初中数学几何的动点问题专题练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专题训练

1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,

∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,

∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4

33

BP t ==秒, ∴515

443

Q CQ v t

=

==厘米/秒. ·

································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得15

32104

x x =+⨯, 解得80

3

x =

秒.

∴点P共运动了80

380

3

⨯=厘米.

∵8022824

=⨯+,

∴点P、点Q在AB边上相遇,

∴经过80

3

秒点P与点Q第一次在边AB上相遇.·········································(12分)

3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8),

∴OA=4,OB=8.

由题意,OP=-k,

∴PB=P A=8+k.

在Rt△AOP中,k2+42=(8+k)2,

∴k=-3,∴OP等于⊙P的半径,

∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P

在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE=1

2

CD=

3

2

,PD=3,

∴PE=33

.

∵∠AOB=∠PEB=90°,∠ABO=∠PBE,

∴△AOB∽△PEB,

33

2

,=

45

AO PE

AB PB PB

=即,

315

, PB=

315

8

PO BO PB

=-=-,

315

(0,8)

P-,

315

8 k=-.

当圆心P在线段OB延长线上时,同理可得P(0,-315

-8),

∴k=-315

-8,

∴当k=315

-8或k=-

315

-8时,以⊙P与直线l的两个交点和圆心P为顶点的三

角形是正三角形.

4(09哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO 是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);

(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

解:

5(09河北)在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单

位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动

的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距

离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ

的面积S 与 t 的函数关系式;(不必写出t 的取值范围)

(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成

为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.

解:(1)1,85

(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC ==, 得

45QF t =.∴4

5

QF t =. ∴14(3)2

5

S t t =-⋅, 即2265

5

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB

=

, 即335t t -=

. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

图16

P

4

P

图5

相关文档
最新文档