水塔供水自动控制系统的设计

合集下载

水塔水位plc自动控制

水塔水位plc自动控制

水塔水位plc自动控制用plc控制水位的自动控制原理水塔水位自动控制一、实验目的用PLC 构成水塔水位自动控制系统二、实验设备1)Dais-__ 可编程控制模拟实验仪2)计算机3)连接导线一套三、实验内容1、控制要求:当水塔水位低于水位界(S4 为ON 表示)时,电磁阀Y 打开,于是进水(S4 为OFF 表示水池水位高于水池低水界),当水池水位高于水池低水界(S3 为ON 表示),电磁阀Y 关闭。

1)I/O 分配表:输入输出SB4:X2 L2:Y1SB3:X32)输入下图的梯形图。

3)调试并运行程序,观察结果。

2、控制要求:当水池水位低于SB4 所指示的位置时,启动SB4 按钮,L2 所指示的电机工作,水池进水。

当水池水位达到SB3 所指示的位置时,启动SB3 按钮,使L2 所指示的电机关闭,停止进水;当水塔水位低于SB2 所指示的位置时,启动SB2 按钮,L1 所指示的电机工作,开始水塔进水。

当水塔水位达到SB1 所指示的位置时,启动SB1 按钮,使L1 所指示的电机停止工作。

1)I/O 分配表:输入输出SB1:X0 L1:Y0SB2:X1 L2:Y1SB3:X2SB4:X32)输入下图的梯形图。

用plc控制水位的自动控制原理3)调试并运行程序,观察结果。

四、编程练习1)当水池水位低于水位界时(S4 为ON),电磁阀Y 打开进水(S4 为OFF 表示水池水位高于水池低水界)。

当水位高于水池高水位界(S3 为ON 表示),阀门关闭。

当S4 为OFF 时,且水塔水位低于水塔低位界时,S2 为ON,电动机M 运转,开始抽水。

当水塔水位高于水塔高水位界时,电动机M 停止。

根据上述控制要求编制水塔水位自动控制程序,并上机调试运行。

2)当水池水位低于水位界时(S4 为ON 表示),电磁阀Y 打开进水(Y 为ON)定时器开始定时,2S 以后,如果S4 还不为OFF,那么阀Y 指示灯闪烁,表示阀Y 没有进水,出现故障,S3 为ON 后,阀Y 关闭(Y 为OFF)。

基于PLC的水塔水位控制系统设计-plc水塔水位控制课程设计

基于PLC的水塔水位控制系统设计-plc水塔水位控制课程设计

任务书开题报告书(表1)基于PLC控制系统控制的水塔水位[摘要]随着科技的发展,无论在日常生活中,还是在工农业发展中,PLC具有广泛的应用。

PLC的一般特点:抗干扰能力强,可靠性极高、编程简单方便、使用方便、维护方便、设计、施工、调试周期短、易于实现机电一体化。

PLC总的发展趋势是:高功能、高速度、高集成度、大容量、小体积、低成本、通信组网能力强。

本水塔水位控制系统采用PLC为控制核心,具备开启和全部停止功能,这是一种PLC控制的自动调节控制系统。

应用此控制系统能显著提高劳动效率,减少劳动强度。

[关键词] 高集成度通信组网水塔水位 PLCBased on PLC control system control towers water levelAbstract:With technological development, both in daily life, or the industrial and agricultural development, plc have wide application. PLC general features: strong anti-jamming capability, high reliability, programming is simple and convenient, easy operation and maintenance convenience, design, construction, commissioning period is short, easy to realize the electromechanical integration. PLC general development trend is: high function, high speed, high level of integration, large capacity, small volume, low cost, communication networking capability is strong. This water tower water level control system adopts PLC as control core, with open and full stop functions,this is a kind of PLC automatic adjustment of the control system. Application of this control system can significantly improve the work efficiency and reduces labor intensity.Key words:The high level of Integration communication networking towers Water level PLC目录第1章绪论......................................................................................................... - 1 -1.1 可编程控制器........................................................................................... - 1 -1.2 可编程控制器使用前景........................................................................... - 2 -1.3 PLC的发展 .............................................................................................. - 3 -1.4 PLC的基本结构 ...................................................................................... - 4 -1.5 PLC的控制原理 ...................................................................................... - 9 -1.6 PLC的特点 ............................................................................................ - 10 - 第2章水塔水位控制系统PLC硬件设计 ....................................................... - 13 -2.1 水塔水位控制系统设计要求................................................................. - 13 -2.2 水塔水位控制系统主电路..................................................................... - 13 -2.3 I/O接口分配 ........................................................................................ - 14 -2.3.1 列出水塔水位控制系统PLC的输入/输出接口分配表。

水塔水位PLC自动控制系统

水塔水位PLC自动控制系统

水塔水位P L C自动控制系统(总33页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电气工程学院课程设计说明书设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化年级专业: 13级应电2班组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器(PLC)。

随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。

水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。

本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。

利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。

关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC目录第一章研究背景 (1)1.1可编程控制器的产生及发展 (1)1.2PLC的基本结构 (2)1.3PLC的特点 (5)1.4PLC的工作原理 (6)1.5梯形图程序设计及工作过程分析 (8)第二章水塔水位自动控制系统方案设计 (10)第三章水塔水位自动控制系统硬件设计 (12)3.1水塔水位控制系统设计要求 (12)3.2水塔水位控制系统主电路 (12)3.3水泵电机的选择 (13)3.4水位传感器的选择 (13)3.5可编程序控制器的选择 (14)3.6PLC I/O口分配 (14)3.7PLC控制电路原理图 (16)第四章水塔水位自动控制系统软件设计 (17)4.1程序流程图 (17)4.2梯形图 (18)第五章设计总结 (24)第一章研究背景1.1 可编程控制器的产生及发展可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。

基于plc的水塔水位自动控制设计

基于plc的水塔水位自动控制设计

目录摘要 (I)第1章绪论 (1)1.1选题的背景与意义 (1)1.2可编程逻辑控制器简述 (1)第2章系统总体设计 (2)2.1水塔水位控制系统设计 (2)2.2水塔水位控制系统基本工作原理 (3)2.3水塔水位控制系统主电路设计 (4)第3章系统硬件设计 (5)3.1 硬件选型 (5)3.1.1 PLC的选择 (5)3.1.2水泵的选择 (6)3.1.3液位开关的选择 (6)3.1.4电气保护器件选择 (7)3.2 I/O口的分配及PLC外围接线 (8)第4章软件设计 (12)第5章仿真 (14)结论 (18)参考文献 (19)附录 (20)摘要目前,大量的高位生活用水和工作用水逐渐增多。

因此,不少单位自建水塔储水来解决高层楼房的用水问题。

最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。

要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。

利用人工控制水位会造成供水时有时无的不稳定供水情况。

后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。

因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。

本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。

主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。

关键词:水位自动控制、三菱FX2N 、传感器第1章绪论1.1选题的背景与意义在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。

一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。

水塔水位控制系统设计毕业设计

水塔水位控制系统设计毕业设计

目录第1章概述 (2)1.1 背景介绍 (2)1.2 设计要求及意义 (3)第2章系统方案的设计 (4)2.1 总体设计方案 (4)2.2 系统组成 (6)第3章硬件设计 (6)3.1 单片机的简要介绍 (6)3.2 水位检测电路 (8)3.3 水质检测电路 (9)第4章软件设计 (10)4.1 水位控制程序 (10)4.2 水质检测程序 (12)第5章系统调试及说明 (15)5.1 软件调试 (15)5.2 硬件调试 (19)5.3 使用说明和注意事项 (20)第6章总结 (21)第7章致谢 (22)第8章参考文献 (23)第9章附录 (24)9.1 源程序清单 (24)9.2 总电路原理图 (29)第1章概述1.1 背景介绍随着科学技术的发展, 单片机作为嵌入式微控制器在工业测控系统, 智能仪器和家用电器中得到广泛使用。

在实时检测和自动控制的单片机使用系统中,单片机往往是作为一个核心部件来使用。

水塔水位控制系统的基本要求是能够在无人监控的情况下自动进行工作, 在水塔中的水位到达水位下限时自动启动电机, 给水塔供水;在水塔水位达到水位上限的时候自动关闭电机, 停止供水。

并能在供水系统出现异常的时候能够发出警报, 以及时排除故障, 随时保证水塔的对外的正常供水作用。

水塔是在日常生活和工业使用中经常见到的蓄水装置, 通过对其水位的控制对外供水以满足需要, 其水位控制具有普遍性。

不论社会经济如何飞速, 水在人们正常生活和生产中起着重要的作用。

一旦断了水, 轻则给人民生活带来极大的不便, 重则可能造成严重的生产事故及损失, 从而对供水系统提出了更高的要求, 满足及时、准确、安全充足的供水。

如果仍然使用人工方式, 劳动强度大, 工作效率低, 安全性难以保障, 由此必须进行自动化控制系统的改造。

从而实现提供足够的水量、平稳的水压、水塔水位的自动控制有设计低成本、高实用价值的控制器。

该设计采用分立的电路实现超高、低警戒水位处理,实现自动控制,而达到节能的目的,提高了供水系统的质量。

水塔水位自动控制电路设计-毕业设计说明书

水塔水位自动控制电路设计-毕业设计说明书

水塔水位自动控制电路设计-毕业设计说明书四川信息职业技术学院毕业设计说明书设计(论文)题目:________________________水塔水位自动控制电路设计专业: 应用电子技术班级:学号:姓名:指导教师:二〇一三年十二月五日目录摘要 (1)绪论 (2)第1章方案论证与分析 (3)1.1系统功能要求 (3)1.2整体方案 (3)1.2.1方案比较与论证 (3)1.2.2方案论证 (5)第2章硬件设计与分析 (6)2.1单片机最小系统 (6)2.1.1芯片介绍 (6)2.1.2单片机时钟电路设计 (8)2.1.3单片机复位电路设计 (9)2.2超声波测水位电路 (10)2.3指示电路 (11)2.3.1显示电路 (11)2.4报警电路 (12)2.5交流接触器工作原理 (12)2.6整机电路工作原理 (13)第3章软件设计 (14)3.1主程序流程图 (14)3.2中断流程图 (14)第4章系统仿真与调试 (16)4.1常用调试工具 (16)4.1.1Keil 软件 (16)4.1.2Proteus软件 (16)4.2系统调试 (17)第5章实物制作与调试 (18)5.1PCB板的制作 (18)5.2元件的装配 (19)5.3调试与性能检测 (20)参考文献 (22)附录1 整机电路原理图 (23)附录2 源程序 (24)附录3 元器件清单 (27)摘要采用低功耗单片机为控制核心、辅以超声波水位状态采集模块、二极管指示模块、电源供电模块、扬声器报警模块设计的自动水塔水位控制系统,通过一只中间继电器来接通大功率的交流接触器,控制水泵的运行成功实现水塔水位控制功能,它具有电路简单、功能齐全、制作成本低、性价比高等特点,是一种经济、实用的自动水塔水位控制系统。

硬件部分主要由单片机指示灯、继电器、蜂鸣器等基本外围电子电路组成。

它设计的优点是当水位达到一定的位置时报警器开始报警。

因此在生活实践应用中具有一定的价值。

PLC水塔水位控制系统

PLC水塔水位控制系统

安康学院可编程逻辑控制PLC设计报告书课题名称:水塔水位自动控制系统姓名:学号:院系:专业:指导教师:时间:设计项目成绩评定表设计报告书目录一、设计目的 (1)二、设计思路 (1)三、设计过程 (1)3.1、系统论证 (1)3.2、模块设计 (3)四、系统结果 (5)五、课程设计体会与建议 (6)5.1、设计体会 (6)5.2、设计建议 (6)六、参考文献 (6)一、设计目的1、了解PLC实验箱结构及其接线方法。

2、利用PLC构成水塔水位自动控制系统。

3、了解自动控制原理在日常生活中的应用4、熟悉水塔自动控制系统的设计与制作。

二、设计思路1、按水塔水位的控制要求,设计PLC外部电路;2、连接PLC外部(输入、输出)电路,编写用户程序;3、输入、编辑、编译、下载、调试用户程序;4、运行用户程序,观察程序运行结果。

三、设计过程水塔水位控制系统是我国住宅小区、工厂企业广泛应用的供水系统。

为了达到节能的目的,提高供水系统的质量,考虑采用可编程控制器(PLC)、继电器、传感器技术和数据采集,设计一套实用水位控制方案,使系统实现自动控制,以提高控制精度、可靠性和供水质量。

并通过模拟仿真来验证程序编写的正确性。

3.1、系统方案其工作原理为:按下启动按钮,当水槽水位低于下限,补水阀答开。

高于上限时,补水阀关闭,同时,当水塔水位低于下限时,并且水槽水位高于下限时,抽水泵打开,当水塔水位高于上限时,抽水泵关闭。

水塔自动控制总体方框图如图1所示:图1 总体控制方框图3.2、模块设计水塔水位模拟图如图2所示:图2 水塔水位模拟图该电路完成两个功能:一是为水池补水;二是为水塔注水。

I/O分配表如表1所示:表1 I/O分配表输入继电器输入变量名输出继电器输出变量名X0 控制开关Y0 电磁阀X1 水塔上限液位开关Y1 电动机MX2 水塔下限液位开关X3 水池下限液位开关X4 水池上限液位开关工作过程:1)初始状态:水箱没有水,液位开关S4断开(S4为OFF)。

水塔水位自动控制器的设计

水塔水位自动控制器的设计

目录:第一章目录 (1)第二章摘要 (2)第三章设计方案及设计原理 (2)第四章电路总图 (8)第五章元器件清单 (9)第六章总结 (10)第七章参考文献 (11)第八章附录 (11)第二章摘要水塔水位自动控制器主要用途是配合水泵,根据水塔水位高低的变化来启动及停止。

适用于工农业及民用自动供水。

本电路包括水位检测电路,水位范围测量电路,水泵开关电路,显示电路和电源电路5部分。

水位测量电路的功能是利用水的导电性检测水位的变化,水位范围测量电路的功能是利用比较器的原理实现水位范围的确定,应根据水井涌水量来调节中水位探头及高水位探头之间的距离,应调节在水塔水满后,而水泵不应离水工作为宜,同时利用迟滞比较器的迟滞特性避免跳闸现象。

水泵开关电路的功能是完成控制电路和水泵是否工作,显示电路的功能是显示水泵是否在工作。

电源电路则为以上电路提供直流电源。

本控制器适用于家庭住宅、学校、工厂、宾馆、办公、楼宇的自来水水塔(水池)式增压供水与江河井水控制,以及供水、消防、轻工、印染、化纤、造纸、化工、食品、饮料、酿造、制糖、养殖、工矿、农业、水处理等行业的给排水和其它生产用液体供给排放自动化控制或上、下限位报警。

第三章设计方案及设计原理:第一节综合图:由电源电路给各个电路提供直流电源,通过检测电路对水塔水位及范围的测量,产生不同的电位Vs,利用迟滞比较器的特性,控制继电器的工作状态,从而实现对水泵工作状态的自动控制。

第二节主要单元电路设计:一水位测量电路和水位范围测量电路置来实现水位范围的控制。

水位测量电路如图中右边所示,它由两部分组成:1.电阻R1,R2和稳压管D1、D2构成的参考电压产生电路:2.由迟滞比较器构成的水位范围测量电路。

参考电压产生电路产生两个稳定的电压,分别代表水位范围的上限值S2和下限值S1。

由于参考电源产生电路输出端接入比较器的输入,为了防止出现输出电流不稳导致参考电源不稳定的情况,电路采用电阻和稳压管相结合的方式构成。

PLC-水塔水位自动控制-

PLC-水塔水位自动控制-

(2)常数
在编程中经常会使用常数。常数数据长度可为字节、字和双字, 在机器内部旳数据都以二进制存储,但常数旳书写能够用二进制、 十进制、十六进制、ASCII码或浮点数(实数)等多种形式。几种 常数形式分别如表3.9所示。
CPU旳存储区
1. 输入映像寄存器(I)(I0.0~I15.7),每个扫描周期采样。 2.输出映像寄存器(Q)(Q0.0~Q15.7),每个扫描周期末尾 3. 变量存储器(V) 4.位存储器(M)区(M0.0~M31.7) 5.定时器(T)存储器区 6.计数器(C)存储器区 7.高速计数器(HC) 8.累加器(AC) 9. 特殊存储器(SM)标志位 如SM0.0,SM0.1,SM0.4,SM0.5
CPU旳存储区
10.局部存储器(L)区 11.模拟量输入映像寄存器(AI) 12.模拟量输出映像寄存器(AQ) 13.顺序控制继电器(S)
三、寻址方式
1. 直接寻址方式
按位寻址 存储区内另有某些元件是具有一定功能
旳硬件,因为元件数量极少,所以不用 指出元件所在存储区域旳字节,而是直 接指出它旳编号。 按字节、字或双字寻址
返回本节
PLC编程语言旳国际原则
1.顺序功能图 2.梯形图 3.功能块图 4.语句表 5. 其他编程语言
图3.4 顺序流程图
1. 顺序功能图
T0 S1
T1 S2
S T2 S3
S
T3 T8
S8 S
T9
2. 梯形图(LAD)
图3.2 梯形图举例
3. 功能块图(FBD)
功能块图(FBD)旳图形构造与数字电子电路旳构 造极为相同,如下图3.3所示。
必须指定存储器标识符、字节地址和位号,如 图3.8 所示。图3.8中MSB表达最高位,LSB表

基于plc水塔水位自动控制系统设计(毕业论文)

基于plc水塔水位自动控制系统设计(毕业论文)

基于plc水塔水位自动控制系统设计(毕业论文)基于PLC的水塔水位自动控制系统设计摘要:本论文设计了一种基于PLC(可编程逻辑控制器)的水塔水位自动控制系统。

该系统通过PLC对水塔水位进行实时监测和控制,实现了水塔水位的稳定控制和节约水资源的目标。

本论文详细介绍了系统的硬件组成、软件设计和系统调试,为读者提供了一种实用的水塔水位自动控制方案。

一、引言水塔是城市供水中重要的基础设施之一,它起到了调节和储存水的作用。

传统的水塔水位控制主要依靠人工操作,存在着很多问题,如操作不及时、水资源浪费等。

因此,设计一种基于PLC的水塔水位自动控制系统,可以提高水塔的运行效率和水资源利用率。

二、系统需求分析本系统需要实现以下功能:1.实时监测水塔水位;2.根据水位自动控制水泵的启停;3.实现水塔水位的自动调节;4.防止水泵过载和干运转等异常情况;5.实现远程监控和管理。

三、系统设计1.硬件组成2.本系统主要由PLC、水位传感器、水泵、电动阀门、通信模块等组成。

其中,PLC作为核心控制单元,负责数据处理和控制输出;水位传感器监测水塔水位;水泵和电动阀门负责水流的控制;通信模块实现数据传输和远程监控。

3.软件设计4.本系统的软件设计主要包括PLC程序设计和上位机监控软件设计。

PLC程序主要实现数据采集、逻辑控制和水泵启停等功能;上位机监控软件则通过组态软件实现数据的实时显示、参数设置和远程控制等功能。

5.系统调试6.在系统调试过程中,我们进行了硬件和软件的测试,验证了系统的稳定性和可靠性。

同时,我们还对系统的节能效果进行了评估,结果表明本系统可以有效地节约水资源。

7.系统功能完善与优化8.针对实际应用中出现的问题和不足,我们提出了相应的改进措施:首先,增加了水泵的故障检测功能,提高了系统的安全性;其次,优化了控制算法,提高了水塔水位的控制精度;最后,完善了上位机监控软件的功能,提高了系统的可操作性。

9.经济效益分析10.本系统的应用带来了显著的经济效益。

水塔水位控制系统PLC设计

水塔水位控制系统PLC设计

水塔水位控制系统PLC 设计1、水塔水位控制系统PLC 硬件设计 1.1、水塔水位控制系统设计要求水塔水位控制装置如图1-1所示图1-1 水塔水位控制装置水塔水位的工作方式:当水池液位低于下限液位开关S4,S4此时为ON ,水阀Y 打开(Y 为ON ),开始往水池里注水,定时器开始定时,4秒以后,若水池液位没有超过水池下限液位开关时(S4还不为OFF ),则系统发出报警(阀Y 指示灯闪烁),表示阀Y 没有进水,出现故障;若系统正常,此时水池下限液位开关S4为OFF,表示水位高于下限水位。

当水位液面高于上限水位,则S3为ON ,阀Y 关闭(Y 为OFF )。

当S4为OFF 时,且水塔水位低于水塔下限水位时(水塔下限水位开关S2为ON ),电机M 开始工作,向水塔供水,当S2为OFF 时,表示水塔水位高于水塔下限水位。

当水塔液面高于水塔上限水位时(水塔上限水位开关S1为OFF ),电机M 停止。

(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动)1.2 水塔水位控制系统主电路水塔水位控制系统主电路如图1-2所示:M 3~L1L2L3SQFUKMFRS1---表示水塔的水位上限,S2---表示水塔的水位下限,S3---表示水池水位上限, S4---表示水池水位下限,M1为抽水电机,Y 为水阀。

图1-2 水塔水位控制系统主电路1.3、I/O 接口分配水塔水位控制系统PLC 的I/O 接口分配如表1-1所示。

表1-1 水塔水位控制系统PLC 的I/O 接口分配表符号地址 绝对地址 数据类型 说明 1 S1 I0.1 BOOL 水塔上限水位 2 S2 I0.2 BOOL 水塔下限水位 3 S3 I0.3 BOOL 水池上限水位 4 S4 I0.4 BOOL 水池下限水位 5 START I0.0 BOOL 控制开关 6 Y Q0.1 BOOL 水阀 7 M1 Q0.2 BOOL 抽水电机 8 Q0.3 BOOL 水池下限指示灯 9 Q0.4 BOOL 水池上限指示灯 10 Q0.5 BOOL 水塔下限指示灯 11 Q0.6 BOOL 水塔上限指示灯 12 Q0.7 BOOL 报警指示灯 1.4、水塔水位控制系统的I/O 接线图这是一个单体控制小系统,没有特殊的控制要求,它有5个开关量,开关量输出触点数有8个,输入、输出触点数共有13个,只需选用一般中小型控制器即可。

PLC控制水塔水位

PLC控制水塔水位

PLC控制水塔液位及温度控制程序设计
一:设计目的:
1、用PLC构成水塔液位和温度的自动控制系统。

2、了解PLC在实际生活中的应用。

二:控制要求:
(1)闭合水池低液位开关,驱动电磁阀打开,开始进水同时进行加热和搅拌,使水受热均匀,当水位到达水池高液位时,停止加水,但还可以加热,直到加热到温度为20度到30度之间为止,同时驱动蜂鸣器发出声音提醒。

(2)在蜂鸣器提醒的期间可以打开水塔低液位开关,启动抽水电机向水塔抽水并同时停止加热和搅拌。

直到到达水塔的高液位停止抽水。

三:设计参考:
1、输入:
2、输出:
X1 水塔高液位控制开关S1 Y0 电磁阀
X2 水塔低液位控制开关S2 Y1 抽水电动机
X3 水池高液位控制开关S3 Y2 加热器
X4 水池低液位控制开关S4 Y3 搅拌器
C5 温度传感器S5 Y4 蜂鸣器
四:设计流程图为:
五:水塔控制示意图:
六:硬件连接图如下:
七:由以上的分析可得梯形图如下:
八:从上梯形图可以看出,闭合X4后,一直进行加水并加热,直到水池充满,当热量到达20到30度之间蜂鸣器开始提醒,这之间可以打开水塔的低液位的开关,此时抽水机工作,关闭加热和搅拌,直到到达水塔高液位,整个系统停止工作。

PLC实训程序--水塔自动供水控制

PLC实训程序--水塔自动供水控制

水塔自动控制一.实验目的学会利用PLC控制自动供水设备。

二.实验器材1. 可编程控制器实验台1台2. PLC-DEMO009水塔水位自动控制模拟实验板1块3. PC机或FX-20P-E编程器(自备)1台4. 编程电缆1根5. 自锁式连接导线(或扁平线)若干根三.实验原理与实验步骤1. 水塔水位自动控制,模拟实验板结构如图所示。

2. 本实验利用6个LED来指示水位的高低和电机的工作状态。

其中4个LED显示水位的高低,2个显示电机的工作状态。

3. 控制要求:(1)当水池水位低于低水位界L4时(L4=ON),阀M2打开进水;当水池水位高于高水位界时(L3=ON);则阀M2关闭。

(2)当水塔水位低于低水位界L2时(L2=ON),且水位高于低水位界;则抽水电机M1打开。

(3)当水塔水位高于高水位界时,则M1关闭。

(4)若在抽水过程中,水池水位下降到低水位界,则M1也关闭。

4. 实验步骤(1)打开实验台电源,PLC与编程器或PC机连接。

(2)根据具体情况编制输入程序,并检查是否正确。

(3)按图接线,实验台与PLC-DOME009连接,检查连线是否正确。

(4)启动设备,观察运行结果是否正确。

四.设计程序清单I/O分配指令表0 LD X0001 OUT Y0052 LDI X0033 ANI X0004 ANI Y0045 OUT Y0026 LD X0037 OUT Y0008 LD X0029 OUT Y00110 LD X00111 OUT Y00312 LD X00013 OUT Y00414 END梯形图接线图※FX系列的输出继电器的公共端:FX2N-32MR为COM0~COM4;FX2N-48MR为COM0~COM5; FX1N-60MR为COM0~COM7。

基于PLC的水塔自动供水系统方案设计

基于PLC的水塔自动供水系统方案设计

点> 并可通过提供优质供水服务创设和谐文明的人居环境。
关键词:供水方式;液位控制;’() 系统;自动供水
中图分类号:?@;;$ 文献标识码:)
文章编号:$<A$—$&&84 #88; 58&—88!!—8#
一、传统供水与新型供水方式的比较 目前,国内大部分城市供水系统,包括水厂、生活小区、 高层建筑的供水系统,仍采用较为传统的供水方式。给水值 班员 根据实际的用 水量或积累 的经验,通过人工 的方式调 节水泵电机的开停来实现简单的供水控制。当用水量增大, 供水 压力变小时 ,即手 动增加一台水 泵" 当用水 量减小,供 水压力变大时,则把最先运行的水泵电机关停。水泵作为供 水工程 中的通用机械 ,消 耗着大量的能 源,在我国,每年水 泵的电能消耗占电能总消耗的#$% 。为了节约降耗,必须采 取调节措施使泵站适应负荷的变化来运行。 传统的 供水方式存 在着许多缺 陷,特别是多台 水泵供 水系统尤为严重。其一,由于水泵电机只能工作在额定运行 和停 车两种工作 状态,无法为用户 提供稳定可靠 的供水压 力,且系统完全依赖于人工操作来控制,因而供水质量受人 为因素影响较大,无法为用户提供稳定的供水压力,且经常 会出现断水、水管崩裂、管道共振等现象。其二,由于水泵电 机只能工作在 工频状态,长期高速 运行,电能浪费较 大,据 统计,在目前传统的供水方式中,电费在水费成本中的比例 高达&!% 以上。其三,由于人为的控制难以始终保证电机在 运行过 程中投切次 序的正确性,容易 导致电机在 长期运行 过程中磨损不均,并且增大了误操作的可能性" 同时设备运 行不合理,机械磨损大,造成设备使用寿命短,维修量大,设 备和人 工成本都较高 。其 四,在 目前的城市 生活小区、高层 建筑供水系统中,基本采用高位水箱或水塔的供水方式,这 样既增大了基建投资,同时也造成了水资源的二次污染。 采用 ’() 控制的新型供水方式与过去的水塔或高位水 箱以及气压供水方式相比,不论是设备的投资 ,运行的经济 性,还是系 统的稳定性、可靠性 、自 动化程度等方 面都具有 无法比拟的优势,而且具有显著的节能效果。恒压供水调速

(完整版)水塔水位的PLC控制的设计毕业设计论文

(完整版)水塔水位的PLC控制的设计毕业设计论文

摘要设计和实现了一种采用可编程序控制器为主控制机的供水控制系统。

该控制系统是在传统水塔供水的基础上,加入了PLC、变频器等器件组成,能够实现水塔水位的供水。

详细论述了系统硬件结构、操作流程和控制方法,以及各器件之间的协调控制方法,实现了对水塔水位的自动控制,提高了供水质量。

关键词:PLC(Programmable Logic Controller)目录一概述 (1)二水塔供水自动控制系统方案设计 (2)设计方案 (2)三水塔水位自动控制系统设计 (2)1水泵电动机控制电路的设计 (2)2水位传感器的选择 (4)四水塔水位自动控制系统的组成 (6)1、系统构成及其控制要求 (6)2系统框图 (7)五 PLC的设计 (7)1可编程序控制器(PLC)简介 (7)2PLC工作原理 (8)3PLC的编程语言--梯形图 (9)4SYSMAC-C系列P型机概述 (10)5水塔水位自动控制系统的软件设计 (11)六结束语(系统总结分析) (17)1系统的优点 (17)2结束语 (17)参考文献 (19)致谢 (20)水塔水位的PLC控制系统设计一概述我国的水工业科技发展较快,与国际先进水平的差距正在不断缩小,水工业科技体系已初步形成,拥有一支从事水工业基础科学研究、应用研究、产品研制和工程化产业化开发的科技队伍。

但是,在水工业科技领域普遍存在着实用性差、转化率低的情况。

这已成为制约我国水工业产业化发展的关键。

在水工业科技产业化大潮到来之际,认真分析我国水工业科技发展历程,总结我国水工业科技的特点和特长是寻找水工业产业化突破口的关键。

目前,我国的供水自动化系统发展已初有成效。

供水自动化系统主要包括水厂自动化和供水管网调度自动化两个方面。

我国供水行业是推动水科技产业化的龙头。

给水行业是城市基础设施投资的主要方向之一。

在体制上,供水企业体制的变革已成为市场化发展的必然;在技术上,供水行业则面临着关键给水装备国产化、工艺技术成套设备化、自动控制现代化的迫切的技术要求。

水塔水位自动控制系统设计要点

水塔水位自动控制系统设计要点

开题报告设计题目:水塔水位自动控制系统的设计主要研究内容:水塔水位自动控制系统采用传感器或电极检测水位,水位低于下限水位A 时,启动水泵抽水;水位高于上限水位B 时,水泵停止抽水,实现水塔水位的自动控制,并能自动完成上水与停水的全部工作循环,保证水塔的水位高度始终处于较理想的范围。

主要技术指标或研究目标:本设计的相关技术数据:电源电压220 伏,电源频率50赫兹。

要求:系统工作稳定、结构简单、制造成本低、灵敏度高。

本系统采用分立元件实现控制系统的设计。

能利用所学知识进行分析与设计,进一步加深和巩固课本所学知识,学会分析电路、设计电路的方法与步骤,培养综合运用知识的能力。

基本要求:(1)控制系统整体方案的可行性分析。

(2)工作原理与电路设计。

(3)元器件的选择(4)绘制设备示意图和系统原理图5)编制设计说明书摘要在工农业生产过程中,经常需要对水位进行测量和控制。

水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。

而水位检测可以有很多种实现方法,如机械控制、逻辑电路控制、机电控制等。

本文采用分立元件实现控制系统的设计,在水箱上安装一个自动检测水位装置,利用水的导电性,连续的全天候的测量水位的变化,把测量的水位变化转换成相应的电信号,由逻辑电路进行处理,完成相应的动作,使水位保持在适当的位置。

关键词水位控制分立式元件控制目录1 引言,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 12系统方案,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 2.1概述,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 2.2系统组成,,,,,,,,,,,,,,,,,,,,,,,,,, 32.2.1系统工作原理框图,,,,,,,,,,,,,,,,,,,, 32.2.2功能原理,,,,,,,,,,,,,,,,,,,,,,,, 3 3单元电路设计,,,,,,,,,,,,,,,,,,,,,,,,, 43.1系统电源电路设计,,,,,,,,,,,,,,,,,,,,,, 43.1.1三端集成稳压器的介绍,,,,,,,,,,,,,,,,,, 43.1.2电源电路工作过程,,,,,,,,,,,,,,,,,,,, 6 3.2液位传感器电路设计,,,,,,,,,,,,,,,,,,,,, 6 3.3报警显示电路设计,,,,,,,,,,,,,,,,,,,,,, 7 4系统电路设计,,,,,,,,,,,,,,,,,,,,,,,,,, 84.1系统主干电路,,,,,,,,,,,,,,,,,,,,,,,, 8 4.2系统手动电路,,,,,,,,,,,,,,,,,,,,,,,, 9 4.3系统自动电路,,,,,,,,,,,,,,,,,,,,,,,, 9 5系统运行总体过程,,,,,,,,,,,,,,,,,,,,,,,, 12 6元件清单,,,,,,,,,,,,,,,,,,,,,,,,,,,, 13 附录,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 18总结,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 19 参考文献,,,,,,,,,,,,,,,,,,,,,,,,,,,, 20 致谢,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 211. 引言随着我国经济和科学技术的飞速发展,我国各个领域的现代化建设都取得可喜的成果:尤其在中国的广大城市中,可以说现代化的进程已经赶上了发达国家,这一点是我们华夏儿女几代人的梦想。

基于三菱PLC的水塔水位自动控制设计

基于三菱PLC的水塔水位自动控制设计

电气工程学院设计题目:水塔水位PLC自动控制系统系别:年级专业:学号:学生姓名:指导教师:电气工程学院《课程设计》任务书课程名称:电气控制与PLC课程设计基层教学单位:电气工程及自动化系指导教师:摘要目前,大量的高位生活用水和工作用水逐渐增多。

因此,不少单位自建水塔储水来解决高层楼房的用水问题。

最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。

要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。

利用人工控制水位会造成供水时有时无的不稳定供水情况。

后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。

因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。

本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。

主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC 构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。

关键词:水位自动控制、三菱FX2N、水泵、传感器目录摘要 ............................................................................................................................................................................ I 目录 ........................................................................................................................................................................... I I 第一章绪论 (1)1.1本课题的选题背景与意义 (1)1.2可编程逻辑控制器简述 (1)第二章水塔水位控制系统硬件设计 (2)2.1基于PLC的水塔水位控制系统基本原理 (2)2.2水塔水位控制系统要求 (3)2.3水塔水位控制系统主电路设计 (4)2.4 系统硬件元器件选择 (5)2.5 I/O口的分配及PLC外围接线 (6)第三章水塔水位系统的PLC软件设计 (10)3.1 水位控制系统的流程图 (11)3.2 PLC 控制梯形图 (12)3.3 水位控制系统的具体工作过程 (20)第四章总结 (21)参考文献 (22)第一章绪论1.1本课题的选题背景与意义在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。

农村水塔水位自动控制水泵抽水系统设计

农村水塔水位自动控制水泵抽水系统设计

农村水塔水位自动控制水泵抽水系统设计为解决农村水塔抽水自动控制问题,设计了一种水塔水位自动控制系统。

该系统主要由压力传感器、调理电路、控制电路以及单片机主控芯片组成。

对该系统的硬件电路进行了详细介绍,给出了控制系统的软件流程。

应用结果表明,该系统适用于农村水塔抽水的自动控制以及水位的实时检测。

标签:水塔;自动控制;水位;压力传感器Abstract:To solve the problem of water tower automatic control in the countryside,designs a water tower water level auto control system. The system is mainly composed of pressure sensor,control circuit,control circuit and single-chip microcomputer control chip. The hardware circuit of the system are introduced in detail,gives the software flow of the control system. Application results show that the system is suitable for rural water tower of automatic control and it can detect water level in real-time.Keywords:Water tower ;Automatic control;Water level;Pressure sensor0、引言目前,我国中部农村地区自来水供水系统还未大范围普及,为解决饮水问题,许多农村家庭采用的是水塔式供水系统提供日常饮用水。

用户将水塔安装在楼顶以提供足够的水压,塔内的水是由水泵从深井中抽入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水塔水位的PLC控制的设计PLC课程设计说明书姓名班级学号专业机电一体化技术教师组别日期 2012.1.10成绩目录一概述 (1)二水塔供水自动控制系统方案设计 (2)设计方案 (2)三水塔水位自动控制系统设计 (2)1水泵电动机控制电路的设计 (2)2水位传感器的选择 (4)四水位自动控制系统的组成 (6)1、系统构成及其控制要求 (6)2系统框图 (7)五 PLC的设计 (8)1可编程序控制器(PLC)简介 (8)2PLC工作原理 (8)3PLC的编程语言--梯形图 (9)4SYSMAC-C系列P型机概述 (11)5水塔水位自动控制系统的软件设计 (12)六结束语(系统总结分析) (17)1系统的优点 ............................................................................ 错误!未定义书签。

2结束语 .................................................................................... 错误!未定义书签。

参考文献 (19)致谢 (20)水塔供水自动控制系统的设计一概述水塔水位控制系统采用交流电压检测水位,在控制系统启动后,若水槽水位低于水槽最低水位S2时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位S4时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位S2时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位S1时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。

二水塔供水自动控制系统方案设计设计方案PLC和传感器构成的水塔水位恒定的控制系统原理。

在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。

本文主要阐述利用PLC和传感器构成的水塔水位恒定的控制系统。

三水塔水位自动控制系统设计1水泵电动机控制电路的设计给排水工程中常使用三相异步电动机,水泵上的电动机一般都是单向旋转有以下控制。

在水塔水位检测系统中通过水位传感器检测实际水位的高度,当水位低于最低水位时向PLC发出信息启动水泵,经过5分钟检测水塔水位是否提高控制水泵的工作,当水位达到最高水位时向PLC发出信息控制信息停止水泵工作。

供水系统的基本原理如图5.1 所示,水位闭环调节原理是:通过在水塔中的水位传感器,将水位值变换为电流信号进入PLC,执行较后程序,通过水泵的开关对水塔中的水位进行自动控制。

当PLC出现故障时,还有一套手动控制来进行对水塔水位控制。

手动控制采用交流接触器。

(图4-1 水泵电动机控制图)水泵启动工作:当投入作为主电路电源开关的配线切断器KM1时,在收到PLC的启动水泵指令后,电磁线圈KM2中有电流流过,电磁接触器KM2运行。

当电磁接触器KM2运行时,主电路的主触点KM2闭合,常闭触点KM2-b 打开,常开触点KM2-m2闭合,当主触点闭合时,电源电压施加到电动机M 上,开始运转。

当常闭触点KM2-b打开时,绿灯GN-L中无电流流过,绿灯熄灭,当常开触点KM2-m2闭合时,红灯RD-L中有电流流过,红灯点亮。

水泵停止工作:当投入作为主电路电源开关的配线切断器KM1时,在收到PLC的停止水泵指令后,电磁线圈KM2中无电流流过,电磁接触器KM2恢复。

当电磁接触器KM2恢复时,主电路的主触点KM2打开,常闭触点KM2-b 闭合,常开触点KM2-m2打开,当主触点KM2打开时,电源电压施不再施加到电动机M上,电动机M停止运转。

当常闭触点KM2-B闭合时,绿灯GN-L 中有电流流过,绿灯点亮,当常开触点KM2-m2打开时,红灯RD-L中无电流流过,红灯熄灭。

KM1:配线切断器是把开闭机构、后动装置等统一装到绝缘容器内的部件,它是利用操作手柄对通常使用状态的电路进行开闭控制的。

经常应用于电源电路的开闭中,当发生过载、短路等情况时自动地切断电路。

KM2:所谓电磁接触器,就是应用电磁铁对负载电流进行开闭控制的接触器,主要用于电源电路的开闭。

电磁接触器有主触点和辅助触点构成的触点和电磁线圈与铁心构成的靠做电磁铁部分组成。

FR: 热敏继电器是由加热器部分和触点机构部分组成的。

当够电流流过加热部分时,双金属片因为受热而发生弯曲,因此触点部分被打开而使电路得到保护。

2水位传感器的选择根据本设计的要求所选传感器要求在水面和水底都可以使用,且要考虑到对水质的影响,所以选择超声波液位传感器U9ULS系列的 U9ULS——10/100系列。

U9ULS系列超声波液位传感器开关使用范围非常广。

具有焊接的不锈钢传感器探头,没有缝隙不会泄露,另外没有易损的活动部件,它不会受温度、压力、密度和液体类型等参数的影响。

在大多数情况下,电子设备放在铸铝的,NEMA 4/NEMA 7防爆且防水的壳体中。

U9ULS具有以下特点:可应用于多种液体中可承受高达1000psi的压力不受气泡、蒸汽、杂质后湍流等因素的影响。

长度达121in(303.3cm)可安装在侧面、顶部或底部工作原理:U9ULS系列是给予超声波理论工作的。

当超声波在空气中传播时,会被严重衰减相反地,如果在液体中传播时,超声波的传播会被大大增强。

电子控制单元发出一系列的电信号,传感器将其转化为超声能量脉冲,并在被探测区内传播。

当另一端街道有效信号时,就发出数据有效的信号,表明有液体存在。

这个信号输送到继电器,从而产生输出信号。

U9ULS——100系列产品具有性能优异的传感器探头,可在温度为300F 和压力为1000PSI的情况下良好的工作。

U9ULS——10系列产品为更靠近池底,将顶端的探头设计成缺口形状。

控制电路设计成小型,密封的结构,可安装在远程的控制地点。

特点:10A的继电器输出115/230V AC,12V DC或24V DC输入高增益。

无需效准,工作温度可达300 长度可达151.5CM表5.1 主要技术指标四水位自动控制系统的组成1、系统构成及其控制要求水塔水位自动控制系统水塔水位的工作方式:S1: 水塔水位上限当水塔水位达到此位置时液位传感器将向PLC 发出最高水位信号请求停止水泵工作S2: 水塔水位下限当水塔水位达到此位置说液位传感器将向PLC 发出最低水位信号请求开启水泵工作S3: 水槽水位上限当水塔水位达到此位置时液位传感器将向PLC 发出最高水位信号请求停止水泵工作S4: 水槽水位下限当水塔水位达到此位置说液位传感器将向PLC 发出最低水位信号请求开启水泵工作M: 抽水泵当水塔水位达到最低水位时PLC将开到抽水泵向水塔供水Y: 补水泵当水槽水位达到最低水位时PLC将开到抽水泵向水塔供水原理:在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。

2系统框图如下图整个系统由一个水位传感器,一台PLC和一台水泵以及若干部件组成。

安装于水塔上的传感器将水塔的水位转化成1-5伏的电信号;电信号到达PLC将控制控制水泵的开关。

水箱水位自动控制系统由PLC核心控制部件高低位水箱的水位检测电路高低水位信号传送给PLC水泵电动机控制电路PLC 控制启停及主备切换。

(图5-2 系统组成框图)在水塔水位检测系统中通过超声波液位传感器将水位信号转换为电信号输入PLC中,在通过PLC控制水泵的启动或关闭。

在系统运行中当水为低于最低值时PLC将启动水泵向水塔中加水,当水塔中的水达到最高值时PLC 使水泵停止运转即水泵停止向水塔供水。

等到水塔水位再次达到控制最低水位时系统再次重复这个过程。

五 PLC的设计1可编程序控制器(PLC)简介可编程序控制器(Programmable Logic Controller))简称PLC。

所谓可编程序控制器,就是一种专为在工业环境下应用而设计的数字运算操作的电子系统,它采用一种可编程序的存储器,在其内部存储并执行逻辑运算、顺序控制、定时、记数和算术操作的指令,通过数字量或模拟量的输入输出来控制各种类型的机械设备或生产过程。

随着PLC的发展,它不仅能完成编辑、运算、控制,而且能实现模拟量、数字量的算术运算。

2 PLC工作原理PLC的工作方式:采用循环扫描方式.在PLC处于运行状态时,从内部处理,通信操作,程序输入,程序执行,程序输出,一直循环扫描工作.PLC的工作过程:PLC的工作过程基本上是用户的梯形图程序的执行过程,是在系统软件的控制下顺次扫描各输入点的状态,按用户程序解算控制逻辑,.然后顺序向各个输出点发出相应的控制信号。

除此之外,为提高工作的可靠性和及时的接收外来的控制命令,每个扫描周期还要进行故障自诊断和处理与编程器、计算机的通信。

因此,PLC工作过程分为以下五步:(1)自诊断自诊断功能可使PLC系统防患于未然,而在发生故障时能尽快的修复,为此PLC每次扫描用户程序以前都对CPU、存储器、输入输出模块等进行故障诊断,若自诊断正常便继续进行扫描,而一旦发现故障或异常现象则转入处理程序,保留现行工作状态,关闭全部输出,然后停机并显示出错的信息。

(2)与外设通信自诊断正常后PLC即扫描编程器、上位机等通信接口,如有通信请求便响应处理。

在与编程器通信过程中,编程器把指令和修改参数发送给主机,主机把要显示的状态、数据、错误码进行相应指示,编程器还可以向主机发送运行、停止、清内存等监控命令。

在与上位机通信过程中PLC将接收上位机发出的指令进行相应的操作,把现场工作状态、PLC的内部工作状态、各种数值参数发送给上位机以及执行启动、停机、修改参数等命令。

(3)输入现场状态完成前两步工作后PLC便扫描各个输入点,读入各点的状态和数据,如开关的通断状态、形成现场的内存映象。

这一过程也称为输入采样或输出刷新,在一个扫描周期内内存映象的内容不变,即使外部实际开关状态己经发生了变化也只能在下一个扫描过程中的输入采样时刷新,解算用户逻辑所用的输入值是该输入值的内存映象值而不是当时现场的实际值。

相关文档
最新文档