplace方程上半空间Dirichlet问题解的积分公式为:u(x0,y0,z0)=−14πf∂G(M,M0)∂ndS=14π∞−∞∞−∞f(x,y)·∂∂z1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2z=0dx dy=z02π∞−∞∞−∞f(x,y)(x−x0)2+(y−y0)2+z203/2dxdy八、(10分)(1−x2)d2ydx2−2xdydx+l(l+1)−m21−x2y=0.l=0,1,2,3,···,m=0,1,2,···,l.正交、归一.《数学物理方法》试卷(A卷)参考答案第4页(共4页)。

大学物理-正则奇点领域内的幂级数解法

大学物理-正则奇点领域内的幂级数解法

可以证明:
J n ( x) (1)n J n ( x)
(7-3-12)
因此它们不能组合成通解,这时与 Jn (x) 线性无关的特解 可按式 (7-1-4) 求得到
y2 (x) a J(n x)ln x x Dk xk k 0
但是用这个公式计算 a 与 Dk 通常是很麻烦的。人们宁愿
重新定义一个与 Jn (x) 线性无关的函数作为特解,它就是 诺依曼函数。
p(x) 1 x
q(
x)
1
v2 x2
则 x = 0 是 p(x)的一阶极点、q(x) 的二阶极点,因此,x = 0 是方程的正则奇点,方程的第一个解具有的形式:
y x Ck xk Ck xk
k 0
k 0
(2) 指标方程
将式 (7-3-2) 代入方程 (7-1-1),可得到
(7-3-2)
(k )(k 1)Ck xk (k )Ck xk
7.3 正则奇点邻域内的幂级数解法 (贝塞尔方程的求解)
7.3.1 正则奇点邻域内的幂级数解法
二阶线性齐次常微分方程
x 2 y" xy ' (x 2 v 2)y 0 (0 x b)
(7-3-1)
称为贝塞尔方程。
现在, 在 x = 0 的邻域求解贝塞尔方程。
(1) 级数解的形式
由 7.1 节二阶线性齐次常微分方程的标准形式可知
(2) 当 不为整数时, J (x) 与 J – (x) 线性无关
实际上,当 x → 0 时
J
v
(
x)
(
x 2
)v
n0
(1)n n!(v n
1)
(
x 2
)2n
( x)v 1 0 2 (v 1)

二阶常微分方程的解法

二阶常微分方程的解法

南京师范大学泰州学院毕业论文(设计)(一六届)题目:二阶常微分方程的解法院(系、部):数学科学与应用学院专业:数学与应用数学姓名:潘陆学号08120146指导教师:刘陆军南京师范大学泰州学院教务处制摘要:本文主要是介绍了二阶常微分方程众多解法中的三种,分别为特征方程法,拉普拉斯变换法和常数变易法,研究并讨论了二阶常微分方程在特征方程法中特征方程根为实根,复根和重根的情形。

我们选用了弹簧振子系统的振子运动,用这三种不同的方法来解决该问题。

关键词:二阶常微分方程;特征根法;常数变易法;拉普拉斯变换Abstract:The main purpose of this paper is the second-order ordinary many differential equation solution of three, respectively as the characteristic equation method, Laplace transform method and variation of constants method, study and discuss the second-order often differential equation in the characteristic equation of the roots of the characteristic equation for real roots, complex roots and root weight. We choose the spring oscillator the oscillator motion, these three different methods to solve the problem.Keywords: second order ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform目录1 绪论 (3)1.1 二阶常微分方程的起源和发展史 (3)1.2 二阶常微分方程的介绍 (3)1.3 研究二阶常微分方程的目的与意义 (4)2 二阶常系数常微分方程的几种解法 (5)2.1 特征方程法 (5)2.1.1 特征根是两个实根的情形 (5)2.1.2 特征根有重根的情形 (6)2.2 常数变易法 (7)2.3 拉普拉斯变换法 (9)3 二阶常微分方程解法的应用(分析例题) (11)3.1 特征方程法 (11)3.2 常数变易法 (13)3.3 拉普拉斯变换法 (14)4 结论和启示 (16)谢辞 (18)参考文献 (19)1 绪论1.1 二阶常微分方程的起源和发展史既然说到了微分方程,就不能不提到海王星的故事,它的发现是人类智慧的硕果,微分方程在其中扮演了重要的角色,并且在其中也包含数学演绎法的作用。

微分方程1

微分方程1
代回 u x y , 得 arctan( x y ) x C ,
原方程的通解为 y tan( x C ) x .
2、齐次方程
dy y 形如 f ( ) 的微分方程称为齐次方程. dx x
例如: 方程
( xy y 2 )dx ( x 2 2 xy)dy 0
第九章
常微分方程及其应用
1、微分方程的基本概念
2、一阶微分方程
3、二阶线性微分方程
4、微分方程应用举例
背景
函数是反映客观世界运动过程中量与量之间的一种关系,寻求函数 关系在实践中具有重要意义。许多实际问题,往往不能直接找出需要的
函数关系,却比较容易列出表示未知函数及其导数(或微分)与自变量之
间关系的等式.这样的等式就是微分方程.1676年詹姆士.贝努利致牛 顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一 门独立的学科.微分方程建立后,立即成为研究、了解和知晓现实世界 的重要工具.1846年,数学家与天文学家合作,通过求解微分方程,发 现了一颗有名的新星—-—-海王星.1991年,科学家在阿尔卑斯山发 - 现一个肌肉丰满的冰人,据躯体所含碳原子消失的程度,通过求解微分 方程,推断这个冰人大约遇难于5000年以前,类似的实例还有很多.在 微分方程的发展史中,数学家牛顿、莱布尼兹、贝努利家族、拉格朗日、 欧拉、拉普拉斯等等都做出了卓越的贡献.
向全欧洲数学家挑战,提出一个很艰难的问题:“设在垂直平面内有
任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不 计摩擦,问沿着什么曲线下滑,时间最短?”
这就是著名的“最速降线”问题。它的难处在于和普通的极大极
小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条 件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔、伯努利兄弟、

北京大学数学物理方法经典课件第九章——二阶常微分方程

北京大学数学物理方法经典课件第九章——二阶常微分方程

分离空间坐标变量
连带Legendre方程、Bessel方程
16
m 阶 Bessel 方程
x y '' xy ' x m
2 2
2
y0
2
l 阶连带 Legendre 方程
d y dy m 1 x dx 2 2 x dx l l 1 1 x 2 y 0
r2 RY
常数
1 2 R 1 Y 1 2Y (r ) (sin ) l ( l 1) 2 2 R r r Y sin Y sin
1 Y 1 2Y (sin ) 2 l ( l 1)Y 0 2 sin sin
2 2
5
d 2 R dR l ( l 1) R 0 2 dt dt
因式分解
d d dt l 1 dt l R 0
解为:
D R(r ) Cr l 1 r
l
式中:C和D为积分常数.
球函数方程,令
Y ( )( )
l-阶勒让德方程 u 是轴对称的,对φ的转动不改变 u 。
d 2 d (1 x 2 ) 2 2 x l ( l 1) 0 dx dx
m0
d d sin sin l (l 1)sin 2 m2 0 d d 0, 有限值
1 u 1 2 u u ( ) 2 ( )0 2 z z
令 u( , , z) R( )( ) Z ( z)
d 2 R Z dR RZ d 2 d 2Z Z 2 R 2 0 2 2 d d d dz

数学物理方程-第二章分离变量法

数学物理方程-第二章分离变量法

第二章 分离变量法分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论.§21 特征值问题⋅2.1.1 矩阵特征值问题在线性代数中,我们已学过线性变换的特征值问题. 设为一阶实矩阵,A n 可视为到自身的线性变换。

该变换的特征值问题(eigenvalue problem )A n R 即是求方程:,,n Ax x x R λ=∈(1.1)的非零解,其中为待定常数. 如果对某个,问题(1.1)有非零解C λ∈λ,则就称为矩阵的特征值(eigenvalue),相应的称为矩阵n x R λ∈λA n x R λ∈的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于个相A n 异的特征值和线性无关的特征向量. 但可证明: 任一阶矩阵都有个线性无n n 关的广义特征向量,以此个线性无关的广义特征向量作为的一组新基,矩n n R 阵就能够化为标准型.Jordan 若为一阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正A n 交矩阵使得T , 1T AT D -=(1.2)其中diag 为实对角阵. 设,为矩阵的第列D =12(,,...,)n λλλ12[ ... ]n T T T T =i T T i 向量,则式(1.2)可写为如下形式(1)i n ≤≤ ,1212 [ ... ][ ... ]n n A T T T T T T D =或, 1.i i i A T T i n λ=≤≤(1.3)上式说明,正交矩阵的每一列都是实对称矩阵的特征向量,并且这T A 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定n 理的形式给出.定理1.1 设为一阶实对称矩阵,考虑以下特征值问题A n ,,n Ax x x R λ=∈则的所有特征值为实数,且存在个特征向量,它们是相互正交的A n ,1i T i n ≤≤(正交性orthogonality ),可做为的一组基(完备性completeness ).n R 特征值问题在线性问题求解中具有重要的意义,下面举例说明之.为简单起见,在下面两个例子中取为阶非奇异实矩阵,故的所有特A n A 征值非零,并且假设有个线性无关的特征向量 相应的特征值为A n ,i T ., 1i i n λ≤≤例1.1 设,求解线性方程组 .n b R ∈Ax b =解 由于向量组线性无关,故可做为的一组基. 将按此{1}i T i n ≤≤n R ,x b 组基分别展开为,则等价于11 ,nni i i i i i x x T b bT ====∑∑Ax b =,11nni ii ii i x AT bT ===∑∑或,11nni i ii ii i x T bT λ===∑∑比较上式两边的系数可得i T ,1, 1i i i x b i n λ-=≤≤便是原问题的解.12( ... )n x x x x T =例1.2 设,. 求解非齐次常微0n x R ∈12()((),(),...,()), 0n n f t x t x t x t R t T =∈>分方程组, 0(), (0)dxAx f t x x dt=+=(1.4)其中 . '''12((),(),...,()),0n dx x t x t x t t dtT =>解 类似于上例,将按基分别展开为0,,()x x f t {1}i T i n ≤≤ .0111, , ()()nn n i i i ii i i i i x x T x x T f t f t T ======∑∑∑则(1.4)等价于,0111()() +(), (0), 1n n ni i i i i i i i i i i dx t T x t AT f t T x x i n dt =====≤≤∑∑∑或,011()(()()), (0),1nni i i i i i i i i i dx t T x t f t T x x i n dt λ===+=≤≤∑∑比较上式两边的系数可得i T . 0()()(), (0), 1i i i i i i dx t x t f t x x i n dtλ=+=≤≤(1.5)(1.5)是个一阶线性方程的初始值问题,很容易求出其解.请同学们给出解n 的具体表达式.(),1i x t i n ≤≤2.1.2 一个二阶线性微分算子的特征值问题在这一小节,我们讨论在本章常用的一些特征值问题. 代替上节的有限维线性空间和阶实对称矩阵,在这儿要用到线性空间的某个子空间n R n A [0,]C l 和该子空间上的二阶线性微分算子. 一般地取H A在满足齐次边界条件.2{()[0,]()H X x C l X x =∈0,x l =}(1.6)下面我们讨论二阶线性微分算子的特征值问题. 先取边界条件为22d A dx=-,设是的特征函数,即且满足(0)0,()0X X l ==()X x H ∈A ()0X x ≠.()()AX x X x λ=此问题等价于是下面问题的非零解()X x "()()0, 0(0)()0 .X x X x x l X X l λ⎧+=<<⎨==⎩(1.7)(1.7)便是二阶线性微分算子的特征值问题,即要找出所有使22d A dx=-得该问题有非零解的. 下面求解特征值问题(1.7).λ首先证明要使(1.7)具有非零解,必须非负.λ设是相应于的一个非零解,用乘(1.7)中的方程,并在)(x X λ)(x X 上积分得[]l ,0,0)()()()("=+x X x X x X x X λ,0)()()( 0 2 0 "=+⎰⎰dx x X dx x X x X llλ.0)())(()()( 0 2 0 2'0'=+-⎰⎰dx x X dx x X x X x X lll λ由于,故有0)()0(==l X X ,2'2 0()(())llX x dx X x dx λ=⎰⎰.'22 0(())()0llX x dxX x dx λ=≥⎰⎰(1.8)当时,方程的通解为. 利用边界条件0λ=0)()("=+x X x X λ12()X x c c x =+可得,即. 因此,不是特征值.0)()0(==l X X 120c c ==()0X x =0λ=当时,方程的通解为0λ>0)()("=+x X x X λ. (1.9x C x C x X λλsin cos )(21+=)利用边界条件确定常数如下0)()0(==l X X 21,C C , ,10C =l C l C λλsin cos 021+=或.0sin 2=l C λ由于要求(1.7)中齐次微分方程的非零解,故不能为零. 故有2C .0sin =l λ,从而有0> , ,πλn l =1n ≥, .2)(ln n πλ=1n ≥将代入到(1.8)中,并略去任意非零常数得n C C λ,,212C , .x ln x X n πsin)(=1n ≥故特征值问题(1.7)的解为, , 2(l n n πλ=x ln x X n πsin )(=1n ≥(1.10)注1 特征值问题是分离变量法的理论基础. 上面已求出特征值问题(1.7)的解为. 在高等数学中知道,在一定条件下区间{ sin 1 }n x n lπ≥的任一函数可按特征函数系展开为Fourier 级数. 换言[0 , ]l { sin 1 }n x n lπ≥之,特征函数系是区间上满足一定条件的函数所成无穷维空间的一组基,{ sin 1 }n x n lπ≥[0 , ]l 而且还是该空间上的一组正交基,即有. 特征函0sinsin 0 , ln m x n m l lππ=≠⎰数系的这两个根本性质:正交性和完备性(基),和定理1.1{ sin1 }n x n lπ≥有限维空间中相应结论很相似,只是现在的特征值和特征函数是无穷个. 另n R 外,若改变(1.7)中的边界条件,其相应的特征值和特征函数也会有所变化.如将边界条件变为,则特征值和特征函数分别为(0)0,'()0X X l ==. 2(21)(21)(),()sin ,022n n n n X x x n l lππλ++==≥该特征函数系也具有和特征函数系类似(21){ sin1 }2n x n l π+≥{ sin 1 }n x n lπ≥的性质,既正交性和完备性.此类问题的一般结果便是著名的Sturm—Liouville定理,有兴趣的同学可参阅参考文献.[1][4]-将以上的结果以定理的形式给出.定理1.2 考虑二阶线性微分算子的特征值问题[1],[4]22d A dx=- "()()()()0 , 0 ,(0)0,()0 .k m X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩(1.11)其中. 则该问题的特征值非负,且满足0,1k m ≤≤.120......n λλλ≤<<<<→∞相应的特征函数系在上是相互正交的. 且对于任一在区间上1{()}n n X x ≥[0,]l [0,]l 分段光滑的函数,可按特征函数系展开为如下的级数()f x 1{()}n n X x ≥Fourier ,1()()n n n f x f X x ∞==∑其中系数为Fourier .20()(), 1()l nn lnf x Xx dxf n Xx dx =≥⎰⎰为后面需要,下面再求解二阶线性微分算子带有周期边界条件的22d A dx=-特征值问题. 在偏微分方程教材中,习惯上用表示周期函数,即考虑下面()θΦ二阶线性微分算子的周期边值问题22d A dx=- "()()0, () (2), .θλθθθπθθ⎧Φ+Φ=-∞<<+∞⎨Φ=Φ+-∞<<+∞⎩(1.12)可证(1.12)和以下问题等价"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩(1.13)和(1.8)的证明相似易得(1.13)中的特征值.当时,0≥λ0λ=, 由周期边界条件可得. 所以为特征函数.12()c c θθΦ=+20c =0()1θΦ=当时,方程通解为0λ>,θλθλθsin cos )(21c c +=Φ求导得.'()c c θΦ=-+由周期边界条件可得112cos(2sin(2c c c c c c ππ⎧=+⎪⎨=-+⎪⎩或1212[1cos(2sin(20sin(2[1cos(20.c c c c ππ⎧--=⎪⎨+-=⎪⎩(1.14)由于要求非零解,故不能同时为零. 因此,齐次方程组(1.14)的系数矩12,c c 阵行列式必为零,即 .解之可得1cos(20-=,2n n =λ()cos sin .n n n c n d n θθθΦ=+此时对每个正特征值,特征函数有二个,既,. 总结所得2n n =λθn cos θn sin 结果为如下定理.定理1.3 考虑二阶线性微分算子带有周期边界条件的特征值问22d A d θ=-题"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩则该问题的特征值和特征函数分别为,.00,λ=0()1;θΦ=2n n =λ(){cos ,sin }, 1n n n n θθθΦ=≥§22 分离变量法⋅本节结合具体定解问题的求解来介绍分离变量法(method of separation of variables ). 所举例子仅限于一维弦振动方程,一维热传导方程混合问题以及平面上一些特殊区域上的位势方程边值问题. 对高维问题的处理放在其它章节中介绍.以下多数例子均假定定解问题带有齐次边界条件. 否则,可利用边界条件齐次化方法转化之. 我们以弦振动方程的一个定解问题为例介绍分离变量法.2.2.1 弦振动方程定解问题例2.1求解两端固定弦振动方程的混合问题2(,), 0, 0 (2.1)(0,)0, (,)0, 0 (2.2)(,0)(), (,0)(),0. tt xx t u a u f x t x l t u t u l t t u x x u x x x l ϕψ-=<<>==≥==≤≤ (2.3)⎧⎪⎨⎪⎩解 分四步求解.第一步 导出并求解特征值问题. 即由齐次方程和齐次边界条件,利用变量分离法导出该定解问题的特征值问题并求解.令,并代入到齐次方程中得)()(),(t T x X t x u =,0)()()()(''2''=-t T x X a x X t T 或.''''2()()()()X x T t X x a T t =上式左端是的函数而右端是的函数,要二者相等,只能等于同一常数.x t 令此常数为-,则有λ , ,λ-=)()("x X x X "2()()T t a T t λ=-上面的第一个方程为.0)()("=+x X x X λ利用齐次边界条件(2.2),并结合得0)(≠t T .0)()0(==l X X 由此便得该定解问题的特征值问题为"()()0, 0(0)()0.X x X x x l X X l λ⎧+=<<⎨==⎩其解为特征值:特征函数: 2() , 1 ;n n n lπλ=≥()sin, 1 .n n X x x n lπ=≥第二步 正交分解过程. 即将初值和自由项按特征函数系展成{}1()n n X x ≥Fourier 级数,并将也用特征函数表出.),(t x u {}1()n n X x ≥ ,11()()sinn n n n n n x X x x lπϕϕϕ∞∞====∑∑(2.4), 11()()sinn n n n n n x X x x lπψψψ∞∞====∑∑(2.5), 11(,)()()()sinn n n n n n f x t f t X x f t x lπ∞∞====∑∑(2.6)(2.711(,)()()()sinn n n n n n u x t T t X x T t x lπ∞∞====∑∑)这里,和分别为,和的Fourier 系数,具体表示如n ϕn ψ)(t f n )(x ϕ)(x ψ),(t x f 下,02()sin l n n d l l πϕϕααα=⎰,02()sin l n n d l l πψψααα=⎰,02()(,)sin l n n f t f t d l lπααα=⎰而为待定函数.)(t T n 第三步 待定系数法. 即先将和的Fourier 级数代入到(2.1)),(t x f ),(t x u 中,导出关于满足的常微分方程. 再利用初值条件(2.3)得出满足)(t T n )(t T n 的初始条件.假设(2.7)中的级数可逐项求导,并将(2.6)和(2.7)代入到(2.1)中得,"2"111()()()()()()nnnnn n n n n T t Xx aT t Xx f t X x ∞∞∞===-=∑∑∑,"2111()()()(())()()nnn nnn n n n n T t Xx aT t Xx f t X x λ∞∞∞===--=∑∑∑ . (2.8"211(()())()()()nn n n n n n n T t a T t X x f t X x λ∞∞==+=∑∑)由于Fourier 展式是唯一的,比较(2.8)两端系数得)(x X n(2.9"2()()(), 1.n n n n T t a T t f t n λ+=≥)在(2.7)中令并结合(2.4)得0=t (2.10()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑)比较(2.10)两端系数得)(x X n(0), 1.n n T n ϕ=≥(2.11)类似地可得'(0), 1.n n T n ψ=≥(2.12)结合(2.9),(2.11)和(2.12)便得出关于满足的二阶常系数非齐)(t T n (1)n ≥次方程初始值问题"2'()()(), 0(0), (0).n n n n n n n n T t a T t f t t T T λϕψ⎧+=>⎪⎨==⎪⎩(2.13)第四步 求解关于的定解问题(2.13),并将其结果代入到(2.7)中)(t T n 即可.为简单起见,我们设. 将代入到(2.13)中可得方程的通()0,1n f t n =≥n λ解为, t lan d t l a n c t T n n n ππsin cos)(+=利用初始条件确定常数如下,n n c d.'(0), (0)n n n n nn aT c T d lπϕψ====故有. ()cossin n n n l n a n a T t t t l n a lψππϕπ=+最后将上式代入到(2.7)中便得定解问题(2.1)—(2.3)的解为12(,)()sin cos sin l n n n a n u x t d t xlll lπππϕααα∞==∑⎰ (2.14)012()sin sin sin l n n n a n d t x n a l l l πππψαααπ∞=+∑⎰注1 利用分离变量法求解(2.1)—(2.3),需要假设在(2.7)中可通过无穷求和号逐项求导. 而通过号求导要对无穷级数加某些条件,在这里就∑∑不做专门讨论了. 今后遇到此类问题,我们均假设一切运算是可行的,即对求解过程只作形式上的推导而不考虑对问题应加什么条件. 通常称这样得出的解为形式解. 验证形式解是否为真解的问题,属于偏微分方程正则性理论的范围. 一般地讲,偏微分方程定解问题的解大多数是以无穷级数或含参变量积分形式给出的. 对这两类函数可微性的研究需要较深的数学知识,也有一定的难度,有兴趣的同学可查阅参考文献和. 我们约定:本书只求定解问题的形式解.[1][2]注2 当时,由(2.14)可以看出:两端固定弦振动的解是许多(,)0f x t =简单振动的叠加,当时,对任意的(,)()sinn n n u x t T t x l π=(11)k klx x k n n==≤≤-时刻,,即在振动的过程中有个点永远保持不动,所t (,)0n k u x t =(,)n u x t (1)n +以称这样的振动为驻波,而称为该驻波的节点.显然当k x 时,在这些点上振幅最大,称这些点为驻波的21(11)2k x l k n n+=≤≤-sin 1x =腹点. 因此,求特征函数实际上就是求由偏微分方程及边界条件所构定的系统所固有的一切驻波. 利用由系统本身所确定的简单振动来表示一些复杂的振动,便是分类变量法求解波动问题的物理解释.注3 例2.1的求解方法也叫特征函数法(eigenfunction method ),现已成为固定模式,也具有普适性. 初学者似乎会感到有些繁琐,但随着进一步的学习,同学们就会熟练掌握这一方法. 特征函数法的关键之处是求解偏微分方程定解问题相应的特征值问题,而基本思想就是笛卡尔(Descartes )坐标系的思想.如在三维空间中,每个向量可由基的线性组合表出,两个向量3R {,,}i j k 111222 , a i b j c k a i b j c kαβ=++=++相等当且仅当在基下两个向量的坐标相等. 既.{,,}i j k121212 , , a a b b c c ===与此相类似,在例2.1求解中也是比较方程或初始条件两边的系数而得()n X x 到(2.13). 与三维空间相比较,例2.1中特征函数系相当3R { sin1 }n x n lπ≥于3R 中的基,而也就相当于上面的,即定解问题的解{,,}i j k{ T () 1 }n t n ≥111{,,}a b c 关于基函数的坐标. 因此,在具有可数基的无穷维空间中,特{ sin1 }n x n lπ≥征函数法也称为待定系数法.例2.2 设有一均匀细弦,其线密度为. 若端为自由端,端固ρ0x =x l =定.初始速度和初始位移分别为零,并受到垂直于弦线的外力作用,其单位长度所受外力为. 求此弦的振动. sin t ω 解 所求定解问题为(2.1521 sin , 0, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x t u a u t x l t u t u l t t u x u x x l ρω-⎧-=<<>⎪==≥⎨⎪==≤≤⎩)利用特征函数法求解该问题.情形1 非共振问题,即.22, 0n a n ωλ≠≥ 该定解问题的特征值问题为(2.16)"'()()0, 0(0)0, ()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩其解为, , 2(21)()2n n l πλ+=(21)()cos 2n n X x x lπ+=0n ≥将按特征函数展开成Fourier 级数得1sin t ρω-{}0)(≥n n x X , (2.17)11sin ()()n n n t f t X x ωρ∞==∑.021214()sin sin sin sin 2(21)l n n n f t t d t f t l l n ωπααωωρπρ+===+⎰令(,)()()n n n u x t T t X x ∞==∑(2.18)完全类似例2.1的求解过程可得,对于任意满足下面问题0, ()n n T t ≥(2.19"2'()()sin , 0(0)0, (0)0.n n n n n n T t a T t f t t T T λω⎧+=>⎪⎨==⎪⎩)初值问题(2.19)中齐次方程的通解为,12()cos sin n T t c c =+而非齐次方程的一个特解为.22()sin nn n f T t t a ωλω=-因此,(2.19)的通解为. 1222()cos sin sin nn n f T t c c t a ωλω=++-(2.20)由初始条件可确定出120, c c ==最后将所得到的代入到(2.18)中便得(2.15)的解.()n T t 情形2 共振问题,即存在某个 使得.0,n ≥22n a ωλ=不妨假设.此时,在情形1中求解所得到的不变.220a ωλ={ T () 1 }n t n ≥当时,要求解以下问题0n = "2000'00()()sin , 0(0)0, (0)0.T t T t f t t T T ωω⎧+=>⎪⎨==⎪⎩(2.21)(2.21)中齐次方程通解为.012()cos sin T t c t c t ωω=+为求得非齐次方程的一个特解,要将(2.21)中方程的自由項换为,而求0i t f e ω以下问题的一个特解"2000()().i t T t T t f e ωω+=令并代入到上面非齐次方程中可得 ,故有()i t T t Ate ω=02f iA ω=-,00()sin cos 22f t f tT t t i t ωωωω=-取其虚部便得(2.21)中方程的一个特解为. 00()Im(())cos 2f tT t T t t ωω==-结合以上所得结果便可得到(2.21)中方程的通解为,0012()cos sin cos 2f tT t c t c t t ωωωω=+-由初始条件确定出 ,由此可得01220, 2fc c ω==.0002()sin cos 22f f tT t t t ωωωω=-将代入到(2.18)中便得在共振条件下(2.15)的解为()n T t 000102112(,)()()()()()()(sin cos )cos ()()222 (,)(,) .n n n n n n n n n u x t T t X x T t X x T t X x f f t t t x T t X x l u x t u x t πωωωω∞=∞=∞===+=-+=+∑∑∑可以证明: 是有界的. 而在的表达式中取 ,则2(,)u x t 1(,)u x t 2k k t πω=中的基本波函数的振幅当逐渐变大时将趋于无穷大,最1(,)u x t cos2x lπ0()k T t k 终要导致弦线在某一时刻断裂,这种现象在物理上称为共振. 注意到在上面求解过程中我们取周期外力的频率等于系统的第一固有频率ω波函数分量上发生共振. 一般地讲,当周期外力的频率很接近或等于系统的ω某个固有频率时,系统都会有共振现象发生,即弦线上一些点的振幅将随着时间的增大而不断变大,导致弦线在某一时刻断裂.2.2.2 热传导方程定解问题例2.3 求解下面热方程定解问题(2.2220, 0, 0 (0,), (,)sin , 0(,0)0, 0.t xx x u a u x l t u t u u l t t t u x x l ω⎧=<<>⎪==≥⎨⎪=≤≤⎩)解 利用特征函数法求解(2.22).首先将边界条件齐次化,取,并令,则0(,)sin w x t u x t ω=+w u v -=(2.22)转化为(2.2320cos , 0, 0 (0,)0, (,)0, 0(,0), 0.t xx x v a v x t x l t v t v l t t v x u x l ωω⎧-=-<<>⎪==≥⎨⎪=-≤≤⎩)利用分离变量法可得(2.23)的特征值问题为"()()0, 0(0)0, '()0.X x X x x l X X l λ⎧+=<<⎨==⎩特征值和特征函数分别为,2(21)()2n n lπλ+=0≥n .(21)()sin 2n n X x x lπ+=0≥n 将,按特征函数展成Fourier 级数(,)cos f x t x t ωω=-0)(u x -=ϕ{}0)(≥n n x X 得, (2.24)cos ()()n n n x t f t X x ωω∞=-=∑,02(21)()(1)cos sin cos 2l n n n f t t d f t l lπωαωααω+=-=⎰其中. 1228(1)(12)n n l f n ωπ+-=+ , (2.25)00n n n u X ϕ∞=-=∑其中.00042(21)()sin 2(12)l n u n u d l l n πϕααπ-+=-=+⎰令(2.26)(,)()(), n n n v x t T x X x ∞==∑并将(2.26)代入到(2.23)中的方程得,'2"()()()()cos ()nnnnn n n n n T t Xx aT t Xx f tX x ω∞∞∞===-=∑∑∑.'2(()())()cos ()nn nnn n n n T t a T t Xx f tX x λω∞∞==+=∑∑在(2.26)中令并结合(2.25)得0=t .()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑比较上面两式中特征函数的系数便得()n X x(2.27'2()()cos , 0(0).n n n n n n T t a T t f t t T λωϕ⎧+=>⎪⎨=⎪⎩)(2.27)是一阶常系数常微分方程初值问题.齐次方程通解为.t a n n Ce t T λ2)(-=令,并利用待定系数法求特解可得()cos sin n T t A t B t ωω=+ ,2242242()cos sin n n nn n na f f T t t t a a λωωωωλωλ=+++故有(2.2822242242()cos sin n a tn n nn n na f f T t Cet t a a λλωωωωλωλ-=++++)在上式中代得0t =,2242n nn na f C a λϕωλ=++ . 2242n nn na f C a λϕωλ=-+最后将(2.28)代入到(2.26)中便得(2.23)的解为.0(21)(,)()sin2n n n v x t T t x lπ∞=+=∑故(2.21)的解为),(),(),(t x w t x v t x u +=0 (,)sin v x t u x t ω=++其中由(2.28)给出. )(t T n2.2.3 平面上位势方程边值问题考虑矩形域上Poisson 方程边值问题1212(,), , (,)(), (,)(), (,)(), (,)(), .xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2.29)我们假设或. 否则,利用边界条件齐次化方法0)()(21==x f x f 0)()(21==y g y g 化非齐次边界条件为齐次边界条件. 当然,也可以利用叠加原理将(2.29)分解为二个问题,其中一个关于具有齐次边界条件,而另一个关于具有齐次边x y 界条件.例2.4 求解Dirichlet 问题(2.300, 02, 0 1 (0,)0, (2,)0, 01(,0)1, (,1)(1), 0 2.xx yy u u x y u y u y y u x u x x x x +=<<<<⎧⎪==≤≤⎨⎪==-≤≤⎩)解 令并将其代入到(2.29)中齐次方程得)()(),(y Y x X y x u =,0)()()()(""=+y Y x X y Y x X ,λ-=-=)()()()(""y Y y Y x X x X (2.31"()()0, 0 2(0)0, (2)0.X x X x x X X λ⎧+=<<⎨==⎩)0)()("=-y Y y Y λ(2.32)(2.31)便是(2.30)的特征值问题,其解为, , .2)2(πλn n =x n x X n 2sin)(π=1≥n 将代入到(2.32)中得n λ ,0)()("=-y Y y Y n λ(2.33)该方程有两个线性无关解,. 由于,也是(2.33)的y n e2πy n e2π-2n shy π2n ch y π解且线性无关,故(2.33)通解为.y n ch d y n shc y Y n n n 22)(ππ+=令(2.34)11(,)()()()sin 222n n n n n n n n n u x y X x Y y c shy d ch y x πππ∞∞====+∑∑则满足(2.30)中方程和关于的齐次边界条件. 利用关于的边界条),(y x u x y 件可如下确定,,n c n d ,∑∞==12sin1n n x n d π . (2.35))1(1(22sin12220n n n d n d --=⨯=⎰πααπ),x n n ch d n shc x x n n n ∑∞=+=-12sin )22()1(πππ . 22))1(1(22)1(416)1(163322ππππππn sh n chn n sh n n c n nnn -------=(2.36)故(2.30)解为(2.371(,)()sin ,222n n n n n n u x y c shy d ch y x πππ∞==+∑)其中,由(2.36)和(2.35)确定.n c n d 对于圆域,扇形域和圆环域上的Poisson 方程边值问题,求解方法和矩形域上的定解问题无本质区别,只是在此时要利用极坐标.同学们自己可验证:令,作自变量变换,则有θρcos =x θρsin =y .θθρρρρρu u u u u yy xx 211++=+令,将其代入到极坐标下的Laplace 方程中得)()(),(θρθρΦ=R u 222330216(1)164(1)(1)sin ,2222n nn n n n n n c sh d ch d n ππππααααπ----+=-=⎰,"'"211()()()()()()0R R R ρθρθρθρρΦ+Φ+Φ=,"'"211(()())()()()0R R R ρρθρθρρ+Φ+Φ=,"'"21()()()1()()R R R ρρθρλθρρ+Φ=-=-Φ故有, (2.380)()("=Φ+Φθλθ). (2.390)()()('"2=-+ρλρρρρR R R )方程(2.38)结合一定的边界条件便得相应定解问题的特征值问题,而(2.39)是欧拉(Euler )方程. 对(2.39)作自变量变换可得s e =ρ , ,s e =ρρln =s ,'1s dR dR ds R d ds d ρρρ==.2222'''2222211()ss s d R d R ds dR d s R R d ds d ds d ρρρρρ=+=-将以上各式代入到(2.39)得. (2.40''0ss R R λ-=)例2.5 求下面扇形域上Dirichlet 问题(2.4122220, 0, 0, 4(,0)0, 0 2(0,)0, 0 2 (,), 4. xx yy u u x y x y u x x u y y u x y xy x y ⎧+=>>+<⎪=≤≤⎪⎨=≤≤⎪⎪=+=⎩)的有界解.解 令,作自变量变换,(2.41)转化为θρcos =x θρsin =y(2.42)2110, 0, 0 2 2(,0)0, (,0, 022(2,)2sin 2, 0.2u u u u u u ρρρθθπθρρρπρρρπθθθ⎧++=<<<<⎪⎪⎪==≤≤⎨⎪⎪=≤≤⎪⎩令代入到(2.42)中的方程,并结合边界条件可得)()(),(θρθρΦ=R u"()()0, 0<</2(0)0, (/2)0.θλθθππ⎧Φ+Φ=⎨Φ=Φ=⎩(2.43). (2.440)()()('"2=-+ρλρρρρR R R )(2.43)便是(2.42)的特征值问题.求解特征值问题(2.43)可得, , .224)2/(n n n ==ππλθθn n 2sin )(=Φ1≥n 将代入到(2.44)中,并令作自变量变换可得n λs e =ρ,"240ss R n R -=.2222()ns ns n n n n n n n R c e d e c d ρρρ--=+=+由于是求(2.42)的有界解,故有,即. 从而有∞<)0(R 0=n d .n n n c R 2)(ρρ= 上面求出的对每个都满足(2.42)中的方程和齐(,)()()n n n u R ρθρθ=Φ1n ≥次边界条件,由叠加原理得, (2.45∑∑∞=∞==Φ=1212sin )()(),(n n n n n n n c R u θρθρθρ)也满足(2.42)中的方程和齐次边界条件.为使(2.42)中的非齐次边界条件得以满足,在(2.45)中令得(2,)2sin u θθ=2ρ= ,212sin 22sin 2n n n c n θθ∞==∑(2.46)比较上式两边特征函数的系数得θθn n 2sin )(=Φ , .112c =1)( 0≠=n c n 将,代入到(2.45)中便得(2.42)的解为1c 1)(≠n c n . θρθρ2sin 21),(2=u 例2.6 求解圆域上Dirichlet 问题2110, 0, 02(,)(), 02.u u u a u a ρρρθθρθπρρθϕθθπ⎧++=<<≤<⎪⎨⎪=≤≤⎩(2.47)解 圆域上的函数相当于关于变量具有周期. 令(,)u ρθθ2π并代入到(2.46)中的方程可得)()(),(θρθρΦ=R u(2.48"()()0() (2).θλθθπθ⎧Φ+Φ=⎨Φ=Φ+⎩). (2.490)()()('"2=-+ρλρρρρR R R )(2.48)是定解问题(2.47)的特征值问题. 由定理1.3知(2.48)的解为.2, ()cos sin , 0n n n n n c n d n n λθθθ=Φ=+≥将代入到(2.49)中可得(要利用自然边界条件)n λ(0,)u θ<∞,,00)(c R =ρn n n c R ρρ=)(1≥n 利用叠加原理可得(2.47)的如下形式解.∑∞=++=10)sin cos (),(n n n n n d n c c u θθρθρ(2.50)根据边界条件得)(),(θϕθ=a u ,01()(cos sin )n n n n c a c n d n ϕθθθ∞==++∑其中,2001()2c d πϕττπ=⎰,⎰=πτττϕπ20cos )(1d n a c n n .⎰=πτττϕπ20sin )(1d n a d n n 将以上各式代入到(2.50)中便得(2.47)的解为2 2 0 0111(,)()()(()cos cos 2n n u d n d n a ππρρθϕττϕτττθππ∞==+∑⎰⎰ .)sin sin )(12 0 ⎰+πθτττϕπn d n (2.51)注4 利用等式可将(2.51)化为如下形)Re()(cos 1)(1∑∑∞=-∞==-n in n n n e c n c τθτθ式(2.522222201()()(,),22cos()a u d a a πρϕτρθτπρρθτ-=+--⎰)式(2.52)称为圆域上调和函数的Poisson 公式. 在后面学习中还将用其它方法导出它. 注5 在例2.5和例2.6中,如果方程中自由项不为零,若),(θρf 特殊,可用函数代换将自由项化为零而转化齐次方程. 对于一般的),(θρf ,要利用特征函数方法求解.),(θρf 注6 上面例2.3—例2.6几个定解问题的求解思想和主要过程,是伟大的数学家和物理学家Fourier 给出的,详细内容见参考文献. 在这部著名论著[5]中,Fourier 首次利用偏微分方程来研究热问题,并系统地介绍了分离变量法的基本思想和主要步骤. 结合本节所举例子,请同学们小结一下在本章所学过的特征值问题,二阶常系数非齐次常微分方程和欧拉方程的求解方法. 习 题 二1. 设有如下定解问题2(,), 0, 0 (0,)0, (,)0, 0(,0)(), (,0)(), 0.tt xx x t u a u f x t x l t u t u l t t u x x u x x x l ϕψ⎧-=<<>⎪==≥⎨⎪==≤≤⎩利用分离变量法导出该定解问题的特征值问题并求解.2.求解下列特征值问题 (1) "''()()0, 0 (0)()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩ (2) "()()0, 1 1 (1)0,(1)0X x X x x X X λ⎧+=-<<⎨-==⎩ (3) "()()0, 0 '(0)0, ()0.X x X x x l X X l λ⎧+=<<⎨==⎩ (4) "()()0, 02 (0)(2), '(0)'(2).X x X x x l X X l X X l λ⎧+=<<⎨==⎩3 考虑下面特征值问题*"()()0, 0 (0)0, '()()0.X x X x x l X X l X l λ⎧+=<<⎨=+=⎩(1)证明一切特征值0.λ>(2)证明不同的特征值对应的特征函数是正交的.(3)求出所有的特征值和相应的特征函数.4. 设在区间一阶连续可导且 考虑如下特(),()p x q x [0,]l ()0,()0.p x q x >≥征值问题[()()]()()(), 0 (0)0, ()0.d d p x X x q x X x X x x l dx dx X X l λ⎧-+=<<⎪⎨⎪==⎩(1)证明一切特征值0.λ≥(2)证明不同的特征值对应的特征函数是正交的.5.求解下列弦振动方程的定解问题(1)20, 0<, 0(0,)0, (,)0, 0(,0), (,0)0, 0.tt xx x x t u a u x l t u t u l t t u x x u x x l ⎧-=<>⎪==≥⎨⎪==≤≤⎩ (2) 20, 0<, 0(0,)0, (,)0, 035(,0)sin , (,0)sin , 0.22tt xx x t u a u x l t u t u l t t u x x u x x x l l l ππ⎧⎪-=<>⎪==≥⎨⎪⎪==≤≤⎩(3) 240, 0<1, 0(0,)0, (1,)0, 0(,0), (,0)0, 0 1.tt xx t u u u x t u t u t t u x x x u x x ⎧-+=<>⎪==≥⎨⎪=-=≤≤⎩(4) 242sin , 0<, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x x t u u u x x t u t u t t u x u x x πππ⎧--=<>⎪==≥⎨⎪==≤≤⎩(5) 22, 0, 0 (0,) (,)0, 0(,0)0, (,0), 0.tt xx x t u a u x l t u t u l t t u x u x A x l ⎧-=<<>⎪==≥⎨⎪==≤≤⎩6.求解下列热传导方程的定解问题(1) 2cos , 0<, 02(0,)1, (,), 0(,0)0, 0<.t xx x x u a u x t u t u t t u x x ππππ⎧-=<>⎪⎪==≥⎨⎪=<⎪⎩(2) 22, 0<1, 0(0,)0, (1,)0, 0(,0)sin , 0< 1.t xx x u a u u x t u t u t t u x x x π⎧-=<>⎪==≥⎨⎪=<⎩(3) 220, 0<, 0(0,)0, (,)0, 0(,0)(), 0.t xx u a u b u x l t u t u l t t u x x x l ϕ⎧-+=<>⎪==≥⎨⎪=≤≤⎩(4) 2, 0, 0 (0,)0, (,)0, 0(,0)1, 0.t xx x x u a u xt x l t u t u l t t u x x l ⎧-=<<>⎪==≥⎨⎪=≤≤⎩7. 求解下面位势方程定解问题(1) , 0, 0 (,0)0, (,)0, 0(0,)0, (,), 0.xx yy y y u u x x a y b u x u x b x a u y u a y Ay y b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2)22220, 0, , 4 (,0)0, 02, (,)0, 0(,), 4.xx yy u u y x y x y u x x u x x x u x y x y x y ⎧+=>>+<⎪⎪=≤≤=≤≤⎨⎪=++=⎪⎩(3) 22220, 4 (,)1, 4.xx yy u u x y u x y x x y ⎧+=+<⎪⎨=++=⎪⎩(4) 222222, 1< 4 (,)0, 1 (,), 4.xx yy u u xy x y u x y x y u x y x y x y ⎧+=+<⎪⎪=+=⎨⎪=++=⎪⎩8 设在区间的Fourier 展开式为 *()x ϕ[0,]l 1()sin ,k k k x x c l πϕ∞==∑(6.1)其部分和为 求解或证明以下结果.1()sin ,n n k k k x S x c l π==∑(1)设,求.()[0,]x C l ϕ∈20[()()]l n x S x dx ϕ-⎰(2)证明下面贝塞尔(Bessel )不等式 22012().l k k c x dx l ϕ∞=≤∑⎰(6.2)(3)设,的二阶导数的Fourier 展开式为2()[0,]x C l ϕ∈()x ϕ1''()sin ,n n n x x d l πϕ∞==∑如果 ,利用分部积分法证明(0)()0l ϕϕ==2, 1,n n d An c n =≥(6.3)其中为正常数.A (4)利用(6.2)和(6.3)证明(6.1)中的三角级数在区间上一致[0,]l 收敛,并且可以逐項求导.9 考虑如下定解问题* 2, 0, 0 (0,)0, (,)0, 0(,0)(), 0.t xx x x u a u x l t u t u l t t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)当经过充分长的时间后,导热杆上的温度分布如何?(,)u x t (3)求极限.lim (,)t u x t →+∞10 考虑如下定解问题*2, 0, 0 (0,), (,), 0(,0)(), 0.t xx x u a u x l t u t A u l t B t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)求极限.lim (,)t u x t →+∞11 考虑下面定解问题 *20, 0<, 0(0,)(,)0, 0(,0), (,0)0, 0.tt xx t t u u u u x t u t u t t u x x u x x πππ-++=<>⎧⎪==≥⎨⎪==≤≤⎩(1)解释该定解问题方程中各项的物理意义.(2)推导出问题的特征值问题并求解.(3)写出该问题解的待定表示式并求出表达式中第一特征函数的系数.12 考虑下面定解问题 * (,), 0<, 0(0,)(,)0, 0(,0)(), (,0)(), 0.tt xx x x t u u f x t x t u t u t t u x x u x x x ππϕψπ-=<>⎧⎪==≥⎨⎪==≤≤⎩(12.1)(1)写出该定解问题的特征值和特征函数 ,(),0.n n X x n λ≥(2)如果,而,求解该定解问题.()0,()0x x ϕψ==(,)f x t t =(3)如果,证明 ,下面等式(,)0f x t =0τ∀>,222200[(,)(,)][()()]l l t x x u x u x dx x x dx ττψϕ+=+⎰⎰(12.2)成立,解释该等式的物理意义.(4)证明(12.1)的解是唯一的.。

二阶常系数线性非齐次微分方程特解的若干种求法

二阶常系数线性非齐次微分方程特解的若干种求法
4 2
2009 , 9( 3): 74- 75. [ 2] 张 云燕 . 常系数非齐次线性微分方程的几个解法 [ J] . 黄 山学院学报 , 2004, ( 6): 8- 9. [ 3] 秦军 . 二阶常系数非齐次线性 微分方程特解的一些求法
,
[ J]. 皖 西学院学报 , 2005, 4( 2): 12- 13 . [ 4] 王春草 . 常数变易法求二阶常 系数线性微分方程的特解 [ J]. 杨 凌职业技术学院学报 , 2009, 12( 4): 22- 23. [ 5] 刘培进 . 二阶 常系 数线 性非 齐次 微分 方 程的 公式 解法 [ J]. 山 东师范 大学 学报 ( 自然 科学 版 ), 2002, 9( 3) : 70 - 71. [ 6] 王焕 . 求二阶和三阶常系数非 齐次线性微分方程特解的 一个公式 [ J]. 高等数学研究 , 2006, 5( 3) : 25- 27.
的 实部 函 数, 而 f2 ( x ) 可 以 被 看作 的复部函数, 于是类型 ∀ 也可转化为
程得 : # C 1 (x)xe + C 2 (x) e = 0 C 1 ( x ) ( e + x e ) + C 2 (x ) e = x e C 1 (x ) = x
2 x x x 2 x x x
2
1 4 x, 12 1 4x x e. 12
4
# 原方程的特解为: y = uv = 方法 7 : 积分法 ( 1) 特征方程为 # y =
x 2 [ 2]
=
1 4x x e. 12 方法 12: 降阶法
[ 2] 2 2 x
- 2 + 1= 0 , # ) ( f (x)
1
=
2

常微分方程在有阻尼自由振动中的应用

常微分方程在有阻尼自由振动中的应用

常微分方程在有阻尼自由振动中的应用羊士林(数学科学学院,2008(4)班,08211439号)1 引言在数学的应用中微分方程是一个活跃的分支.这不是偶然的,因为许多自然科学的定律可以通过微分方程得到精确的表达.实际上,微分方程的应用已深入到许多学科之中.比如物理学科中的许多公式的推导以及一些题目的计算,就需用到微分方程的有关知识.微分方程来源于生活实际,研究微分方程的目的就在于掌握他所反应的客观规律,能动的解释所出现的现象并预测未来可能发生的情况.下面我们将简单的介绍常微分方程的几种解法及其在物理学中的应用.2 二阶常系数常微分方程的几种解法2.1特征方程法例1 求微分方程220d x dx p qx dt dt++=的通解. 解 特征方程02=++q p λλ的根21,λλ,(1)若这是两个不等实根,则该方程有两个实值解12,t t e e λλ,故通解为1212t t x c e c e λλ=+(21,c c 为任意常数).(2)若这两个根相等,则该方程有二重根,因此方程的通解具有形状1112t t x c e c te λλ=+(21,c c 为任意常数).(3)若这两个根为共轭复根z a bi =±,则该方程的通解具有形状12(sin cos )at x e c bt c bt =+(21,c c 为任意常数).数学的许多公式与定理都需要证明,下面本文给出上面前两个解答的理论依据.1 特征根是两个实根的情形设12,λλ是上面特征方程的两个不相等的实根,从而相应的方程有如下两个解12,t t e e λλ,我们指出这两个解在a t b ≤≤上线性无关,从而它们能够组成方程的基本解组.事实上,这时 121212()121211()t tt t t e e w t e e e λλλλλλλλλλ+==,而最后一个行列式是著名的范德蒙德(Vandermonde )行列式,它等于21()λλ-.由于假设21λλ≠,故此行列式不等于零,从而()0w t ≠,于是 12,t t e e λλ线性无关,这就是所要证明的.而此方程的通解可表示为1212t t x c e c e λλ=+(其中12,c c 为任意数).如果特征方程有复根,则因方程的系数是实常数,复根将成对共轭出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而与这对共轭复根对应的,方程有两个复值解()(cos sin )i t t e e t i t αβαββ+=+,()(cos sin )i t t e e t i t αβαββ-=-.根据定理可知,复值解的实部和虚部也是方程的解.这样一来,对应于特征方程的一对共轭复根i λαβ=±,我们可求的方程220d x dx p qx dt dt++=的两个实值解 cos ,sin t t e t e t ααββ.2 特征根有重根的情形 设特征方程有k 重根1,λλ=则众所周知'(1)111()()()0,k F F Fλλλ-====()1()0k F λ≠, 先设10λ=,即特征方程有因子k λ,于是110n n n k a a a --+====,也就是特征方程的形状为110n n k n k a a λλλ--+++=,而对应的方程[]11110n n n n n n d x d x L x a a a x dt dt ---≡++++=变为1110n n k n kn n k d y d y d y a a dx dx dx ---+++=. 易见它有k 个解1,21,,,k t t t -,而且它们是线性无关的.这样一来,特征方程的k 重零根就对应方程的k 个线性无关的解1,21,,,k t t t -.如果这个k 重根10λ≠,我们作变量变换1t x ye λ=,注意到11()()()(1)2(2)111(1)()2!t t m m m m m m m m xye e y m y y y λλλλλ---⎡⎤==++++⎢⎥⎣⎦, 可得[]1111111()n n t t t n n n d y d y L ye b b y e L y e dt dt λλλ--⎡⎤=+++=⎣⎦,于是对应方程化为[]11110n n n n n d y d y L y b b y dt dt --=+++=,其中123,,,,n b b b b 仍为常数,而相应的特征方程为111()0n n n n G b b b μμμμ--≡++++=, 直接计算易得1111()()()11()()t t t t t F eL e L e e G e μλμλλμλμμλμ+++⎡⎤⎡⎤+===⎣⎦⎣⎦, 因此1()()F G μλμ+=,从而1()()j j F G μλμ+=,1,2,,j k =,这样,问题就化为前面讨论过的情形了. 2.2常数变易法对于二阶常系数非线性常微分方程的解法,只要先求出其一个特解,再运用特征方程法求得方程的通解.例2 求常微分方程 22()d x dx p qx f t dt dt++=的通解. 解 方程22()d x dx p qx f t dt dt++=对应齐次方程为 220d x dx p qx dt dt++=, 其特征方程为02=++q p λλ. (1)由于方程22()d x dx p qx f t dt dt++=的通解等于其对应的齐次线性微分方程的通解与其自身的一个特解之和,而二阶常系数齐次线性微分方程的通解我们已经研究过了,所以此处只需求出其一个特解.情形1:若λ为方程(1)的实根,则tx e λ=是方程220d x dx p qx dt dt ++=的解.由常数变易法设22()d x dx p qx f t dt dt++=的一个解为*()t x c t e λ=,代入原方程并化简得"'()(2)()()t c t p c t e f t λλ-++=,这是关于 '()c t 的一阶线性微分方程,其一个特解为()(2)()()()p tp t c t e e f t dt dt λλ-++⎡⎤=⎣⎦⎰⎰, 从而得方程(1)的一个特解为 *(2)()(())t p t p t x e e e f t dt dt λλλ-++⎡⎤=⎣⎦⎰⎰. 情形2:若λ为方程(1)的复根,我们可以设,,a bi a b R λ=+∈且0b ≠,则*sin atx e bt =是方程22()d x dx p qx f t dt dt ++=的解,根据常数变易法可设其一个特解为*()sin atx c t e bt =,与情形1的解法类似得方程22()d x dx p qx f t dt dt ++=的一个特解为 (2)(2)*2()sin sin .sin p a p a t at e f t e btdtx e bt dt bt -++=⎰⎰由于*x 是特解,则积分常量可以都取零.2.3拉普拉斯变换法常系数线性微分方程可以应用拉普拉斯变换法进行求解,这往往比较简单.由积分()()0st F s e f t dt -+∞=⎰. 所定义的确定于复平面(Re σ>)上的复变数s 的函数()F s ,称为函数()f t 的拉普拉斯变换,我们称()f t 为原函数,而()F s 称为像函数.拉普拉斯变换法主要是借助于拉普拉斯变换把常系数线性微分方程转换成复平面s 的代数方程.通过一些代数运算,一般地再利用拉普拉斯变换表,即可求出微分方程的解.方法十分简单方便,为工程技术工作者所普遍采用.当然,方法本身有一定的局限性,它要求所考察的微分方程的右端函数必须是原函数.例3 求解方程 2'22,(1)(1)0t d x dx x e x x dt dt-++===. 解 先使1t τ=-,将问题化为2(1)'22,(0)(0)0t d x dx x e x x dt dt--++===, 再对新方程两边作拉普拉斯变换,得到211()2()()1s X s sX s X s s e++=⋅+, 因此 311()(1)X s s e=⋅+, 查拉普拉斯变换表可得 211()2x e τττ--=, 从而 21()(1)2t x t t e -=-, 这就是所要求的解. 当然,求解二阶或者更高阶的常微分方程的方法还有很多,这里我们不能一一列出.然而我们利用上面的一些结论就可以解决下面的几个物理问题了.3常微分方程在有阻尼自由振动中的简单应用一般求解物理问题主要是分三步:1.分析问题建立方程并确定定解条件;2.求出方程满足初始条件的特解或讨论解的性质;3.对解做定性分析,反过来解释原问题,其中关键在于列出方程,主要有两种方法:1.瞬时变化率;2.微元分析法.在研究阻尼振动时,运动方程的求解问题较为复杂,一般教科书没有给出求解过程.下面分别用特征值法,常数变易法,拉普拉斯变换法来求动力学方程.3.1特征方程法例4 一弹簧振子系统,物体的质量 1.0m kg =,弹簧的劲度系数175k N m -=⋅,阻尼系数110.0s δ-=,设质点由静止开始运动,求位移方程.解 根据牛顿第二运动定律有kx cv ma --=, (2) 或 220d x dx m c kx dt dt++=, (3) 对一给定的振动系统,,,m k c 均为常量.若令20,2k m c m ωδ==,则上式可写成220220d d dt dtξξδωξ++=, (4) 将数据代入(4)得 2220750d x dx x dt dt++=. (5) 根据观察可以用特征值法求解.这里特征方程为220750λλ++=,有两个根1215,5λλ=-=-,则(5)的两个根为51512,t t e e ξξ--==. (6)计算可得振动子固有角频率数值为052k m ω==,而阻尼系数数值为10δ=,即220δω<,则方程(5)的解为515t t Ae Be ξ--=+(,A B 由初始条件决定). (7) 上式是一个非振动状态的,这种情况下质点仅仅是从非平衡位置恢复到平衡位置,而不具备周期振动的特点.我们更关心的是0δω<情况下,质点的衰减振动.由于阻尼的作用,一个自由振动系统的振动不能维持很久,它要逐渐衰减直至停止.要使振动持续不停,就需要不断地从外界获得能量,这种受到外部持续作用而产生的振动就称为强迫振动例5 设有一个外力100cos(30)F t N =作用在上面振动系统上,式中100A F =为驱动力的幅值,30ω=为驱动力的圆频率,f 为驱动力的频率.解 将驱动力加到质点振动系统,得到系统振动方程为22d x dx m c kx F dt dt++=, (8) 或写成22022cos(30)d x dx x H t dt dtδω++=. (9) 式中A F H m=为作用在单位质量上的外力幅值.方程(8)和方程(9)都是质点强迫振动方程.强迫振动方程是二阶的非齐次常微分方程,其一般解为该方程的一个特解与相应的齐次方程一般解之和.我们已经获得了对应的自由振动方程的一般解,关键就是寻找(9)的一个特解.将数据代入(9)得222075100cos(30)d x dx x t dt dt++=, (10) 我们设(10)有形如1sin 30cos30x A t B t =+的特解,将它代入(10)并化简得到(3324)sin30(2433)cos304cos30A B t A B t t -++-=,比较同类项系数得3244,555555A B ==-,于是13244sin30cos30555555x t t =-,而原方程的通解为5153244()sin 30cos30555555t t x t Ae Be t t --=++-. 上式中,A B 由初始条件决定,前两项项称为瞬态解,它描述了系统的自由衰减振动,仅在振动的开始阶段起作用,当时间足够长以后,它的影响逐渐减弱并最终消失.后二项称为稳态解,它描述了系统在驱动力的作用下进行强制振动的状态,因为它的幅值恒定,因此称为稳态振动.从上式可以看到,当外力施加到质点振动系统以后,系统的振动状态比较复杂,它是自由衰减振动和稳态振动的合成,这种振动状态描述了强迫振动中稳态振动逐步建立的过程.当一定时间以后,瞬态振动消失,系统达到稳态振动.3.2 常数变易法情形1 已知5t x e -=为上面例5中特征方程220750λλ++=的实根,则5t x e -=是方程(10)的一根.由常数变易法设*5()t x c t e -=,则*x 也是方程的一个解.代入(10)并化简得"'5()10()100cos30t c t c t e t +=.这是关于'()c t 的一阶线性微分方程,其一个特解为'55184()sin 30cos3033t t c t e t e t c =++, 从而得出(10)的一个特解为(取120c c ==)*5551284()((sin 30cos30))33t t t x t e e t e t dt c -=++⎰ 3244sin 30cos30555555t t =-, 从而可得(10)的通解5153244()sin 30cos30555555t t x t Ae Be t t --=++-. 情形2 例6 一弹簧振子系统,物体的质量 1.0m kg =,弹簧的劲度系1400k N m -=⋅,阻尼系数110.0s δ-=,有一个外力cos(2)F t N =.作用在上面振动系统上,设质点由静止开始运动.求位移方程.解 由例5可知22d x dx m c kx F dt dt++=. (11)代入数据得 2220400cos(2)d x dx x t dt dt++=. (12) 根据观察可以用常数变易法求解,首先求(12)的齐次线性方程的根.有前面的研究可得(12)齐次线性微分方程的特征方程为2204000μμ++=.我们可设特征方程的根为10103i μ=-±.则10()sin(103)t x t e t -=是(12)的一个解.由常数变易法可设为*10()()sin(103)t x t c t e t -=.与情形1中的解法类似,将*()x t 代入(12)并化简得*1099()sin(2)cos(2)3960439604x t t t =+.由于*x 是特解,则积分常量可以都取零. 3.3 拉普拉斯变换法若仍然以例6为例,由牛顿第二运动定律得22d x dxm c kx F dt dt ++=,代入数据得2220400cos(2)d x dxx t dt dt ++=, (13)由于质点由静止开始运动.则00,0t dxx dt ===,对方程(13)施行拉普拉斯变换,得到22()20()400()4ss X s sX s X s s ++=+,即221()420400s X s s s s =+++,把上式右端分解为部分分式2210299()396044396044sX s s s =+++22221013103991011881239604(10)(103)(10)(103)s s s +--++++, 由拉普拉斯变换表可得 1099()sin(2)cos(2)3960439604x t t t =+ 1010101399sin(103)cos(103)11881239604t t e t e t ----.参考文献[1]王高雄.周之铭.宋思铭.等.常微分方程.北京高等教育出版社.2001.[2]美R.布朗森.(全美经典学习指导)微分方程.北京科学出版社.1998.[3]同济大学应用数学系.高等数学.高等教育出版社.2002.[4]常微分方程(第三版). 高等教育出版社.2004.[5]复旦大学物理系.上海师范大学物理系.物理学.上海科技出版社.1997.[6]刘克哲.物理学.北京:高等教育出版社.2000.总结综上所述,本文首先介绍二阶微分方程的三种求解方法:特征方程法、常数变易法、拉普拉斯变换法.然后列举了阻尼振动的几个具体例题,分别利用三种方法解题.另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件是近似的,这种近似之间的影响和变化还必须在理论上加以解决.。

数学物理方程 练习题

数学物理方程 练习题

数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
解: 特征方程:
α21 − α22 = 0.
特征方向 l 满足:
2012-10-3 13 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
解: 特征方程:
α20 = α21 + α22 + α23.
特征方向 l 满足:
α20 = α21 + α22 + α23,
α20 + α21 + α22 + α23 = 1.
√√


解得:
l
=

2 2
,
2 2
sin
θ
sin
β,
2 2
sin
θ
cos
β,
2 2
cos
θ),
其中
θ,
β
为任意参数.
齐海涛 (SDU)
(1.2)
ξ = α1x + α2y, η = α3x + α4y,

大学物理-常微分方程的不变式 (1)

大学物理-常微分方程的不变式 (1)
(2) 将级数解代入方程,求待定系数。
为了比较同次幂的系数,对上式作变换,有
令 k = k' + 2,则上式右边为
于是,有
由于上式在 z0 的邻域内成立,即上式为 z 的一个恒等式, 故 z 的同次幂的系数为 0,则
因而,有
——待定系数的递推关系
由上式可见,偶次幂项与奇次幂项彼此独立,可分别 用 C0 与 C1 表示,即
注意到在 m = 0 的特殊情况下,方程 (11) 简化为勒让
德方程
(1 z2 )
d 2Pl dz 2
2z
dPl dz
l(l
1)Pl (z)
0
(13)
它的解记为 Pl (z) ,已经求得。 方程 (11) 和 (13) 都有三个正则奇点,它们的 不变式
可能有联系。也就是说,由勒让德方程演化出的方程可 能具有不变式 (12)。为了找到这样的方程,将勒让德方 程对 z 微商 m 次,有
2
z
( p2 ( ) p1( ))d ]J(l1) (z) 2
exp[ 1
2
z
(1
2
)d
]J
(l
1 2
)
(
z)
1
z 2 J(l1) (z) 2
故球贝塞尔方程(1)的通解为
1
w(z) z 2 [C1Jl1 (z) C2 J(l1) (z勒让德方程
d [(1 z2 ) dw] [l(l 1) m2 ]w(z) 0 (11)
p2 4
p(z) 2
1
l(l 1) z2
方程(1)与贝塞尔方程相似,有两个正则奇点。m阶贝塞尔方程
的不变式为
m2 1
B(z) 1
4 z2

数理方程第二章 关于二阶常微分方程本征值问题的一些结论-6

数理方程第二章 关于二阶常微分方程本征值问题的一些结论-6

( m n )
对应于不同特征值的特征函数在a,b上带权函数(x)互相正交。
(4 ) 本征函数系 yn ( x) , n 1,2,, n, , 在
a , b 上构成完备系。 Nhomakorabea即:对于一个任意函数f(x) ,在区间 [a,b]上,只要满足具有一 阶连续导数、二阶分段连续导数;同时满足斯特姆-刘维尔型 方程的边界条件,那么一定可以将f(x)按本征函数系展成绝对 b 且一致收敛的级数。 ( x) f ( x) y ( x) d x
则无论方程是齐次还是非齐次,必须首先作函数的代换,使其转化为
齐次边界条件问题,方可进行求解。
三、非齐次方程、非齐次边界条件的定解问题(无论初始条件如何),一定
要将其转化为:非齐次方程+齐次边界条件来处理。
深圳大学电子科学与技术学院
分离变量法的军事策略 :
— —分兵合围,各个击破
分离变量法的哲学思想 :
2
到此为止,所求解的各种问题只牵涉具有边界的空间。但 这并不意味分分离变量法就不可以应用于无界空间。事实上, 稍加推广还是可以应用的。所说的推广,指的是间断的本征值 为连续本征值所取代,线性叠加为积分所取代。
深圳大学电子科学与技术学院
实施分离变量法应该注意的几个问题:
一、根据边界条件的形状,选取适当的坐标系。选取的原则是:使对应 的坐标系,边界条件的表达式最为简单。如 圆、圆环、扇形区域→极坐标系; 圆柱形区域→柱坐标系; 球形区域→球坐标系。 二、若边界条件是非齐次的,又没有其它可利用的条件来确定特征函数,
关于二阶常微分方程本征值问题的一些结论参考了孙秀泉教授的课件深圳大学电子科学与技术学院26关于二阶常微分方程本征值问题的一些结论常微分方程在齐次边界条件下的本征值以及本征函数1有界弦的自由振动3圆形域内laplace方程的定解问题sincos分离变量法的实质将时间变量视为参变量

(大学物理电路分析基础)第7章二阶电路分析

(大学物理电路分析基础)第7章二阶电路分析

作用
阻尼比决定了二阶电路的响应 速度和振荡幅度,对电路的稳 定性有很大影响。
分类
根据阻尼比的大小,可以分为 欠阻尼、临界阻尼和过阻尼三
种情况。
自然频率
定义
自然频率是二阶电路在没有外部激励时自由振荡的频率,表示为ωn, 它等于电路的总电感与总质量的比值。
计算公式
自然频率的计算公式为ωn = sqrt(K/m),其中K是弹簧常数,m是电 路的总质量。
赫尔维茨判据
赫尔维茨判据也是一种基于系统 极点的判据,通过计算系统函数 的零点和极点来判断系统的稳定 性。
乃奎斯特判据
乃奎斯特判据是一种基于频率域 分析的判据,通过分析系统的频 率响应来判断系统的稳定性。
稳定性分析方法
时域分析法
时域分析法是一种直接分析法,通过求解电路的微分方程来分析系统的动态响应和稳定 性。
大学物理电路分析基 础 第7章 二阶电路分 析
目 录
• 二阶电路的概述 • 二阶电路的响应分析 • 二阶电路的稳定性分析 • 二阶电路的阻尼比和自然频率 • 二阶电路的实例分析
01
二阶电路的概述
二阶电路的定义
二阶电路
由两个或更多电容元件或电感元 件组成的电路,其中每个元件有 两个端子。
定义中的关键点
频域分析法
频域分析法是一种间接分析法,通过将电路方程转化为频率域下的传递函数来分析系统 的稳定性。
04
二阶电路的阻尼比和自 然频率
阻尼比
定义
阻尼比是衡量二阶电路中阻尼作 用的参数,表示为ζ,它等于阻 尼电阻与电路总电阻的比值。
计算公式
阻尼比的计算公式为ζ = R/2L, 其中R是阻尼电阻,L是电路的总 电感。
二阶电路必须包含两个电容元件 或电感元件,且每个元件有两个 端子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 二阶线性常微分方程 例题
7.1二阶线性常微分方程解的一般性质及常点邻域内的级数解
例1:求厄米特方程 w '' – 2zw ' + λw = 0 在 z = 0 邻域内的解。 解:(1) 级数 λ 在 z0= 0 解析,则 z0 是方程的常点,且 p 与 q 已经是在 z0 = 0 的幂级数形式,故只用展开 w (z)。 级数解具有以下形式:
同理:
(3) 线性无关的解
w0 (z), w1 (z) 都是方程的解,但线性无关。方程的通解 是 w0 (z) 与 w1 (z) 的线性组合。
(2) 将级数解代入方程,求待定系数。
为了比较同次幂的系数,对上式作变换,有
令 k = k' + 2,则上式右边为
于是,有
由于上式在 z0 的邻域内成立,即上式为 z 的一个恒等式, 故 z 的同次幂的系数为 0,则
因而,有
——待定系数的递推关系
由上式可见,偶次幂项与奇次幂项彼此独立,可分别 用 C0 与 C1 表示,即
相关文档
最新文档