固体物理学_晶体结构

合集下载

晶体结构笔记-固体物理学

晶体结构笔记-固体物理学

晶体结构一、晶体、准晶体和非晶体材料结构特征与差别(1)晶体结构:整个晶体是一个完整的单一结构,即结晶体内部的微粒在三维空间呈高度有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序,且具有各向异性。

(2)准晶体结构:既不同于晶体,也不同于非晶态,原子分布不具有平移对称性,但仍有一定的规则,且呈长程的取向性有序分布,可认为是一种准周期性排列。

一位准晶:原子有二维是周期分布的,一维是准晶周期分布。

一维准晶模型————菲博纳奇(fibonacci)序列。

其序列以L→L+S S →L(L,S分别代表长短两段线段)的规律增长,若以L为起始项,则会发现学列中L可以成双或成单出现,而S 只能成单出现,序列的任意项均为前两项之和,相邻的比值逐渐逼近i,当n →∞时,i=(1+√5)/2。

二维准晶,一种典型的准晶结构是三维空间的彭罗斯拼图(Penrose)。

二维空间的彭罗斯拼图由内,角为36度、144度和72度、108度的两种菱形组成,能够无缝隙无交叠地排满二维平面。

这种拼图没有平移对称性,但是具有长程的有序结构,并且具有晶体所不允许的五次旋转对称性。

三维准晶,原子在三维上的都是准周期分布包括二十面体准晶,立方准晶。

准晶体质点在空间排列为长程取向,没有长程平移周期性。

(3)非晶体结构:非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。

外形为无规则形状的固体。

非晶体具有各向同性,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。

二、原胞、基矢的概念,晶面晶向的表示,对称性和点阵基本类型(1)原胞与基矢:能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元,最小的周期重复单元称作点阵的原胞。

以原胞的边长为点阵基矢构成平移矢量为基矢。

任意格矢为R=m1a1+m2a2+m3a3,定义表明,晶体在不同方向上,晶体的物理性质不同,也表明点阵是无限大的。

固体物理学概论

固体物理学概论

固体物理学概论固体物理学是研究物质的结构和性质的一门学科,它涵盖了领域广泛且深奥的知识。

本文将为读者介绍固体物理学的基础知识和主要研究内容。

一、晶体结构晶体是物质在固态中具有长程有序的结构,其原子、离子或分子按照规则排列。

晶体结构对物质的性质和功能具有重要影响。

固体物理学研究晶体结构的方法和特性,发展了晶体学的基本理论。

1. 空间点阵空间点阵是描述晶体结构的重要工具,它由一组等距离的格点所组成。

常见的点阵有简单立方点阵、面心立方点阵和体心立方点阵等。

这些点阵可以通过平移和旋转操作来描述晶体的周期性。

2. 晶胞和晶格晶胞是晶体中基本重复单元,它由一组原子、离子或分子构成。

晶格是由晶胞组成的整体结构,它描述了晶体中原子的排列方式。

晶胞和晶格可以通过晶体学的实验方法进行确定。

二、电子结构电子结构是固体物理学中的核心内容,它研究了电子在晶体中的行为和性质。

电子结构决定了物质的导电性、磁性以及光学性质等。

1. 能带理论能带理论是描述晶体中电子分布的重要理论模型。

根据能量分布,电子在晶体中具有禁带和能带的概念。

导带和价带之间的能隙决定了物质的导电性质。

2. 费米能级费米能级是描述固体中电子填充状态的参考能量。

它决定了电子在晶体中的分布规律,以及固体的导电性质。

费米能级的位置和填充程度影响了物质的导电性。

三、磁性和磁性材料磁性是固体物理学研究的另一个重要方向。

固体材料在外加磁场下表现出不同的磁性行为,如铁磁性、顺磁性和反铁磁性等。

1. 磁化强度和磁矩磁化强度是描述材料对磁场响应的物理量,它与材料中的磁矩相关。

磁矩是材料中带有自旋的原子或离子产生的磁场。

2. 磁性材料的分类磁性材料可以根据其磁性行为进行分类。

铁磁材料在外加磁场下显示出强烈的磁化行为,顺磁材料对外加磁场表现出弱磁化行为,而反铁磁材料在一定温度下表现出特殊的磁性行为。

四、光学性质固体物理学还研究了固体材料的光学性质。

物质在光场中的相互作用导致了光的传播、吸收和散射等现象。

晶体结构

晶体结构

晶体结构和布拉菲格子的区别
晶体结构和布拉菲格子的区别
基矢 原胞 晶胞(单胞)
初基元胞 点阵的基本 平移矢量。
有多种取法。
12面体
14面体
布拉伐格子 晶向 晶面
标志?
互质的整数(h1h2h3)-----晶面指数
若以单胞的棱a,b,c为坐标系对应的指数(h1h2h3)----miller index
33 23
13
32 22 12
31
33 11
21 31 13;32 12 32 0
11
23 21 21 0
同样若沿Z轴作对称操作-转动900
0 1 0 A 1 0 0
0 0 1
A1A


22
0
0
11
0
13





11
0
0
22
13
0
0 31 33
31 0 33
7晶系14种Bravais Lattice介绍
可以证明,由于对称性的要求,共有14种Bravais Lattice, 分为7个晶系(点阵只有7种点群)。 对称操作群{D/t} D--点(宏观)对称操作; t--平移对称操作. 点阵点群-------{D/t=0}7个7个晶系 点阵空间群-------{D/t}14个14 lattices
绪论
������ 固体物理是研究固体的结构和其组成粒子之间的相互作用 及运动规律,以阐明其性能和用途的学科。
固体的分类 晶体(晶态):原子按一定的周期规则排列的固体(长程有序)。 非晶体(非晶态):原子排列没有明确的周期性(短程有序)。

固体物理学的基础知识

固体物理学的基础知识

固体物理学的基础知识固体物理学是物理学的一个重要分支,研究物质固态状态的性质和行为。

在这篇文章中,我们将介绍一些固体物理学的基础知识,包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。

一、晶体结构晶体是指由周期性排列的原子、离子或分子组成的物质。

晶体结构描述了这些粒子在空间中的排列方式。

最基本的晶体结构是简单立方、面心立方和体心立方。

简单立方是最简单的结构,每个原子与其六个相邻原子相接触;面心立方在每个立方的面心上添加了一个原子;体心立方在每个简单立方的中心添加了一个原子。

除了这些基本结构,还存在许多复杂的晶体结构,如钻石和蓝宝石。

二、晶格常数晶格常数是描述晶体结构的一个重要参数。

它表示晶体中相邻原子之间的距离。

晶格常数可以通过实验或计算得到。

对于简单立方结构来说,晶格常数就是原子间距离;对于面心立方和体心立方结构,晶格常数与原子间距离有特定的关系。

三、晶体缺陷晶体缺陷是指晶体结构中的一些缺陷或杂质。

晶体缺陷可以分为点缺陷、线缺陷和面缺陷。

点缺陷包括空位、间隙原子和替位原子;线缺陷包括位错和螺旋位错;面缺陷包括晶界和界面。

晶体缺陷对晶体的性质有重要影响,如电导率、热导率和光学性质等。

四、固体力学性质固体力学性质描述了固体对外界力的响应和变形行为。

其中最基本的性质是弹性模量。

弹性模量分为压缩模量、剪切模量和杨氏模量,它们分别描述了固体对压力、剪切力和应力的响应。

除了弹性模量,还有塑性、断裂和疲劳等力学性质值得研究。

结论固体物理学的基础知识包括晶体结构、晶格常数、晶体缺陷和固体力学性质等内容。

通过对这些知识的研究,我们可以更深入地理解固体的性质和行为,为材料科学和工程技术的发展做出贡献。

希望本文对你对固体物理学的学习有所帮助。

参考文献:[1] Ashcroft N W, Mermin N D. Solid State Physics. Cengage Learning, 1976.[2] Kittel C. Introduction to Solid State Physics. John Wiley & Sons, 2005.[3] Rao C N R, Rao C N R, Omar Syed Ismail. Angular Momentum in Quantum Physics: Theory and Application. World Scientific, 2014.。

固体物理学_答案(黄昆 原著 韩汝琦改编)

固体物理学_答案(黄昆 原著  韩汝琦改编)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

1固体物理-晶体结构1

1固体物理-晶体结构1

晶面

{ }表示一组由于对称性而相互等价的晶面; 如对简单立方格子,{100}表示3个相互等价的晶 面,(100), (010), (001).
晶面
晶面

对于简单立方格子,晶向[h1, h2, h3]与晶面(h1, h2, h3)正交.
单胞(unit cell)


晶体学中,习惯用晶系的基矢a, b, c构成的 平行六面体作为周期性重复排列的基本单 元,称为单胞或惯用单胞(conventional unit cell). 原胞只含有一个格点,是体积最小的周期 性重复单元,单胞则不同,可含有一个或 者数个格点,体积是原胞的一倍或数倍。
晶格
晶体结构包括两方面: (1)重复排列的单元,称为基元(basis or motif); (2)基元重复的方式,一般抽象成空间点阵,称为晶体格子 (crystal lattice),简称晶格; 基元以相同的方式,重复地放置在晶格的格点上(等价性); 基元中的原子种类,数量、位置依不同晶体而定(结构性);
本课小结


晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞 晶向、晶面、米勒指数
晶体结构数据库

(CCDC) http://www.fiz-karlsruhe.de/icsd.html (ICSD) /AMS/amcsd.php (AMCSD) (COD) /pcd/ (PCD) http://www.cryst.ehu.es/
原胞
维格纳-塞茨(Wigner-Seitz)原胞

维格纳-塞茨(WS)原胞 以晶格中某一格点为中心, 作其与近邻格点连线的垂直平分面,这些平面所 围成的以该点为中点的最小体积是属于该点的WS 原胞。

固体物理 晶体结构

固体物理 晶体结构
倒格子: 体心立方结构
第一布里渊区:
以任一倒格点为原点, 共有八个最近邻,即八 个中垂面,围成一个八 面体,但其六个顶角却 被对应于六个次近邻倒 格点的中垂面所截。, 故其第一布里渊区是十 四面体。
例3 体心立方晶格第一布里渊区
倒格子:面心立方结构
第一布里渊区
以任一倒格点为原 点,考虑到离原点最近 的倒格点共有12个,即 作出相应的12个中垂面, 围成一个12面体,因次 近邻倒格点的中垂面并 不切割它,所以其第一 布里渊区的形状就是12 面体。
七个晶系与十四个布拉菲格子关系图
立方晶系
晶体的32种 宏观对称性 类型可以分 成七类,即 七个晶系。 其中每个晶 系包含若干 种点群,它 们具有某些 共同的对称 素。
简单立方 体心立方 面心立方 六角 简单四方 体心四方
六角晶系 四方晶系 三角晶系
三角
简单正交 底心正交 体心正交 面心正交 简单单斜 底心单斜 简单三斜
a1 a2 a3 a2 a1 , a3
三角晶系、四方晶系、六角晶系
三角晶系 三角
四方晶系 简单四方
四方晶系 体心四方
六角晶系 六角 a1 a 2 a 3

a1 a2 a3
120
90
a1 a2 a3
a1 a2 a3

90
C 1 2 3
O
a
1
a
2
OA' 晶向
B
[100]
A
OB' 晶向 [110]
晶向指数
晶向指数
某些晶向只是方向不同,而周期却是相同的,这类 晶向称为等效晶向,用<l1l2l3>表示。如立方晶格中的

固体物理

固体物理

第一章晶体结构⏹布拉菲点阵概念⏹惯用晶胞(单胞)概念⏹初基晶胞(原胞)概念⏹Wigner-Seize晶胞⏹晶体结构基元+点阵=晶体结构⏹简单的晶体结构(1)sc,bcc,fcc结构的特征(2)金刚石结构(3)六角密堆积结构(4)NaCl结构(5)CsCl结构⏹晶列, 晶向, 晶面, 晶面族, 晶面指数, 密勒指数, 晶面间距晶面指数(hkl)的定义和求法方向指数[abc]的定义和求法⏹对称操作⏹7种晶系和14种布拉菲点阵1以堆积模型计算由同种原子构成的同体积的简立方和面心立方晶体中的原子数之比。

2证明立方晶系的晶列[hkl]与晶面族(hkl)正交3某元素晶体的结构为体心立方布拉菲格子,试指出其格点面密度最大的晶面系的密勒指数,并求出该晶面系相邻晶面的面间距4在立方晶胞中画出(122),(001),(10),(210)晶面和[122]5晶体中可以独立存在的8种对称元素是:、、、、、、、。

⏹布拉格定理⏹倒易点阵初基矢量公式⏹布里渊区的求法(二维正方格子和长方格子)⏹实验衍射方法(劳厄法、转动晶体法和粉末法)⏹倒易点阵矢量和晶面指数间的关系1考虑晶体中一组互相平行的点阵平面(hkl),(a)证明倒易点阵矢量G(hkl)=hb1+kb2+lb3垂直于这组平面(hkl);(b)证明两个相邻的点阵平面间的距离d(hkl)为2从体心立方铁的(110)平面来的X-射线反射的布喇格角为22º,X-射线波长λ=1.54Å。

试计算铁的立方晶胞边长;(b)从体心立方结构铁的(111)平面来的反射的布喇格角是多少?答案:a)a=2.91Å;b)θ=27.28º3对于点阵常数为a的二维六角点阵,(a)写出正点阵的初基矢量;(b )计算倒易点阵的初基矢量;(c )画出第一、第二、第三布里渊区;(d )计算第一布里渊区的体积。

4半导体材料Si 和Ge 单晶的晶体点阵类型为 ,倒易点阵类型为 ,第一布里渊区的形状为 ,每个 原子的最近邻原子数为 。

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

固体物理:1-晶体结构-1

固体物理:1-晶体结构-1

1 4
a1
1 4
a2
1 4
a3
晶列、晶向、晶面、及其指数标记
在布拉伐格子中作一簇平行的直线,这些平行直线 可以将所有的格点包括无遗。
—— 在一个平面里,相邻晶列之间的距离相等 —— 每一簇晶列定义了一个方向 —— 晶向
沿晶向到最短的一个格点的位矢
l1a1 l2a2 l3a3
晶向指数 [l1, l2 , l3 ]
Graphene, 石墨烯(2010 Nobel Prize)
布拉维格子(Bravais lattice)
晶体可以看作是在布拉维点阵(Bravais Lattice)的 每一个格点上放上一组基元(Basis )
原胞(元胞,初基元胞) primitive cell
和一个给定格点的最近邻格点的数量为配位数 z
原子球排列为:AB AB AB ……
Be、Mg、Zn、Cd
各种晶格的堆积比
金刚石晶格结构(diamond)
碳原子构成的一个面心立方原胞内还有四个 原子,分别位于四个空间对角线的 1/4处
NaCl晶体的结构 (sodium chloride)
CsCl晶体的结构(cesium chloride)
CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对角线位移1/2 的 长度套构而成
闪锌矿结构 (zinc blende) ZnS
立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
钙钛矿结构 (perovskite)
钙钛矿型的化学式可写为ABO3 —— A代表二价或一价的金属 —— B代表四价或五价的金属 —— BO3称为氧八面体基团, 是钙钛矿型晶体结构的特点
晶体结构1

固体物理学考试重点

固体物理学考试重点

固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。

3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。

4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。

5.点阵:格点的总体称为点阵。

6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。

7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。

8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。

9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。

11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。

CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。

13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。

14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。

固体物理基础第1章-晶体结构

固体物理基础第1章-晶体结构

ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!

数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞

固体物理课件第二章_晶体的结构

固体物理课件第二章_晶体的结构



Na+构成面心立方格子 Cl-也构成面心立方格子
(6) CsCl: 由两个简单立方子晶格彼此沿 立方体空间对角线位移1/2 的长度套构而成
(7) 闪锌矿结构
化合物半导体 —— 锑化铟、砷化镓、磷化铟 面心立方的嵌套
(8) 钙钛矿结构
钛酸钙(CaTiO3) 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)等
面心立方格子:原点和12个近邻格点连线的垂 直平分面围成的正十二面体
体心立方格子:原点和8个近邻格点连线的垂直 平分面围成的正八面体,沿立方轴的6个次近 邻格点连线的垂直平分面割去八面体的六个角, 形成的14面体 —— 八个面是正六边形,六个面是正四边形
§1.2 晶列和晶面
思考: 金刚石为什么有固定的面? 这些面和晶格结构有什么关系?
根据周期性:
f e
k k
ikx
fk e
k
ik ( x na )
f k eikx f k eik( x na)
k k
e
ik na
1
m 0,1,2,
k na k Rn 2m
2 k h Gh a
k=b的波传过一个晶格长度,相位改变2π
晶面:所有结点可以看成分布在一系列相互平 行等距的平面族上,每个平面族称为一个晶面 晶面用法向或晶面指数标志
例:同一个格子,两组不同的晶面族
晶面的性质: –晶格中一族的晶面不仅平行,并且等距 –一族晶面必包含了所有格点 –三个基矢末端的格点必分别落在该族的不 同晶面上(有理指数定理)
晶面(米勒)指数:晶面把基矢 a1 , a2 , a3 分别

《固体物理学》思考题解答参考01第一章_晶体的结构

《固体物理学》思考题解答参考01第一章_晶体的结构

易在晶体生长过程中显露在外表面,所以面指数简单的晶面往往暴露在外表面。
1.2 任何晶面族中最靠近原点的那个晶面必定通过一个或多个基矢的末端吗?
解答:
根据《固体物理学》式(1-10a)
( ) ⎧⎪a1 cos a1, n = h1d ( ) ⎪⎨a2 cos a2 , n = h2d ( ) ⎪
⎪⎩a3 cos a3, n = h3d
原子间距的数量级为10−10 m ,要使原子晶格成为光波的衍射光栅,光波的波长应小于10−10 m 。但可见光
的波长为 (4.0 ∼ 7.6) ×10−7 m ,是晶体中原子间距的 1000 倍。因此,在晶体衍射中,不能用可见光。
1.17 在晶体的 X 射线衍射中,为了实现来自相继晶面的辐射发生相长干涉,对于高指数的晶面,应采用 长的还是短的波长? 解答: 1.18 高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面衍射光弱?为什么? 解答:(参考王矜奉 1.1.14)
如果是立方晶系, cosθ = 1 ,表示平行,即晶列 hkl 垂直于同指数的晶面(hkl)
如果不是立方晶系,例如四方晶系 (α = β = γ = π , a = b ≠ c) 2
cosθ = n ⋅ R = n⋅R
( ) h2 + k 2 + l2
h2 + k2 + l2 × a2 a2 c2
h2a2 + k2a2 + l2c2
1.9 晶面指数为(123)的晶面 ABC 是离原点 O 最近的晶面,OA、OB、和 OC 分别与基矢 a1, a2, a3 重合,
除 O 点外,,OA、OB、和 OC 上是否有格点?若 ABC 的面指数为(234),情况又如何? 解答:参考 1.2.5

固体物理学晶体的结构、性质和能带理论

固体物理学晶体的结构、性质和能带理论
晶格振动是晶体的特性之一。
§1.2 晶体的周期性
一、空间点阵学说 1.空间点阵
为了描述晶体结构的周期性,布拉菲在1848年提 出空间点阵学说,从而奠定了晶体结构几何理论的 基础。
按照空间点阵学说,晶体内部结构是由一些相同 的点子在空间规则地作周期性无限分布所构成的系 统,这些点子的总体称为点阵。
描述晶体结构的空间点阵,可以通过点子的平移 而得到。
实验表明:在晶体中尺寸为微米量级的小晶粒内 部,原子的排列是有序的。在晶体内部呈现的这种 原子的有序排列,称为长程有序。
长程有序是所有晶体材料都具有的共同特征,这 一特性导致晶体在熔化过程中具有一定的熔点。
晶体分为单晶体和多晶体。
* 单晶体( Single Crystal )
单晶体是个凸多面体,围成这个凸多面体的面是 光滑的,称为晶面。
在单晶体内部,原子都是规则地排列的。
* 多晶体( Multiple Crystal )
由许多小单晶(晶粒)构成的晶体,称为多晶体。 多晶体仅在各晶粒内原子才有序排列,不同晶粒内 的原子排列是不同的。
晶面的大小和形状受晶体生长条件的影响,它们 不是晶体品种的特征因素。
例如,岩盐(氯化钠)晶体的外形可以是立方体 或八面体,也可能是立方和八面的混合体,如图所 示。
(a)立方体 (b)八面体
(c) 立方和八面混合体
2.解理(Cleavage)
晶体具有沿某一个或数个晶面发生劈裂的特征, 这种特征称为晶体的解理。解理的晶面,称为解理 面。
解理面通常是那些面与面之间原子结合比较脆弱 的晶面。
有些晶体的解理性比较明显,例如,NaCl晶体等, 它们的解理面常显现为晶体外观的表面。
4.最小内能性
由同一种化学成分构成的物质,在不同的条件下 可以呈现不同的物相,其相应的结合能或系统的内 能也必不相同。

固体物理学第一章 晶体的结构(1)

固体物理学第一章 晶体的结构(1)

1.3 晶向、晶面和它们的标志 晶体周期性的描述通常还要用到:晶列、晶向、晶 面和密勒指数、面间距等概念。
(1)晶列
• 通过Bravias格子的任意两点连一条直线,该直线上包括无限多 个格点,这样的直线称晶列.晶体外观上所见的晶棱为个别晶列。
• 通过其它任一格点可引出与原晶列平行的晶列,这些
相互平行的晶列族将包含全部的格点。 • 晶列的性质:同一晶列族上,格点具有 相同的周期分布 • 通过一个格点可以引出无数晶列,晶列 数目是无限的,(晶列的性质)。
固体由大量原子(离子)组成,1022—1023/cm3。晶体中原子、 离子的排列是有规律的,这种排列方式称固体晶体的结构。固体 的宏观物理性质是由组成材料的[原子、分子和离子]成分和原子 分子的排列方式共同决定的。
可以将固体分为:晶体和非晶体。 晶体:原子严格按一定周期性的规则排列,具有周期性和平移对 称性 ,即长程有序。 非晶:原子排列短程有序,长程无序。 何为长程有序呢?主要是与原子的尺寸相比。 晶体分为:单晶:理想的大块晶体 多晶:有许多晶粒组成的晶体 1984年 D.Shechtman等从实验上发现了具有五重旋转对称性的 不同于晶体和非晶体的固体,称准晶。准晶从结构上讲,其有序 程度是介于晶体和非晶之间的。
(2) 体心立方结构(bcc) • 排列方式:ABABAB….. • a为原子间的距离, 称为晶格常数。对角线距离
0.31ro
a
ro
• 体心立方结构晶体自然界中很多:Li, Na, K,ro 2ro 3
(3)六角密排结构(主要是金属晶体) • 排列方式:ABABAB….. • 层内原子密排列,层之 间原子紧密接触。 • 自然界中。碱土金属Be, Mg 及Zn, Cd, Ti等三十多种晶体

固体物理学:晶体结构

固体物理学:晶体结构

l1 、l2 、l3 为一组整数。
➢ 布拉菲点阵的数学定义
R1,0,2 a1 2a3
确定原点和基矢后,晶格中任一格点都可以用矢量: Rn n1a1 n2a2 n3a3
(n1, n2 , n3, 0,1,2,3,)
a3
a2
a (0,0,0) 1
表示。由于格点周期性排列,从任一格点
Na+ Cl-
Na+周期性排列和Cl-周期性排列 正离子和负离子构成
等同点:正离子或负离子
氯化钠晶体结构
2. 晶格平移矢量
基矢:为了描述点阵而引入
在布拉菲点阵中,人为选取的与晶格维数同 样多的一组矢量,使得晶格中任意两个格点 间的位移矢量(即格矢量)可以表达为该矢
第一章 晶体结构
为什么要研究结构
结构决定了相互作用,相互作用又决 定了运动,不同的运动形式具有不同 的性质,也就是结构决定了性质
§1.1 原子的周期性阵列
1、基元(basis)和点阵(lattice)
晶体结构的最显著特点是周期性。理想情况下,晶体可以 看成是由一“基本结构单元”——基元,在空间无限重复排列 构成的,这种性质称为晶体结构的周期性。〔没有边界,所以 所有的基元都是等同的,如果有边界就不同了。理想晶体与实 际晶体的区别〕
2、原胞体积:
v a1 (a2 a3 ) (矢量的混合积)
3、不同原胞中对应点物理性质 V (r)相同,称为平移对称性,用晶格平移矢量表示为:
V (r Rn ) V (r)
4、原胞的选择是多样的,但体积相同。
a2 1
a1
a2
2
a1
a2 3
a1
基元与原胞的区别
概念不同 基元是具体的原子或原子团,是具体的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B层原子球排列
01_01_一些晶体的实例 —— 晶体结构
C层原子球排列之一 —— 六角密排晶格
01_01_一些晶体的实例 —— 晶体结构
C层原子球排列
原子球排列 —— AB AB AB …… 六角密排晶格结构晶体 Be、Mg、Zn、Cd
01_01_一些晶体的实例 —— 晶体结构
4 面心立方晶格 C层原子球排列之二 —— 面心立方晶格
—— 晶体的晶面组合成晶带 —— 晶面的交线是晶棱
相互平行 —— 方向OO’为晶带的带轴 —— 重要的带轴称为晶轴
01_01_一些晶体的实例 —— 晶体结构
雪花结晶花样 —— 六角形白色结晶体 —— 空气中所含水汽多 少及温度高低等不同,所 形成的雪花的形状也不同
01_01_一些晶体的实例 —— 晶体结构
分别位于四个空间对角线的 1/4处
—— 一个碳原子和其它四个碳 原子构成一个正四面体
—— 金刚石结构的半导体晶体 Ge、Si等
01_01_一些晶体的实例 —— 晶体结构
Diamond Graphite
01_01_一些晶体的实例 —— 晶体结构
Silicon
01_01_一些晶体的实例 —— 晶体结构
01_01_一些晶体的实例 —— 晶体结构
钙钛矿结构 —— 钛酸钙(CaTiO3)结构 晶格 —— Ba、Ti、 OI、 OII、 OIII 各自组成的简立方结 构子晶格套构而成
01_01_一些晶体的实例 —— 晶体结构
钙钛矿结构 —— 氧八面体的排列
01_01_一些晶体的实例 —— 晶体结构
CsCl晶体
01_01_一些晶体的实例 —— 晶体结构
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构
化合物半导体 —— 锑化铟、砷化镓、磷化铟
01_01_一些晶体的实例 —— 晶体结构
4) 钙钛矿结构 钙钛矿结构 —— 钛酸钙(CaTiO3)结构 —— 重要介电晶体 钛酸钡(BaTiO3) 锆酸铅(PbZrO3) 铌酸锂(LiNbO3) 钽酸锂(LiTaO3)
米级范围内变化,没有单晶所特有的各向异性特征
液晶 —— 一些晶体当加热至某一温度T1时 转变为介于固体与液体之间的物质 在一维或二维方向上具有长程有序
—— 当继续加热至温度T2时,转变为液体,用于显示器件
01_01_一些晶体的实例 —— 晶体结构
准晶体 —— 1984 年Shechtman用快速冷却方法制备的 AlMn准晶,结构有别于晶体和非晶体
B层原子球排列
01_01_一些晶体的实例 —— 晶体结构
C层原子球排列
原子球排列 —— ABC ABC ABC …… —— 层的垂直方向是对称性为3的轴,是立方体的空间对角线
面心立方晶格结构晶 Cu、Ag、Au、Al
01_01_一些晶体的实例 —— 晶体结构
5. 金刚石晶格结构 —— 碳原子构成的一个面心立方原胞内还有四个原子
Lattice image of water-quenched Al72Ni20Co8 obtained by the High Angle Annular Dark Field ( HAADF )
存在5重对称轴
01_01_一些晶体的实例 —— 晶体结构
01_01 一些晶体的实例 晶格 —— 晶体中原子排列的具体形式 原子、原子间距不同,但有相同排列规则,这些原子构成 的晶体具有相同的晶格____如Cu和Ag;Ge和Si等等
01_01_一些晶体的实例 —— 晶体结构
体心立方晶格中,A层中原子球的距离等于A-A层之间的 距离,A层原子球的间隙 ——
—— 原子球的半径
—— 体心立方晶格 结构的金属 Li、Na、K Rb、Cs、Fe
01_01_一些晶体的实例 —— 晶体结构
体心立方晶格结构金属 —— Iron
01_01_一些晶体的实例 —— 晶体结构
3 六角密排晶格 原子在晶体中的平衡位置,排列采取尽可能的紧密方式 —— 结合能最低的位置 配位数 —— 一个原子的周围最近邻的原子数
—— 描写晶体中粒子排列的紧密程度
密堆积 —— 晶体由全同一种粒子组成,将粒子看作小圆球 这些全同的小圆球最紧密的堆积
密堆积所对应的配位数 —— 晶体结构中最大的配位数
6. 几种化合物晶体的晶格 1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
01_01_一些晶体的实例 —— 晶体结构
2) CsCl晶体的结构 CsCl结构 —— 两个简单立方子晶格彼此沿立方体空间
对角线位移1/2 的长度套构而成
非晶体 —— 不具备长程有序特点 —— 在凝结过程中不经过结晶的阶段 非晶体中分子与分子的结合是无规则的 Be2O3晶体与Be2O3玻璃的内部结构
01_01_一些晶体的实例 —— 晶体结构
多晶体 —— 由两个以上同种或异种单晶组成的结晶物 质
各单晶通过晶界结合在一起 —— 多晶由成千上万的晶粒构成,尺寸大多在厘米级至微
1 简单立方晶格 —— 原子球在一个平面 内呈现为正方排列
—— 平面的原子层叠加起 来得到简单立方格子
01_01_一些晶体的实例 —— 晶体结构
用圆点表示原子的位置 —— 得到简单立方晶格结构
01_01_一些晶体的实例 —— 晶体结构
2 体心立方晶格 体心立方晶格结构
原子球排列形式
体心立方原子球排列方式表示 —— AB AB AB ……
第一章 晶体结构
晶体 —— 在微米量级的范围是有序排列的 —— 长程有序 —— 熔化过程中,长程有序解体时对应一定的熔点
晶体的规则外形 —— 最显著的特点是晶面有规则、对称地配置 —— 一个理想完整的晶体,相应的晶面的面积相等
01_01_一些晶体的实例 —— 晶体结构
不同生长条件下NaCl晶体的外形___b, c, d
01_01_一些晶体的实例 —— 晶体结构
六角密排
—— 全同小圆球平铺在平面上,任一个球都与6个球相切 每三个相切的球的中心构成一等边三角形
每个球的周围有6个空隙 构成一层 —— A层 第二层是同样的铺排 —— B层
第三层是同样的铺排 —— C层
01_01_一些晶体的实例 —— 晶体结构
A层原子球排列
相关文档
最新文档