贝叶斯统计方法研究

合集下载

贝叶斯统计的基本原理与方法

贝叶斯统计的基本原理与方法

贝叶斯统计的基本原理与方法贝叶斯统计作为一种概率统计方法,具有广泛的应用领域和强大的实用性。

本文将介绍贝叶斯统计的基本原理与方法,并探讨其在实际问题中的应用。

一、贝叶斯定理贝叶斯定理是贝叶斯统计的基础,它建立了先验概率和后验概率之间的关系。

贝叶斯定理的数学表达为:P(A|B) = ( P(B|A) * P(A) ) / P(B)其中,P(A|B) 表示在给定B发生的条件下A发生的概率,P(B|A)表示在给定A发生的条件下B发生的概率,P(A) 表示A发生的先验概率,P(B) 表示B发生的先验概率。

二、贝叶斯统计方法贝叶斯统计方法基于贝叶斯定理,通过不断更新概率分布来推断模型参数或进行预测。

主要包括先验分布、似然函数和后验分布的计算。

1. 先验分布先验分布是对参数的先验信息的概率分布。

在没有实际观测数据前,我们通常根据经验或领域知识来选择合适的先验分布。

常见的先验分布有均匀分布、正态分布等。

2. 似然函数似然函数是在给定参数值的情况下,观测数据出现的可能性。

通过似然函数,我们可以评估参数值对观测数据的拟合程度。

似然函数越大,说明参数值越能解释观测数据。

3. 后验分布后验分布是在考虑观测数据后,对参数进行更新和修正得到的概率分布。

根据贝叶斯定理,后验分布与先验分布和似然函数的乘积成正比。

通过后验分布,我们可以得到参数的点估计或区间估计。

三、贝叶斯统计的应用贝叶斯统计具有广泛的应用领域,我们将以两个具体问题来说明其应用。

1. 医学诊断贝叶斯统计在医学诊断中有重要的应用。

在医学检测中,我们通常需要根据患者的检测结果判断其是否患有某种疾病。

贝叶斯统计可以帮助我们评估患病的概率,并根据患者的症状和其他相关因素进行精确的诊断。

2. 文本分类贝叶斯统计在文本分类中被广泛应用。

通过对已知类别的文本进行训练,我们可以得到每个单词在不同类别下的概率分布,即先验概率。

然后,根据贝叶斯定理,我们可以根据给定的文本内容来计算其在不同类别下的后验概率,从而实现文本的自动分类。

统计学中的贝叶斯统计与决策理论

统计学中的贝叶斯统计与决策理论

统计学中的贝叶斯统计与决策理论统计学中的贝叶斯统计学是一种基于贝叶斯公式和概率论原理的统计推断方法。

它与传统的频率主义统计学方法相比,具有许多独特的优势。

本文将介绍贝叶斯统计学的基本原理、应用领域以及与决策理论的关系。

一、贝叶斯统计学的基本原理贝叶斯统计学是由英国数学家托马斯·贝叶斯提出的,它基于概率论的贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在给定B发生的条件下A发生的概率,P(B|A)表示在给定A发生的条件下B 发生的概率,P(A)和P(B)分别表示A和B分别发生的概率。

贝叶斯统计学的基本原理是根据已有的先验知识和新的观测数据,通过不断更新概率分布来得出对未知参数的后验概率分布。

通过贝叶斯公式,可以将观测数据与已有知识相结合,得出对未知参数的概率分布,从而进行推断和预测。

二、贝叶斯统计学的应用领域贝叶斯统计学广泛应用于各个领域,包括医学、金融、生物学、工程学等。

其应用主要体现在以下几个方面:1. 参数估计:贝叶斯统计学通过考虑先验信息,对参数进行估计。

与传统的频率主义统计学方法相比,贝叶斯统计学能够更好地利用已有的知识,提供更准确的参数估计。

2. 假设检验:贝叶斯统计学提供了一种新的方法来进行假设检验。

通过计算后验概率与先验概率的比值,可以得到对不同假设的相对支持程度,从而在决策时提供更全面的信息。

3. 预测分析:贝叶斯统计学通过更新概率分布,可以对未来的事件进行预测。

这使得贝叶斯统计学在金融风险预测、天气预报等领域有着广泛的应用。

三、贝叶斯统计学与决策理论的关系贝叶斯统计学与决策理论密切相关。

决策理论主要研究如何在不确定情况下做出最优决策。

而贝叶斯统计学可以为决策提供一个统一的框架,通过计算不同决策的后验概率,从而选择概率最大的决策。

在贝叶斯决策理论中,需要考虑多个可能的决策结果以及每个决策结果的概率。

通过使用贝叶斯统计学中的贝叶斯公式,可以将观测数据与已有知识相结合,计算每个决策结果的后验概率,从而选择概率最大的决策。

贝叶斯统计方法

贝叶斯统计方法

贝叶斯统计方法贝叶斯统计方法是一种基于贝叶斯定理的统计分析方法,它在各个领域中被广泛应用。

本文将介绍贝叶斯统计方法的原理、应用以及优势。

一、贝叶斯统计方法的原理贝叶斯统计方法基于贝叶斯定理,该定理描述了如何根据已知的先验知识和新的数据进行推理和预测。

其基本公式如下:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在已知B发生的前提下,A发生的概率;P(B|A)表示在已知A发生的前提下,B发生的概率;P(A)和P(B)分别表示A 和B分别独立发生的概率。

贝叶斯统计方法通过更新先验概率得到后验概率,从而更准确地估计参数或预测结果。

二、贝叶斯统计方法的应用1. 机器学习中的分类问题贝叶斯统计方法在机器学习中的分类任务中得到广泛应用。

通过构建贝叶斯分类器,可以根据已知的先验概率和数据集训练结果,对新的样本进行分类。

2. 自然语言处理中的文本分类贝叶斯统计方法在文本分类任务中也有着重要应用。

通过构建朴素贝叶斯分类器,可以根据文本的词频信息将其分类到不同的类别中。

3. 医学诊断中的预测贝叶斯统计方法在医学诊断中的预测也得到了广泛应用。

通过结合病人的先验信息和检测结果,可以计算患病的后验概率,从而辅助医生进行准确的诊断。

三、贝叶斯统计方法的优势1. 考虑先验知识贝叶斯统计方法通过引入先验知识,能够较好地处理具有先验信息的问题。

相比之下,频率统计方法仅根据样本数据进行推断,无法很好地利用已有的先验概率信息。

2. 灵活性高贝叶斯统计方法可以适应不同的问题和数据情况。

通过不同的先验分布和模型选择,可以灵活地对参数进行估计和预测。

3. 适用于小样本情况贝叶斯统计方法在小样本情况下仍能表现出良好的性能。

由于引入了先验知识,能够在样本量较小的情况下提供相对可靠的推断结果。

四、总结贝叶斯统计方法基于贝叶斯定理,通过更新先验概率得到后验概率,可用于各个领域中的数据分析、模型估计和预测问题。

贝叶斯统计标准方法

贝叶斯统计标准方法

贝叶斯统计标准方法
贝叶斯统计标准方法是一种使用贝叶斯定理进行概率推断和统计推断的方法。

贝叶斯定理是一种在已经观察到某些证据的情况下更新概率分布的方法。

在贝叶斯统计标准方法中,首先需要确定一个先验概率分布,表示在观察到任何数据之前对待估计量的不确定性的初始估计。

然后,根据观察到的数据,计算出一个后验概率分布,用于更新预估量的不确定性。

贝叶斯统计标准方法的步骤如下:
1. 定义问题并确定待推断的参数或模型。

2. 确定先验概率分布,通常基于以往的经验或领域知识。

3. 收集观测数据。

4. 使用贝叶斯定理计算出后验概率分布,将先验概率分布与观察到的数据相结合。

5. 基于后验概率分布,可以计算出感兴趣的统计量的点估计、置信区间或区间估计。

6. 验证结果,可以使用模型检验方法检验推断的质量。

贝叶斯统计标准方法的优点在于可以利用先验信息来约束推断结果,并逐步更新先验概率分布,使其适应观察到的数据。

这使得贝叶斯方法在处理小样本或缺少数据的情况下特别有用。

贝叶斯统计模型的建立方法和应用

贝叶斯统计模型的建立方法和应用

贝叶斯统计模型的建立方法和应用“概率是一种对不确定性的度量,而统计学则是利用数据推断未知参数值的学科。

”这便是贝叶斯统计学派的核心理念。

贝叶斯统计学派的建立者为英国数学家托马斯·贝叶斯,他提出了一种基于“先验概率”和“后验概率”推断未知参数的方法,于是便形成了贝叶斯统计学派。

接下来,我们将着重探讨贝叶斯统计模型的建立方法和应用。

一、贝叶斯公式贝叶斯公式是贝叶斯统计学派建立的基础,其表达式为:$$P(H|D)=\frac{P(D|H)P(H)}{P(D)}$$其中,$P(H|D)$为“后验概率”,表示在观测到数据$D$之后,假设$H$成立的概率。

$P(D|H)$为“似然函数”,表示在假设$H$成立的情况下,出现数据$D$的概率。

$P(H)$为“先验概率”,即没有任何观测数据的情况下,假设$H$成立的概率。

$P(D)$为“边缘概率”,表示出现数据$D$的概率。

可以看到,贝叶斯公式的核心是通过观测数据来更新对未知参数的概率分布,从而得到更加准确的估计值。

对于多个未知参数的情况,可以通过组合各个参数的先验概率和似然函数得到它们的联合后验概率分布。

二、利用贝叶斯方法建立贝叶斯统计模型对于一个实际问题,我们首先需要确定需要估计的未知参数。

其次,我们需要选择先验分布,并根据数据调整先验分布的参数,从而得到后验分布。

最后,我们可以使用后验分布估计未知参数的值。

以正态总体均值未知,方差已知为例,我们可以使用正态分布作为先验分布。

假设我们先验分布的均值为$\mu_0$,方差为$\sigma_0^2$,则其密度函数为:$$f(\mu)=\frac{1}{\sqrt{2\pi}\sigma_0}e^{-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}}$$我们观测到的数据为$x_1,x_2,...,x_n$,则假设其均值为$\mu$,方差为$\sigma^2$,则我们可以使用样本均值$\bar{x}$来估计$\mu$,即:$$\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i$$同时,我们知道样本均值的方差为$\dfrac{\sigma^2}{n}$,则我们可以使用样本平均值的方差来估计$\sigma^2$,即:$$\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2=\frac{n-1}{n}S^2$$其中,$S^2$为样本方差。

数据分析中的贝叶斯统计方法

数据分析中的贝叶斯统计方法

数据分析中的贝叶斯统计方法随着互联网和科技的快速发展,数据已经以惊人的速度聚集到各个行业,而数据分析就成为了目前最为热门的领域之一。

而在数据分析的过程中,统计学就变得尤为重要。

贝叶斯统计方法作为一种经典的统计学方法,应用在数据分析中也越来越广泛。

一、贝叶斯统计贝叶斯统计方法是指在概率论的基础上,通过定义先验概率得到后验概率的一种统计学方法。

在贝叶斯统计中,我们假设参数是一个随机变量,而不是一个固定的值。

模型中也加入了一个先验概率的假设,这个先验概率是我们对参数未知情况的一种猜测,而在观测到数据之后,我们可以通过贝叶斯公式重新计算出后验概率,进而得到更加准确的结论。

在传统的频率统计中,我们仅仅是将样本数据看成是来自于一个总体分布中的随机样本,在这个基础上使用极大似然估计等方法来估计总体分布的参数。

相较之下,贝叶斯统计方法核心在于先验和后验的概率分布,更关注的是由观测数据得出的参数分布。

二、贝叶斯统计在数据分析中的应用1. 缺失值填充在现实中,可能会存在一些数据记录中存在缺失的情况。

而贝叶斯统计方法可以通过估计未知的数据值来进行填充。

具体而言,我们可以基于所有其他样本数据计算出一个关于某一变量的概率分布,然后将这个分布再用于当前缺失值的填充。

常用的方法有多重插补法、贝叶斯模型平均等。

2. 假设检验假设检验在统计学中是一个重要的分析方法,用于判断样本数据中某个特征是否有显著差异。

贝叶斯统计方法在偏向于小样本情况下识别差异及定义边际统计量方面能够发挥出重要作用。

它们主要基于贝叶斯公式,通过条件概率形式表示假设检验。

可以通过计算后验概率密度来得到可信区间。

3. 模型选择常用的均值、方差、协方差矩阵等参数可能是无法完全确定的,因此一些模型可以给定参数之间的分布,或者保留超参数为分布的形式,形成一个叫做贝叶斯模型。

然后使用贝叶斯模型对不同模型的先验概率来进行模型选择。

这种方法可以降低模型选择的偏差。

三、贝叶斯方法的优势1. 具有良好的灵活性。

贝叶斯统计学方法与推断分析

贝叶斯统计学方法与推断分析

贝叶斯统计学方法与推断分析贝叶斯统计学是一种基于概率理论的推断方法,通过先验知识和观测数据的结合,来更新对未知参数或假设的推断结果。

本文将详细介绍贝叶斯统计学方法的基本原理与应用,并探讨其在推断分析中的优势。

一、贝叶斯统计学基本原理贝叶斯统计学起源于18世纪的英国数学家托马斯·贝叶斯的研究,其核心思想是将统计推断视为对未知参数的概率推断,并建立在概率论的基础上。

在贝叶斯统计学中,我们需要先假设一个参数的先验分布,表示我们对该参数的初始认知或信念。

然后,通过观测数据,利用贝叶斯定理来更新参数的后验分布,从而得到对参数的推断结果。

贝叶斯定理的数学表达式为:P(θ|X) = (P(X|θ) * P(θ)) / P(X)其中,P(θ|X)表示给定观测数据X的条件下,参数θ的后验概率分布;P(X|θ)表示参数θ的条件下,观测数据X的概率分布;P(θ)表示参数θ的先验概率分布;P(X)表示观测数据X的边缘概率分布。

二、贝叶斯统计学的应用领域贝叶斯统计学方法广泛应用于各个领域的推断分析,包括但不限于以下几个方面。

1. 医学研究贝叶斯统计学可以用于医学研究中的临床试验设计和结果分析。

通过结合病人的先验信息和新的观测数据,可以更准确地评估新药的疗效和副作用,从而指导临床治疗决策。

2. 金融风险评估贝叶斯统计学可以用于金融领域风险评估的建模与分析。

通过将先验信息和历史数据结合,可以更精确地预测金融市场的波动性,并制定相应的风险管理策略。

3. 自然语言处理贝叶斯统计学在自然语言处理领域有着广泛应用,特别是在文本分类和情感分析中。

通过建立基于贝叶斯分类器的模型,可以实现对大规模文本数据的自动分类与情感判别。

4. 机器学习贝叶斯统计学在机器学习中的无监督学习和概率图模型中扮演重要角色。

通过贝叶斯学习方法,可以更好地解决数据不完全、噪声干扰等问题,提高模型的准确性和鲁棒性。

三、贝叶斯统计学方法的优势相比于传统的频率主义统计学方法,贝叶斯统计学具有以下几个优势。

在报告中如何解释和分析贝叶斯统计结果

在报告中如何解释和分析贝叶斯统计结果

在报告中如何解释和分析贝叶斯统计结果导语:贝叶斯统计是一种基于贝叶斯定理的统计方法,其独特之处在于能够在已有数据和先验知识的基础上更新我们的概率推断。

在报告中,准确解释和分析贝叶斯统计结果对于传达研究成果至关重要。

本文将详细探讨如何在报告中解释和分析贝叶斯统计结果。

一、揭示背景和目的在报告中,首先应该明确研究的背景和目的。

背景介绍可以包括相关研究领域的现状和研究的重要性。

目的可以描述研究的目标和使用贝叶斯统计的原因。

二、介绍贝叶斯统计方法在报告中,应该对贝叶斯统计方法进行简要介绍,以保证读者对其基本概念和原理有一定的了解。

可以简要描述贝叶斯定理、先验和后验概率的概念以及贝叶斯统计的计算方法。

三、说明数据收集和处理的过程在报告中,需要清晰地说明研究数据的来源、数据收集的过程以及对数据的处理方法。

这有助于读者理解数据的质量和可信度,并对后续的统计分析结果有更好的认识。

四、详细解释贝叶斯统计结果在报告中,应该详细解释贝叶斯统计结果。

可以从以下六个方面展开论述:1. 数据摘要和描述统计:首先,对数据进行摘要和描述统计,包括计算数据的均值、中位数、标准差等指标。

这有助于读者对数据的整体分布有一个初步的了解。

2. 先验分布:解释数据的先验分布,即在进行实际观测之前对待研究对象存在的关于其概率分布的不确定性进行建模。

可以使用图表或文字描述先验分布的形状、参数及其影响。

3. 后验分布:解释数据的后验分布,即在考虑了已有数据的情况下,对待研究对象的概率分布进行更新。

可以描述后验分布的形状、参数及与先验分布的差异。

4. 解读贝叶斯因果效应:如果研究的目标是探究变量之间的因果关系,可以使用贝叶斯因果效应分析。

解释因果效应的计算过程和结果,以及因果效应的置信区间和置信水平。

5. 模型比较和选择:如果使用了多个模型进行贝叶斯分析,需要进行模型比较和选择。

解释模型比较的指标和判据,以及选取最优模型的原因和依据。

6. 检验和解释结果的可信度:对贝叶斯统计结果进行检验和解释其可信度的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝叶斯方法
贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。

如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。

进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。

如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。

与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。

我们甚至可以把它归结为一个如下所示的公式:
选取其中后验概率最大的,即分类结果,可用如下公式表示
贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。

上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。

下面介绍贝叶斯分类器工作流程:
1.学习训练集,存储计算条件概率所需的属性组合个数。

2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。

3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。

4.传入测试实例
.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。

.选取其中后验概率最大的类,即预测结果。

一、第一部分中给出了个定义。

定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。

定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

定义若定某事件未发生,而其对立事件发生,则称该事件失败
定义若某事件发生或失败,则称该事件确定。

定义任何事件的概率等于其发生的期望价值与其发生所得到的价值之比。

定义机会与概率是同义词。

定义给定事件组,若当其中任何一个事件发生时,其余事件的概率不变,则称该事件组互相独立。

贝叶斯所给出的互不相容、相互独立、对立事件的定义与现在的定义差别无几,他首次明确了机会与概率的等价性。

同时贝叶斯也给出了一系列命题。

二、贝叶斯统计的基本思想
拉普拉斯(,(~))发现了贝叶斯统计的核心——贝叶斯公式(又称为逆概公式),进行了更清晰的阐述,并用它来解决天体力学、医学统计以及法学问题。

在介绍贝叶斯公式前,先简单介绍一下三种信息:总体信息、样本信息和先验信息。

总体信息:是人们对总体的了解,所带来的有关信息,总体信息包括总体分布或者总体分布族的有关信息。

例如:“总体属于正态分布”、“它的密度函数是钟型曲线”等等。

样本信息:是通过样本而给我们提供的有关信息。

这类“信息”是最具价值和与实际联系最紧密的信息。

人们总是希望这类信息越多
越好。

样本信息越多一般对总体推断越准确。

基于以上两种信息所作出的统计推断被称为经典统计。

其特征主要是:把样本数据看成是来自具有一定概率分布的总体,所研究的对象是总体,而不是立足与数据本身。

先验信息,即在抽样之前有关统计问题的一些信息,一般说来,先验信息主要来源于经验和历史资料。

先验信息在日常生活中和工作中也经常可见,不少人在自觉或不自觉的使用它,但经典统计忽视了,对于统计推断是一个损失。

基于上述三种信息进行的推断被称为贝叶斯统计学。

它与经典统计学的主要区别在于是否利用先验信息。

在使用样本信息上也是有差异的。

2.贝叶斯统计的基本思想
国际数理统计主要有两大学派:贝叶斯学派和经典学派。

他们之间既有共同点,又有不同点。

贝叶斯统计与经典统计学的最主要差别在于是否利用先验信息,经典统计学是基于总体信息(即总体分布或总体所属分布族的信息)和样本信息(即从总体抽取的样本的信息)进行的统计推断,而贝叶斯统计是基于总体信息、样本信息和先验信息(即在抽样之前有关统计问题的一些信息,主要来源于经验或历史资料)进行的统计推断。

贝叶斯统计是贝叶斯理论和方法的应用之一。

其基本思想是:假定对所研究的对象在抽样前己有一定的认识,常
用先验()分布来描述这种认识,然后基于抽取的样本再对先验认识作修正,得到后验分布,而各种统计推断都基于后验分布进行。

经典统计学的出发点是根据样本,在一定的统计模型下做出统计推断。

在取得样本观测值之前,往往对参数统计模型中的参数。

有某些先验知
特点是使用先验分布,经典统计学是基于总体信息(即总体分布或总体所属分布族的信息)和样本信息(即从总体抽取的样本的信息)进行的统计推断,而贝叶斯统计是基于总体信息、样本信息和先验信息(即在抽样之前有关统计问题的一些信息,主要来源于经验或历史资料)进行的统计推断。

贝叶斯统计是贝叶斯理论和方法的应用之一。

其基本思想是:假定对所研究的对象在抽样前己有一定的认识,常用先验()分布来描述这种认识,然后基于抽取的样本再对先验认识作修正,得到后验分布,而各种统计推断都基于后验分布进行。

经典统计学的出发点是根据样本,在一定的统计模型下做出统计推断。

在取得样本观测值之前,往往对参数统计模型中的参数。

有某些先验知
特点是使用先验分布,经典统计学是基于总体信息(即总体分布或总体所属分布族的信息)和样本信息(即从总体抽取的样本的信息)进行的统计推断,而贝叶斯统计是基于总体信息、样本信息和先验信息(即在抽样之前有关统计问题的一些信息,主要来源于经验或历史资料)进行的统计推断。

贝叶斯统计是贝叶斯理论和方法的应用之一。

其基本思想是:假定对所研究的对象在抽样前己有一定的认识,常用先验()分布来描述这种认识,然后基于抽取的样本再对先验认识作修正,得到后验分布,而各种统计推断都基于后验分布进行。

经典统计学的出发点是根据样本,在一定的统计模型下做出统计推断。

在取得样本观测值之前,往往对参数统计模型中的参数

使用先验分布,贝叶斯定理既适用于离散型随机变量,也适用于连续型随机变量,它形成了贝叶斯统计的基本原理和统计思想。

设事件、为试验的两事件,由于和是一个完备件组,
单形式为
式()是离散型变量的贝叶斯公式。

它实际上可以看作是从先验概率到后验概率的转换公式,即是一个“由果求因”公式。

这与全概率公式不同,全概率公式是“由因求果”公式。

由于贝叶斯统计集先验信息、样本信息和总体信息于一身,更贴近实际问题,并且由于在处理小样本问题时有其独特的优点。

事件形式的条件贝叶斯公式:在已有的贝叶斯公式的定义下,事件条件下,
我们的任务是要对未知数作出统计推断。

在没有样本信息时,人们只能据先验分布对未知数作出推断。

在有样本观察值
我们应该依据
可得到
它的计算公式是
这就是贝叶斯公式的密度函数形式。

这个在样本给定下,的条件分布被称为的后验分布。

它是集中了总体、样本和先验等三种信息中有关
的一切信息,而又是排出一切与无关的信息之后所得到的结果。

故基于后验分布进行统计推断是更为有效,也是最合理的。

前面提到根据参数的先验信息确定先验分布。

那么到底如何确定先验分布呢?这是贝叶斯统计中最困难的,也是使用贝叶斯方法必须解决但又最易引起争议的问题。

这个问题现代有很多研究成果,但还没有圆满的理论与普遍有效的方法。

根据先验信息确定先验分布,先验分布分为无信息先验分布和有信息先验分布两大类。

在没有先验信息的情况下确定的先验分布就叫做无信息先验分布。

这是贝叶斯分析诞生之初就面临的问题,是贝叶斯学派近多年来获得的重要成果之一。

主要有贝叶斯假设位置参数的无信息先验分布,尺度参数的无信息先验分布和先验分布。

共轭先验分布就是一种有信息先验分布,一般都含有超参数,而无信息先验分布一般不含超参数。

从实用角度出发,应充分利用专家的经验或者对历史上积累的数据进行分析和拟合,以确定先验分布。

在确定先验分布时,许多人利用协调性假说。

共轭先验分布是对某一分布中的参数而言的,离开了指定的参数及其所在的分布去谈共扼先验分布是没有意义的。

定义中未对“同一类型”四个字给出精确的定义,也很难给出恰当的定义。

通常的理解是,将概率性质相识的所有分布算作同一类型。

例如,所有正态分布
示我们,先验分布应该取何种类型,然后再利用历史数据来确定先验分布中的未知部分。

许多实践表明,这个假说是符合实际的。

共轭先验分布在许多场合被采用,它主要有两个优点:
(1)因为先验分布和后验分布属于同一个分布族,计算方便。

(2)后验分布使得一些参数可以得到很好的解释。

相关文档
最新文档