八年级几何之动点问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学动点几何问题
※动点求最值:
两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点)
例1、以正方形为载体如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是
例2、以直角梯形为载体如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P 在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为
一定两动型(“一个定点”+“两个动点”)
例3、以三角形为载体如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是
例4、以正方形、圆、角为载体正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是
例5、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上的一动点,PA+PC
的最小值是
例6、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 .
例7:在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积;
(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半?
(3)在第(2)问题前提下,P,Q两点之间的距离是多少?A
C B
例8:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.(1)求边的长; (2)当为何值时,与相互平分;
(3)连结设的面积为求与的函数关系式,求为何值时,有最大值?求最大值?
ABCD 906DC AB A AD ∠==∥,°,4DC =BC 34i =∶,P A AB B Q B B C D →→D t BC t PC BQ PQ ,PBQ △y ,y t t y 图(3)
C
D
A
B
Q
P E
※动点构成特殊图形
例9、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.
例10、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;
(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.
①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;
②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
A D E B
F
C
图4(备
A
D E
B
F C
图5(备
A D E
B
F C 图1 图2 A D E B
F C P N
M
图3 A D E
B
F
C
P N M
(第25
例11、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90
AEF
∠=,且EF交正方形外角DCG
∠的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF
△≌△,所以AE EF
=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C 外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A D
F
C G
E
B
图1A D
F
C G
E
B
图2
A D
F
C G
E
B
图3
例12、如图,在Rt△ABC中,∠B=90°,BC C=30°.点D从点C出发沿CA方向
以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.