初中数学几何的动点问题专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题专题训练
1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.
(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?
解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,
∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.
又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,
∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,
又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4
33
BP t ==秒, ∴515
443
Q CQ v t
=
==厘米/秒. ·
································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15
32104
x x =+⨯, 解得80
3
x =
秒.
∴点P共运动了80
380
3
⨯=厘米.
∵8022824
=⨯+,
∴点P、点Q在AB边上相遇,
∴经过80
3
秒点P与点Q第一次在边AB上相遇.·········································(12分)
3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8),
∴OA=4,OB=8.
由题意,OP=-k,
∴PB=P A=8+k.
在Rt△AOP中,k2+42=(8+k)2,
∴k=-3,∴OP等于⊙P的半径,
∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE=1
2
CD=
3
2
,PD=3,
∴PE=33
.
∵∠AOB=∠PEB=90°,∠ABO=∠PBE,
∴△AOB∽△PEB,
∴
33
2
,=
45
AO PE
AB PB PB
=即,
∴
315
, PB=
∴
315
8
PO BO PB
=-=-,
∴
315
(0,8)
P-,
∴
315
8 k=-.
当圆心P在线段OB延长线上时,同理可得P(0,-315
-8),
∴k=-315
-8,
∴当k=315
-8或k=-
315
-8时,以⊙P与直线l的两个交点和圆心P为顶点的三
角形是正三角形.
4(09哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO 是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
解:
5(09河北)在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单
位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动
的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距
离是 ;
(2)在点P 从C 向A 运动的过程中,求△APQ
的面积S 与 t 的函数关系式;(不必写出t 的取值范围)
(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成
为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.
解:(1)1,85
;
(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC
,4BC ==, 得
45QF t =.∴4
5
QF t =. ∴14(3)2
5
S t t =-⋅, 即2265
5
S t t =-+.
(3)能.
①当DE ∥QB 时,如图4.
∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB
=
, 即335t t -=
. 解得9
8
t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.
此时∠APQ =90°. 由△AQP ∽△ABC ,得
AQ AP
AB AC
=
, 即353t t -=. 解得158
t =.
图16
P
图
4
P
图5