高等数学同济第七版第十二章课后习题答案
高等数学(同济第七版下)课后习题及解答
![高等数学(同济第七版下)课后习题及解答](https://img.taocdn.com/s3/m/aad6f101c281e53a5802ffa6.png)
1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM =.故DC DM MC MB AM AB =+=+=.即DC AB //且|AB |=|DC |,因此四边形ABCD是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c ,BC =a 表向量A D 1,A D 2,A D 3,A D4.证如图8-2,根据题意知511=BD a,5121=D D a,5132=D D a,5143=D D a,故A D 1=-(1BD AB +)=-51a -cA D 2=-(2BD AB +)=-52a -c A D 3=-(3BD AB +)=-53a -c A D 4=-(4BD AB +)=-54a -c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为a a ,故平行向量a 的单位向量为±a a =111±(6,7,-6)=⎪⎭⎫ ⎝⎛-±116,117,116,其中11)6(76222=-++=a .6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面 上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22=+-,点M 到y 轴的距离为d 2=415422=+,点M 到z 轴的距离为d 3=525)3(422==-+.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C,)2()1(3222-+-+=z y,)2()2(4222++++=z y.)1()5(22-+-=z y==222222)2()2(4)2()1(3++++=-+-+z y z y 22)1()5(-+-=z y ,即.)1()5()2()1(9,)2()2(16)2()1(922222222-+-=-+-+++++=-+-+z y z y z y z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222==-+++-==-+-+-==-+--+-=.+==故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),2412-1-222==++=)()(.其方向余弦分别为cos α=-21,cos β=-22,cos γ=21.方向角分别为3,43,32πγπβπα===.16.设向量的方向余弦分别满足(1)cos α=0;(2)cos β=1;(3)cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos α=0得知2πα=,故向量与x 轴垂直,平行于yOz 面.(2)由cos β=1得知β=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos α=cos β=0知2πβα==,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3π,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos θ=4∙cos 3π=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a -+=--=2,23,求(1)b a b a ⨯⋅及;(2)b a 2b 3a 2-⨯⋅及)(;(3)b a ,的夹角的余弦.解(1)),(),,(1-2,12-1-3⋅=⋅b a ,)()()(31-2-21-13=⨯+⨯+⨯==⨯b a 121213---kj i =(5,1,7).(2)1836)(63)2(-=⨯-=⋅-=⋅-b a b a )14,2,10()7,1,5(2)(22==⨯=⨯b a b a (3222222)1(21)2()1(33),cos(-++-+-+=⋅=b a b a b a 21236143==2.设c b a ,,为单位向量,满足.,0a c c b b a cb a ⋅+⋅+⋅=++求解已知,0,1=++===c b a c b a 故0=++⋅++)()(c b a c b a .即0222222=⋅+⋅+⋅+++a c c b b a c b a .因此23-21222=++-=⋅+⋅+⋅)(c b a a c c b b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M ⨯与3221,M M M M 同时垂直,故所求向量可取为M M M M a =)(由3221M M M M ⨯=220142--k j i=(6,-4,-4),17268)4()4(6222==-+-+=⨯知).172,172,173()4,4,6(1721--±=--±=a 4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ∙21M M =(0,0,-980)∙(-2,3,-6)=5880(J).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1θ的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2θ的力F 2作用着(图8-6),问1θ,2θ,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin 222111=-θθx F x F ,即222111sin sin θθx F x F =.6.求向量),(4,3-4=a在向量)(1,2,2=b 上的投影.解236122)1,2,2()4,3,4(Pr 222==++⋅-=⋅=b b a a j b .7.设)4,1,2(),2,5,3(=-=b a,问μλ与有怎样的关系,能使b a μλ+与z 轴垂直?解b a μλ+=λ(3,5,-2)+μ(2,1,4)=(μλμλμλ42,5,23+-++).要b a μλ+与z 轴垂直,即要(b a μλ+)⊥(0,0,1),即(b a μλ+)∙(0,0,1)=0,亦即(μλμλμλ42,5,23+-++)∙(0,0,1)=0,故(μλ42+-)=0,因此μλ2=时能使b a μλ+与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2π,只要证明0=⋅BCAC 即可.由BC AC ⋅=)()(OC BO OC AO +⋅+=BO OC OC AO BO AO ⋅+⋅+⋅=0=+⋅-⋅+OC AO OC AO .故BC AC⊥,∠ACB为直角.9.已知向量j i c k j i b k j i a 23,32-=+-=+-=和,计算:(1)b c a c b a )()(⋅-⋅(2))()(c b b a +⨯+(3)cb a ⋅⨯)(解(1)8)3,1,1()1,3,2(=-⋅-=⋅ba ,8)0,2,1()1,3,2(=-⋅-=⋅c a ,b c a c b a )()(⋅-⋅)24,8,0()3,1,1(8)0,2,1(8--=---=k i 248--=.(2)b a +=(2,-3,1)+(1,-1,3)=(3,-4,4),c b +=(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a +⨯+332443--=kj i k j --=--=)1,1,0(.(3)c b a ⋅⨯)(.2021311132=---=10.已知k j OBk i OA 3,3+=+=,求△OAB 的面积.解由向量积的几何意义知S △OAB⨯)1,3,3(310301--==⨯kj i OB OA,⨯191)3()3(22=+-+-=S △OAB219=11.已知),,(),,,(),,,(z y x z y x z y x c c c c b b b b a a a a ===,试利用行列式的性质证明:ba c a cbc b a ⋅⨯=⋅⨯=⋅⨯)()()(证因为,)(z yxz y xz y xc c c b b b a a a cb a =⋅⨯zyxz y x z y x a a a c c c b b b a c b =⋅⨯)(=⋅⨯b a c )(zyxz yxz y xb b b a a ac c c ,而由行列式的性质知z yxz y x z y x c c c b b b a a a z yx z y x z y x a a a c c c b b b ==zyxz y x z y x b b b a a a c c c ,故b ac a c b c b a ⋅⨯=⋅⨯=⋅⨯)()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ++≥++++,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量=a (321,,a a a ),=b (321,,b b b ).由),cos(b a b a ba =⋅b a ≤,从而232221232221332211b b b a a a b a b a b a ++++≤++,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a ==时,上述等式成立.1.求过点(3,0,-1)且与平面012573=-+-z y x 平行的平面方程.解所求平面与已知平面012573=-+-z y x 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573=++-D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573=-+-z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)-=OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692=+-+D z y x .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692=--+z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111=+---+----+--z y x ,得023=--z y x ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(==i z y x M i i i i 为平面上已知点.由,0)(31211=⨯⋅M M M M MM 即,0131313121212111=---------z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522=++-z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,θθθ.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(cos cos 2221=⋅+-+⋅-=⋅==k n k n γθ,3213)0,0,1()1,2,2(cos cos 2=⋅⋅-=⋅==i n i n αθ3213)0,1,0()1,2,2(cos cos 3-=⋅⋅-=⋅==j n j n βθ.6.一平面过点(1,0,-1)且平行于向量)1,1,2(=a 和)0,1,1(-=b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112-=-=⨯=kj i b a n .故所求平面为0)1(3)0(1)1(1=+--⋅+-⋅z y x ,即043=--+z y x .7.求三平面322,02,13=++-=--=++z y x z y x z y x 的交点.解联立三平面方程.322,02,13=++-=--=++z y x z y x z y x 解此方程组得.3,1,1=-==z y x故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0=+D By .将点(2,-5,3)代入,得05=+-D B ,即B D 5=.因此所求平面方程为05=+B By ,即05=+y .(2)所求平面过z 轴,故设所求平面为0=+By Ax .将点(-3,1,-2)代入,得03=+-B A ,即A B 3=.因此所求平面方程为03=+Ay Ax ,即03=+y x .(3)所求平面平行于x 轴,故设所求平面方程为0=++D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2=+-D C 及07=++D C B .D B D C 29,2-==.因此,所求平面方程为0229=++-D z DDy ,即029=--z y .9.求点(1,2,1)到平面01022=-++zy x 的距离.解利用点),,(00o o z y x M 到平面0=+++D Cz By Ax 的距离公式222000C B A DCz By Ax d +++++=.1332211012221222=-=++-⋅+⋅+=1.求过点(4,-1,3)且平行于直线51123-==-z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(=s ,直线方程即为531124-=+=-z y x .2.求过两点)1,2,3(1-M 和)2,0,1(2-M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21-=-----==M M s ,因此所求直线方程为112243-=+=--z y x .3.用对称式方程及参数方程表示直线.42,1=++=+-z y x z y x 解根据题意可知已知直线的方向向量112111-=kj i s ).3,1,2(-=取x=0,代入直线方程得.4,1=+=+-z y z y 解得.25,23==z y 这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320-=-=--z y x 参数方程为.325,23,2t z t y t x +=+=-=注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742=+-+=-+-z y x z y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421-=--==kj i s n 故所求平面方程为.0)3(11)0(14)2(16=++-+--z y x 即.065111416=---z y x 5.求直线0123,09335=-+-=-+-z y x z y x 与直线01883,02322=-++=+-+z y x z y x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351-=--=k j i s ),10,5,10(1831222-=-=kj i s 因此,两直线的夹角的余弦212121),(cos cos s s s s s s ⋅== .010)5(10)1(4310154103222222=+-+-++⨯-⨯-⨯=6.证明直线72,72=++-=-+z y x z y x 与直线02,8363=--=-+z y x z y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121---=---==--=kj i s k j i s 由123s s -=知两直线互相平行.7.求过点(0,2,4)且与两平面12=+zx 和23=-z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(31020121-=-=⨯=kj i n n s 故所求直线方程为.143220-=-=-z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b z y a z x=-=+将点(0,2,4)代入上式,得.10,8-==b a 故所求直线为.103,82-=-=+z y z x 8.求过点(3,1,-2)且通过直线12354z y x =+=-的平面方程.解利用平面束方程,过直线12354z y x =+=-的平面束方程为,0)23(2354=-+=+=-z y y x λ将点(3,1,-2)代入上式得.2011=λ因此所求平面方程为,0)23(20112354=-+=+=-z y y x即.0592298=---z y x 9.求直线0,03=--=++z y x z y x 与平面01=+--z y x 的夹角.解已知直线的方向向量),2,4,2(111311-=--=k j is 平面的法向量).1,1,1(--=n 设直线与平面的夹角为,ϕ则,0)1()1(1)2(42)1()2()1(412),cos(sin 222222=-+-+-++-⋅-+-⋅+⋅=⋅==n s n s s n ϕ即.0=ϕ10.试确定下列各组中的直线和平面间的关系;(1)37423z y x =-+=-+和3224=--z y x ;(2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和.3=++z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,ϕ且ns n s s n ⋅==),cos(sin ϕ.(1)),2,2,4(),3,7,2(--=--=ns,0)2()2(43)7()2()2(3)2()7(4)2(sin 222222=-+-+⋅+-+--⋅+-⋅-+⋅-=ϕ则.0=ϕ故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(-=-=n s 由于n s =或,17)2(37)2(377)2()2(33sin 222222=+-+⋅+-+⋅+-⋅-+⋅=ϕ知2πϕ=,故直线与平面垂直.(3)),1,1,1(),4,1,3(=-=n s 由于0=⋅n s 或,0111)4(131)4(1113sin 222222=++⋅-++⋅-+⋅+⋅=ϕ知,0=ϕ将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012=-+-=+-+z y x z y x 和0,02=+-=+-z y x z y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121--=--=--=--=kj i s k j is取),1,1,1(11032121--=----=⨯=k j i s s n 则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1=-⋅--⋅+-⋅-z y x 即.0=+-z y x 12.求点(-1,2,0)在平面012=+-+z y x 上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012=+-+z y x 垂直的直线为,102211--=-=+z y x 将它化为参数方程,,22,1t z t y t x -=+=+-=代入平面方程得,01)()22(21=+--+++-t t t 整理得32-=t .从而所求点(-1,2,0)在平面012=+-+z y x 上的投影为(32,32,35-).13.求点P (3,-1,2)到直线042,01=-+-=+-+z y x z y x 的距离.解直线的方向向量).3,3,0(112111--=--=kj i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x -=--==(1)又,过点P (3,-1,2),以)3,3,0(--=s 为法向量的平面方程为,0)2(3)1(3=--+-z y 即.01=-+z y (2)将式(1)代入式(2)得21-=t ,于是直线与平面的交点为(23,21,1-),故所求距离为.223)232()211()13(222=-++-+-=d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L的距离d =.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s ⨯表示以M M 0,s 为邻边的平行四边形的面积.而表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是d =15.求直线0923,042=---=+-z y x z y x 在平面14=+-z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线0923,042=---=+-z y x z y x 的平面束方程为,0)923(42=---++-z y x z y x λ经整理得.09)21()4()32(=--+--++λλλλz y x 由,01)21()1()4(4)32(=⋅-+-⋅--+⋅+λλλ得1113-=λ.代入平面束方程,得.0117373117=--+z y x 因此所求投影直线的方程为.14,0117373117=+-=--+z y x z y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0=-++=====z y x y x z y x(2).4,2,1,0,0yz y x z x =====解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x =-+-+-,将已知点的坐标代入上式,得,2222R c b a =++(1),)4(2222R c b a =++-(2),)3()1(2222R c b a =+-+-(3)2222)4(R c b a =+++,(4)联立(1)(2)得,2=a 联立(1)(4)得,2-=c 将2=a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222=++-+-z y x 其中球心坐标为),2,1,2(-半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x =++-+-球面经过原点,故,14)20()30()10(2222=++-+-=R 从而所求球面方程为.14)2()3()1(222=++-+-z y x 3.方程0242222=++-++z y x z y x 表示什么曲面?解将已知方程整理成,)6()1()2()1(2222=++++-z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222=-+-+--+-+-z y x z y x 化简整理得.)2932()34()1()32(2222=+++++z y x 它表示以(34,1,32---)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y +±代替抛物线方程x z 52=中的z ,得222)(z y +±x 5=,即x z y 522=+.注xOz 面上的曲线0),(=z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22=+±z y x F .6.将xOz 坐标面上的圆922=+z x 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x +±代替圆方程922=+z x 中的x ,得,9)(2222=++±z y x 即.9222=++z y x7.将xOy 坐标面上的双曲线369422=-y x分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy +±代替双曲线方程369422=-y x中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222=+±-z y x 即.36)(94222=+-z y x 以22zx +±代替双曲线方程369422=-y x中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222=-+±y z x 即.369)(4222=-+y z x 8.画出下列各方程所表示的曲面:(1);)2()2(222a y a x =+-(2);19422=+-y x (3);14922=+z x (4);02=-z y (5)22x z-=.解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2=x (2);1+=x y (3);422=+y x(4).122=-y x解(1)2=x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1+=x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422=+y x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为0,422==+z y x 的圆柱面.(4)122=-y x在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为,122==-z y x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222=++z y x (2);14222=+-z y x (3);1222=--z y x (4).)(222y x a z+=-解(1)1994222=++z y x 表示xOy 面上的椭圆19422=+y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422=+z x 绕x 轴旋转一周而生成的旋转曲面.(2)14222=+-z y x 表示xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422=+-z y 绕y 轴旋转一周而生成的旋转曲面.(3)1222=--z y x表示xOy 面上的双曲线122=-y x 绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122=-z x 绕x 轴旋转一周而生成的旋转曲面.(4)222)(y x a z+=-表示xOz 面上的直线a x z +=或a x z +-=绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a y z+=或a y z +-=绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222=++z y x(2);44222=--z y x(3).94322y x z +=解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022=+=-=-==y x y x y x z z(在第一卦限内);(2)222222,,0,0,0R z y R y x z y x =+=+===(在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1==y x (2);0,422=---=yxyx z(3).,222222a z x a y x =+=+解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15-=+=x y x y (2).3,19422==+y y x 解(1)32,15-=+=x y x y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422==+y y x 在平面解析几何中表示椭圆19422=+y x 与其切线3=y 的交点,即切点.在空间解析几何中表示椭圆柱面19422=+y x 与其切平面3=y 的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222=-+=++y z x z y x 的柱面方程.解在,162222222=-+=++y z x z y x 中消去x ,得,16322=-z y 即为母线平行于x 轴且通过已知曲线的柱面方程.在,162222222=-+=++y z x z y x 中消去y ,得,162322=+z x 即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影的方程.解在1,9222=+=++z x z y x 中消去z ,得,9)1(222=-++x y x 即,82222=+-y x x它表示母线平行于z轴的柱面,故0,82222==+-z y x x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x y z y x ==++(2).0,4)1()1(222==+++-z z y x解(1)将x y=代入,9222=++z y x 得,9222=+z x 取,cos 23t x =则,sin 3t z =从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23===(t ≤0˂π2)(2)将z=0代入,4)1()1(222=+++-z y x 得,3)1(22=+-y x 取,cos 31t x =-则,sin 3t y =从而可得该曲线的参数方程0,sin 3,cos 31==+=z t y t x (t ≤0˂π2)6.求螺旋线θθθb z a y a x ===,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由θθsin ,cos a y a x==得,222a y x =+故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222==+z a y x 由θθb z a y ==,sin 得bza y sin =,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为0,sin ==x bza y 由θθb z a x ==,cos 得,cos b za x =故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos ==y bza x 7.求上半球2220y x a z --≤≤与圆柱体a ax y x (22≤+>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax y x ≤+22,而由axy x y x a z =+--=22222,得.2ax a z -=故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax a z-=2所围成的区域.8.求旋转抛物面)40(22≤≤+=z y x z在三坐标面上的投影解联立422=+=z y x z ,得422=+y x.故旋转抛物面在xOy面上的投影为.0,422=≤+z y x 如图8-17.联立0,22=+=x y x z 得,2y z=故旋转抛物面在yOz 面上的投影为2y z=及4=z 所围成的区域.同理,联立0,22=+=y y x z 得,2x z =故旋转抛物面在xOz 面上的投影为2x z=及4=z 所围成的区域.。
高等数学第七版教材答案详解
![高等数学第七版教材答案详解](https://img.taocdn.com/s3/m/d1af6f45b42acfc789eb172ded630b1c59ee9bff.png)
高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。
如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。
首先,我将给出每章节的课后习题答案。
在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。
你可以根据自己的需要,选择性地查看想要解答的习题。
接下来是课后思考题答案的解析。
这些思考题往往比较有挑战性,需要一定的思考和推导。
我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。
最后,我将给出课后习题的详细解析。
在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。
通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。
总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
高等数学同济第七版上册课后习题答案
![高等数学同济第七版上册课后习题答案](https://img.taocdn.com/s3/m/a4dbba284431b90d6c85c7ff.png)
习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
高等数学同济第七版第十二章课后习题答案
![高等数学同济第七版第十二章课后习题答案](https://img.taocdn.com/s3/m/2497345fc77da26924c5b034.png)
…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;
•
・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解
同济高等数学下册课后题答案详解
![同济高等数学下册课后题答案详解](https://img.taocdn.com/s3/m/3492fa7b0a1c59eef8c75fbfc77da26925c59686.png)
第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。
同济大学《高等数学》第七版上、下册答案(详解),DOC
![同济大学《高等数学》第七版上、下册答案(详解),DOC](https://img.taocdn.com/s3/m/5fcea108eefdc8d377ee322c.png)
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
高等数学(同济第七版下)课后习题及解答
![高等数学(同济第七版下)课后习题及解答](https://img.taocdn.com/s3/m/f25540364431b90d6c85c772.png)
1.设u=a-b+2c,v=-a+3b-c.试用a,b,c表示2u-3v.解2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c.2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD中AC与BD交于M,已知AM=MC,DM MB.故AB AM MB MC DM DC.即AB//DC且|A B|=|DC|,因此四边形ABCD是平行四边形.3.把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各分点与点A连接.试以AB=c,BC=a表向量D1A,D2A,D3A,D A4.证如图8-2,根据题意知1 BD a,151D1D a,251D2D a,351 D3D a,45故D A1=-(AB BD1)=- 15a-cD2A=-(AB BD2)=- 25a-cD3A=-(AB BD3)=- 35a-cD4 A=-(AB BD)=-445a-c.4.已知两点M1(0,1,2)和M2(1,-1,0).试用坐标表示式表示向量M1M2及-2M1M2.解M1M2=(1-0,-1-1,0-2)=(1,-2,-2).-2M1M2=-2(1,-2,-2)=(-2,4,4).5.求平行于向量a=(6,7,-6)的单位向量.解向量a的单位向量为aa,故平行向量a的单位向量为a a =1(6,7,-6)=1167,,1111611 ,22 2其中a67(6)11.6.在空间直角坐标系中,指出下列各点在哪个卦限?A(1,-2,3),B(2,3,-4),C(2,-3,-4),D(-2,-3,1).解A点在第四卦限,B点在第五卦限,C点在第八卦限,D点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A(3,4,0),B(0,4,3),C(3,0,0),D(0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy面上的点的坐标为(x0,y0,0),xOz面上的点的坐标为(x0,0,z0),yOz面上的点的坐标为(0,y0,z0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x轴上的点的坐标为(x0,0,0),y轴上的点的坐标为(0,y0,0),z轴上的点的坐标为(0,0,z0).A点在xOy面上,B点在yOz面上,C点在x轴上,D点在y轴上.8.求点(a,b,c)关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a,b,c)关于xOy面的对称点(a,b,-c),为关于yOz面的对称点为(-a,b,c),关于zOx面的对称点为(a,-b,c).(2)点(a,b,c)关于x轴的对称点为(a,-b,-c),关于y 轴的对称点为(-a,b,-c),关于z轴的对称点为(-a,-b,c).(3)点(a,b,c)关于坐标原点的对称点是(-a,-b,-c). 9.自点P(0x0,y0,z0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P0F为点P0关于xOz 面的垂线,垂足F坐标为(x0,0,z0);P0D为点P0关于xOy面的垂线,垂足D坐标为(,,0)x0y;P0E为点P0关于yOz面的垂线,垂足E坐标为(0),y0,z o.P0A为点P0关于x轴的垂线,垂足A坐标为(x o,0,0);P0B为点P0关于y轴的垂线,垂足B坐标为(0,y0,0);P0C为点P0关于z轴的垂线,垂足C坐标为(0,0,)z.10.过点P(0x0,y0,z0)分别作平行于z轴的直线和平行于xOy面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P0且平行于z轴的直线l上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P0且平行于xOy面的平面上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a的正方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在x轴和y轴上,求它各顶点的坐标.2 解 如图 8-5,已知 AB=a ,故 OA=OB=a2,于是各顶点的坐 22 2 标分别为 A0 0)(a ,, ,B ((0,a ,0)),C (-a222,0,0),D 2 (0,- a 2 2 ,0),E ( a 2 2 ,0,a ),F (0, a 2 2 ,a ),G (- a2, 2 0,a ),H (0,- a 2,a ). 12.求点 M (4,-3,5)到各坐标轴的距离 .2 2解 点 M 到 x 轴的距离为 d 1=( 3) 534,点 M 到 y 22轴 的 距 离 为 d 2=4541, 点 M 到 z 轴 的 距 离 为 22.d 3=4 ( 3) 25 513.在 yOz 面上,求与三点 A (3,1,2),B (4,-2,-2),C (0,5, 1)等距离的点 .解 所求点在 yOz 面上,不妨设为 P (0,y ,z ),点 P 与三点 A ,2y 2 z 2B ,C 等距离, PA 3( 1) ( 2) , PB2 y 2 z 4 ( 2)(2) 2,PC(y 2z1) 2 .5)(由 PAPBPC 知,2( 1)2 ( 2)2 42 (2)( 2)223yz yz2( 1)2( y 5)z ,即9 ( y 1) 9 ( y 1) 2 2 2 (z 2) 16 ( y 2) 22 2 (z 2) ( y 5)( z( z21) . 2 2), 解上述方程组,得 y=1,z=-2.故所求点坐标为( 0,1,-2). 14.试证明以三点 A (4,1,9),B (10,-1,6),C (2,4,3)为顶 点的三角形是等腰直角三角形 .证 由AB (10 24)( 1 1) 2( 6 29)7, AC (2 24)( 4 1)22(3 9)7,BC(2 210)(4 1) 2(3 26)98 7 2 222知.ABAC 及 BCABAC 故△ABC 为等腰直角三角形.15. 设已知两点为 M 1(4, 2 ,1),M 2(3,0,2),计算向量 M 1M 2的模、方向余弦和方向角 .解 向量M 1M=(3-4,0-2 ,2-1)=(-1,- 2 ,-1),2其模-1 2- 2 2 12 4 2M1M()().其方向余弦分2别为cos=- 12,cos=-22,cos=12.方向角分别为23,34,3.16.设向量的方向余弦分别满足(1)cos=0;(2)cos=1;(3)cos=cos=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos=0得知,故向量与x轴垂直,平行于2yOz面.(2)由cos=1得知=0,故向量与y轴同向,垂直于xOz面.(3)由cos=cos=0知,故向量垂直于x轴和y轴,2即与z轴平行,垂直于xOy面.,求r在u轴上的投影.17.设向量r的模是4,它与u轴的夹角为3解已知|r|=4,则Prju r=|r|cos=4?cos 3 =4×12 =2.18.一向量的终点在点B(2,-1,7),它在x轴、y轴和z轴上的投影依次为4,-4和7,求这向量的起点A的坐标.解设A点坐标为(x,y,z),则AB=(2-x,-1-y,7-z),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A点坐标为(-2,-3,0).19.设m=3i+4j+8k,n=2i-4j-7k和p=5i+j-4k.求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设a3i j2k,b i2j k,求(1)a b及a b;(2)(-2a)3b及a2b;(3)a,b的夹角的余弦.解(1)a b(3,-1,-2)(1,2,-1)31(-12-2-1 3)()(),i j ka b31 2=(5,1,7).12 1(2)(2a)3b6(a b)6318a2b2(a b)2(5,1,7)(10,2,14)(3 cos(a,b) aabb32(1)(2)12(1)222 232 3 31462212.设a,b,c为单位向量,满足a b c0,求a b b c c a.解已知a b c1,a b c0,故(a b c)(a b c)0.22 2即2220a b c a b b c c a.因此a b b c c a 122 2(a b c)2-323.已知M1(1,-1,2),M2(3,3,1)M3(3,1,3).求与M1M2,M2M3同时垂直的单位向量.解M1M2=(3-1,3-(-1),1-2)=(2,4,-1)M 2M=(3-3,1-3,3-1)=(0,-2,2)3由于 M 1M 2 M 2M 3 与M 1M 2,M 2M 3 同时垂直,故所求向量可取为a(M M1 2M M12M M23M M2)3,ij k 由M 1M 2 M 2M 3 =2 4 1 022=(6,-4,-4),M 1M M M2 232 6 ( 24) ( 24)68 2 17 132 2知). a(6, 4, 4)(, , 2 171717174. 设质量为 100kg 的物体从点 M1(3,1,8)沿直线移动到点 M2(1,4,2), 计算重力所作的功(坐标系长度单位为 m ,重力方向为 z 轴负方向).解M 1M 2 =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F?M 1M 2 =(0,0,-980)?(-2,3 ,-6 )=588(0 J ).1处,有一与O P 1 5.在杠杆上支点 O 的一侧与点 O 的距离为 x 1 的点 P 成角 1 的力 F1作用着;在 O 的另一侧与点 O 的距离为 x 2 的点 P2处,有一与OP2成角2的力F2,F1,F2作用着(图8-6),问1,2,x1,x2符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为F1x sin1F2x2sin20,1即F1x1sin1F2x2sin2.6.求向量a(4,-3,4)在向量b(2,2,1)上的投影.a b(4,3,4)(2,2,1) 6解 2Pr j b a.22 2b 322 17.设a(3,5,2),b(2,1,4),问与有怎样的关系,能使a b与z轴垂直?解a b=(3,5,-2)+(2,1,4)=(32,5,24).要a b与z轴垂直,即要(a b)(0,0,1),即(a b)?(0,0,1)=0,亦即(32,5,24)?(0,0,1)=0,故(24)=0,因此2时能使a b与z轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB是圆O的直径,C点在圆周上,要证∠ACB=,2 只要证明AC BC0即可.由AC BC=(AO OC)(BO OC)2AO BO AO OC OC BO OC =2 2=0AO AO OC AO OC OC.故AC BC,∠ACB为直角.9.已知向量a2i3j k,b i j3k和c i2j,计算:(1)(a b)c(a c)b(2)(a b)(b c)(3)(a b) c 解(1)a b(2,3,1)(1,1,3)8,a c(2,3,1)(1,2,0)8,(a b)c(a c)b8(1,2,0)8(1,1,3)(0,8,24)8i24k.(2)a b=(2,-3,1)+(1,-1,3)=(3,-4,4),b c=(1,-1,3)+(1,-2,0)=(2,-3,3),i j k(a b)(b c)344(0,1,1)j k.23323 1(3)(ab) c2. 1 1 3 12 010. 已知OA i 3k,OB j 3k ,求△OAB 的面积.解 由向量积的几何意义知1△OAB= OA OB S2,ij kOA OB 1 0 3 ( 3, 3,1) , 0 1 32 2OA OB( 3) ( 3) 119S△OAB19 211. 已知( , , ), ( , , ), ( , , )a a x a a bb b b cc c c ,试利用yzxyzxyz行列式的性质证明:(a b) c (b c) a (c a) baxa yazbxbybz证因为(), a b c bbbx y z (b c) acxcyczcxc yc zaxayazcx cy cz(c a) baxayaz,bxbybz而由行列式的性质知a x a y a zb x b y b zc x c y cz b x b y b z c x c y c z = a x a y a z ,故 c x c y c z a x a y a zb x b ybz(a b) c (b c) a (c a) b .12. 试用向量证明不等式:222222a 1aabbba ba b a b ,231231 12 23 3其中a 1,a 2 ,a 3,b 1,b 2,b 3 为任意实数 . 并指出等号成立的条件.证 设向量 a ( a 1,a ,a ),b (b 1,b 2,b 3).23由ab a b cos(a, b ) a b ,从而222222 a 1ba ba baaa bbb ,1 2 23 3121 233当a 1,a 2 ,a 3与b 1,b 2 ,b 3 成比例,即a1b1a 2b2a 3b3时,上述等式成立.1.求过点(3,0,-1)且与平面3x7y5z120平行的平面方程.解所求平面与已知平面3x7y5z120平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为3x7y5z D0.将点(3,0,-1)代入上式得D=-4.故所求平面方程为3x7y5z40.2.求过点M0(2,9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解OM(2,9,6.所求平面与0)O M垂直,可取n=OM0,0设所求平面方程为2x9y6z D0.将点M0(2,9,-6)代入上式得D=-121.故所求平面方程为2x9y6z1210.3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.x1y1z 1解由021212 1,得x3y2z0,11112 1即为所求平面方程.注设M(x,y,z)为平面上任意一点,M(x,y,z)(i1,2,3)i为i i i平面上已知点.由()0,M1M M M M M即1213x x1 y y1z z1x 2 x1y2y1z2z10,x 3 x1y3y1z3z1它就表示过已知三点M i(i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a)—(g). (1)x=0表示yOz坐标面.1(2)3y-1=0表示过点(,00,)且与y轴垂直的平面.3(3)2x-3y-6=0表示与z轴平行的平面.(4)x-3y=0表示过z轴的平面.(5)y+z=1表示平行于x轴的平面.(6)x-2z=0表示过y轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面2x2y z50与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy,yOz,zOx的夹角分别为1,2,3.则根据平面的方向余弦知cosn kcos1n k(2,222,1)(0,0,1)21( 22)113,cos2cos nnii(2, 2,1)3(1,0,0)123,cos3 cos nnjj(2, 2,1)3(10,1,0)23.6.一平面过点(1,0,-1)且平行于向量a(2,1,1)和b(1,1,0),试求这个平面方程.解所求平面平行于向量a和b,可取平面的法向量i j kn a b211(1,1,3).110故所求平面为1(x1)1(y0)3(z1)0,即x y3z40.7.求三平面x3y z1,2x y z0,x2y2z3的交点.解联立三平面方程x3y z1,2x y z0,x2y2z 3.解此方程组得x1,y1,z 3.故所求交点为(1,-1,3). 8.分别按下列条件求平面方程:(1)平行于xOz面且经过点(2,-5,3);(2)通过z轴和点(-3,1,-2);(3)平行于x轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz面,故设所求平面方程为By D0.将点(2,-5,3)代入,得5B D0,即D5B.因此所求平面方程为By5B0,即y50.(2)所求平面过z轴,故设所求平面为Ax By0.将点(-3,1,-2)代入,得3A B0,即B3A.因此所求平面方程为Ax3Ay0,即x3y0.(3)所求平面平行于x轴,故设所求平面方程为By Cz D0. 将点(4,0,-2)及(5,1,7)分别代入方程得2C D0及B7C D0.C D2, B92D .因此,所求平面方程为9 2DDy z D0,2即9y z20.9.求点(1,2,1)到平面x2y2z100的距离.解利用点(,,)M0x y o z o到平面Ax By Cz D0的距离公式dA xABy2B2CzC2D1 2212 22212210 331.1.求过点(4,-1,3)且平行于直线x3y z21 51的直线方程.解所求直线与已知直线平行,故所求直线的方向向量s(2,1,5),直线方程即为x 4y1z 21 5 3 .2.求过两点M1(3,2,1)和M2(1,0,2)的直线方程.解取所求直线的方向向量s M1M(13,0(2),21)(4,2,1),2因此所求直线方程为x 3y2z4 2 1 1 .3.用对称式方程及参数方程表示直线x y z1,2x y z 4.解根据题意可知已知直线的方向向量i j ks111(2,1,3).21 1取x=0,代入直线方程得yzy z1,4.3 5解得.y,z这2 2样就得到直线经过的一点(3 50,,).因此直线的对称式方程为2 2x30y z22 1 352 .参数方程为x2t,y 32t ,z 523t.注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线x2y4z70,3x5y2z10垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即i j kn s124(16,14,11),35 2故所求平面方程为16(x2)14(y0)11(z3)0.即16x14y11z650.5.求直线5x3x3y2y3zz91 00,与直线2x3x28yyzz23180,的夹角的余弦.解两已知直线的方向向量分别为i j k i j ks533(3,4,1),s221(10,5,10), 1 232138 1因此,两直线的夹角的余弦cos(cos s1,)s2 s1s1s2s22 332410(1)4252101(1025)2100.6.证明直线x 2yz2xyz7,7与直线3x2x6yy 3zz 08,平行.证已知直线的方向向量分别是i j k i j ks 1 121(3,1,5),s2363(9,3,15), 21121 1由s23s1知两直线互相平行.7.求过点(0,2,4)且与两平面x2z1和y3z2平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取i j ks n1 n102(201 32,3,1),故所求直线方程为x 2 0y2z3 14.注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为x2z a,y3z b.将点(0,2,4)代入上式,得a8,b10.故所求直线为x2z8,y3z10.8.求过点(3,1,-2)且通过直线x54y3z2 1的平面方程.解利用平面束方程,过直线x54y3z2 1的平面束方程为x4y3y 3(z)0,52 211将点(3,1,-2)代入上式得.因此所求平面方程为20x4y311y5220 23(z) 0,即8x9y22z590.9.求直线xxyy3zz0,与平面x y z10的夹角.i j k解已知直线的方向向量(2,4,2),s113平面11 1的法向量n(1,1,1).设直线与平面的夹角为,则sin cos(n, s) ssnn 2221244((1)22)21(2)((1) 21)( 21)0,即0.10.试确定下列各组中的直线和平面间的关系;(1)x3y4z27 3和4x2y2z3;(2)x3y2z7 和3x2y7z8;(3)x32y2z134和x y z 3.解设直线的方向向量为s,平面的法向量为n,直线与平面的夹角为,且s nsin cos(n,s).s n (1)s(2,7,3),n(4,2,2),sin ( 2) ( 2 2) ( 4 2 7) ( 7) 2 3 ( 2) 2 4 3 ( ( 2 2)2) ( 2) 20, 则0.故直线平行于平面或在平面上, 现将直线上的点 A (-3,-4,0)代入平面方程,方程不成立 .故点 A 不在平面上,因此直线不在平 面上,直线与平面平行 . (2)s(3, 2,7), n (3, 2,7),由于s n 或sin 2 3 3( 3 2) 2( 2) 2 7 ( 2)2 3 7 ( 7 2) 22 71,知,故直线与平面垂直 .2(3)s( 3,1, 4), n (1,1,1),由于s n 0或sin 2 3 3 2 1 1 ( 1 1 4) 2( 4) 2 1 1 2 1 21 0, 知0,将直线上的点 A (2,-2,3)代入平面方程,方程成立,即点 A 在平面上 .故直线在平面上 . 11.求过点(1,2,1)而与两直线x x2 yy z 1 0, 2x y z z 1 0xy z 00,和 平行的平面的方程.解 两直线的方向向量为i j k i j ks 1 121(1,2,3),s2211(0,1,1), 11111 1i j k取(1,1,1),n s s12 31 201 1则过点(1,2,1),以n为法向量的平面方程为1(x1)1(y2)1(z1)0,即x y z0.12.求点(-1,2,0)在平面x2y z10上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面x2y z10垂直的直线为x 1 1y2z21,将它化为参数方程x1t,y22t,z t,代入平面方程得1t2(22t)(t)10,整理得2t.从而所求点(-1,2,0)在平面x2y z10上的3投影为(53,23,23).13.求点P(3,-1,2)到直线x2xy z 1y z 40,的距离.i j k解直线的方向向量(0,3,3).s11 121 1在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式x 1, y 2 3t,z 3t.(1)又,过点 P (3,-1,2),以s (0, 3, 3)为法向量的平面方程为3(y 1) 3(z 2) 0,即y z 1 0.(2)将式(1)代入式(2)得11 3t,于是直线与平面的交点为 (1, , ),2 2 2故所求距离为 d (321) ( 1 1 2 ) 2 (2 3 2 ) 2322.14.设 M 0 是直线 L 外一点,M 是直线 L 上任意一点,且直线的方向向 量为s ,试证:点 M 0 到直线 L 的距离dM M ss.证 如图 8-9,点 M 0 到直线 L 的距离为 d.由向量积的几何意义知M 0 表示以 M 0M ,s 为邻边的平行四边形的面积 .而M s M 0Mss表示以 s为边长的该平面四边形的高, 即为点 M 0 到直线L 的距离.于是dM 0 Mss.15.求直线2x3x4yy z2z0,9 0在平面4x y z1上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线2x3x4yy z2z0,9 0的平面束方程为2x4y z(3x y2z9)0,经整理得(23)x(4)y(12)z90. 由(23)4(4)(1)(12)10,得1311.代入平面束方程,得17x31y37z1170.因此所求投影直线的方程为17x31y37z1170,4x y z 1.16.画出下列各平面所围成的立体的图形.(1)x0,y0,z0,x2,y1,3x4y2z120;y(2).x0,z0,x1,y2,z4解(1)如图8-10(a);(2)如图8-10(b).1.一球面过原点及A(4,0,0),B(1,3,0)和C(0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2()()2 22(x a)y b z c R,将已知点的坐标代入上式,得2b c R22 2a,(1)2b2c2R2(a4),(2)( 2b2c2R2a1)(3),(3)2b2(4c)2R2a,(4)联立(1)(2)得a2,联立(1)(4)得c2,将a2代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为(x2y2z2)(1)(2) 2 9,其中球心坐标为(2,1,2),半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R为半径的球面方程为(x1)2y z R22 2(3)(2),球面经过原点,故2R (021) ( 0 3)2 2(02) 14,从而所求球面方程为(x1)2(y3)2(z2)214.2y z x y z2 23.方程x2420表示什么曲面?解将已知方程整理成(x2y2z1)(2)( 1) 2 2(6) ,所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(x,y,z),根据题意有2(x0) (y (x22) ( y220)3)((zz220)4)12,化简整理得(x 232y2z)(1)(43)2 (它表示以(23,1,43 2)为球心,以293为25.将xOz坐标面上的抛物线z5x 绕x轴旋转一周,求所生成的旋转曲面的方程.解以2z 22y代替抛物线方程z5x中的z,得22)2(y z5x,即y2z25x.注xOz面上的曲线F(x,z)0绕x轴旋转一周所生成的旋转2z2曲面方程为(,)0F x y.2z26.将xOz坐标面上的圆x9绕z轴旋转一周,求所生成的旋转曲面的方程.解以2y22z2x代替圆方程x9中的x,得9,( 2y22z2x)2y2z2即9.x2y27.将xOy坐标面上的双曲线4x936分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程.解以2z22y2y代替双曲线方程4936x中的y,得该双曲线绕x轴旋转一周而生成的旋转曲面方程为4 2y2z2 x9(2) 36,即4x29(y2z2)36.以2z22y2x代替双曲线方程4936x中的x,得该双曲线绕y轴旋转一周而生成的旋转曲面方程为4( 2z y22 2x)936,即4(x2z2)9y236.8.画出下列各方程所表示的曲面:2y2 a2a x2 2(1));(x)y((2)1;22492z2x(3)1;9 4(4)y2z0;(5)z2x2.解(1)如图8-11(a);(2)如图8-11(b);(3)如图8-11(c);(4)如图8-11(d);(5)如图8-11(e).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x2;(2)y x1;2y22y2(3)4;x(4)x 1.解(1)x2在平面解析几何中表示平行于y轴的一条直线,在空间解析几何中表示与yOz面平行的平面.(2)y x1在平面解析几何中表示斜率为1,y轴截距也为1的一条直线,在空间解析几何中表示平行于z轴的平面.2y2(3) 4x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z轴,准线为2x2y4, z0的圆柱面.(4)x2y21在平面解析几何中表示以x轴为实轴,y轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为2 x2y1,的双曲柱面.z010.说明下列旋转曲面是怎样形成的:2y2z2x(1)1;49922y z2 (2)1;x4(3)x2y2z21;(4)(z a)2x2y2.2y2z22y2 xx解(1)1表示x Oy面上的椭圆 1绕x 499492z2 x轴旋转一周而生成的旋转曲面,或表示xOz面的椭圆 1绕49x轴旋转一周而生成的旋转曲面.2 22y z2y2(2) 1x表示xOy面上的双曲线x1绕y轴4 42y2旋转一周而生成的旋转曲面,或表示yOz面的双曲线 1z4绕y轴旋转一周而生成的旋转曲面.(3)x2y2z21表示xOy面上的双曲线x2y21绕x轴2z2旋转一周而生成的旋转曲面,或表示xOz面的双曲线 1x绕x轴旋转一周而生成的旋转曲面.(4)22 2(z a)x y表示x Oz面上的直线z x a或z x a绕z轴旋转一周而生成的旋转曲面,或表示yOz面的直线z y a或z y a绕z轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1)4x2y2z24;(2)x2y24z24;2y2z x(3).349解(1)如图8-12(a);(2)如图8-12(b);(3)如图8-12(c);12.画出下列各曲面所围立体的图形:(1)z0,z3,x y0,x3y0,x2y21(在第一卦限内);222,22 2 x0,y0,z0,x y R y z R(在第一卦(2)限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1)xy1,2;(2)zx y4 2 x0;y 2 ,(3)2x2x2y2z2a,2a.解(1)如图8-15(a);(2)如图8-15(b);(3)如图8-15(c).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1)yy5x2x1,3;(2)2x4y2y3.91,解(1)yy5x2x1,3在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)2xy 32y91,2y2x在平面解析几何中表示椭圆 1与449 其切线y3的交点,即切点.在空间解析几何中表示椭圆柱面2y2 x49与其切平面y3的交线,即空间直线. 13.分别求母线平行于x轴及y轴而且通过曲线22x2x2y2z2z2y16,的柱面方程.解在22x2x2y2zy2z216,中消去x,得3 2z2y16,即为母线平行于x轴且通过已知曲线的柱面方程.在22x2xy2z2y2z216,中消去y,得2z23x 216,即为母线平行于y轴且通过已知曲线多的柱面方程.2y z2 2x与平面x z1的交线在xOy面上的投4.求球面9影的方程.解在2x2y2z 9, 中消去z,得x z 12y2x2x y2 2 x(1)9,即2x28,它表示母线平行于z轴的柱面,故2 22x2x yz08,表示已知交线在xOy面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1)2x(x1)y x;z0.2y2z 9, (2)2 2y ( z21) 4,。
高等数学同济第7版上册习题答案
![高等数学同济第7版上册习题答案](https://img.taocdn.com/s3/m/e00565004531b90d6c85ec3a87c24028915f8560.png)
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学课后习题及参考答案(第十二章)
![高等数学课后习题及参考答案(第十二章)](https://img.taocdn.com/s3/m/3852c3e8ee06eff9aff80776.png)
高等数学课后习题及参考答案(第十二章)习题12-11. 试说出下列各微分方程的阶数:(1)x (y ')2-2yy '+x =0;解 一阶.(2)x 2y '-xy '+y =0;解 一阶.(3)xy '''+2y '+x 2y =0;解 三阶.(4)(7x -6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy '=2y , y =5x 2;解 y '=10x .因为xy '=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y '+y =0, y =3sin x -4cos x ;解 y '=3cos x +4sin x .因为y '+y =3cos x +4sin x +3sin x -4cos x =7sin x -cos x ≠0,所以y =3sin x -4cos x 不是所给微分方程的解.(3)y ''-2y '+y =0, y =x 2e x ;解 y '=2xe x +x 2e x , y ''=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ''-2y '+y =2e x +4xe x +x 2e x -2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ''-(λ1+λ2)y '+λ1λ2y =0, x x e C e C y 2121λλ+=.解 x x e C e C y 212211λλλλ+=', x x e C e C y 21222211λλλλ+=''.因为y y y 2121)(λλλλ+'+-'')())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++-+= =0,所以x x e C e C y 2121λλ+=是所给微分方程的解.3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x -2y )y '=2x -y , x 2-xy +y 2=C ;解 将x 2-xy +y 2=C 的两边对x 求导得2x -y -xy '+2y y '=0,即 (x -2y )y '=2x -y ,所以由x 2-xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy -x )y ''+xy '2+yy '-2y '=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y yx y '+='11, 即x xy y y -='. 再次求导得)(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y '+'-'-⋅-=-+-'-=--'+--'=''. 注意到由y y x y '+='11可得1-'='y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y '+'-'-⋅-='+'-'-'-⋅-='', 从而 (xy -x )y ''+xy '2+yy '-2y '=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2-y 2=C , y |x =0=5;解 由y |x =0=0得02-52=C , C =-25, 故x 2-y 2=-25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y '|x =0=1;解 y '=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y '|x =0=1得⎩⎨⎧=+=10121C C C , 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x -C 2), y |x =π=1, y '|x =π=0.解 y '=C 1cos(x -C 2).由y |x =π=1, y '|x =π=0得⎩⎨⎧=-=-0)cos(1)sin(2121C C C C ππ, 即⎩⎨⎧=-=0cos 1sin 2121C C C C , 解之得C 1=1, 22π=C , 故)2sin(π-=x y , 即y =-cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ', 由条件y '=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分. 解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y '-1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(-x , 0), 从而有y x x y '-=+-10, 即yy '+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解 2TP k dT dP =, 其中k 为比例系数. 习题12-21. 求下列微分方程的通解:(1)xy '-y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得⎰⎰=dx xdy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x -5y '=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得⎰⎰+=dx x x dy )53(52,即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C C =为任意常数.(3)2211y y x -='-;解 分离变量得2211x dx y dy -=-, 两边积分得⎰⎰-=-2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y '-xy '=a (y 2+y ');解 方程变形为(1-x -a )y '=ay 2,分离变量得dx x a a dy y--=112, 两边积分得⎰⎰--=dx x a a dy y112, 即 1)1ln(1C x a a y----=-, 故通解为)1ln(1x a a C y --+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0;解 分离变量得dx xx y y y tan sec tan sec 22-=, 两边积分得⎰⎰-=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=-ln(tan x )+ln C ,故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10-y dy =10x dx ,两边积分得⎰⎰=-dx dy x y 1010,即 10ln 10ln 1010ln 10C x y +=--, 或 10-y =10x +C ,故通解为y =-lg(C -10x ).(7)(e x +y -e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1-e y )dx ,分离变量得dx e e dy e e xx y y +=-11, 两边积分得⎰⎰+=-dx eedy e ex x y y 11, 即 -ln(e y )=ln(e x +1)-ln C ,故通解为(e x +1)(e y -1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos -=, 两边积分得⎰⎰-=dx xx dy y y sin cos sin cos , 即 ln(sin y )=-ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =-x 3dx ,两边积分得⎰⎰-=+dx x dy y 32)1(,即 14341)1(31C x y +-=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2-4x )dy =0.解 分离变量得dx xx dy y )411(4-+=, 两边积分得⎰⎰-+=dx xx dy y )411(4, 即 ln y 4=ln x -ln(4-x )+ln C ,故通解为y 4(4-x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y '=e 2x -y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得⎰⎰=dx e dy e x y 2,即 C e e x y +=221, 或 )21ln(2C e y x +=. 由y |x =0=0得0)21ln(=+C , 21=C , 所以特解)2121ln(2+=x e y . (2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得⎰⎰=xdx ydy tan tan ,即 -ln(cos y )=-ln(cos x )-ln C ,或 cos y =C cos x .由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y 'sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得⎰⎰=dx xdy y y sin 1ln 1, 即 C x y ln )2ln(tan )ln(ln +=,或2tan x C e y =. 由e y x ==2π得4tan πC ee =, C =1, 所以特解为2tan x e y =.(4)cos ydx +(1+e -x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y xx +=-1cos sin , 两边积分得⎰⎰+=-dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21-=, 两边积分得⎰⎰-=dx xdy y 21, 即 ln y =-2ln x +ln C ,或 y =Cx -2.由y |x =2=1得C ⋅2-2=1, C =4, 所以特解为24xy =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60︒, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0⨯⨯⨯=, 即dt x dV )9802(5.062.0⨯⨯⨯=. 又因为330tan x x r =︒=, 故 dx x dx r V 223ππ-=-=, 从而 dx x dt x 23)9802(5.062.0π-=⨯⨯⨯, 即 dx x dt 2398025.062.03⨯⨯⨯=π,因此 C x t +⨯⨯⨯-=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053⨯⨯⨯⨯=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+-=-⨯⨯⨯⨯=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即vt dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=.由初始条件有C +⨯=⨯2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+⨯=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ-=, 即dt RdR λ-=, 两边积分得ln R =-λt +C 1,从而 )( 1C t e C Ce R ==-λ.因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e -λt .又由于当t =1600时, 021R R =, 故λ16000021-=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0--==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为xy x y -=--2002, 故曲线满足微分方程: xy dx dy -=, 即dx x dy y 11-=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2⨯3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v -==, 故dx =ky (h -y )dt .又由已知, y =at , 代入上式得dx =kat (h -at )dt ,积分得C t ka kaht x +-=3223121. 由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x -=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=-=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x -=.习题12-31. 求下列齐次方程的通解:(1)022=---'x y y y x ;解 原方程变为1)(2--=x y x y dx dy . 令xy u =, 则原方程化为 12-+=+u u dx du x u , 即dx x du u 1112=-, 两边积分得C x u u ln ln )1ln(2+=-+, 即Cx u u =-+12, 将xy u =代入上式得原方程的通解Cx x y x y =-+1)(2, 即222Cx x y y =-+. (2)xy y dx dy xln =; 解 原方程变为x y x y dx dy ln =.令xy u =, 则原方程化为 u u dxdu x u ln =+, 即dx x du u u 1)1(ln 1=-, 两边积分得ln(ln u -1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx -xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx -x 2u (udx +xdu )=0, 即dx xudu 1=, 两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx -3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=-, 两边积分得C x u ln ln )21ln(213+=--, 即2312xC u -=, 将xy u =代入上式得原方程的通解 x 3-2y 3=Cx .(5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x y x ; 解 原方程变为x y x y dx dy +=th 32.令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx xdu u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx x y =. (6)0)1(2)21(=-++dy yx e dx e y xy x . 解 原方程变为yx yxe e y x dy dx 21)1(2+-=. 令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+-=+, 即uu e e u dy du y 212++-=, 分离变量得dy y du e u e uu 1221-=++, 两边积分得ln(u +2e u )=-ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x=+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2-3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令x y u =, 即y =xu , 则原方程化为(x 2u 2-3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=--, 或dx x du u u u 1)11113(=-+++- 两边积分得-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C |, 即u 2-1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2-x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2-x 2=y 3.(2)xy y x y +=', y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212, 将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0,即 dx x du u u u u u 1112232-=+++-+, 或 dx xdu u u u 1)1211(2=+-+, 两边积分得ln|u +1|-ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O, 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段OP 所围图形的面积为x 2, 求曲线弧A O 的方程.解 设曲线弧A O的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x=-⎰, 两边求导得x x y x x y x y 2)(21)(21)(='--, 即 4-='xy y . 令xy u =, 则有 4-=+u dx du x u , 即dx xdu u 41-=, 两边积分得u =-4ln x +C . 将xy u =代入上式得方程的通解 y =-4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =-4x ln x +x .习题12-41. 求下列微分方程的通解:(1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+⎰⋅⎰=-----⎰⎰. (2)xy '+y =x 2+3x +2;解 原方程变为xx y x y 231++=+'.])23([11C dx e x x e y dx x dx x +⎰⋅++⎰=⎰- ])23([1])23([12C dx x x xC xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ;解 )(cos sin cos C dx e e e y xdx x dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰.(4)y '+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰-⎰+⋅=)cos 1cos sin 2(cos C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)(x 2-1)y '+2xy -cos x =0;解 原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x xdx x x +⎰⋅-⎰=⎰--- )(sin 11])1(1cos[112222C x x C dx x x x x +-=+-⋅--=⎰. (6)23=+ρθρd d ; 解 )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθθθθ33332)32(--+=+=Ce C e e .(7)x xy dx dy 42=+; 解 )4(22C dx e x e y xdx xdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=.(8)y ln ydx +(x -ln y )dy =0;解 原方程变形为yx y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e y e x dy y y dy y y +⎰⋅⎰=⎰- )ln 1(ln 1C ydy yy +⋅=⎰ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(-+=-x y dxdy x ; 解 原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2).(10)02)6(2=+-y dxdy x y . 解 原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C dy yy y +⋅-=⎰32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =-, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰- )cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x xy --=π. (3)x e x y dx dy cos 5cot =+, 4|2-==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +⎰⋅⎰=⎰- )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e x y . (4)83=+y dxdy , y |x =0=2; 解 )8(33C dx e e y dx dx +⎰⋅⎰=⎰-x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰. 由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=.(5)13232=-+y xx dx dy , y |x =1=0. 解 )1(32323232C dx e e y dx x x dx x x +⎰⋅⎰=⎰--- )21()1(22221131313C e e x C dx e x e x x x x x +=+=--⎰. 由y |x =1=0, 得eC 21-=, 故所求特解为)1(211132--=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y .解 由题意知y '=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dtdv m 21-=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k ev t m k t m k dt m k dt m k +⋅=+⎰⋅⎰=⎰⎰-- )(22222121C e k m k te k k e t m kt m k t m k +-=-. 由题意, 当t =0时v =0, 于是得221k m k C =. 因此)(22122121222k m k e k m k te k k e v t m k t m k t m k +-=- 即 )1(222121t m k e k m k t k k v ---=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系. 解 由回路电压定律知01025sin 20=--i dt di t , 即t i dtdi 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π-+=+-=--t e e t t i t t (A).6. 设曲dy x x xf dx x yf L])(2[)(2-+⎰在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).解 因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x ,或 1)(21)(=+'x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故x x x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy -=+; 解 原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---. ])cos sin ([1C dx e x x e y dx dx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-, 原方程的通解为x Ce yx sin 1-=. (2)23xy xy dxdy =-; 解 原方程可变形为x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x e y xdx xdx +⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰- 31)31(222232323-=+-=--x x x Ce C e e , 原方程的通解为311223-=-x Ce y . (3)4)21(3131y x y dx dy -=+; 解 原方程可变形为 )21(31131134x y dx dy y -=+, 即12)(33-=---x y dx y d . ])12([3C dx e x e y dx dx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([, 原方程的通解为1213--=x Ce yx .(4)5xy y dxdy =-; 解 原方程可变形为 x ydx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰--)4(44C dx xe e x +-=⎰-x Ce x 441-++-=, 原方程的通解为x Ce x y44411-++-=.(5)xdy -[y +xy 3(1+ln x )]dx =0.解 原方程可变形为)ln 1(11123x yx dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--. ])ln 1(2[222C dx e x e y dx x dx x +⎰⋅+-⎰=⎰-- ])ln 1(2[122C dx x x x++-=⎰ x x x x C 94ln 322--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x -=-,即dx xdu v f v g v v g 1)]()([)(=-, 积分得 C x du v f v g v v g +=-⎰ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =-, 即21ududx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ).(2)11+-=yx dx dy ; 解 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu . 两边积分得1221C u x +-=. 将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1). (3)xy '+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x udx du x x ln )1(2=+-, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e x y 1=.(4)y '=y 2+2(sin x -1)y +sin 2x -2sin x -cos x +1;解 原方程变形为y '=(y +sin x -1)2-cos x .令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u=21. 两边积分得C x u+=-1. 将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 .解 原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x udx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得u uu C x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解xy xyy x C x ln 121ln 221+--=+, 即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1).习题12-51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为xQ xy y P ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为C dy y y x dx x y x =++⎰⎰02202)46(3, 即 C y y x x =++3223343. (2)(a 2-2xy -y 2)dx -(x +y )2dy =0;解 这里P =a 2-2xy -y 2, Q =-(x +y )2. 因为xQ y x y P ∂∂=--=∂∂22, 所以此方程是全微分方程, 其通解为C dy y x dx a y x =+-⎰⎰0202)(, 即 a 2x -x 2y -xy 2=C .(3)e y dx +(xe y -2y )dy =0;解 这里P =e y , Q =xe y -2y . 因为xQ e y P y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为C dy y xe dx e y y x =-+⎰⎰000)2(, 即 xe y -y 2=C .(4)(x cos y +cos x )y '-y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy -(y sin x +sin y )dx =0.这里P =-(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=-=∂∂sin cos , 所以此方程是全微分方程, 其通解为C dy x y x dx y x =++⎰⎰00)cos cos (0, 即 x sin y +y cos x =C .解(5)(x 2-y )dx -xdy =0;解 这里P =x 2-y , Q =-x . 因为xQ y P ∂∂=-=∂∂1, 所以此方程是全微分方程, 其通解为C xdy dx x y x =-⎰⎰002, 即 C xy x =-331. (6)y (x -2y )dx -x 2dy =0;解 这里P =y (x -2y ), Q =-x 2. 因为y x y P 4-=∂∂, x xQ 2-=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为C d e d =+⎰⎰θθρθρρ02022,即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y y P 2=∂∂, y xQ =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx -dy )=dx +dy ;解 方程两边同时乘以yx +1得 yx dy dx dy dx ++=-, 即d (x -y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x -y =ln(x +y )+C .(2)ydx -xdy +y 2xdx =0;解 方程两边同时乘以21y得 02=+-xdx y xdy ydx , 即0)2()(2=+x d y x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x -3y )dx +(1-3y 2x )dy =0;解 原方程变形为xy 2dx -3y 3dx +dy -3x 2dy =0, 两边同时乘以21y并整理得 0)33(2=+-+xdy ydx y dy xdx , 即0)(3)1()2(2=--xy d y d x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为 C xy yx =--3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得022=-++dx y x ydy xdx , 即0)]ln(21[22=-+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x -y 2)dx +2xydy =0;解 原方程变形为xdx -y 2dx +2xydy =0, 两边同时乘以21x得 0222=-+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C xy x =+2ln , 即x ln x +y 2=Cx . (6)2ydx -3xy 2dx -xdy =0.解 方程两边同时乘以x 得2xydx -x 2dy -3x 2y 2dx =0, 即yd (x 2)-x 2dy -3x 2y 2dx =0,再除以y 2得03)(2222=--dx x ydy x x yd , 即0)(32=-x y x d 所以2yx为原方程的一个积分因子, 并且原方程的通解为 032=-x yx . 3. 验证)]()([1xy g xy f xy -是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解: 解 方程两边乘以)]()([1xy g xy f xy -得0])()([)]()([1=+-dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P -=, )]()([)(xy g xy f y xy g Q -=. 因为x Q xy g xy f xy g xy f xy g xy f yP ∂∂=-'-'=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy -是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2-2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2-2x 2y 2 , 所以3331)]()([1y x xy g xy f xy =- 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=-++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =-++⎰⎰132221323232, 即 C yx y x =-+-)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy -x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y -x 3 y 3 , 所以441)]()([1yx xy g xy f xy =- 是方程的一个积分因子. 方程两边同乘以441yx 得全微分方程 02112433334=-+++dy y x y x xy dx y x xy ,其通解为C dy y x y x xy dx x x y x =-+++⎰⎰14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy '+2y =4ln x ;解 原方程变为x xy x y ln 42=+', 其积分因子为 22)(x e x dx x =⎰=μ, 在方程x xy x y ln 42=+'的两边乘以x 2得 x 2y '+2xy =4x ln x , 即(x 2y )'=4x ln x , 两边积分得C x x x xdx x y x +-==⎰222ln 2ln 4, 原方程的通解为21ln 2x C x y +-=. (2)y '-tan x ⋅y =x .解 积分因子为x e x xdx cos )(tan =⎰=-μ,在方程的两边乘以cos x 得cos x ⋅y '-sin x ⋅y =x cos x , 即(cos x ⋅y )'=x cos x , 两边积分得C x x x xdx x y x ++==⋅⎰cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12-61. 求下列各微分方程的通解:(1)y ''=x +sin x ;解 12cos 21)sin (C x x dx x x y +-=+='⎰, 21312sin 61)cos 21(C x C x x dx C x x y ++-=+-=⎰, 原方程的通解为213sin 61C x C x x y ++-=. (2)y '''=xe x ;解 12C e xe dx xe y x x x +-==''⎰,21122)2(C x C e xe dx C e xe y x x x x ++-=+-='⎰,3221213)22(C x C x C e xe dx C x C e xe y x x x x +++-=++-=⎰,原方程的通解为32213C x C x C e xe y x x +++-=.(3)211xy +=''; 解 12arctan 11C x dx xy +=+='⎰ x C dx xxx x dx C x y 1211arctan )(arctan ++-=+=⎰⎰ 212)1ln(21arctan C x C x x x +++-=, 原方程的通解为2121ln arctan C x C x x x y +++-=.(4)y ''=1+y '2;解 令p =y ', 则原方程化为p '=1+p 2, 即dx dp p=+211, 两边积分得arctan p =x +C 1, 即y '=p =tan(x +C 1),211|)cos(|ln )tan(C C x dx C x y ++-=+=⎰,原方程的通解为21|)cos(|ln C C x y ++-=.(5)y ''=y '+x ;解 令p =y ', 则原方程化为p '-p =x ,由一阶线性非齐次方程的通解公式得1)()(111--=+=+⎰⋅⎰=⎰⎰--x e C C dx xe e C dx e x e p x x x dx dx ,即 y '=C 1e x -x -1,于是 221121)1(C x x e C dx x e C y x x +--=--=⎰, 原方程的通解为22121C x x e C y x +--=. (6)xy ''+y '=0;解 令p =y ', 则原方程化为x p '+p =0, 即01=+'p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x dx x 1ln 111==⎰=--, 即 xC y 1=', 于是 211ln C x C dx xC y +==⎰, 原方程的通解为y =C 1ln x +C 2 .(7)yy ''+'=y '2;解 令p =y ', 则dy dp p dx dy dy dp y =⋅='', 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=-, 两边积分得||ln ||ln |1|ln 2112C y p +=-, 即22121y C p ±-. 当|y '|=|p |>1时, 方程变为2211y C y +±=', 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y '|=|p |<1时, 方程变为2211y C y -±=', 即dx dy y C ±=-21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ''-1=0;解 令p =y ', 则dydp p y ='', 原方程化为 013=-dydp p y , 即pdp =y -3dy , 两边积分得122212121C y p +-=-, 即p 2=-y -2+C 1, 故 21--±='y C y , 即dx dy y C ±=--211, 两边积分得)(12121C x C y C +±=-,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=''; 解 令p =y ', 则dy dp py ='', 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=', 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++-+±=. (10)y ''=y '3+y '.解 令p =y ', 则dydp py ='', 原方程化为 p p dy dp p +=3, 即0)]1([2=+-p dydp p . 由p =0得y =C , 这是原方程的一个解.由0)1(2=+-p dydp 得 arctan p =y -C 1, 即y '=p =tan(y -C 1),从而 )sin(ln )tan(1112C y dy C y C x -=-=+⎰, 故原方程的通解为 12arcsin C e y C x +=+.2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ''+1=0, y |x =1=1, y '|x =1=0;解 令p =y ', 则dydp p y ='', 原方程化为013=+dy dp py , 即dy y pdp 31-=, 两边积分得1221C y p +=, 即y y C y 211+±='. 由y |x =1=1, y '|x =1=0得C 1=-1, 从而yy y 21-±=', 分离变量得dx dy yy =-±21, 两边积分得221C x y +=-±, 即22)(1C x y +-±=.由y |x =1=1得C 2=-1, 2)1(1--=x y , 从而原方程的通解为22x x y -=.(2)y ''-ay '2=0, y |x =0=0, y '|x =0=-1;解 令p =y ', 则原方程化为02=-ap dx dp , 即adx dp p=21, 两边积分得11C ax p+=-, 即11C ax y +-='. 由y '|x =0=-1得C 1=1, 11+-='ax y , 两边积分得 2)1ln(1C ax ay ++-=. 由y |x =0=0得C 2=0, 故所求特解为)1ln(1+-=ax ay . (3)y '''=e ax , y |x =1=y '|x =1=y ''|x =1=0;解 11C e adx e y ax ax +==''⎰. 由y ''|x =1=0得a e aC 11-=. 2211)11(C x e a e a dx e a e a y a ax a ax +-=-='⎰. 由y '|x =1=0得a a e ae a C 2211-=. dx e ae a x e a e a y a a a ax )1111(22⎰-+-= 322311211C x e a x e a x e a e a a a a ax +-+-=. 由y |x =1=0得a a a a e ae a e a e a C 32312111-+-=, 故所求特解为 322232)22()1(2a a a e a x a e a x e a e y a a a ax ----+-=. (4)y ''=e 2y , y |x =0=y '|x =0=0;解 令p =y ', 则dydp p y ='', 原方程化为 y e dydp p 2=, 即pdp =e 2y dy , 积分得p 2=e 2y +C 1, 即12C e y y +±='.由y |x =0=y '|x =0=0得C 1=-1, 故12-±='y e y , 从而dx dy e y ±=-112,积分得-arcsin e -y =±x +C 2.由y |x =0=0得22π-=C , 故 x x e y cos )2sin(=-=-π , 从而所求特解为y =-lncos x .(5)y y 3='', y |x =0=1, y '|x =0=2;解 令p =y ', 则dy dp py ='', 原方程化为 y dydp p 3=, 即dy y pdp 3=, 两边积分得12322221C y p +=, 即1232C y y +±='. 由y |x =0=1, y '|x =0=2得C 1=0,432y y =', 从而dx dy y 243=-, 两边积分得24124C x y +=, 即42)4121(C x y +=. 由y |x =0=1得C 2=4, 故原方程的特解为4)121(+=x y . (6)y ''+y '2=1, y |x =0=0, y '|x =0=0.解 令p =y ', 则dydp p y ='', 原方程化为 12=+p dydp p , 即2222=+p dy dp , 于是 1)2(211222+=+⎰⋅⎰=--⎰y dy dy e C C dy e e p ,即 121+±='-y e C y .由y |x =0=0, y '|x =0=0得C 1=-1, y e y 21--±='.故dx dy ey ±=--211, 两边积分得 22)1ln(C x e e y y +±=-+.由y |x =0=0得C 2=0, x e e y y ±=-+)1ln(2,从而得原方程的特解y =lnch x .3. 试求y ''=x 的经过点M (0, 1)且在此点与直线121+=x y 相切的积分曲线. 解 1221C x y +=', 21361C x C x y ++=. 由题意得y |x =0=1, 21|0='=x y . 由21|0='=x y 得211=C , 再由y |x =0=1得C 2=1, 因此所求曲线为 121613++=x x y . 4. 设有一质量为m 的物体, 在空中由静止开始下落, 如果空气阻力为R =c 2v 2(其中c 为常数, v 为物体运动的速度), 试求物体下落的距离s 与时间t 的函数关系.解 以t =0对应的物体位置为原点, 垂直向下的直线为s 正轴, 建立坐标系. 由题设得⎪⎩⎪⎨⎧==-===0| |0022t t v s v c mg dt dv m . 将方程分离变量得dt v c mg mdv =-22, 两边积分得1||ln C kt mgcv mg cv +=-+(其中m g c k 2=) 由v |t =0=0得C 1=0, kt mg cv mg cv =-+||ln , 即kt e mgcv mg cv =-+. 因为mg >c 2v 2, 故kt e cv mg mg cv )(-=+, 即)1()1(kt kt e mg e cv -=+,或 ktkt e e c mg dt ds +-⋅-=11, 分离变量并积分得211ln C e e ck mg s ktkt +++-=-. 由s |t =0=0得C 2=0, 故所求函数关系为ktkt e e ck mg s ++-=-11ln , 即)(ch ln 2t m g c c m s =.习题12-71. 下列函数组在其定义区间内哪些是线性无关的?(1)x , x 2;解 因为x xx =2不恒为常数, 所以x , x 2是线性无关的. (2)x , 2x ;解 因为22=xx , 所以x , 2x 是线性相关的. (3)e 2x , 3e 2x ;解 因为332=x x ee , 所以e 2x , 3e 2x 是线性相关的. (4)e -x ; e x ;解 因为x x x e ee 2=-不恒为常数, 所以e -x ; e x 是线性无关的. (5)cos2x , sin2x ;解 因为x xx 2tan 2cos 2sin =不恒为常数, 所以cos2x , sin2x 是线性无关的. (6) 2x e , 22x xe ;解 因为x e xe x x 2222=不恒为常数, 所以2x e , 22x xe 是线性无关的.。
同济大学高等数学第七版上下册答案详解
![同济大学高等数学第七版上下册答案详解](https://img.taocdn.com/s3/m/3fe9336790c69ec3d5bb75b2.png)
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点
↗
极大值
↘
拐点
↘
x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)
↗
拐点
↗
1
极大值
↘
拐点
↘
x
( 1)
-1
高等数学(同济第七版)课后答案解析
![高等数学(同济第七版)课后答案解析](https://img.taocdn.com/s3/m/a01e80f4cfc789eb172dc8f9.png)
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.
放
/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;
高等数学同济课后答案
![高等数学同济课后答案](https://img.taocdn.com/s3/m/71f2676058fb770bf68a5504.png)
总习题一1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件. (2)f (x )在x 0的某一去心邻域内有界是)(lim 0x f x x →存在的________条件. )(lim 0x f x x →存在是f (x )在x 0的某一去心邻域内有界的________条件. (3) f (x )在x 0的某一去心邻域内无界是∞=→)(lim 0x f x x 的________条件. ∞=→)(lim 0x f x x 是f (x )在x 0的某一去心邻域内无界的________条件.(4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0x f x x →存在的________条件.解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要.2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ).(A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小.解 因为x x xx x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→3ln 2ln )1ln(lim 3ln )1ln(lim2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) .所以f (x )与x 同阶但非等价无穷小, 故应选B . 3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ).解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ].(3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2222ππππ+≤≤-n x n (n =0, ±1, ±2, ⋅ ⋅ ⋅),即函数f (cos x )的定义域为[2,22ππππ+-n n ], (n =0, ±1, ±2, ⋅ ⋅ ⋅).4. 设⎩⎨⎧>≤=0 00)(x x x x f , ⎩⎨⎧>-≤=0 0 0)(2x x x x g , 求f [f (x )], g [g (x )], f [g (x )], g [f (x )]. 解 因为f (x )≥0, 所以f [f (x )]=f (x )⎩⎨⎧>≤=0 00x x x ;因为g (x )≤0, 所以g [g (x )]=0; 因为g (x )≤0, 所以f [g (x )]=0; 因为f (x )≥0, 所以g [f (x )]=-f 2(x )⎩⎨⎧>-≤=0 002x x x . 5. 利用y =sin x 的图形作出下列函数的图形: (1)y =|sin x |; (2)y =sin|x |; (3)2sin 2x y =.6. 把半径为R 的一圆形铁片, 自中心处剪去中心角为α的一扇形后围成一无底圆锥. 试将这圆锥的体积表为α的函数.解 设围成的圆锥的底半径为r , 高为h , 依题意有 R (2π-α)=2πr ,παπ2)2(-=R r ,παπαπαπ244)2(2222222-=--=-=RR R r R h .圆锥的体积为παπαπαππ244)2(312222-⋅-⋅=RR V22234)2(24a R -⋅-=πααππ(0<α<2π). 7. 根据函数极限的定义证明536lim23=---→x x x x .证明 对于任意给定的ε>0, 要使ε<----|536|2x x x , 只需|x -3|<ε, 取δ=ε, 当0<|x -3|<δ时, 就有|x -3|<ε, 即ε<----|536|2x x x , 所以536lim 23=---→x x x x .8. 求下列极限:(1)221)1(1lim-+-→x x x x ;(2))1(lim 2x x x x -++∞→;(3)1)1232(lim +∞→++x x x x ; (4)30sin tan limx x x x -→;(5)x x x x x c b a 10)3(lim ++→(a >0, b >0, c >0); (6)x x x tan 2)(sin lim π→.解 (1)因为01)1(lim 221=+--→x x x x , 所以∞=-+-→221)1(1lim x x x x .(2))1()1)(1(lim )1(lim 2222x x x x x x x x x x x x ++++-+=-++∞→+∞→211111lim 1lim22=++=++=+∞→+∞→x x x x x x .(3)2121211)1221(lim )1221(lim )1232(lim ++∞→+∞→+∞→++=++=++x x x x x x x x x x21212)1221()1221(lim ++++=+∞→x x x xe x x x x x =++⋅++=∞→+∞→21212)1221(lim )1221(lim .(4)xx x x x x x x x x x x x cos )cos 1(sin lim )1cos 1(sin lim sin tan lim 303030-=-=-→→→21)2(2lim cos 2sin 2sin lim 320320=⋅=⋅=→→xx x x x x x x x (提示: 用等价无穷小换). (5)x c b a c b a xx x x xx xx x x x x x x x c b a c b a 3333010)331(lim )3(lim -++⋅-++→→-+++=++, 因为e c b a x x x c b a x x x x =-+++-++→330)331(lim ,)111(lim 3133lim 00xc x b x a x c b a xx x x x x x x -+-+-=-++→→ ])1ln(1lim ln )1ln(1lim ln )1ln(1lim [ln 31000v c u b t a v u t +++++=→→→3ln )ln ln (ln 31abc c b a =++=,所以3ln 103)3(lim abc e c b a abc x x x x x ==++→.提示: 求极限过程中作了变换a x -1=t , b x -1=u , c x -1=v . (6)xx x x xx x x tan )1(sin 1sin 12tan 2)]1(sin 1[lim )(sin lim -⋅-→→-+=ππ, 因为 e x x x =-+-→1sin 12)]1(sin 1[lim π,x x x x x x x cos )1(sin sin limtan )1(sin lim 22-=-→→ππ01sin cos sin lim )1(sin cos )1(sin sin lim 222=+-=+-=→→x x x x x x x x x ππ, 所以1)(sin lim 0tan 2==→e x x x π.9. 设⎪⎩⎪⎨⎧≤+>=01sin )(2x x a x xx x f , 要使f (x )在(-∞, +∞)内连续, 应怎样选择数a ? 解 要使函数连续, 必须使函数在x =0处连续. 因为 f (0)=a ,a x a x f x x =+=--→→)(lim )(lim 200, 01sin lim )(lim 00==++→→xx x f x x ,所以当a =0时, f (x )在x =0处连续. 因此选取a =0时, f (x )在(-∞, +∞)内连续. 10. 设⎪⎩⎪⎨⎧≤<-+>=-01 )1ln(0)(11x x x e x f x , 求f (x )的间断点, 并说明间断点所属类形. 解 因为函数f (x )在x =1处无定义, 所以x =1是函数的一个间断点.因为0lim )(lim 1111==-→→--x x x e x f (提示-∞=--→11lim 1x x ),∞==-→→++1111lim )(lim x x x e x f (提示+∞=-+→11lim 1x x ),所以x =1是函数的第二类间断点.又因为0)1ln(lim )(lim 00=+=--→→x x f x x , ee xf x x x 1lim )(lim 110==-→→++,所以x =0也是函数的间断点, 且为第一类间断点.11. 证明()11 2111lim222=++⋅⋅⋅++++∞→n n n n n .证明 因为()11 211122222+≤++⋅⋅⋅++++≤+n n n n n n n n n , 且 1111lim lim2=+=+∞→∞→n n n n n n , 1111lim 1lim 22=+=+∞→∞→nn n n n , 所以()11 2111lim 222=++⋅⋅⋅++++∞→nn n n n . 12. 证明方程sin x +x +1=0在开区间)2,2(ππ-内至少有一个根.证明 设f (x )=sin x +x +1, 则函数f (x )在]2,2 [ππ-上连续.因为2121)2 (πππ-=+--=-f , 22121)2 (πππ+=++=f , 0)2()2 (<⋅-ππf f , 所以由零点定理, 在区间)2,2 (ππ-内至少存在一点ξ, 使f (ξ)=0.这说明方程sin x +x +1=0在开区间)2,2 (ππ-内至少有一个根.13. 如果存在直线L : y =kx +b , 使得当x →∞(或x →+∞, x →-∞)时, 曲线y =f (x )上的动点M (x , y )到直线L 的距离d (M , L )→0, 则称L 为曲线y =f (x )的渐近线. 当直线L 的斜率k ≠0时, 称L 为斜渐近线. (1)证明: 直线L : y =kx +b 为曲线y =f (x )的渐近线的充分必要条件是xx f k x x x )(lim),( -∞→+∞→∞→=, ])([lim),( kx x f b x x x -=-∞→+∞→∞→.(2)求曲线x e x y 1)12(-=的斜渐近线.证明 (1) 仅就x →∞的情况进行证明.按渐近线的定义, y =kx +b 是曲线y =f (x )的渐近线的充要条件是0)]()([lim =+-∞→b kx x f x .必要性: 设y =kx +b 是曲线y =f (x )的渐近线, 则0)]()([lim =+-∞→b kx x f x ,于是有 0])([lim =--∞→xb k x x f x x ⇒0)(lim =-∞→k x x f x ⇒x x f k x )(lim∞→=, 同时有0])([lim =--∞→b kx x f x ⇒])([lim kx x f b x -=∞→.充分性: 如果xx f k x )(lim ∞→=, ])([lim kx x f b x -=∞→, 则0])([lim ])([lim )]()([lim =-=--=--=+-∞→∞→∞→b b b kx x f b kx x f b kx x f x x x ,因此y =kx +b 是曲线y =f (x )的渐近线.(2)因为212lim lim 1=⋅-==∞→∞→x x x e x x x y k , 11)1ln(lim21)1(lim2]2)12[(lim ]2[lim 011=-+=--=--=-=→∞→∞→∞→t t e x x e x x y b t xx xx x ,所以曲线x e x y 1)12(-=的斜渐近线为y =2x +1.总 习 题 二1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内:(1)f (x )在点x 0可导是f (x )在点x 0连续的____________条件. f (x )在点x 0连续是f (x )在点x 0可导的____________条件.(2) f (x )在点x 0的左导数f -'(x 0)及右导数f +'(x 0)都存在且相等是f (x )在点x 0可导的_______条件. (3) f (x )在点x 0可导是f (x )在点x 0可微的____________条件. 解 (1)充分, 必要. (2) 充分必要. (3) 充分必要.2. 选择下述题中给出的四个结论中一个正确的结论:设f (x )在x =a 的某个邻域内有定义, 则f (x )在x =a 处可导的一个充分条件是( ). (A ))]()1([lim a f ha f h h -++∞→存在; (B )hh a f h a f h )()2(lim0+-+→存在;(C )h h a f h a f h 2)()(lim--+→存在; (D )hh a f a f h )()(lim 0--→存在.解 正确结论是D . 提示:xa f x a f h a f h a f h h a f a f x h h ∆-∆+=---=--→∆→→)()(lim)()(lim )()(lim000(∆x =-h ). 3. 设有一根细棒, 取棒的一端作为原点, 棒上任一点的做标x 为, 于是分布在区间[0, x ]上细棒的质量m 是x 的函数m =m (x ),应怎样确定细棒在点x 0处的线密度(对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?解 ∆m =m (x 0+∆x )-m (x 0).在区间[x 0, x 0+∆x ]上的平均线密度为xx m x x m xm ∆-∆+=∆∆=)()(00ρ.于是, 在点x 0处的线密度为)()()(lim lim 0000x m xx m x x m xm x x '=∆-∆+=∆∆=→∆→∆ρ.4. 根据导数的定义, 求xx f 1)(=的导数. 解20001)(1lim)(lim 11lim x x x x x x x x x x x x x y x x x -=∆+-=∆+∆∆-=∆-∆+='→∆→∆→∆.5. 求下列函数f (x )的f -'(0)及f +'(0),又f '(0)是否存在? (1)⎩⎨⎧≥+<=0 )1ln(0 sin )(x x x x x f ;(2)⎪⎩⎪⎨⎧=≠+=0 00 1)(1x x e x x f x .解 (1)因为10sin lim 0)0()(lim )0(00=-=--='--→→-xx x f x f f x x ,1ln )1ln(lim 0)1ln(lim 0)0()(lim )0(1000==+=-+=--='+++→→→+e x xx x f x f f x x x x ,而且f -'(0) = f +'(0), 所以f '(0)存在, 且f '(0)=1.(2)因为111lim 01lim 0)0()(lim )0(10100=+=--+=--='---→→→-xx xx x e x e x x f x f f ,011lim 001lim 0)0()(lim )0(10100=+=--+=--='+++→→→+xx xx x e x e x x f x f f ,而f -'(0)≠ f +'(0), 所以f '(0)不存在.6. 讨论函数⎪⎩⎪⎨⎧=≠=0001sin )(x x xx x f 在x =0处的连续性与可导性. 解 因为f (0)=0,)0(01sin lim )(lim 00f xx x f x x ===→→, 所以f (x )在x =0处连续; 因为极限xx x x x f x f x x x 1sin lim 01sin lim )0()(lim 000→→→=-=-不存在, 所以f (x )在x =0处不可导. 7. 求下列函数的导数: (1) y =arcsin(sin x );(2)x x y -+=11arctan ;(3)x x x y tan ln cos 2tan ln ⋅-=; (4))1ln(2x x e e y ++=;(5)x x y =(x >0) .解(1)|cos |cos cos sin 11)(sin sin 1122x x x xx x y =⋅-='⋅-='.(2)222211)1()1()1()11(11)11()11(11x x x x xx x x x x y +=-++-⋅-++='-+⋅-++='.(3))(tan tan 1cos tan ln sin )2(tan 2tan 1'⋅⋅-⋅+'⋅='x x x x x x x yx x x x x x x x x tan ln sin sec tan 1cos tan ln sin 212sec 2tan 122⋅=⋅⋅-⋅+⋅⋅.(4)xxx x xx x x x x x e e e e e e e e e e e y 2222221)122(11)1(11+=++⋅++='++⋅++='.(5)x x y ln 1ln =, x x x xy y 11ln 112⋅+-=', )ln 1()1ln 1(222x x x x x x x y xx-=+-='.8. 求下列函数的二阶导数: (1)y =cos 2x ⋅ln x ; (2)21x xy -=.解 (1)x x x x x x x x x y 1cos ln 2sin 1cos ln sin cos 222⋅+⋅-=⋅+⋅-=',221cos 1sin cos 212sin ln 2cos 2x x x x x x x x x y ⋅-⋅-⋅-⋅-=''22cos 2sin 2ln 2cos 2xx x x x x --⋅-=.(2)232222)1(111--=---⋅--='x xx xx x y52252)1(3)2()1(23x x x x y -=-⋅--=''-.9. 求下列函数的n 阶导数: (1)m x y +=1;(2)xx y +-=11. 解 (1)m mx x y 1)1(1+=+=,11)1(1-+='m x m y , 21)1)(11(1-+-=''m x m m y , 31)1)(21)(11(1-+--='''m x m m m y , ⋅ ⋅ ⋅,n m n x n mm m m y-++-⋅⋅⋅--=1)()1)(11( )21)(11(1.(2)1)1(2111-++-=+-=x xx y , y '=2(-1)(1+x )-2, y ''=2(-1)(-2)(1+x )-3, y '''=2(-1)(-2)(-3)(1+x )-4, ⋅ ⋅ ⋅, 1)1()()1(!)1(2)1)(( )3)(2)(1(2++-+-=+-⋅⋅⋅---=n n n n x n x n y.10. 设函数y =y (x )由方程e y +xy =e 所确定, 求y ''(0). 解 方程两边求导得e y y '+y +xy '=0, —— (1) 于是ye x y y +-=';2)()1()()(y y y y e x y e y e x y e x y y +'+-+'-='+-=''. ——(2)当x =0时, 由原方程得y (0)=1, 由(1)式得e y 1)0(-=', 由(2)式得21)0(e y =''. 11. 求下列由参数方程所确定的函数的一阶导数dx dy 及二阶导数22dx yd :(1)⎩⎨⎧==θθ33sin cos a y a x ;(2)⎩⎨⎧=+=ty t x arctan 1ln 2.解 (1)θθθθθθθtan )sin (cos 3cos sin 3)cos ()sin (2233-=-=''=a a a a dx dy ,θθθθθθθcsc sec 31sin cos 3sec )cos ()tan (422322⋅=--=''-=aa a dx y d .(2)t t t t t t dx dy 1111]1[ln )(arctan 222=++='+'=,3222222111]1[ln )1(t t t t t t t dx y d +-=+-='+'=.12. 求曲线⎩⎨⎧==-t te y e x 2在t =0相的点处的切线方程及法线方程.解t t tt t ee e e e dx dy 2212)2()(-=-=''=--.当t =0时,21-=dx dy , x =2, y =1. 所求切线的方程为)2(211--=-x y , 即x +2y -4=0; 所求法线的方程为y -1=2(x -2).13. 甲船以6km/h 的速率向东行驶, 乙船以8km/h 的速率向南行驶, 在中午十二点正, 乙船位于甲船之北16km 处. 问下午一点正两船相离的速率为多少?解 设从中午十二点开始, 经过t 小时, 两船之间的距离为S , 则有 S 2=(16-8t )2+(6t )2,t t dtdS S 72)816(162+--=,St t dt dS 272)816(16+--=.当t =1时, S =10,8.220721281-=+-==t dt dS (km/h), 即下午一点正两船相离的速度为-2.8km/h . 14. 利用函数的微分代替函数的增量求302.1的近似值.解 设3)(x x f =, 则有x x f f x f ∆=∆'≈-∆+31)1()1()1(, 或x x f ∆+≈∆+311)1(于是007.102.031102.0102.133=⋅+=+=.15. 已知单摆的振动周期gl T π2=, 其中g =980 cm/s 2, l 为摆长(单位为cm). 设原摆长为20cm , 为使周期T 增大0.05s , 摆长约需加长多少? 解 因为L gLdT T ∆⋅=≈∆π,所以23.205.020=≈∆=L gLL π(cm),即摆长约需加长2.23cm .总习题三 1. 填空:设常数k >0, 函数k ex x x f +-=ln )(在(0, +∞)内零点的个数为________. 解 应填写2. 提示: e x x f 11)(-=', 21)(x x f -=''. 在(0, +∞)内, 令f '(x )=0, 得唯一驻点x =e .因为f ''(x )<0, 所以曲线k exx x f +-=ln )(在(0, +∞)内是凸的, 且驻点x =e 一定是最大值点, 最大值为f (e )=k >0.又因为-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以曲线经过x 轴两次, 即零点的个数为2.2. 选择以下题中给出的四个结论中一个正确的结论:设在[0, 1]上f ''(x )>0, 则f '(0), f '(1), f (1)-f (0)或f (0)-f (1)几个数的大小顺序为( ). (A )f '(1)>f '(0)>f (1)-f (0); (B )f '(1)>f (1)-f (0)>f '(0); (C )f (1)-f (0)>f '(1)>f '(0); (D )f '(1)>f (0)-f (1)>f '(0). 解 选择B .提示: 因为f ''(x )>0, 所以f '(x )在[0, 1]上单调增加, 从而f '(1)>f '(x )>f '(0). 又由拉格朗日中值定理, 有f (1)-f (0)=f '(ξ), ξ∈[0, 1], 所以 f '(1)> f (1)-f (0)>f '(0).3. 列举一个函数f (x )满足: f (x )在[a , b ]上连续, 在(a ,b )内除某一点外处处可导, 但在(a , b )内不存在点ξ , 使f (b )-f (a )=f '(ξ)(b -a ). 解 取f (x )=|x |, x ∈[-1, 1].易知f (x )在[-1, 1]上连续, 且当x >0时f '(x )=1; 当x >0时, f '(x )=-1; f '(0)不存在, 即f (x )在[-1, 1]上除x =0外处处可导.注意f (1)-f (-1)=0, 所以要使f (1)-f (-1)=f '(ξ)(1-(-1))成立, 即f '(ξ)=0, 是不可能的. 因此在(-1, 1)内不存在点ξ , 使f (1)-f (-1)=f '(ξ)(1-(-1)). 4. 设k x f x ='∞→)(lim , 求)]()([lim x f a x f x -+∞→.解 根据拉格朗日中值公式, f (x +a )-f (x )=f '(ξ )⋅a , ξ 介于x +a 与x 之间.当x →∞ 时, ξ → ∞, 于是ak f a a f x f a x f x x ='=⋅'=-+∞→∞→∞→)(lim )(lim )]()([lim ξξξ.5. 证明多项式f (x )=x 3-3x +a 在[0, 1]上不可能有两个零点.证明 f '(x )=3x 2-3=3(x 2-1), 因为当x ∈(0, 1)时, f '(x )<0, 所以f (x )在[0, 1]上单调减少. 因此, f (x ) 在[0, 1]上至多有一个零点.6. 设1210++⋅⋅⋅++n a a a n =0, 证明多项式f (x )=a 0+a 1x +⋅ ⋅ ⋅+a n x n 在(0,1)内至少有一个零点. 证明 设121012)(+++++=n n x n a x a x a x F , 则F (x )在[0, 1]上连续, 在(0, 1)内可导, 且F (0)=F (1)=0. 由罗尔定理, 在(0, 1)内至少有一个点ξ , 使F (ξ )=0. 而F '(x )=f (x ), 所以f (x )在(0, 1)内至少有一个零点.7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0.8. 设0<a <b , 函数f (x )在[a , b ]上连续, 在(a , b )内可导, 试利用柯西中值定理, 证明存在一点ξ∈(a , b )使abf b f a f ln )()()(ξξ'=-.证明 对于f (x )和ln x 在[a , b ]上用柯西中值定理, 有ξξ1)(ln ln )()(f ab a f b f '=--, ξ∈(a , b ), 即 abf b f a f ln)()()(ξξ'=-, ξ∈(a , b ). 9. 设f (x )、g (x )都是可导函数, 且|f '(x )|<g '(x ), 证明: 当x >a 时, |f (x )-f (a )|<g (x )-g (a ). 证明 由条件|f '(x )|<g '(x )得知, 1)()(<''ξξg f , 且有g '(x )>0, g (x )是单调增加的, 当x >a 时, g (x )>g (a ).因为f (x )、g (x )都是可导函数, 所以f (x )、g (x ) 在[a , x ]上连续, 在(a , x )内可导, 根据柯西中值定理, 至少存在一点ξ∈(a , x ), 使)()()()()()(ξξg f a g x g a f x f ''=--. 因此,1)()()()(|)()(|<''=--ξξg f a g x g a f x f , |f (x )-f (a )|<g (x )-g (a ).10. 求下列极限:(1)xx x x xx ln 1lim 1+--→;(2)]1)1ln(1[lim 0xx x -+→;(3)x x x )arctan 2(lim π+∞→.(4)nx xn xx x n a a a ]/) [(lim 11211+⋅⋅⋅++∞→(其中a 1, a 2, ⋅ ⋅ ⋅, a n >0).解 (1) (x x )'=(e x l n x )'=e x l n x (ln x +1)=x x (ln x +1).xx x x x x x x x x x x x x x x x x x x x xx -+-=+-+-='+-'-=+--+→→→→1)1(ln lim11)1(ln 1lim )ln 1()(lim ln 1lim 11111 21)1)(ln 11(ln 1lim11=--+++-=+→xx x x x x x x . (2)xxx xx x x x x x x x x x x x x x ++++-='+'+-=++-=-+→→→→1)1ln(111lim])1ln([])1ln([lim )1ln()1ln(lim ]1)1ln(1[lim 00002111)1ln(1lim )1ln()1(lim00=+++=+++=→→x x x x x x x(3))2ln arctan (ln lim )arctan 2(lim ππ++∞→+∞→=x x x xx ex ,因为)2lnarctan (ln lim π++∞→x x x ππ2111arctan 1lim )1()2ln arctan (ln lim22-=-+⋅=''+=+∞→+∞→xx x xx x x , 所以πππ2)2ln arctan (ln lim )arctan 2(lim -++∞→+∞→==eex x x x x x .(4)令nxxn xxn a a a y ]/) [(11211+⋅⋅⋅++=. 则]ln ) [ln(ln11211n a a a nx y xn xx-+⋅⋅⋅++=, 因为xn a a a n y xn xx x x 1]ln ) [ln(limln lim 11211-+⋅⋅⋅++=∞→∞→)1()1()ln ln ln ( 1lim121211111211''⋅+⋅⋅⋅++⋅+⋅⋅⋅++⋅=∞→xxa a a a a a a a a n n xn x xxn x x x=ln a 1+ln a 2+⋅ ⋅ ⋅+ln a n =ln(a 1⋅a 2⋅ ⋅ ⋅ a n ). 即y x ln lim ∞→=ln(a 1⋅a 2⋅ ⋅ ⋅ a n ), 从而n x nx xn xx x a a a y n a a a lim ]/) [(lim 2111211⋅⋅⋅⋅==+⋅⋅⋅++∞→∞→.11. 证明下列不等式: (1)当2021π<<<x x 时,1212tan tan x x x x >; (2):当x >0时, xxx +>+1arctan )1ln(.证明 (1)令x x x f tan )(=, )2,0(π∈x . 因为0tan tan sec )(222>->-='x xx x x x x x f ,所以在)2,0(π内f (x )为单调增加的. 因此当2021π<<<x x 时有]2211tan tan x x x x <, 即1212tan tan x x x x >. (2)要证(1+x )ln(1+x )>arctan x , 即证(1+x )ln(1+x )- arctan x >0.设f (x )=(1+x )ln(1+x )- arctan x , 则f (x )在[0, +∞)上连续,211)1ln()(xx x f +-+='.因为当x >0时, ln(1+x )>0, 01112>+-x, 所以f '(x )>0, f (x )在[0, +∞)上单调增加.因此, 当x >0时, f (x )>f (0), 而f (0)=0, 从而f (x )>0, 即(1+x )ln(1+x )-arctan x >0 .12. 设⎩⎨⎧≤+>=0 20)(2x x x x x f x , 求f (x )的极值.解 x =0是函数的间断点.当x <0时, f '(x )=1; 当x >0时, f '(x )=2x 2x (ln x +1). 令f '(x )=0, 得函数的驻点ex 1=. 列表:函数的极大值为f (0)=2, 极小值为e e ef 2)1(-=.13. 求椭圆x 2-xy +y 2=3上纵坐标最大和最小的点. 解 2x -y -xy '+2yy '=0, y x y x y 22--='. 当y x 21=时, y '=0.将y x 21=代入椭圆方程, 得32141222=+-y y y , y =±2 .于是得驻点x =-1, x =1. 因为椭圆上纵坐标最大和最小的点一定存在, 且在驻点处取得, 又当x =-1时, y =-2, 当x =1时, y =2, 所以纵坐标最大和最小的点分别为(1, 2)和(-1, -2). 14. 求数列}{n n 的最大项.解 令xx x x x f1)(==(x >0), 则x xx f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅, )ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x <e 时, f '(x )>0; 当x >e 时, f '(x )<0, 所以唯一驻点x =e 为最大值点. 因此所求最大项为333}3 ,2max{=.15. 曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点处的曲率半径. 解 y '=cos x , y ''=-sin x ,xx y y sin )cos 1(||)1(2/322/32+='''+=ρ(0<x <π),xxx x x x x 2232212sin cos )cos 1(sin )sin cos 2()cos 1(23+-⋅-+='ρxx x x x 222212sin )1cos sin 3(cos )cos1(+++-=.在(0, π)内, 令ρ'=0, 得驻点2π=x .因为当20π<<x 时, ρ'<0; 当ππ<<x 2时, ρ'>0, 所以2π=x 是ρ的极小值点, 同时也是ρ的最小值点,最小值为12sin)2cos 1(2/32=+ππρ.16. 证明方程x 3-5x -2=0只有一个正根. 并求此正根的近似值, 使精确到本世纪末10-3. 解 设f (x )=x 3-5x -2, 则 f '(x )=3x 2-5, f ''(x )=6x .当x >0时, f ''(x )>0, 所以在(0, +∞)内曲线是凹的, 又f (0)=-2, +∞=--+∞→)2(lim 3x x x , 所以在(0, +∞)内方程x 3-5x -2=0只能有一个根. (求根的近似值略)17. 设f ''(x 0)存在, 证明)()(2)()(lim 020000x f hx f h x f h x f h ''=--++→.证明 hh x f h x f h x f h x f h x f h h 2)()(lim)(2)()(lim00020000-'-+'=--++→→hh x f h x f h )()(lim 21000-'-+'=→hh x f x f x f h x f h )]()([)]()([lim 2100000-'-+'-+'=→)()]()([21])()()()([lim 2100000000x f x f x f h h x f x f h x f h x f h ''=''+''=-'-+'-+'=→.18. 设f (n )(x 0)存在, 且f (x 0)=f '(x 0)= ⋅ ⋅ ⋅ =f (n )(x 0)=0, 证明f (x )=o [(x -x 0)n ] (x →x 0). 证明 因为 100)()(lim)()(lim-→→-'=-n x x nx x x x n x f x x x f20))(1()(lim-→--''=n x x x x n n x f =⋅ ⋅ ⋅)(!)(lim 0)1(0x x n x f n x x -=-→0)(!1)()(lim!10)(00)1()1(0==--=--→x fn x x x f x f n n n n x x ,所以f (x )=o [(x -x 0)n ] (x →x 0).19. 设f (x )在(a , b )内二阶可导, 且f ''(x )≥0. 证明对于(a , b )内任意两点x 1, x 2及0≤t ≤1, 有f [(1-t )x 1+tx 2]≤(1-t )f (x 1)+tf (x 2).证明 设(1-t )x 1+tx 2=x 0. 在x =x 0点的一阶泰勒公式为 20000)(!2)())(()()(x x f x x x f x f x f -''+-'+=ξ(其中ξ介于x 与x 0之间). 因为f ''(x )≥0, 所以 f (x )≥f (x 0)+f '(x 0)(x -x 0). 因此f (x 1)≥ f (x 0)+f '(x 0)(x 1-x 0), f (x 2)≥f (x 0)+f '(x 0)(x 2-x 0). 于是有(1-t )f (x 1)+tf (x 2)≥(1-t )[ f (x 0)+f '(x 0)(x 1-x 0)]+t [f (x 0)+f '(x 0)(x 2-x 0)] =(1-t )f (x 0)+t f (x 0)+f '(x 0)[(1-t )x 1+t x 2]-f '(x 0)[(1-t )x 0+t x 0] =f (x 0)+f '(x 0)x 0-f '(x 0)x 0 =f (x 0),即 f (x 0)≤(1-t )f (x 1)+tf (x 2),所以 f [(1-t )x 1+tx 2]≤(1-t )f (x 1)+tf (x 2) (0≤t ≤1).20. 试确定常数a 和b , 使f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小. 解 f (x )是有任意阶导数的, 它的5阶麦克劳公式为)(!5)0(!4)0(!3)0(!2)0()0()0()(55)5(4)4(32x o x f x f x f x f x f f x f +++'''+''+'+=)(!516!34)1(553x o x b a x b a x b a +--+++--=.要使f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小, 就是要使极限 ])(!516!341[lim )(lim552405xx o b a x b a x b a x x f x x +--+++--=→→ 存在且不为0. 为此令 ⎩⎨⎧=+=--0401b a b a ,解之得34=a , 31-=b .因为当34=a , 31-=b 时,0301!516)(lim 50≠=--=→b a x x f x ,所以当34=a ,31-=b 时, f (x )=x -(a +b cos x )sin x 为当x →0时关于x 的5阶无穷小.总习题四求下列不定积分(其中a , b 为常数): 1.⎰--xx e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(;解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(.3. ⎰-dx xa x 662(a >0); 解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662. 4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1. 5. ⎰dx xxln ln ; 解C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6. ⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan;解xxd x x d xx xdx tan sin tan tan cos sin tan22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ;解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656. 10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a axa +--=22arcsin. 11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos;解⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122. 13.⎰bxdx eaxcos ;解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax⎰⎰⎰+==sin cos 1cos 1cosdx bx e ab bx e a b bx e a de bx a b bx e a ax ax axax ax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以C bx e a b bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e b a ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e e dxx x )1111(112)1ln(11122令. c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x xdx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12. 16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a ++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17. ⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x)1ln(2;解⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx xx x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122. 21.⎰dx x arctan;解x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dx n a x x n a a x dx .24. ⎰++dx x x x 234811;解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444. 25.⎰-416x dx ;解⎰⎰⎰++-=+-=-dx xx dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81 C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx xx x ++-=+-=⎰tan sec )cos 11cos sin (22.27. dx x xx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x xx 2cos sin 212cos 212cos 2sin cos 1sin 222⎰⎰+=dx x xxd 2tan 2tanC x x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . 28. ⎰-dx x x x x e x23sin cos sin cos ;解⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xex xsec sin sin sin ⎰⎰+⋅-=x x xxde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x xcos sec sec sin sin sin sinC e x xex x+⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dxx x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x xC t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln( C ee x xx++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e xx+-=-)arctan(C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xde d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1C e e e x x x x ++-++-=)1ln(ln 1C e e xe x x x ++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解dx x x x x x x dx x x ])1([ln )1(ln )1(ln222222'++⋅-++=++⎰⎰⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln xd x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222C x x x x x x x +++++-++=2)1ln(12)1(ln 2222. 34.⎰+dx x x2/32)1(ln ; 解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t tx dx x 2232/321sin cos secsec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx xx xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令 ⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=. 36.⎰-dx xx x 231arccos ;。