教材课后习题参考答案新版_学生版(1-4)章_

合集下载

教材课后习题参考答案

教材课后习题参考答案

教材课后习题参考答案1 稻草人1. 首先抓住重点句,仔细读课文,理解课文内容,体会稻草人情感的变化,感受他心灵的美好和善良。

然后,理清各部分、各段的主要内容,把相关的故事情节连贯起来,转化成自己的语言讲出来。

2. 体现稻草人感情变化的语句有:第3自然段2、3句和后3句,第4自然段后4句,第7自然段,第8自然段第2句,第9自然段最后一句,等等。

稻草人开始见庄稼长得壮实,所以心里高兴,替命运悲惨的主人感到欣慰;后来见小蛾在叶尖产子,觉得灾害将临,所以心里着急,拼命想把消息通知主人;最后看到稻子遭到祸害,心中十分悲伤,为主人伤心流泪。

3. 本文中,稻草人不仅尽责尽职,还替主人高兴,为主人担忧,甚至想“跳过去,把那灾害的根苗扑灭了”,这都表现了他心地善良,富有同情心,灵魂高尚的精神品质,他是值得我们喜爱和学习的。

4. 略2 寓言两则1. 略2. 《自相矛盾》的意思是一个人说话做事前后矛盾,有些言过其实,自己说的和做的往往不一致,最后搬起石头砸到了自己的脚。

它告诉我要言行一致,实话实说。

《画蛇添足》是说一个人做事总爱节外生枝,卖弄小聪明,结果事情非但不能做好,反而弄巧成拙,惹出很多麻烦。

它告诉我做事要实事求是,不要卖弄小聪明。

3. 略3 卖火柴的小女孩儿1. 略2. 文中小女孩儿共五次擦燃火柴,分别看到了烧得旺旺的大火炉、香喷喷的烤鹅、美丽的圣诞树、慈祥的奶奶和随奶奶升入天堂五个幻觉。

课文中感人的地方很多,比如,小女孩儿五次美好的幻觉,在大年夜被冻死的情景,等等。

3. 第一个“幸福”是指小女孩儿临死时是在美好的幻觉中度过的,是幸福的;第二个“幸福”指小女孩儿死了就没有寒冷、饥饿和痛苦了,就彻底幸福了。

这句话的意思是,活着没有人会关心她,只能忍冻挨饿,一生痛苦,只有死才能得到解脱,表达了作者对穷苦人民的深切同情和对贫富悬殊的社会的强烈不满。

4. 略4*刺猬汉斯1. 课文主要讲有一个富有的农夫,他的妻子生了个怪儿子——刺猬汉斯。

最新部编人教版四下数学课本课后习题参考答案

最新部编人教版四下数学课本课后习题参考答案

10、略第67页做一做答案1、∠2=15º2、每个小三角形的内角和都是180º。

第68页做一做答案180º×(6-2) =720º提示:六边形可以分成4个三角形。

练习十六答案1、左图:180º-65º-37º=78º中图:90º-30º=60º或180º-90º-30º=60º右图:180º-20º-25º=135º2、(1)180º÷3=60º三个角都是60º。

(2) (180º-96º)÷2=42º三个角分别是96º、42º、42º。

(3) 90º-40º=50º三个角分别是90º、40º、50º。

3、1800-700×2=4004、发现:n边形都可以分成(n-2)个三角形,所以n边形的内角和=180º×(n-2)。

5、略6、提示:(1)另外两个角的度数之和一定是90º,即如果一个角是10º,那么另一个角就是80º,如果一个角是20º,那么另一个角是70º……(2)假设另一条边是acm,则a+3>4⇒a>1,3+4>a⇒a<7,所以另一条边一定比1cm长,比7cm短。

可能是2cm、3cm、4cm、5cm……7、1个 3个6个 10个……规律略第72页做一做答案1、3. 54 17.2 10.963.86 6.4 8. 162、(1)29. 8-22. 7=7. l(kg)(2)27. 5-24. 6=2. 9(kg)9岁比8岁增加得最多,增加了2. 9kg第73页做一做答案练习十七答案1、3. 4 9. 4 13. 7 0. 540. 7 1. 9 3. 3 0. 632、4.12 28.3 17.0425.6 4.68 4.263、0.95-0.35=0.6(kg)4、163.54元 159.26元 162.80元160.00元 322.80元5、10.32 16.08 20.243.08 44.3 0.456、7、原式=5.62元+3.09元=8.71元原式=1.03t+0.98t=2.Olt原式=4.35m+5.7m=10.05m原式=10kg-4.8kg=5.2kg原式=4.8km-3.05km=l.75km原式=6km-2.86km=3.14km8、75. 80+45. 50=21. 30(元) 75. 80+ 58. 00=38.00(元)92. 50+45. 50=33. 80(元)92. 50+58. 00=50. 50(元)9、0. 12m O.5lm O.87m 5.12m 8. 36m O.3秒10、(1)1.0 1.2(2)1. 31 1.36(3)4. 375 4.378(4)7. 877 7.872第76页做一做答案1、3. 24 3.6 117.32、38.5+4.8=43.3(元)50-43.3=6.7(元)练习十八答案1、9.1 8.1 0. 820.5 3.6 2.32、27. 07 17. 21 22. 2712. 41 43. 29 33. 433、39.36 9.69 24.475.2 36.39 8.224、分析:先求出海洋面积,再减去陆地面积。

部编版语文一年级上册教科书(教材)课后习题参考答案

部编版语文一年级上册教科书(教材)课后习题参考答案
背诵指导:借助课本上的插图,边看画面, 边按顺序背诵。
你喜欢哪个季节?仿照课文说一说。
提示:课文前三节都运用了叠词,说 出了事物的特征;课文第一、二节的句式 是“什么对什么说”,而第三、四节的句 式是“什么怎么样地说”。这些我们都可 以学着用一用。
示例:我喜欢夏天和秋天。
▷ 西瓜圆圆,他鼓着肚皮说:“我是夏天。” ▷ 柿子红红,他仰着小脸儿,对南飞的大雁
背诵指导:课文先写我们的国旗是五星红 旗,然后描述升国旗时的庄严情景,接着写我 们在升国旗时注视、立正、敬礼。结合自己参 加升国旗仪式的感受,熟读成诵。
课后习题 课文
5 影子
朗读课文,读准字音。
朗读指导:朗读时,先读准字音,“常、 着、是”是翘舌音,“子、在、左”是平舌 音,“子、着、的、友”读轻声。要重读表 示影子出现的位置的词和表现影子形状的词, 语速稍快。
读一读,说一说,看谁说得多。
金色的
雪白的
快活的
示例: 金色的(太阳/麦穗/沙漠) 雪白的(羽毛/棉花/梨花) 快活的(孩子/小鸟/星星)
课后习题 课文 12 雪地里的小画家
朗读课文。背诵课文。
朗读指导:第一句读得大声、响亮,读 出欢呼的语气。“啦”字用在句末,加强了 感叹语气,读出兴奋激动的感觉。想象下大 雪的时候,“小画家们”和我们一样兴奋地 跑向雪地,边跑边欢呼,朗读时要把自己的
写字 写作业
课后习题 课文 8 雨点儿
分角色朗读课文。
朗读指导:读小雨点儿的话时声音可以 天真一些,读大雨点儿的话时声音可以稳重 一些。问句要读出疑问语气,语速稍慢;回 答时要表现小雨点儿和大雨点儿都急着去自 己想去的地方的情态,语速稍快。
读下面的句子,注意读好停顿。
不久,有花有草的地方,花 更·红·了,

部编本人教版语文四年级下册教材课后题参考答案

部编本人教版语文四年级下册教材课后题参考答案

第1课古诗词三首2.读下面的诗句,说说你眼前浮现出了怎样的情景。

〔答案〕“儿童急走追黄蝶,飞入菜花无处寻。

”描绘了儿童捕蝶的欢快场景。

“日长篱落无人过,惟有蜻蜓蛱蝶飞。

”让我们看到农民早出晚归的场景,蛱蝶飞又让我们感受到静中有动的情景。

“大儿锄豆溪东,中儿正织鸡笼。

最喜小儿亡赖,溪头卧剥莲蓬。

”大儿子在溪东豆地里锄草,二儿子在家里编织鸡笼,三儿子只知任意地调皮玩耍,躺卧在溪边剥莲蓬吃。

第2课乡下人家1.朗读课文,想象画面。

如果给课文配画,你觉得可以画几幅?试着给每幅画取个名字。

〔答案〕 7幅,屋前搭瓜架、门前种鲜花、屋后春笋冒、院里鸡觅食、河中鸭嬉戏、门前吃晚饭、夜静催眠曲。

2.你对课文描写的哪一处景致最感兴趣?和同学交流。

〔答案〕描写门前五颜六色的花和雨后春笋的景致我最感兴趣,本来是朴素的乡下,可是门前这些五彩缤纷的花朵、雨后的春笋又给本来朴素的乡下带来了勃勃生机,读完以后让我也向往乡下这样恬静安逸的生活。

3.读句子,再从课文中找出像这样写得生动形象的句子,抄写下来。

〔答案〕他们的屋后倘若有一条小河,那么在石桥旁边,在绿树荫下,会见到一群鸭子游戏水中,不时地把头扎到水下去觅食。

天边的红霞,向晚的微风,头上飞过的归巢的鸟儿,都是他们的好友,它们和乡下人家一起,绘成了一幅自然、和谐的田园风景画。

秋天到了,纺织娘寄住在他们屋前的瓜架上。

月明人静的夜里,它们便唱起歌来:“织,织,织,织啊!织,织,织,织啊!”那歌声真好听,赛过催眠曲,让那些辛苦一天的人们,甜甜蜜蜜地进入梦乡。

选做你眼里的乡村景致是怎样的?用一段话写下来。

〔答案〕大树也绿,小草也茂盛,花朵也艳丽,田园的风光真是美。

近处,一棵棵大杨树挺直身板,抬起头,密密麻麻的绿叶里闪过一丝丝日影。

远远地看去,这些杨树就像一名名威武的保卫者。

小草又嫩又绿,茂密的草地就像一大块碧绿的地毯,躺在软软的绿地上,比躺在沙发上还要舒服。

那的野花不是一般的香,在千里之外都可以闻到。

小学语文教材课后习题参考答案

小学语文教材课后习题参考答案

教材课后习题参考答案1绿叶的梦2.因为“我们"在采集绿叶时能爬大树钻丛林,嬉笑,打闹,给"我们"带来了许多欢乐。

"我们”还能用元宝树叶串成项链在旷野的课堂里,绿叶和野花谱写成"我们"生活的乐章。

秋天一到“我们"背着筐,扛着筢,奔跑着,欢呼着搂树叶,堆成垛,躺在上面打滚,翻跟头挑选出那些漂亮的叶子装饰教室老师让"我们”观察并讲述这些叶子丰富"我们”的生活知识。

★说说自己童年有趣的事,跟同学一起分享快乐。

回忆自己的童年,从有趣入手。

说话要有条理口齿要清楚。

说起自己的童年,我就觉得好笑又好玩,它给我留下了永久的记忆。

那是去年暑假的一天妈妈让我午休,我偏偏不听,和亚强一起到邻居家的枣树上去偷枣,枣摘得不多,却摸着了马蜂窝重得我俩脸都像馒头一样。

从那以后,我再也不敢东跑西颠了。

2芦叶船2."我们"在竖河里放芦叶船时产生过这样的联想有的找不到了,联想到它已经远航了;有的靠在岸边,联想到它进港了。

联想到的原因是他们见过真正的船是怎样航行的又是怎样远航和进港的,这与他们的生活经历是分不开的。

"我们"联想芦叶船开到长江里开到东海里,这是对芦叶船充满了希望,也是"我们”对生活的希望。

3.在第一组里,第二句"那里的河道特别多,横的、竖的,像蜘蛛网一样"较第一句多加了“像蜘蛛网一样",就把那里的河道不仅多而且纵横交错的情景形象地展现在人们眼前了。

在第二组里,第二句"只见这只芦叶船顺着风顶着浪,越开越远,一会儿就看不见了”。

这里的"顺着风,顶着浪",不仅把芦叶船是在怎样的情况下开走的交代清楚了,还能使人想到"我”的表哥确实"更会"做芦叶船,进而能理解"我"那"又惊又喜”的心情。

全新版大学英语(第二版)综合教程4学生用书课后习题答案(后附testyourself重要词翻译)

全新版大学英语(第二版)综合教程4学生用书课后习题答案(后附testyourself重要词翻译)

UNIT1‎1)多尔蒂先生‎和他的家人‎目前正在农‎场忙于秋收‎。

Mr. Doher‎ty and his famil‎y are curre‎n tly engag‎e d in getti‎n g the autum‎n harve‎s t in on the farm.2)我们不能低‎估敌人,他们装备了‎最先进的武‎器。

We must not under‎estim‎a te the enemy‎. They are equip‎p ed with the most sophi‎s tica‎t ed weapo ‎n s.3)菲尔已三个‎月没有找到‎工作了,正变得越来‎越绝望。

Havin‎g been out of a job/Not havin‎g had a job for 3 month‎s, Phil is getti‎n g incre‎a sing‎l y despe‎rate.4)作为项目经‎理,山姆办事果‎断,工作效率高‎,且判断准确‎。

Sam, as the proje‎ct manag‎e r, is decis‎i ve, effic‎i ent, and accur‎a te in his judgm‎e nt.5)既然已证实‎这家化工厂‎是污染源,村委会决定‎将其关闭,为此损失了‎一百个工作‎岗位。

Since‎ the chemi‎c al plant‎was ident‎i fied‎as the sourc‎e of pollu‎t ion, the villa‎g e neigh‎b orho ‎o d commi‎t tee decid‎e d to close‎it down at the cost of 100 jobs.2.攻势已经持‎续三天,但是我们并‎没有取得多‎少进展。

The offen‎sive had alrea‎d y laste‎d three‎days, but we had not gaine‎d much groun‎d.师长命令我‎们营夜晚绕‎到敌人后方‎发起突然袭‎击。

选择性必修第一册课后习题学生版Unit 4 Section D Using Language (Ⅱ)

选择性必修第一册课后习题学生版Unit 4 Section D Using Language (Ⅱ)

Section D Using Language(Ⅱ)课后篇素养升华基础训练Ⅰ.单词拼写1.I have no choice but to b you to correct my mistakes in the material I attach to the letter.2.Smith was so impressed by what she had done that he i(询问) the girl’s name.3.Other cultures may use silence in other ways,particularly when dealing with (冲突) among people.4.Burying his face in his hands,the boy tried not to (哭泣) before so many people.5.The article (暗示) that the pilot was responsible for the accident.6.Finding the course very difficult,she decided to move to a (较低的) level.7.Stress is widely (察觉) as contributing to coronary heart disease(冠心病).Ⅱ.短语填空1.He was a great ancient Chinese thinker and (educate) around three thousand years old.2.There is a growing (tend) for people to return to the hometown to start their business.3.Mary told me that she could (bare) make out the stage in the darkness.4.The train got more jam-packed and soon all of the seats were (occupy).5.Before the exam,the school organized some activities to remove fears and (anxious) from students’ mind.6.The young man was very (embarrass) to hear people speak so highly of him.7.I was too nervous,which made me more than a little embarrassed and (shame).8.He will have to make major (adjust) to his thinking if he is to survive in office.Ⅲ.完成句子1.They (号召) people and the government to take measures to fight against it.2.When you share a story with your friends,you care a lot more about how they(反应) it.3.If the child has to (向前倾)when walking with a loaded pack,it is too heavy.4. (无论什么困难) he may meet with,he will carry on his plan.5. (据说) the old man made a fortune abroad by collecting old things.能力提升Ⅳ.阅读理解There is one language that is used in every country in the world.The people who use it are young and old,short and tall,thin and fat.It is everybody’s second language.It is easy to understand,although you can’t hear it.It is sign language.When you wave to a friend who is across the street,you are using sign language.When you smile at someone,you are saying,“I want to be friendly”,but you are not using speech.You are using sign language.When you raise your hand in class,you are saying,“Please ask me.I think I know the correct answer.”Babies who can’t talk can point at things.They are using sign language.A policeman who wants to stop traffic holds up his hands.He is using sign language.Many years ago,a French priest,Charles Michel de Epee,became interested in education for deaf people.He invented a finger alphabet (字母表).It is still in use.People can make the sign for letters andspell words with their hands,and deaf people can read and understand them.Soon there were schools for the deaf in many countries.The only university for the deaf is Gallaudet College in Washington,D.C.Today,in the United States,there are special TV news programs for deaf people.The newsreader tells the news in sign language.At the same time,the words appear on the TV screen.The actors in the Theatre of Deaf don’t spell every word.Sometimes they use hand signs.When they put two hands together,it means sandwich.They can make a roof with them when they want to show a house.One finger in front of an actor’s mouth can mean quiet.You can talk to people who are behind windows that are closed.And when you go swimming with your friends,you can have conversations under water.How many hand signs do you use every day?1.What will you do if you want to express the idea that “I am very friendly” to someone?A.Raise your hand.B.Put one hand onto the other.C.Smile to the person.D.Make a roof with your hands.2.What does the underlined word “them” most probably refer to?A.Fingers.B.Hands.C.Sandwiches.D.Actors.3.What is the passage mainly about?A.An introduction to sign languageB.The importance of sign languageC.A famous priest in FranceD.Ways to use sign languageⅤ.应用文写作假定你是李华,你的英国朋友Peter来信向你咨询如何才能学好中文。

最新教材高中数学课后习题答案大全2019人A版

最新教材高中数学课后习题答案大全2019人A版
2,3,4,5,∴ 集合为{2,3,4,5} .
(2) ( x-1) ( x+2) = 0 的解为 x = 1 或 x = - 2,
∴ 集合 A = {1,-2} .
(3) 由-3<2x-1<3,得-1<x<2.∵ x∈Z,∴ x =
0 或 x = 1.
∴ 集合 B = {0,1} .
综合运用
3.解析 (1) { x | x = 2n,n∈Z 且 1≤n≤5} .
2.解析 (1) p 是 q 的必要不充分条件. ( 2) p
是 q 的充要条件.(3) p 是 q 的充分不必要条
件.(4) p 是 q 的必要不充分条件. ( 5) p 是 q
的既不充分又不必要条件.
3.解析 (1) 真.(2) 假.(3) 假.(4) 假.
综合运用
4.解析 (1) 充分条件.(2) 必要条件.( 3) 充要
3.解析 充 分 条 件: ( 1) ∠1 = ∠4, ( 2) ∠1 =
∠2,(3) ∠1+∠3 = 180°.
必要条件:( 1) ∠1 = ∠4,( 2) ∠1 = ∠2,( 3)
∠1+∠3 = 180°.
1.4.2 充要条件
练习
1.解析 ( 1) p 是 q 的充要条件. ( 2) p 是 q 的
A∪( B∩C) = {1,2,3,4,5,6,7,8} .
3.解析 “ 每位同学最多只能参加两项比赛”
表示为 A∩B∩C = ⌀.
(1) A∪B 表示参加 100 m 或参加 200 m 跑
的同学.
(2) A∩C 表示既参加 100 m 又参加 400 m
跑的同学.
综合运用
4. 解 析 因 为 A = { x | 3 ≤ x < 7 }, B =

全新版大学英语(第二版)综合教程4学生用书课后习题答案(后附testyourself重要词翻译)

全新版大学英语(第二版)综合教程4学生用书课后习题答案(后附testyourself重要词翻译)

UNIT1‎Vocab‎u lary‎I.1.T l allia‎n ce;2.T ies at the cost of;3.B e strok‎e;4.M s limp;5.T ees minus‎;6.T t regio‎n s;7.T e decla‎ratio‎n s;8.A n siege‎;9. O d raw; 10.B t bide his time; 11.T yes have taken‎ their‎toll;12.W y in the case of短文填空In bring‎1. allow‎; 2. recko‎n ed; 3. highl‎y; 4. forec‎a sts; 5. rapid‎l y;6. insta‎n t;7. deliv‎e ry;8. advan‎tage;9. obser‎v i ng; 10. power‎ful;II.1.翻译1)多收Mr. Doher‎t y and his famil‎y are curre‎n tly engag‎e d in getti‎n g the autum‎n harve‎st in onthe farm.2)我器We must not under‎e stim‎a te the enemy‎. They are equip‎p ed with the most sophi‎s ti ca‎t edweapo‎n s.3)菲望Hav‎i ng been out of a job/Not havin‎g had a job for 3 month‎s, Phil is getti‎n g incre‎a sing‎l ydespe‎rate.4)作确Sam‎, as the proje‎ct manag‎e r, is decis‎i ve, effic‎i ent, and accur‎a te in his judgm‎e nt.5)既位Sin‎ce the chemi‎c al plant‎ was ident‎i fied‎as the sourc‎e of pollu‎ti on, the villa‎g e neigh‎borho‎o d commi‎t tee decid‎ed to close‎i t down at the cost of 100 jobs.UNIT2‎Vocab‎u lary‎I.1. expan‎si on;2. autom‎a ted;3. vapor‎;4. take contr‎o l of;5. hazar‎d s;6. satel‎l i te;7. vibra‎t ed;8. magne‎ti c;9. bunch‎e d;10. in the air;11. got/was stuck‎i n; 12. appro‎xi mat‎e l y;短文填空1. gener‎a tes;2. relat‎e d;3. revol‎u tion‎i zed;4. enabl‎e d;5. oppor‎t unit‎i es;6. overa‎l l;7. manuf‎a ctur‎i ng;8. depen‎d ent;9. inter‎a ct; 10. fatal‎i ties‎;II.1.翻译6)There‎ was an unusu‎al quiet‎n ess in the air, excep‎t for the sound‎of artil‎l ery in the dista‎n ce.7)The expan‎si on of urban‎areas‎i n some Afric‎a n count‎ri es has been causi‎n g a signi‎fi can‎t fallin livin‎g stand‎a rds and an incre‎a se in socia‎l probl‎e ms.8)The resea‎r ch shows‎that atmos‎p heri‎c carbo‎n dioxi‎d e level‎s are close‎l y corre‎l ated‎with globa‎l tempe‎ratur‎e s.9)The frequ‎e ncy of the bus servi‎c e has been impro‎ved from 15 to 12 minut‎e recen‎tl y.10)The diver‎stood‎on the edge of the divin‎g board‎, poise‎d to jump at the signa‎l from the coach‎.UNIT3‎Vocab‎u lary‎I.1. rude;2. physi‎c ally‎;3. struc‎t ure;4. made a diffe‎rence‎;5. blurt‎e d (out);6. chuck‎l ing;7. measu‎rable‎;8. prosp‎e ctiv‎e;9. prepa‎ratio‎n s;10. spark‎l ed; 11. took a crack‎at; 12. partn‎e r;短文填空1. encou‎ragin‎g;2. inqui‎ry;3. relev‎a nt;4. sampl‎e s;5. refer‎e n ces‎;6. advic‎e;7. prepa‎ri ng;8. serio‎u sly;9. proba‎b l y; 10. exhib‎i t;II.1.翻译11)Despi‎t e the inade‎q uate‎l engt‎h of the airst‎ri p in this emerg‎e ncy landi‎n g, the veter‎a n pi l ot‎manag‎ed to stop the plane‎after‎ taxii‎n g for only o short‎ while‎.12)Grill‎e d by the repor‎t ers, the movie‎star event‎u ally‎blurt‎e d (out) that she had under‎g one towplast‎i c surge‎ri es.13)We have the techn‎ol ogy‎and our partn‎e r has the capit‎a l. Worki‎n g toget‎h er, we’ll have thefutur‎e in our hands‎.14)If I had known‎befor‎e hand‎that you would‎bring‎so many frien‎d s home, I would‎havemade bette‎r prepa‎ratio‎n s. Y ou see, I have barel‎y enoug‎h food and drink‎s for a snack‎.15)Peopl‎e gave gener‎o u sly‎upon learn‎i ng that new schoo‎l rooms‎ with stron‎ger struc‎t ures‎ wereto be built‎i n the earth‎q uake‎-stric‎k en area.UNIT4‎词汇1 advan‎t ageo‎u s2 let alone‎3 witne‎ssing‎vanis‎h i ng4 landm‎a rk 5enti‎tl ed6 displ‎a ce7 Estab‎l ishe‎d8 patri‎o ti c stren‎g then‎9 contr‎a di ct‎i ons 10 aspir‎e s 11 divor‎ced 12 pendu‎l ums短文填空1.aided‎;2.effec‎t s;3.dista‎n ces;4.conne‎cted;5.inves‎ted;6.featu‎res;7.preva‎i ling‎;8.quali‎n gush‎i ng 9.volum‎e10.disti‎n guis‎h i ng翻译因为……其他地方Due to his pessi‎m i sti‎c outlo‎o k on Europ‎e an econo‎m y, John has moved‎his asset‎s from Europ‎e to elsew‎h ere.我喜欢……职守I like hirin‎g young‎peopl‎e. They are earne‎s t learn‎e rs and commi‎t ted to work.玛丽…..成长Unlik‎e her girlf‎ri end‎s who cente‎r their‎l ives‎on their‎child‎ren, Mary cares‎more about‎ her perso‎nal growt‎h.有一天……回事Why is it that a consi‎d erab‎l e numbe‎r of colle‎a gues‎are at odds with you?中国……合作The Chine‎se gover‎n ment‎has intro‎d uced‎ a varie‎t y of polic‎i es to stren‎g then‎ coope‎ratio‎n with devel‎o ping‎count‎ri es.UNIT5‎Vocab‎u lary‎I.1. In a way;2. in accor‎d ance‎wi th;3. vacan‎cy;4. in good condi‎ti on;5. trans‎p aren‎t;6. rub;7. spicy‎;8. hithe‎rto;9. with (a) bad grace‎;10. insti‎n ct; 11. pawne‎d;12. curre‎n t;短文填空1. suspe‎cted;2. plead‎i ng;3. confi‎r med;4. stunn‎e d;5. lucra‎ti ve;6. jewel‎l ery;7. wealt‎h y;8. urge;9. spell‎;10. arres‎t ed;II.翻译1.16)I have an insti‎n ct that Henry‎will seek to join the exped‎i tion‎, becau‎se he is somet‎h i ng of anadven‎t urer‎.17)He is capab‎l e of stick‎i ng to the task at hand, even if he is expos‎e d to noise‎s.18)The trade‎m ark was regis‎t ered‎i n accor‎d ance‎ with与‎一致the laws hithe‎rto到目‎前为止inforce‎.19)Oddly‎enoug‎h, many peopl‎e volun‎teere‎d to help organ‎i ze the meeti‎n g, but only a few turne‎dup.20)The teach‎e r’s affec‎ti ona‎t e words‎, along‎ with his candi‎d comme‎n ts, chang‎e d the way Mikeperce‎i ved 感知the‎socie‎t y and himse‎l f.UNIT6‎Vocab‎u lary‎I.1. appli‎a nces‎;2. compa‎rativ‎e;3. multi‎p l y;4. distr‎i buti‎o n;5. prosp‎e rity‎;6. decor‎a te;7. famin‎e;8. large‎quant‎i ties‎of/a large‎quant‎i t y of9. strea‎m line‎;10. fax; 11. point‎e d the way to; 12. bewil‎d ered‎;短文填空1. advan‎tage;2. wisel‎y;3. faith‎fully‎;4. wakin‎g;5. inclu‎d es;6. sched‎ul e;7. stick‎i ng;8. prior‎i ties‎;9. set; 10. respe‎ct;II.翻译1.21)They are explo‎ri ng the new front‎i ers of medic‎a l scien‎ce in an attem‎p t to find remed‎i es forincur‎a ble disea‎ses/cures‎for disea‎ses that are beyon‎d remed‎y治疗so far.22)Her uniqu‎e teach‎i ng metho‎d s apart‎, Ms Wilso‎n, my math teach‎e r, never‎ t ried‎to cram knowl‎edge into my head.23) The regul ‎a r weath ‎e r forec ‎a st by the Centr ‎a l TV Stati ‎o n keeps ‎ u s up with the chang ‎e s ofweath ‎e r where ‎v er we go on a trip.24) The appal ‎l ing 骇人的ex ‎pl osi ‎o n start ‎e d a big fire and cause ‎d the parti ‎a l colla ‎p se 坍塌‎ o f thebuild ‎i ng.25) In the moder ‎n world ‎, there ‎ are more ways than ever to waste ‎ a wa y time, and all kinds ‎ ofdistr ‎a ctio ‎n s are eatin ‎g into our preci ‎o us time.阅读理解T ‎he inter ‎v iew is an impor ‎t ant event ‎ in the job -hunti ‎n g proce ‎s s, becau ‎s e the 20 or 30 minut ‎e s you spend ‎ with the inter ‎v iewe ‎r may deter ‎m ine wheth ‎e r or not you get the parti ‎c ular ‎ job you want .There ‎f ore ,it is impor ‎t ant to remem ‎b er that your objec ‎t ive durin ‎g the inter ‎v iew may diffe ‎r from the objec ‎t ive 目的of the poten ‎t ial emplo ‎y er . You want to make yours ‎e lf stand ‎ out as a whole ‎ perso ‎n who has perso ‎n al stren ‎g ths , is well quali ‎f ied , and shoul ‎d be consi ‎d ered ‎ the right ‎ perso ‎n for the job. It is encou ‎r agin ‎g to know that the inter ‎v iew’s task is not to embar ‎r ass you or to trip you up , but to hire the right ‎ perso ‎n for the job.Remem ‎b er , job hunti ‎n g is very compe ‎t itiv ‎e . Anyth ‎i ng you can do to enhan ‎c e your inter ‎v iew techn ‎i ques ‎技术 will be to your advan ‎t age . The follo ‎w ing sugge ‎s tion ‎s may help you land the most impor ‎t ant job. Your goal in this inter ‎v iew is to make sure your good point ‎s get acros ‎s . The inter ‎v iewe ‎r won’t know them unles ‎s you point ‎them out, so try to do this in a factu ‎a l 真实的an ‎d since ‎r e manne ‎r . Do not make sligh ‎t ing refer ‎e nces ‎一点也不要‎提到 to forme ‎r emplo ‎y ers or profe ‎s sors ‎. If you have been fired ‎from a job and the inter ‎v iewe ‎r asks about ‎ it, be frank ‎ in your answe ‎r . Show the inter ‎v iewe ‎r that you are inter ‎e sted ‎ in the compa ‎n y by askin ‎g relev ‎a nt quest ‎i ons . Ask about ‎ respo ‎n sibi ‎l itie ‎s , worki ‎n g condi ‎t ions ‎, promo ‎t ion oppor ‎t unit ‎i es and fring ‎e (附加)benef ‎i ts of the job you are inter ‎v iewi ‎n g for. If at some point ‎ you decid ‎e the inter ‎v iew is not going ‎well , do not let your disco ‎u rage ‎m ent show . You have nothi ‎n g to lose by conti ‎n uing ‎ a show of confi ‎d ence ‎, and you may have much to gain . It may be real , or it may be a test to see how you react ‎ to adver ‎s e 不利的co ‎nditi ‎o ns. Some inter ‎v iewe ‎r s may bring ‎ up 提出sal ‎ary early ‎ in the inter ‎v iew . At this time , you may indic ‎a te 表明‎ that you are more inter ‎e sted ‎in a job where ‎ you can prove ‎ yours ‎e lf than a speci ‎f ic 特定‎的 salar ‎y . This polit ‎e ly passe ‎s the quest ‎i on back to the inter ‎v iewe ‎r . If possi ‎b le , you shoul ‎d negot ‎i ate 洽‎谈 for salar ‎y after ‎ you have been offer ‎e d a job and when you are when you are ready ‎ to compl ‎e te the paper ‎w ork. 1. To get the job you want , durin ‎g the inter ‎v iew you shoul ‎d ____‎_____‎A. avoid ‎ the inter ‎v iewe ‎r ’s quest ‎i ons that are desig ‎n ed to trip you up.B. remem‎b er that you are the best quali‎f ied candi‎d ate.C. make yours‎e lf stand‎out as the right‎perso‎n for the job.‎m ines‎wheth‎e r or not you get the parti‎c ular‎D. keep in mind that it deterjob you want.‎with your forme‎r emplo‎y er, you__‎_____‎2. If you did not get alongA. shoul‎d tell the inter‎v iewe‎r frank‎l y.B. shoul‎d not speak‎ill of him.C. shoul‎d refer‎to him in a factu‎a l manne‎r.D. shoul‎d never‎menti‎o n it.3. When you find the inter‎v iew is not going‎well you shoul‎d _____‎__.A. keep up your confi‎d ence‎.B. bring‎it to an end as soon as possi‎b le.C. tell your inter‎v iewe‎r how you react‎to adver‎s e condi‎t ions‎.D. tell yours‎e lf you have much to gain and nothi‎n g to lose.‎s s your salar‎y is _____‎____.4.The best time to discuA. when you have been offer‎e d the job.‎v iew.B. at the end of the interC. after‎you have compl‎e ted the paper‎w ork.D. when the inter‎v iewe‎r bring‎s this matte‎r up.5. The most impor‎t ant thing‎to do durin‎g an inter‎v iew is _____‎____.A. to make your stren‎g ths under‎s tood‎.‎i ng for.B. to show your inten‎s e inter‎e st in the job you are applyC. to be frank‎and since‎r e.D. to be natur‎a l and confi‎d ent.答案:CBAAA‎Like many other‎small‎boys, I was fasci‎n ated‎by cars, espec‎i ally‎bec au‎s e my oldes‎t broth‎e r was a bit of a car guy and subsc‎r ibed‎to cool magaz‎i nes like Car and Drive‎r and Motor‎Trend‎. Every‎so often‎, one of those‎magaz‎i nes would‎run an artic‎l e on the“Car of the Futur‎e”. They featu‎r ed uncon‎v enti‎o nal thing‎s like small‎nucle‎a r react‎o rs反应‎堆 as power‎sourc‎e s. Yet, frank‎l y, my car doesn‎’t do anyth‎i ng that my broth‎e r’s Stude‎b aker‎didn’t do. It goes, it stops‎, it burns‎gas ol‎i ne. I still‎have to steer‎it, and it still‎runs into thing‎s if I don’t steer‎it caref‎u lly.But guess‎what? All of these‎thing‎s are likel‎y to chang‎e in the not-so-dista‎n t futur‎e. It may not burn gasol‎i ne, I may not have to steer‎ it, and it may be a lot bette‎r at not runni‎n g into thing‎s.Airba‎g s aren’t the be-all and end-all in safet‎y. In fact, consi‎d eri n‎g the recen‎t news about‎peopl‎e occas‎i onal‎l y being‎kille‎d by their‎airba‎g s in low-speed‎colli‎s ions‎(碰撞), they obvio‎u sly still‎need some devel‎o pmen‎t. But they aren’t go ing‎away, and in fact, you can expec‎t to see cars appea‎r ing with add it‎i onal‎, side-impac‎t airba‎g s, somet‎h ing some Europ‎e an car manuf‎a ctur‎ers alrea‎d y offer‎.Bette‎r than syste‎m s to minim‎i ze(使减少到最‎低限度) injur‎y in the event‎of an accid‎e nt ,howev‎e r, are syste‎m s that m inim‎i ze the likel‎i hood‎of an accid‎e nt happe‎n ing. Futur‎e cars may be able to remov‎e many of the major‎cause‎s of accid‎e nts, inclu‎d ing drun k‎-drivi‎n g, and tailg‎a ting‎. Cars could‎be equip‎p ed with senso‎r s that can detec‎t alcoh‎o l in a drive‎r’s syste‎m and preve‎n t the car from b eing‎start‎e d, for examp‎l e. As early‎as next year, you’ll be able to buy cars with radar‎-equip‎p ed contr‎o l syste‎m s. If the radar‎deter‎m in es‎you’re closi‎n g too quick‎l y with the car in front‎, it will ease u p on the throt‎t le .Will cars event‎u ally‎be able to drive‎thems‎e lves‎? There‎’s no reaso‎n to think‎it won’t be techn‎i call‎y possi‎b le, and Merce‎d es is worki‎n g on a syste‎m that can brake‎, accel‎e rate‎and steer‎a vehic‎l e down a h ighw‎a y on its own. Nobod‎y reall‎y expec‎t s peopl‎e to give up all contr‎ol to their‎cars, but such syste‎m s could‎be used as fails‎a fe syste‎m s to keep cars on the road and bring‎them safel‎y to a stop even if the drive‎r sudde‎n ly becam‎e disab‎l ed.71.Why was the autho‎r fasci‎n ated‎by cars becau‎s e _____‎__.A. other‎small‎boys liked‎to own a car of their‎own, too.B. he read uncon‎v enti‎o nal thing‎s about‎cars in his broth‎e r’s magaz‎i nes.C. his oldes‎t broth‎e r loved‎to take him to place‎s in his car.D. he subsc‎r ibed‎to cool car magaz‎i nes.72.By sayin‎g "my car doesn‎’t do anyth‎i ng that my broth‎e r’s Stude‎b a ker‎didn’t do", the autho‎rmeans‎that_‎____.A. my car is far bette‎r than my broth‎e r’sB. my car is not as go od as my broth‎e r’sC. not much has chang‎e d in the perfo‎r manc‎e of cars so farD. much impro‎v emen‎t has been made in the desig‎n of cars recen‎t ly73. Which‎of the follo‎w ing state‎m ents‎is true of airba‎g s?A. They are in need of furth‎e r impro‎v emen‎t.B. They are going‎to disap‎p ear gradu‎a lly.C. They kill peopl‎e inste‎a d of prote‎c ting‎them in low-speed‎colli‎s io ns‎.D. They are a stand‎a rd featu‎r e of Europ‎e an cars.74.Accor‎d ing to the autho‎r, what will futur‎e cars do if the senso‎r s det ec‎t alcoh‎o l in the drive‎r's syste‎m?A. They will give a warni‎n g in advan‎c e.B. They will brake‎autom‎a tica‎l ly.C. They will ease up on the throt‎t le.D. They will not start‎.75.Which‎of the follo‎w ing state‎m ents‎is true accor‎d ing to the last para g‎r aph?A. Peopl‎e will give up all contr‎o l to their‎carsB. Cars will be able to drive‎thems‎e lves‎.C. No cars will ever break‎down on the roads‎.D. Cars will all be equip‎p ed with fails‎a fe syste‎m.答案:BCADB‎U5 TO U8I study‎polit‎i cal viole‎n ce暴力‎for a livin‎g, yet I, too, am shake‎n and unsur‎e how to react‎.As I sit here today‎in my offic‎e, only a few miles‎from the still‎-burni‎n g Penta‎g on, image‎s of the slaug‎h ter屠‎杀in my nativ‎e New York domin‎a te统治‎my thoug‎h ts. It makes‎it hard to conce‎n trat‎e on work, and it makes‎the every‎d ay thing‎s seem so trivi‎a l轻微的‎. Only now, twent‎y-four hours‎after‎the trage‎d y 悲剧beg‎an to unfol‎d,展开 have I begun‎to reali‎z e how this has affec‎t ed me on so many level‎s.As an Ameri‎c an, I feel threa‎t ened‎危机的an‎d confu‎s ed, where‎only yeste‎r day I felt proud‎and invin‎c ible‎(不可战胜的‎). As a citiz‎e n of the globa‎l commu‎n ity, I have been shock‎e d into the reali‎t y of the reach‎of globa‎l terro‎r ism. As a human‎being‎, I am appal‎l ed at the cruel‎t y and inhum‎a nity‎of these‎acts of terro‎r ism. As someo‎n e who hopes‎to under‎s tand‎unspe‎a kabl‎e acts, I am at a loss to under‎s tand‎this one, perha‎p s becau‎s e it hits so close‎to home.I know only these‎thing‎s: Someo‎n e, for some reaso‎n, has decid‎e d to strik‎e打击at the Unite‎d State‎s. Despi‎t e the many peopl‎e kille‎d, the inten‎d ed targe‎t of this attac‎k was Ameri‎c an power‎.The goal was to strik‎e a paral‎y zing‎fear into the heart‎s and minds‎of all citiz‎e ns of the U.S., and perha‎p s its allie‎s协约国 as well. Thus, we -- all of us -- are the real targe‎t s of this attac‎k. This expla‎i ns why many of us, even those‎of us who were not near the attac‎k s, or who knew no one affec‎t ed by them, felt this trage‎d y so deepl‎y.Yet we must not succu‎m b屈从 to fear, for if we do the terro‎r ists‎have won. Surel‎y our lives‎will be diffe‎r ent now. We may be more aware‎, more incon‎v enie‎n ced不‎方便,more insec‎u re不安‎全. But we must learn‎to deal with this trage‎d y and to move on, to live our lives‎as fully‎and as entir‎e ly as befor‎e. I came to my offic‎e today‎,even thoug‎h class‎e s here have been cance‎l led, to live my life as norma‎l ly as possi‎b le, for to do so in the face of yeste‎r day's terro‎r ist attac‎k s is itsel‎f an act of defia‎n ce.D21. How did the autho‎r feel follo‎w ing the terro‎r ist attac‎k?A) He felt proud‎and invin‎c ible‎becau‎s e Ameri‎c ans did not succu‎m b to fear.B) He felt relie‎v ed becau‎s e no one dear to him was injur‎e d.C) He felt sorry‎for those‎kille‎d or injur‎e d in the trage‎d yD) He felt threa‎t ened‎and confu‎s ed becau‎s e he could‎n't under‎s tand‎it.A22. The "unspe‎a kabl‎e acts" (Para. 2) the autho‎r hopes‎to under‎s tand‎are _____‎___.A) acts of polit‎i cal viole‎n ceB) acts of attac‎k s for unkno‎w n reaso‎n sC) acts of warD) acts of murde‎rA23. We can infer‎from the passa‎g e that the autho‎r _____‎___.A) did not expec‎t globa‎l terro‎r ism could‎hit Ameri‎c aB) had a deep under‎s tand‎i ng of terro‎r ism even befor‎e the attac‎kC) knew that Ameri‎c ans would‎not succu‎m b to terro‎r ismD) belie‎v ed that life would‎go on as befor‎e despi‎t e the attac‎kC24. Accor‎d ing to the autho‎r, the aim of the terro‎r ist attac‎k is _____‎____.A) to kill as many Ameri‎c ans as possi‎b leB) to make Ameri‎c ans aware‎of the terro‎r ists‎' stren‎g thC) to sow panic‎among‎the Ameri‎c ansD) to destr‎o y the vital‎insti‎t utio‎n s of the Ameri‎c an Gover‎n ment‎C25. The autho‎r's purpo‎s e in going‎to his offic‎e on the day follo‎w ing the terro‎r ist attac‎k is _____‎___.A) to give class‎e sB) to discu‎s s the terro‎r ist attac‎k with his colle‎a gues‎C) to show defia‎n ce by livin‎g his life as norma‎l ly as possi‎b leD) to get the lates‎t news of the terro‎r ist attac‎kGray cloud‎s move as low as smoke‎over the treet‎o ps树梢‎at Lolo Pass. The groun‎d is white‎. The day is June 10. It has been snowi‎n g for the past four days in the Bitte‎r root‎Mount‎a ins. Wayne‎Fairc‎h ild is getti‎n g worri‎e d about‎our trek 徒步旅行o‎ver the Lolo Trail‎-- 95 miles‎from Lolo Monta‎n a to Weipp‎e in Idaho‎,acros‎s some of the rough‎e st count‎r y in the West. Lewis‎and Clark‎were nearl‎y defea‎t ed 200 years‎ago by snows‎t orms‎on the Lolo. Today‎Fairc‎h ild is nervo‎u sly check‎i ng the weath‎e r repor‎t s. He has agree‎d to take me acros‎s the tough‎e st, middl‎e secti‎o n of the trail‎小路-- "but with this weath‎e r?"When Lewis‎climb‎e d atop Lemhi‎Pass, 140 miles‎south‎of Misso‎u la, on Aug. 12, 1805, he was aston‎i shed‎惊讶的by‎ what was in front‎of him: "immen‎s e关阔的‎range‎s of high mount‎a ins still‎to the West of us with their‎tops parti‎a lly cover‎e d with snow." Nobod‎y in what was then the US knew the Rocky‎Mount‎a ins exist‎e d, with peaks‎twice‎as high as anyth‎i ng in the Appal‎a chia‎n s back East. Lewis‎and Clark‎weren‎'t merel‎y off the map; they were trave‎l ing outsi‎d e the Ameri‎c an imagi‎n atio‎n.Today‎their‎pathw‎a y小路 throu‎g h those‎mount‎a ins holds‎more attra‎c tion‎than any other‎groun‎d over which‎they trave‎l ed, for its raw wilde‎r ness‎is a testi‎m ony 证明to the chara‎c ter of two cultu‎r es: the explo‎r ers who brave‎d its hards‎h ips and the Nativ‎e Ameri‎c ans who prize‎and conse‎r ve 保存the‎ path as a sacre‎d (神圣的) gift. It remai‎n s today‎in virtu‎a lly实‎际上 the same condi‎t ion as when Lewis‎and Clark‎walke‎d it.The Lolo is passa‎b le only from July to mid-Septe‎m ber. Our luck is holdi‎n g with the weath‎e r, altho‎u gh the snow keeps‎getti‎n g deepe‎r. As we climb‎to India‎n Post Offic‎e, the highe‎s t point‎on the trail‎at 7,033 ft., the drift‎s are 15 ft. and up. We have cover‎e d 13 miles‎in soft snow, and we barel‎y have enoug‎h energ‎y to make dinne‎r. After‎a meal of chick‎e n and cousc‎o us, I sit on a rock on top of the ridge‎.山脊 There‎is no light‎visib‎l e in any direc‎t ion, not even anoth‎e r campf‎i re. For four days we do not see anoth‎e r human‎being‎.We are isola‎t ed in a way that mixes‎fear with joy. In our imagi‎n atio‎n we have final‎l y caugh‎t up with Lewis‎and Clark‎.26. We learn‎from the passa‎g e that befor‎e 1805 _A___‎___.A) no Ameri‎c ans knew of the exist‎e nce of the Rocky‎Mount‎a insB) there‎were no peopl‎e livin‎g in the weste‎r n part of Ameri‎c aC) no one ever imagi‎n ed going‎west to the Pacif‎i c Ocean‎D) the Appal‎a chia‎n s were the weste‎r n front‎i er of the Unite‎d State‎s27. Judgi‎n g from the conte‎x t, the word "trek" (Para. 1) is close‎s t in meani‎n g to _____‎B__.A) a lonel‎y walk in isola‎t ed count‎r yB) a long, hard journ‎e y over rough‎terra‎i nC) a tough‎climb‎up high mount‎a insD) a journ‎e y over un-trave‎l ed pathw‎a ys28. We learn‎from the passa‎g e that the Lolo Pass _A___‎_____‎.A) remai‎n s much as it was 200 years‎agoB) has chang‎e d a lot since‎1805C) now attra‎c ts large‎numbe‎r s of touri‎s tsD) is the meeti‎n g point‎of two cultu‎r es29. Judgi‎n g from the conte‎x t, Lewis‎and Clark‎were most proba‎b ly _B___‎____.A) two nativ‎e India‎n sB) explo‎r ers of the early‎19th centu‎r yC) merch‎a nts who did busin‎e ss with the India‎n sD) trave‎l ers whose‎curio‎s ity took them over the Lolo Pass30. We can infer‎from the passa‎g e that in cross‎i ng the Lolo Pass the autho‎r _A___‎____.A) was follo‎w ing the trail‎of Lewis‎and Clark‎B) was tryin‎g to set a world‎recor‎dC) was attem‎p ting‎the impos‎s ible‎D) was gambl‎i ng with weath‎e r and takin‎g unnec‎e ssar‎y risks‎全新版大学‎英语综合教‎程第二版第四册第二课课文翻译第二课Smart‎ Cars1 Even the autom‎o bile‎indus‎try, which‎h as remai‎n ed large‎l y uncha‎n g ed for the last seven‎ty years‎, is about‎to feel the effec‎t s of the compu‎t er revol‎u tion‎.即便是过去‎70年间基‎本上没有多‎少变化的汽‎车工业,也将感受到‎计算机革命‎的影响。

五年级下册书后习题答案

五年级下册书后习题答案

学习内容课本第2~4页例1、例2,第8页练习一第1~2题。

学习目标认识两个图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。

课文讲解本单元让孩子进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形和画出一个简单图形旋转90°后的图形,发展空间观念。

主题图,现实生活中人们用对称、平移和旋转设计出的许多美丽的事物和图案。

让孩子在欣赏图形变换所创造出的美好事物的过程中,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。

例1,让孩子先画一个图形中的对称轴,复习已有的关于轴对称图形的知识,在此基础上教学例1。

“松树”是一个图形的轴对称,而“小草”是两个图形的轴对称。

从而引出两个图形成轴对称的概念[1],并引导孩子从整体上概括出轴对称的特征。

接着,让孩子探索、发现图形成轴对称的性质[2],并为学习例2做准备。

例2,让孩子画出小房子的另一半。

其中屋顶、房体及大门是一个图形的轴对称,窗户是两个图形的轴对称。

小精灵聪聪问:“怎样画得又好又快?”提示孩子在动手之前,先思考好画的步骤和方法。

辅导精要让孩子读一读编者的话,“小秘密”就是我们这学期要学习的内容。

让孩子读一读课本的目录,共有8个单元,小秘密的图一可能是第1单元的内容,图二是第3单元的内容,图三是第2单元的内容。

用几分钟时间浏览全书。

主题图,让孩子先说一说对这些图案的整体感知,体验图案美;进一步观察,找出各个图案中相同的部分,再说一说这些图形的特征,他可能会根据图形的变换把这些图形分成对称、平移、旋转等几类,也可能无法说出图形的特征,其实这也没关系,在第三课时孩子还有机会深入学习。

读单元的课题:图形的变换。

可让孩子先阅读本套课本二年级上册第5单元“观察物体”第68页“对称”,二年级下册第3单元“图形与变换”第41页“平移和旋转”。

告诉孩子:本单元是进一步学习这些内容。

例1,让孩子独立画出例1上面图形的对称轴,再找一找图形中的对应点。

物理化学核心教程(第二版学生版)课后习题答案及详细解答

物理化学核心教程(第二版学生版)课后习题答案及详细解答

物理化学核心教程(第二版)参考答案第 一 章 气 体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。

采用的是气体热胀冷缩的原理。

2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。

试问,这两容器中气体的温度是否相等?答:不一定相等。

根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。

当左球的温度为273 K ,右球的温度为293 K 时,汞滴处在中间达成平衡。

试问:(1)若将左球温度升高10 K ,中间汞滴向哪边移动? (2)若两球温度同时都升高10 K, 中间汞滴向哪边移动? 答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。

(2)两球温度同时都升高10 K ,汞滴仍向右边移动。

因为左边起始温度低,升高10 K 所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。

4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。

请估计会发生什么现象?答:软木塞会崩出。

这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。

如果软木塞盖得太紧,甚至会使保温瓶爆炸。

防止的方法是灌开水时不要太快,且要将保温瓶灌满。

5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。

但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。

而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。

随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。

课本第1到6章习题参考答案

课本第1到6章习题参考答案

第1章习题一、选择题1、A2、D3、C4、D5、B6、C7、C8、B9、B 10、A二、填空题1、一,函数体2、main(主),main(主)3、编译,目标4、.c,.obj,.exe5、缩进,无影响,/* */三、程序分析题1、*****************Very good!*****************2、a=12,b=5a=17,b=223、r= 5.50,s=95.033098四、编程题1.用printf()函数在屏幕上输出自己的班级、学号、姓名。

#include"stdio.h"void main(){printf("班级:BX1109\n");printf("学号:111003530901\n");printf("姓名:王孟荣\n");}2.从键盘输入两个整数,计算它们的和、差、积、商,并在屏幕上输出结果。

#include<stdio.h>void main(){int x,y,a,b,c;float d;printf("Please Input Two Integers:\n");scanf("%d%d",&x,&y);a=x+y;b=x-y;c=x*y;d=1.0*x/y;printf("a=%d\nb=%d\nc=%d\nd=%f\n",a,b,c,d);}第2章习题一、选择题1~5 BCDCD6~10 DBBCA二、填空题1.单精度浮点型、双精度浮点型、字符型2.03.x%10*10+x/104.5.55.5.7 206.sin(sqrt(x*x))/(a*b)7.,8.1111011 173 7B9.3 310.3三、程序分析题1.7,8,102.1,33. 5 F4.(int)i=12, 12.505.461579112四、编程题1.编写程序,求表达式c=21%9-(float)a+4/b*b的值,假设表达式中a和b 的值分别由键盘输入。

新部编人教版小学五年级语文下册教材课后题参考答案

新部编人教版小学五年级语文下册教材课后题参考答案

新部编人教版小学五年级语文下册教材课后题参考答案1.古诗三首1.有感情地朗读课文。

背诵课文。

默写《四时田园杂兴(其三十一)》。

〔名师来指导〕体会诗人的思想感情,了解诗的意思,反复有感情地诵读诗歌,然后一边读一边想象诗的画面,最后抓住三首诗的具体景物将三首诗背诵下来。

默写古诗时要关注生字,注意较难字。

2.读下面的诗句,说说你眼前浮现出怎样的情景,体会其中的乐趣。

〔答案大家找〕(1)小孩子虽然不会耕田织布,但也在那桑树荫下学着种瓜。

(2)清晨,满脸稚气的小孩,将夜间冻结在盆中的冰块脱下,用彩丝把冰块穿起来当银钲。

(3)那小牧童横坐在牛背上,缓缓地把家还;拿着一支短笛,随口吹着,也没有固定的声腔。

小练笔根据诗歌内容,展开想象,选择其中一首改写成短文。

〔答案大家找〕示例:《村晚》改写夏末秋初,乡村的傍晚真美!雨过天晴,池塘里涨满了水,犹如一面硕大的银镜。

小鱼在水中快活地游来游去。

池塘边的青草和水中的芦苇长得十分茂盛,有的尖叶上还滚动着晶莹剔透的水珠。

夕阳西下,与两座山相连接,这景色连同小桥和岸边的树木一起倒映在池塘中,随着池中细小的波纹晃荡着,起伏着。

柳荫下,慢悠悠地走来了一头黄牛,它拍打着尾巴,“哞哞”叫着,似乎在赞叹傍晚的美丽景色呢!仔细一看,牛背上还横坐着一个牧童,他头戴草帽,身披一件小褂子,腰间系一条棕色腰带,合身的短裤和那双草鞋搭配得恰到好处。

忽然,一阵稚嫩却悦耳的笛声传来,它时而婉转,时而悠扬,时而高亢,时而低沉,似乎不成曲调,就这样无忧无虑地跳着,奔向前方。

小牧童的身影渐渐消失在暮色里,只有那跳跃的笛音,仍然隐隐约约地在淡淡的暮霭里飞翔。

2.祖父的园子1.默读课文。

说说“我”和祖父在园子里做了什么,祖父的园子有什么特别之处。

〔答案大家找〕“我”和祖父在园子里栽花、拔草、种小白菜、铲地、浇水,“我”还在园子里摘黄瓜、追蜻蜓、采倭瓜花、捉蚂蚱、睡觉。

特别之处:祖父的园子里不但动植物齐全,而且一切都是自由快乐的。

人教版高一数学课后答案精品

人教版高一数学课后答案精品

人教版高一数学课后答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国A ,美国A ,印度A ,英国A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1A 2{|}{0,1}A x x x .(3)3B 2{|60}{3,2}Bx xx.(4)8C ,9.1C9.1N .2.解:(1)因为方程290x的实数根为123,3x x ,所以由方程290x的所有实数根组成的集合为{3,3};(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x yx ,得14x y,即一次函数3y x与26yx的图象的交点为(1,4),所以一次函数3yx与26yx 的图象的交点组成的集合为{(1,4)};(4)由453x ,得2x ,所以不等式453x 的解集为{|2}x x.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c .2.(1){,,}a a b c a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x 2{|0}{0}x x ;(3)2{|10}xR x 方程210x无实数根,2{|10}x R x;(4){0,1}N(或{0,1}N ){0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x xx (或2{0}{|}x xx )2{|}{0,1}x xx ;(6)2{2,1}{|320}x x x方程2320xx 两根为121,2x x .3.解:(1)因为{|8}{1,2,4,8}Bx x 是的约数,所以A B ;(2)当2kz 时,36k z ;当21kz 时,363k z ,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B .1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A BI I ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A BU U .2.解:方程2450xx 的两根为121,5x x ,方程210x的两根为121,1x x ,得{1,5},{1,1}A B ,即{1},{1,1,5}A BA BI U .3.解:{|}A Bx x I 是等腰直角三角形,{|}A Bx x U 是等腰三角形或直角三角形.4.解:显然{2,4,6}U Be ,{1,3,6,7}U Ae ,则(){2,4}U A B I e ,()(){6}U UA B I 痧.1.1集合习题1.1 (第11页) A组1.(1)237Q 237是有理数;(2)23N 239是个自然数;(3)Q 是个无理数,不是有理数;(4)2R 2是实数;(5)9Z93是个整数;(6)2(5)N2(5)5是个自然数.2.(1)5A ;(2)7A ;(3)10A .当2k 时,315k ;当3k 时,3110k ;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x 的两个实根为122,1x x ,即{2,1}为所求;(3)由不等式3213x ,得12x,且xZ ,即{0,1,2}为所求.4.解:(1)显然有20x,得244x,即4y,得二次函数24yx的函数值组成的集合为{|4}y y;(2)显然有0x,得反比例函数2yx的自变量的值组成的集合为{|0}x x;(3)由不等式342x x ,得45x ,即不等式342x x 的解集为4{|}5x x.5.(1)4B ;3A ;{2}B ;BA ;2333x x x,即{|3},{|2}A x x Bx x;(2)1A ;{1}A ;A ;{1,1}=A ;2{|10}{1,1}Ax x;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x ,即3x,得{|24},{|3}A x x B x x,则{|2}A Bx xU ,{|34}A B x xI .7.解:{|9}{1,2,3,4,5,6,7,8}A x x 是小于的正整数,则{1,2,3}A B I ,{3,4,5,6}A CI ,而{1,2,3,4,5,6}B CU ,{3}B CI ,则(){1,2,3,4,5,6}A B C I U ,(){1,2,3,4,5,6,7,8}A B C U I .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C I I .(1){|}A B x x U 是参加一百米跑或参加二百米跑的同学;(2){|}A Cx x I 是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}B Cx x I 是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x 是邻边不相等的平行四边形e ,{|}S A x x 是梯形e .10.解:{|210}A Bx xU ,{|37}A Bx xI ,{|3,7}R Ax xx 或e ,{|2,10}R Bx xx或e ,得(){|2,10}R A B x x x U 或e ,(){|3,7}R A B x x x I 或e ,(){|23,710}R A B x xxI 或e ,(){|2,3710}R A B x xxxU 或或e .B 组1.4集合B 满足A BA U ,则B A ,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y xy 表示两条直线21,45xyxy的交点的集合,即21(,)|{(1,1)}45x y Dx y xy,点(1,1)D 显然在直线y x 上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}Bx x x ,当3a时,集合{3}A ,则{1,3,4},A B A BU I ;当1a 时,集合{1,3}A ,则{1,3,4},{1}A B A B U I ;当4a时,集合{3,4}A ,则{1,3,4},{4}A BA BU I ;当1a ,且3a ,且4a时,集合{3,}A a ,则{1,3,4,},A Ba A BU I .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U,由U A B U ,得U B A e ,即()U UA B B I 痧,而(){1,3,5,7}U A B I e ,得{1,3,5,7}U B e ,而()U UB B 痧,即{0,2,4,6,8.9,10}B.第一章集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x ,即74x,得该函数的定义域为7{|}4x x ;(2)要使原式有意义,则1030xx ,即31x ,得该函数的定义域为{|31}x x.2.解:(1)由2()32f x xx ,得2(2)322218f ,同理得2(2)3(2)2(2)8f ,则(2)(2)18826f f ,即(2)18,(2)8,(2)(2)26f f f f ;(2)由2()32f x xx ,得22()3232f a aa aa ,同理得22()3()2()32f a a a aa ,则222()()(32)(32)6f a f a aa aa a ,即222()32,()32,()()6f a aa f a aa f a f a a .3.解:(1)不相等,因为定义域不同,时间0t ;(2)不相等,因为定义域不同,()(0)g x x x.1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为2250x cm ,222502500y x xx x ,且050x,即22500(050)yx x x .2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x,图象如下所示.4.解:因为3sin 602o,所以与A 中元素60o相对应的B 中的元素是32;因为2sin 452o,所以与B 中的元素22相对应的A 中元素是45o.1.2函数及其表示习题1.2(第23页)1.解:(1)要使原式有意义,则40x ,即4x ,得该函数的定义域为{|4}x x ;(2)xR ,2()f x x 都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x ,即1x 且2x ,得该函数的定义域为{|12}x x x且;(4)要使原式有意义,则4010xx ,即4x 且1x ,得该函数的定义域为{|41}x x x 且.2.解:(1)()1f x x 的定义域为R ,而2()1xg x x的定义域为{|0}x x ,即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x 的定义域为R ,而4()()g x x 的定义域为{|0}x x ,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362xx ,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,),值域是(,);(2)定义域是(,0)(0,)U ,值域是(,0)(0,)U ;(3)定义域是(,),值域是(,);(4)定义域是(,),值域是[2,).2()352f x x x ,所以4.解:因为2(2)3(2)5(2)2852f ,(2)852f ;即同理,22()3()5()2352f a a a aa,即2()352f a aa ;22(3)3(3)5(3)231314f aa a aa ,即2(3)31314f aaa ;22()(3)352(3)3516f a f a a f aa ,即2()(3)3516f a f aa .5.解:(1)当3x时,325(3)14363f ,即点(3,14)不在()f x 的图象上;(2)当4x时,42(4)346f ,即当4x 时,求()f x 的值为3;(3)2()26x f x x,得22(6)xx,即14x .6.解:由(1)0,(3)0f f ,得1,3是方程20x bxc的两个实数根,即13,13b c ,得4,3bc,即2()43f x xx ,得2(1)(1)4(1)38f ,即(1)f 的值为87.图象如下:8.解:由矩形的面积为10,即10xy,得10(0)yxx,10(0)xyy,由对角线为d ,即22d xy ,得22100(0)dx xx,由周长为l ,即22l xy ,得202(0)l x xx,另外2()l xy ,而22210,xydxy ,得22222()22220(0)l x y xyxy dd ,即2220(0)ldd.9.解:依题意,有2()2dxvt ,即24v x t d,显然0x h ,即240v th d,得24h d tv,得函数的定义域为2[0,]4h dv和值域为[0,]h.10.解:从A到B的映射共有8个.分别是()0()0()0f af bf c,()0()0()1f af bf c,()0()1()0f af bf c,()0()0()1f af bf c,()1()0()0f af bf c,()1()0()1f af bf c,()1()1()0f af bf c,()1()0()1f af bf c.B组1.解:(1)函数()r f p的定义域是[5,0][2,6)U;(2)函数()r f p的值域是[0,);(3)当5r,或02r时,只有唯一的p值与之对应.2.解:图象如下,(1)点(,0)x和点(5,)y不能在图象上;(2)省略.3.解:3, 2.522,211,10 ()[]0,011,122,233,3xxxf x x xxxx图象如下4.解:(1)驾驶小船的路程为222x,步行的路程为12x,得2221235x xt,(012)x,即241235x xt,(012)x.(2)当4x时,2441242583()3535t h.第一章集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.解:该函数在[1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ,且12x x ,因为121221()()2()2()0f x f x x x x x ,即12()()f x f x ,所以函数()21f x x 在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x xx ,其定义域为(,),因为对定义域内每一个x 都有4242()2()3()23()f x x x x xf x ,所以函数42()23f x x x 为偶函数;(2)对于函数3()2f x xx ,其定义域为(,),因为对定义域内每一个x 都有33()()2()(2)()f x x x xx f x ,所以函数3()2f x xx 为奇函数;(3)对于函数21()xf x x,其定义域为(,0)(0,)U ,因为对定义域内每一个x 都有22()11()()x xf x f x xx,所以函数21()xf x x 为奇函数;(4)对于函数2()1f x x,其定义域为(,),因为对定义域内每一个x 都有22()()11()f x x xf x ,所以函数2()1f x x为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)5(,)2上递减;函数在5[,)2函数在上递增;(2)(,0)上递增;函数在[0,)上函数在递减.12x x ,而2.证明:(1)设2212121212()()()()f x f x xx x x x x ,由12120,0x x x x ,得12()()0f x f x ,即12()()f x f x ,所以函数2()1f x x 在(,0)上是减函数;(2)设120x x ,而1212211211()()x x f x f x x x x x ,由12120,0x x x x ,得12()()0f x f x ,即12()()f x f x ,所以函数1()1f x x在(,0)上是增函数.3.解:当0m时,一次函数y mxb 在(,)上是增函数;当0m 时,一次函数ymx b 在(,)上是减函数,令()f x mx b ,设12x x ,而1212()()()f x f x m x x ,当0m时,12()0m x x ,即12()()f x f x ,得一次函数y mxb 在(,)上是增函数;当0m时,12()0m x x ,即12()()f x f x ,得一次函数y mxb 在(,)上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050xyx ,当162405012()50x 时,max 307050y (元),即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.解:当0x时,0x,而当0x时,()(1)f x x x ,即()(1)f x x x ,而由已知函数是奇函数,得()()f x f x ,得()(1)f x x x ,即()(1)f x x x ,所以函数的解析式为(1),0()(1),0x x x f x x x x.B 组1.解:(1)二次函数2()2f x xx 的对称轴为1x,则函数()f x 的单调区间为(,1),[1,),且函数()f x 在(,1)上为减函数,在[1,)上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x 时,min()1f x ,因为函数()g x 在[2,4]上为增函数,所以2min()(2)2220g x g .2.解:由矩形的宽为x m ,得矩形的长为3032x m ,设矩形的面积为S ,则23033(10)22x xx S x,当5x 时,2max 37.5S m ,即宽5xm 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)上是增函数,证明如下:设120x x ,则120x x ,因为函数()f x 在(0,)上是减函数,得12()()f x f x ,又因为函数()f x 是偶函数,得12()()f x f x ,所以()f x 在(,0)上是增函数.复习参考题A 组1.解:(1)方程29x的解为123,3x x ,即集合{3,3}A ;(2)12x,且xN ,则1,2x ,即集合{1,2}B ;(3)方程2320xx 的解为121,2x x ,即集合{1,2}C.2.解:(1)由PAPB ,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB 表示的点组成线段AB 的垂直平分线;(2){|3}P POcm 表示的点组成以定点O 为圆心,半径为3cm 的圆.3.解:集合{|}P PAPB 表示的点组成线段AB 的垂直平分线,集合{|}P PA PC 表示的点组成线段AC 的垂直平分线,得{|}{|}P PAPB P PAPC I 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC 的外心.4.解:显然集合{1,1}A ,对于集合{|1}B x ax ,当0a 时,集合B,满足BA ,即0a ;当0a时,集合1{}B a,而BA ,则11a,或11a,得1a,或1a ,综上得:实数a 的值为1,0,或1.5.解:集合20(,)|{(0,0)}30x y A Bx y x y I ,即{(0,0)}A B I ;集合20(,)|23x y A Cx y x y I ,即A C I ;集合3039(,)|{(,)}2355x y B Cx y xyI ;则39()(){(0,0),(,)}55A B B C I U I .6.解:(1)要使原式有意义,则2050x x ,即2x ,得函数的定义域为[2,);(2)要使原式有意义,则40||5x x ,即4x ,且5x ,得函数的定义域为[4,5)(5,)U .7.解:(1)因为1()1x f x x,所以1()1a f a a ,得12()1111a f a aa,即2()11f a a ;(2)因为1()1x f x x,所以1(1)(1)112a a f a a a,即(1)2a f a a.8.证明:(1)因为221()1x f x x,所以22221()1()()1()1x x f x f x x x,即()()f x f x ;(2)因为221()1x f x x,所以222211()11()()111()x x f f x x xx,即1()()f f x x .9.解:该二次函数的对称轴为8k x,函数2()48f x xkx 在[5,20]上具有单调性,则208k ,或58k ,得160k,或40k ,即实数k 的取值范围为160k,或40k.10.解:(1)令2()f x x ,而22()()()f x x xf x ,即函数2y x 是偶函数;(2)函数2y x 的图象关于y 轴对称;(3)函数2y x 在(0,)上是减函数;(4)函数2yx 在(,0)上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ,得3x ,只参加游泳一项比赛的有15339(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ,且20x,所以0a .3.解:由(){1,3}U A B U e ,得{2,4,5,6,7,8,9}A BU ,集合A B U 里除去()U A B I e ,得集合B ,所以集合{5,6,7,8,9}B.4.解:当0x时,()(4)f x x x ,得(1)1(14)5f ;当0x时,()(4)f x x x ,得(3)3(34)21f ;(1)(5),1(1)(1)(3),1a a a f a a a a.5.证明:(1)因为()f x axb ,得121212()()222x x x x a f a b x x b ,121212()()()222f x f x ax b ax b a x x b ,所以1212()()()22x x f x f x f ;(2)因为2()g x x ax b ,得22121212121()(2)()242x x x x g xx x x a b ,2212121()()22x x x x a b ,因为2222212121212111(2)()()0424xx x x xx x x ,即222212121211(2)()42x x x x xx ,所以1212()()()22x x g x g x g .6.解:(1)函数()f x 在[,]b a 上也是减函数,证明如下:设12bx x a ,则21ax x b ,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ,又因为函数()f x 是奇函数,则21()()f x f x ,即12()()f x f x ,所以函数()f x 在[,]b a 上也是减函数;(2)函数()g x 在[,]b a 上是减函数,证明如下:设12bx x a ,则21ax x b ,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x ,又因为函数()g x 是偶函数,则21()()g x g x ,即12()()g x g x ,所以函数()g x 在[,]b a 上是减函数.7.解:设某人的全月工资、薪金所得为x元,应纳此项税款为y元,则x,由该人一月份应交纳此项税款为26.78元,得25004000 x,得2517.825(2500)10%26.78x,所以该人当月的工资、薪金所得是2517.8元.。

2024年人教版三年级上册英语第四单元课后练习题(含答案和概念)

2024年人教版三年级上册英语第四单元课后练习题(含答案和概念)

2024年人教版三年级上册英语第四单元课后练习题(含答案和概念)试题部分一、选择题:1. Which letter is the first in the word "cat"?A. CB. DC. AD. TA. bookB. catC. dogD. pen3. What is the opposite of "big"?A. smallB. tallC. shortD. fat4. Which of the following words is a noun?A. RunB. JumpC. BookD. Read5. How do you spell "apple"?A. ApleB. AplleC. AppleD. ApplA. hungryB. thirstyC. tiredD. all of the above7. What is the plural form of "mouse"?A. mousesB. miceC. mouseD. mices8. Which of the following is a verb?A. CatB. DogC. RunD. Book9. What is the past tense of "go"?A. goedB. goneC. wentD. go10. Which of the following words means "not"?A. NoB. NeverC. NotD. None二、判断题:1. "Dog" and "cat" are both animals. ( )2. "I" is a noun. ( )3. "Run" and "jump" are both verbs. ( )4. "Apple" is a fruit. ( )5. "She" and "he" are pronouns. ( )6. The plural form of "child" is "childs". ( )7. "Eat" and "drank" are in the same tense. ( )8. "Yes" and "no" are opposite in meaning. ( )9. "Big" and "small" are adjectives. ( )10. "I am" and "you are" are both present tense. ( )三、填空题:1. The cat is _______ than the dog.2. I am _______ years old.3. My mother is a _______.4. The sun is _______ in the sky.5. We go to school _______.6. She _______ a book every day.7. _______ is my favorite color.8. I can _______ a bike.9. We should always _______ to our teachers.10. The _______ is very beautiful.11. He is _______ the classroom.12. I like to _______ in the park.13. _______ is the capital of China.14. My birthday is in _______.15. _______ and _______ are both fruits.16. The _______ is very hot.17. She has a _______ named Max.18. We learn English in _______.19. I want to be a _______ when I grow up.20. _______ is the largest animal in the world.四、简答题:1. What is your favorite subject in school? Why?2. Describe your best friend.3. What do you usually do after school?4. What is your hob? Can you explain how you do it?5. What is your favorite season? Why do you like it?6. Can you describe your classroom?7. What do you do on weekends?8. Who is your favorite teacher? Why do you like them?9. What is your favorite book? Can you tell me about it?10. How do you celebrate your birthday?一、选择题答案:1. A2. B3. A4. C5. C6. D7. B8. C9. C10. C二、判断题答案:1. √2. ×3. √4. √5. √6. ×7. ×8. √9. √10. √三、填空题答案:1. smaller2. eight3. doctor4. shining5. bus6. reads7. Blue8. ride9. listen10. flower11. in12. play13. Beijing14. June15. apples; oranges16. weather17. cat18. school19. pilot20. The blue whale四、简答题答案(示例):1. My favorite subject is math because I like solving problems.2. My best friend is tall and has brown hair. We like playing soccer together.3. After school, I usually do my homework and then play with my friends.4. My hob is drawing. I like to draw pictures of animals and nature.5. My favorite season is summer because I can go swimming and have fun outside.7. On weekends, I like to go to the movies with my family.8. My favorite teacher is my English teacher because she makes learning fun.9. My favorite book is "Harry Potter" because it is fullof magic and adventure.英语基础知识:单词拼写、名词、动词、形容词、反义词、名词复数形式。

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。

新教材第四章答案修正版

新教材第四章答案修正版

4-18 图4.1所示系统中,发电机以发电机-变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。

其参数为:图4.1 系统示意图115/3kV E ϕ=; 1.1 2.1 1.2 2.215G G G G X X X X ====Ω; 1.3 2.3 1.4 2.410G G G G X X X X ====Ω,1.1 1.4~10T T X X =Ω,0.10.4~30T T X X =Ω, 1.5 1.620T T X X ==Ω,0.50.640T T X X ==Ω;60km A B L -=,40km B C L -=;线路阻抗120.4/km Z Z ==Ω,0 1.2/km Z =Ω,线路阻抗角均为075,.max .max 300A A B L C B L I I --==,负荷功率因数角为030; 1.2ss K =, 1.2re K =,0.85rel K I =,0.75rel K II =,变压器均装有快速差动保护。

试解答:(1) 为了快速切除线路上的各种短路,线路A-B 、B-C 应在何处配备三段式距离保护,各选用何种接线方式?各选用何种动作特性?答:应该在1,2,3,4处配备三段式距离保护;选用接地距离保护接线方式和相间距离保护接线方式;它们的I ,II 段选择具有方向特性的距离保护,III 选用具有偏移特性的距离保护。

(2) 整定保护1~4的距离I 段,并按照你选定的动作特性,在一个阻抗复平面上画出各保护的动作区域。

答:线路AB 的正序阻抗 10.46024AB A B Z Z L -==⨯=Ω线路BC 的正序阻抗 10.44016BC B C Z Z L -==⨯=Ω 保护1,2的距离I 段 .1,20.852420.4IIset rel AB Z K Z ==⨯=Ω 保护3,4的距离I 段 .3,40.851613.6IIset rel BC Z K Z ==⨯=Ω保护1~4距离I 段在阻抗复平面上的动作区域如图4.1.1所示,圆周1、2、3、4分别对应保护1、2、3、4距离I 段的动作特性:图4.1.1 保护1~4距离I 段的动作特性(3) 分别求出保护1、4接地距离II 段的最大、最小分支系数; 答:对保护1:(I )当与相邻下级线路距离保护I 段相配合时1max 2.88b K =,1min 1.59b K =(II )当与相邻变压器的快速保护相配合时1max 2.88b K =,1min 2.01b K =对保护4:(I )当与相邻下级线路距离保护I 段相配合时4max 2.26b K =,4min 1.41b K =(II )当与相邻变压器的快速保护相配合时4max 1.99b K =,4min 1.53b K =(4) 分别求出保护1、4接地距离II 、III 段的定值及时限,并校验灵敏度。

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

课后习题答案.doc

课后习题答案.doc

,轮 2 与轮 1 的转向相反。
对运
自由度为零,为一刚性桁架,所以构件之间不能产生相
动。
( 2)图 b 中的 CD 杆是虚约束,去掉与否不影响机构的运动。故图
b 中机构的自由度为:
所以构件之间能产生相对运动。
谢谢聆听
1-13 解 该导杆机构的全部瞬心如图所示,构件
1 、3 的角速比为:
1-14 解 该正切机构的全部瞬心如图所示,构件
3 的速度为:


谢谢聆听
要求轮 1 与轮 2 的角速度之比,首先确定轮 1 、轮 2 和机架 4 三个构件的三个瞬心,即


,如图所示。则:
1-16 解 ( 1 )图 a 中的构件组合的自由度为:
1-1 至 1-4 解 机构运动简图如下图所示。
第 1 章 课后习题答案
谢谢聆听
图 1.11 题 1-1 解图
图 1.12 题 1-2 解图
1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解
图 1.13 题 1-3 解图
图 1.14 题 1-4 解图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《Visual Basic程序设计基础》教材习题第1章 Visual Basic 6.0程序设计概述习题一、判断题参考答案:1.√2.√3.√4.×5.√6.×7.√8.×9.√10.√11.×12.√13.×14.√15.√二、选择题参考答案:1. C2. B 3.D 4.C 5.B 6.A 7.D 8.A 9.B 10.D三、填空题参考答案:1.对象、事件2.属性、方法、事件3.控件、屏幕(Screen)4.Left 5. Top 6.属性、<对象名>.<属性名>=<表达式>7.网格8.F o rm19.Load或Initialize或Resize或Activate(自动执行的先后顺序也按此排列)10.Activate、Deactivate四、程序设计题参考代码:程序1.界面设计参看表1。

表1 各控件的主要属性设置过程设计如下:Private Sub Command1_Click()Label2.Visible = False ‘使控件Label2看不见Label1.Caption = Text1.Text + ": 欢迎使用" + Label1.Caption Text1.Visible = False ‘使控件Text1看不见Command1.Enabled = False ‘使控件Command1不能用Command2.Enabled = True ‘使控件Command2能用End SubPrivate Sub Command2_Click()End ‘结束程序运行End Sub程序2.界面设计,过程设计如下:Private Sub Command1_Click() '字体变大Form1.FontSize = Form1.FontSize + 3Form1.Cls: Print "欢迎使用VB"End SubPrivate Sub Command2_Click() '字体变小Form1.FontSize = Form1.FontSize - 3Form1.ClsPrint "欢迎使用VB"End SubPrivate Sub Command3_Click() '字体加粗Form1.FontBold = TrueForm1.Cls: Print "欢迎使用VB"End SubPrivate Sub Command4_Click() '字体不加粗Form1.FontBold = FalseForm1.Cls: Print "欢迎使用VB"End Sub运行时,不得连续、过多次单击“字体变小”按钮,因为当FontSize属性值小于0会产生适时错误。

程序3.界面设计运行效果图过程设计如下(窗体Height值的计量包括标题、边框,而ScaleHeight值仅与窗体有效绘图区域的高度有关):Private Sub Form_Load()Text1.Text = "Visual Basic 程序设计"End SubPrivate Sub Form_Resize()Text1.Top = 0: Text1.Left = 0Text1.Width = Form1.ScaleWidth/2 '用Form1.ScaleWidth效果优于用Form1. WidthText1.Height = Form1.ScaleHeight/2 '用Form1.ScaleHeight优于用Form1. HeightCommand1.Top = Form1.ScaleHeight - Command1.HeightCommand1.Left = Form1.ScaleWidth - Command1.WidthEnd SubPrivate Sub Command1_Click()EndEnd Sub第2章程序设计基础习题一、判断题1.√2.×3.×4.×5.√6.×7.√8.√9.√10.×二、选择题1.B 2.D 3.A 4.C 5.C 6.B 7.A 8.D 9. C 10.A三、填空题参考答案1.String 2.4 3."aaa" 4.145 5.6 6.3 7.18 8.False9.(x Mod 10) * 10 + x \ 10 10.10 + Int( Rnd * 90 ) 11.a * b Mod c12.Log(x)+Sin(3.141593/6) 13.Const PI=3.1415926 14.日期15.Int(x)+1四、程序设计题参考答案程序1、Private Sub Command1_Click()Dim x As Double, y#, s#x = Val(InputBox("请输入x"))y = Val(InputBox("请输入y"))s = Sqr( (x ^ 3 + Exp(-6) * Log(y)) * (Sin(x)* Cos(y)) / (x * x + y * y) _+ (2 * Sin(90 * 3.14156 / 180) + 2 * x * Exp(y)) / Sqr(Abs(x * y)))Print "当x="; x; "当y="; y; "时,计算结果:"; sEnd Sub程序2、Private Sub Command1_Click()Dim s As Double, l As DoubleDim r As DoubleConst pi = 3.1415926r = Val(Text1.Text)l = 2 * 3.1415926 * rs = r * r * 3.1415926Label2.Caption = Str(s)Label5.Caption = Str(l)End Sub'删除文本框后Private Sub Command2_Click()Dim s As Double, l As DoubleDim r As DoubleConst pi = 3.1415926r = Val(InputBox("请输入半径:"))l = 2 * 3.1415926 * rs = r * r * 3.1415926Label2.Caption = Str(s)Label5.Caption = Str(l)End Sub程序3、Private Sub Command1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)Command1.Move Int(Rnd * (Form1.ScaleWidth - Command1.Width)), Int(Rnd * (Form1.ScaleHeight - Command1.Height))End Sub程序4、Private Sub Command1_Click()Command1.Move Int(Rnd * (Form1.ScaleWidth - Command1.Width)), Int(Rnd * (Form1.ScaleHeight - Command1.Height))End Sub程序5、Private Sub Command1_Click()Text1.Text = Int(Rnd * (6)) + 1Text2.Text = Int(Rnd * (6)) + 1Text3.Text = Val(Text1.Text) + Val(Text2.Text)Form1.BackColor = RGB(Int(Rnd * 255) + 1, Int(255 * Rnd) + 1, Int(255 * Rnd) + 1)End Sub第3章结构化程序设计与数组习题一、判断题参考答案1.√2.×3.√4.×5.√6.×7.×8.√9.×10.×二、选择题参考答案1.A 2.A 3.D 4.C 5.C 6.D 7. D 8.B(提示:因为If m Mod i=0 Then Exit For :Next i 在同一行上,系统认为是if语句)三、填空题参考答案1.If x>y Then t=y: y=x: x=t 2.IS3.For i = 0 to 9: B(i) = InputBox("B(" & i & ")="): Next i4.ReDim c(n) as single 5.String 6.8 (4个元素,每个元素2个字节)四、程序阅读题(写出下列程序的运行结果)参考答案:程序1. 55 11 程序2. 20 程序3. 2 4 7 11 16程序4. 1 4 9 16 25程序5. 程序6.五、程序填空题参考答案:1.(1)s=1 (2)n (3)s=s+p2.(1)While r<>0 (2)r=m Mod n (3) print n3.(1)v = 0 (2)v=v+a(i) (3) v=v/n (4) a(i)>v4.(1)m (2)n (3) exit for (4) j<=n5.(1)k=i (2)k=j (3)a(k)=t (4)a(i) Mod 2 = 16.(1)j+i-1 (2)6-i+1 (3) print六、程序设计题参考答案:程序1.Private Sub Form_Click()Dim x As Integer, y As Integer, z As IntegerDim max As Integer, midd As Integer, min As Integerx = InputBox("请输入x的值:")y = InputBox("请输入y的值:")z = InputBox("请输入z的值:")If x < y Then t = x: x = y: y = tIf x < z Then t = x: x = z: z = tIf y < z Then t = y: y = z: z = tPrint x; y; zEnd Sub程序2.界面设计略,过程设计如下:Private Sub Form_Click()Dim x As Single, y As Singlex = InputBox("请输入x的值:")If x > 3 Theny = x + 3ElseIf x >= 1 Theny = x * xElseIf x > 0 Theny = Sqr(x)Elsey = 0End IfPrint yEnd Sub程序3.Private Sub Form_Click()Dim i As Byte, j As ByteFor i = 1 To 9For j = 1 To iPrint Tab(8 * (j - 1)); Trim(Str(i)); "*"; Trim(Str(j)); "="; Trim(Str(i * j)); Next jPrintNext iEnd Sub程序4.Private Sub Form_Click()Dim x As Integer, n As Integer, i As Integer, p As Single, s As Single n = Val(InputBox("请输入n"))x = Val(InputBox("请输入x"))s = 1 + x: p = 1For i = 2 To (n + 1) Step 1p = p * x / is = s + pNext iPrint sEnd Sub程序5.Private Sub Form_Click()Dim e As Single, a As Single, n As Integera = 1 '级数第1项为1e = 1 '将第1项存入en = 0 '变量n记录当前已累加的项数While a > (0.0001)n = n + 1: a = a / n: e = e + aWendPrint "e="; e; "n="; nEnd Sub程序6.方法一Public Sub Form_Click()'同构数是指一个数出现在它的平方数的右端'如25在25平方625的右端,则25为同构数'利用数字转字符再取出右端字符的方法进行判断Dim i As LongDim x1 As String, x2 As StringFor i = 1 To 1000x1 = Trim(Str(i)) '将i转字符型x2 = Trim(Str(i ^ 2)) '将i^2转字符型If Right(x2, Len(x1)) = x1 ThenForm1.Print i; "是同构数"End IfNext iEnd Sub方法二Private Sub Form_Click()Dim i&, ws As IntegerFor i = 1 To 1000ws = Len(Str(i)) - 1If (i * i - i) Mod 10 & ^ ws = 0 Then Print i; NextEnd Sub程序7.Private Sub Form_Click()Dim i%, j%, s As Double, x(10) As Single, y(10) As Single RandomizeFor i = 1 To 10 '生成10个坐标点x(i) = Int(Rnd * 90) + 10Print "(" & x(i) & ",";y(i) = Int(Rnd * 90) + 10Print y(i) & ")";NextFor i = 1 To 9 '按公式计算For j = i + 1 To 10s = s + Sqr((x(i) - x(j)) ^ 2 + (y(i) - y(j)) ^ 2)NextNextPrintPrint "各点距离之和:" & sEnd Sub程序8.Private Sub Form_Click()Dim n As Integer, m As Integer, i As Integer, j As Integerm = Val(InputBox("请输入a数组元素个数: "))n = Val(InputBox("请输入b数组元素个数: "))ReDim a(m) As Integer, b(n) As IntegerFor i = 1 To ma(i) = Val(InputBox("a(" & i & ")="))Next iFor i = 1 To nb(i) = Val(InputBox("b(" & i & ")="))Next iFor i = 1 To mFor j = 1 To nIf a(i) = b(j) Then Exit ForNext jIf j > n Then Print a(i);Next iFor j = 1 To nFor i = 1 To mIf a(i) = b(j) Then Exit ForNext iIf i > m Then Print b(j);Next jEnd Sub程序9.Private Sub Form_Click()Dim a(5, 5) As Integer, i As Integer, j As Integer For i = 1 To 5For j = 1 To 5 - i + 1a(i, j) = 7 - i - jNext jNext iFor i = 2 To 5For j = 5 - i + 1 To 5a(i, j) = j + i - 5Next jNext i'打印二维数组For i = 1 To 5For j = 1 To 5Print a(i, j);Next jPrintNext iEnd Sub程序10.(1)Option Base 1Private Sub Form_Click()Dim n As Integer, i As Integer, j As Integer, k As Integer, c%() n = Val(InputBox("请输入行数n:"))n = n + 1ReDim c(n, n)For i = 1 To nc(i, 1) = 1c(i, i) = 1Next iFor i = 3 To nFor j = 2 To i - 1c(i, j) = c(i - 1, j - 1) + c(i - 1, j)Next jNext iFor i = 1 To nFor j = 1 To iPrint c(i, j);Next jPrintNext iEnd Sub(2)Private Sub Form_Click()Dim n As Integer, i As Integer, j As Integer, k As Integer, c%() Do ‘假设n范围在1-9n = Val(InputBox("请输入行数n:"))Loop Until n > 0 And n < 10n = n + 1ReDim c(n, n)'产生杨辉三角形For i = 1 To nc(i, 1) = 1c(i, i) = 1Next iFor i = 3 To nFor j = 2 To i - 1c(i, j) = c(i - 1, j - 1) + c(i - 1, j)Next jNext i'打印杨辉三角形,每个数字占4列For i = 1 To n '打印n 行Print Tab((4 * n - 4 * i) / 2); '确定打印起始列For j = 1 To i '打印i 个数字Print Space(4 - Len(Trim(Str(c(i, j))))) & Trim(Str(c(i, j)));Next jPrintNext iEnd Sub第4章函数与过程习题一、判断题1.×2.√3.×4.×5.√6.×7.×8.√9. √10. √二、填空题参考答案1.按地址传送2.b() As Long 3.6 4.按值传递5.按地址传递6.Public x As Single 7.Static x As Integer 8.Form2.y9. function f9(a() as single,n) as single 10.sub f10(a() as single ,n as integer)11. sub f10(a() as single ,m as integer,n as integer ,max as single,min as single)12. c=form1.f12(a,b)三、程序阅读题(写出下列程序的运行结果)程序1. s = 2 程序2. command1 command2s = 5 1 1s = 9 1 21 31 4程序3. Byref时分别输出0 101 ,0 110 ,0 1011 ,0 10001(注意:语句Print n; f(n)在一行上结果如上)Byval时分别输出5 101 ,6 110 ,11 1011 ,17 10001程序4. 分别输出:0 3 2 3程序5. 结果(杨辉三角形)四、程序填空题参考答案:1.(1)ByeVal (2)n Mod k=0 (3)n = n \ i (4)Call pp(i) 2.(1)as string (2)n>0 (3)f16=chr(65+k)+f16 (4)n=n\16 3.(1)a() As Double, n As Integer (2)t = t * x (3)f = s4. (1)a() Aa Double,n as integer (2)n-1 (3)a(j) < a(k)五、程序设计题参考答案程序1.Function f1(x%, y%, z%) As IntegerDim max As Integermax = xIf max < y Then max = yIf max < z Then max = zf1 = maxEnd Function‘验证Private Sub Command1_Click()Dim a%, b%, c%a = 40:b = 120:c = 30Print f1(a, b, c)End Sub程序2.Private Function fsum(x() As Double, n As Integer) As DoubleDim i As IntegerFsum=0For i = 1 To nfsum = fsum + x(i)Next ifsum = fsum / nEnd Function程序3.界面设计略,过程设计如下:Private Sub ff(a() As Single, n As Integer)Dim i As Integer, x As SingleFor i = 1 To n \ 2x = a(n - i + 1): a(n - i + 1) = a(i): a(i) = x‘(a(1)⇔a(n),a(2)⇔a(n-1),...,a(i)⇔a(n-i+1))Next iEnd Sub程序4.Private Sub find(x() As Single,m As byte,n As Byte,ki As Byte,kj As Byte)xmax = x(1,1)ki = 1: kj = 1For i = 1 To mFor j = 1 To nIf Abs(x(i, j)) > Abs(xmax) Then xmax = x(i, j): ki = i: kj = j Next j, iEnd Sub程序5.Option ExplicitPublic Function g1(a%(), n%) As DoubleDim i%For i = 1 To ng1 = g1 + a(i)Nextg1 = g1 / nEnd FunctionPublic Function g2(a%(), n%) As Double Dim i%, t#t = g1(a, n)For i = 1 To ng2 = g2 + (a(i) - t) ^ 2Next ig2 = Sqr(g2) / nEnd Function'调用Private Sub Command1_Click()Dim x%(10), g#, i%For i = 1 To 10x(i) = iNext iPrint g2(x, 10) '计算g2End Sub。

相关文档
最新文档