第十章机械传动系统及其传动比

合集下载

轮系知识

轮系知识

+
注意:
1.公式只适用于平面周转轮系。正、负号可按画箭头的方法来 确定,也可根据外啮合次数还确定(-1)m。对于空间周转轮 系,当两太阳轮和行星架的轴线互相平行时,仍可用转化轮系 法来建立转速关系式,但正、负号应按画箭头的方法来确定。 2.公式中的“+”、“-”号表示输入和输出轮的转向相同或相反。
m——外啮合的次数
第二节 行星轮系的传动比计算
一、行星轮系的构成 由行星轮、中心轮、转臂和机架组成。行星轮绕 自身几何轴线回转(自转),同时随转臂绕中心轮轴 线回转(公转)。
3 2 1
2
OH
2
H
1 1
3
行星轮
行星架 太阳轮
3
二、行星轮系传动比的计算
周转轮系及转化轮系中各构件的转速 构件名称 原来的转速 太阳轮1 行星轮2 太阳轮3
例:行星轮系计算
2 O 1 H 3 O
W1 WH 2 Z2Z3 i (1) W3 WH Z1 Z 2
H 13
W1 WH i W2 WH
H 12
在计算混合轮系传动比时,既不能将整个轮系作为定轴轮系 来处理,也不能对整个机构采用转化机构的办法。 计算混合轮系传动比的正确方法是:
复合轮系
二、轮系的传动比 (一)轮系的传动比 轮系中,输入轴(轮)与输出轴(轮)的转速或角速度 之比,称为轮系的传动比,通常用i表示。因为角速度或转速 是矢量,所以,计算轮系传动比时,不仅要计算它的大小, 而且还要确定输出轴(轮)的转动方向。
i AB
A nA B nB
A——输入轴
(a)
(b)
求得
RL n1 n4 R n R L n 4 3 R

《机械传动系统设计》课件

《机械传动系统设计》课件

链传动的类型
根据链条的结构和用途,链传动可分 为滚子链、齿形链等类型。
链传动的特点
链传动具有结构简单、传动效率高、 耐冲击等优点,但也有噪声较大、链 条磨损较严重等缺点。
链传动的应用
链传动广泛应用于需要承受较大载荷 和冲击的场合,如摩托车、自行车等 。
04
机械传动系统的优化与改进
提高传动效率
优化齿轮设计
异常噪音和振动检测
定期监测齿轮的运行状态,发现异常噪音或 振动应及时排查原因并处理。
带传动的维护与保养
皮带张紧度调整
定期检查皮带的张紧度,保持适当的张紧以 减少皮带打滑或磨损。
皮带检查
定期检查皮带的表面,发现磨损或损伤应及 时修复或更换。
滑轮检查
定期检查皮带的滑轮,确保其转动灵活,无 卡滞现象。
异常噪音和振动检测
02
机械传动系统设计基础
齿轮设计
01
02
03
齿轮类型
直齿、斜齿、锥齿等,根 据传动需求选择合适的类 型。
齿轮材料
选择耐磨、耐冲击、耐高 温的材料,如铸钢、锻钢 、铜合金等。
齿轮精度
根据传动要求确定齿轮精 度等级,确保传动的平稳 性和准确性。
带传动设计
带类型
平带、V带、多楔带等,根据工作条件选择合适的 带类型。
定期监测链条的运行状态,发现异常噪音或振动应及时排查原因并处理。
THANKS
感谢观看
机械传动的应用
工业领域
机械传动系统广泛应用于各种工业领 域,如汽车、航空、船舶、能源等, 是实现机械设备运动和转矩传递的关 键部件。
农业领域
军事领域
在军事领域,坦克、装甲车等武器装 备的传动系统对于提高武器性能和战 斗力具有重要意义。

机械传动

机械传动

机械传动一.机械组成:1.机械传动是机械中应用最广泛的、最基本传动方式,常用机械传动有带传动、链传动、齿轮传动、蜗杆传动和螺旋传动等。

2.一台完整的机械通常由动力部分、传动部分、执行部分和控制部分所组成。

3.操纵控制部分——是指为了保证或提高产品质量、产量,减轻人的劳动强度而设置的那些控制器、操纵机构。

操纵系统和控制系统都是为了使动力系统、传动系统、执行系统彼此协调运行,并准确可靠地完成整机功能的装置。

操作系统—通过人工操作来实现上述要求。

如起动、离合、制动、变速、换向等装置。

控制系统—通过控制信号,经由控制装置,使控制对象改变工作参数或运行状态而实现上述要求的装置。

二.机械传动的作用1.传递运动和动力:将原动机的运动和动力传给执行机构。

2.调节运动速度和方向:起增速、减速、变速、换向、离合等作用。

3.改变运动形式啊:原动机的运动一般为旋转运动,通过传动系统可将旋转运动转换为执行机构所需的运动形式,如将旋转运动转化为执行运动;将连续运动转化为间歇运动。

三.机械传动的主参数机械传动的主参数一般包括转速n、线速度v、传动比i、功率P、效率h和转矩T等。

1.转速和圆周速度的关系:2.传动比:多级时:3.效率:4.转矩与功率关系:四.带传动1.带传动的组成和类型带传动是一种应用很广泛的机械传动。

带传动是由主动轮1、从动轮2和紧套在两轮上的环型带3所组成。

带传动是利用带与轮之间的摩擦力来传递运动和动力,如图3-1所示。

按照带的截面形状,传动带可分为平带、V带(俗称三角带)、多楔带与圆带等3-1平带v带多楔带圆带2.带传动的工作原理摩擦传动原理可知:为保证带传动正常工作,传动带必须以一定张紧力张紧在两带轮上,即带工作前两边已承受了相等的拉力,如图下图所示,称为初拉力F0。

工作时,带与带轮之间产生摩擦力,主动轮对带的摩擦力F f与带的运动方向一致,从动带轮对带的摩擦力F f与带的运动方向相反。

于是带绕入主动轮的一边被拉紧,称为紧边,拉力由F0增加到F1;带表绕入从动轮的一边被略微放松,称为松边,拉力由Fo减少到F2。

汽车传动系 第十章 传动系概述

汽车传动系 第十章  传动系概述

主减速器作用
主减速器: 减速增扭;
原器的传动比一般用i0 表示;与变 速箱的传动比ig共同构成整车传动比I。 I=i0×ig 主减速器
三、类型
1. 机械式
2. 液力式
(动液式) 3. 液压式
(静液式)
4、电力式
四、布置形式
1. 前置后驱动(F.R):置—指发动机布置位置 (front real) 驱动—指驱动轮位置
变速器作用
变速器
变速器: 实现车辆的变速,保证发动机工作在高 效区; 设置多个档位,依次为1、2、3、4、5档, 传动比依次减小,最小为1,并称之为直 接档,此外还有空档、倒档;或者传动 比在一定的范围内连续可调,此时称之 为无级变速。 变速器的传动比一般用ig 表示;
万向节作用
万向节
万向节:消除变速器与驱动桥之间因相 对运动而产生的不利影响,允许驱动轮 在一定的空间范围内跳动; 便于传动轴的在底部的布置,降低地板 的高度。
2. 后置后驱动(R.R) 4×2— 全部车轮数×驱动轮数
后置后驱传动系统:
传动系统
3. 前置前驱动(F.F)
4. 全轮驱动(4WD)
传动比:输入速度与输出速度的比值称为传动比。
i=T2/T1= n1/n2
二、组成(机械传动系为例)
离合器、变速器(分动器)、万向节、传动轴、主 减速器、差速器、半轴、驱动桥。
离合器: 传递或者切断动力;
在正常工作时接通,在起步、换档、制 动、滑行时断开;
在驾驶员的操纵下,通过主动、从动部 分结合或分离实现传递或断开;
传动轴作用
传动轴
传动轴: 传递动力; 连接变速箱与主减速器。
驱动桥作用
驱动桥: 安装左右驱动轮,内置主减速器齿轮、 差速器、安装制动器;

齿轮传动比

齿轮传动比

齿轮传动比摘要:齿轮传动比是指传动系统中两个齿轮之间的转速比。

这个比值决定了输出轴的转速相对于输入轴的转速。

齿轮传动比的大小对于机械系统的性能和功能起着至关重要的作用。

本文将介绍齿轮传动比的概念、计算方法、对机械系统的影响以及应用领域。

1. 引言齿轮传动是一种常见的机械传动方式,通过齿轮之间的啮合实现动力的传递和转速的变换。

而齿轮传动比就是用来描述两个齿轮转速之间的关系的。

它是机械传动系统设计中一个重要的参数,直接影响到传动系统的性能和功能。

2.齿轮传动比的定义齿轮传动比是指输入轴转速与输出轴转速的比值。

在齿轮传动中,通常将输入齿轮所在的轴称为输入轴,而输出齿轮所在的轴称为输出轴。

传动比通常使用字母i表示,其计算公式为:i = N2 / N1其中,N1为输入轴的转速,N2为输出轴的转速。

3.齿轮传动比的计算方法齿轮传动比的计算方法主要取决于齿轮的类型和排列方式。

常见的齿轮传动类型包括直齿轮传动、斜齿轮传动、蜗杆传动等。

这里以直齿轮传动为例,介绍传动比的计算方法。

对于直齿轮传动,传动比等于驱动齿轮的齿数与被驱动齿轮的齿数的比值。

即:i = Z2 / Z1其中,Z1为驱动齿轮的齿数,Z2为被驱动齿轮的齿数。

4.齿轮传动比的影响因素齿轮传动比的大小对机械系统的性能和功能有着重要的影响。

传动比的选择应根据实际应用需求进行。

以下是传动比大小对机械系统的影响因素:(1)转速比传动比的大小直接影响到输出轴的转速相对于输入轴的转速。

通过合理选择传动比,可以实现不同转速要求之间的转换。

(2)扭矩比传动比的改变会导致输出轴扭矩与输入轴扭矩之间的差异。

对于需要较大扭矩输出的应用,需要选择合适的传动比以满足要求。

(3)空间和重量限制传动比的选择还需要考虑到机械系统的空间和重量限制。

较大的传动比可能会导致传动装置的体积和重量增加,而过小的传动比可能无法满足输出要求。

5.齿轮传动比的应用领域齿轮传动比广泛应用于各种机械系统中,如汽车、船舶、工业机械等。

机械设计 齿轮传动

机械设计 齿轮传动
16
5、齿面塑性流动 该失效主要出现在低速重载、频繁启动和过载场合。 齿面较软时,重载下,Ff↑——材料塑性流动(流动方向沿Ff) 主动轮1:摩擦力分别朝向齿顶和齿根 形成凹沟。
17
从动轮2:摩擦力由齿顶和齿根朝向中部 形成凸脊。
改善措施:1)↑材料及齿面硬度 2)采用η↑的润滑油 3)适当磨合(跑合)
需对Fn修正
实际载荷(计算载荷)Fca>Fn
计算载荷: Fca K Fn
K——载荷系数
K
KA
Kv
K
K
齿向载荷分配系数
使用系数
动载系数
齿间载荷分配系数
按照强度计算类别,载荷系数可分为齿根弯曲疲劳强度计算用载荷系数KF
31 和齿面接触疲劳强度计算用载荷系数KH.
1、使用系数KA 考虑原动机、工作机、联轴器等外部因素引起的动载荷而
(对称、非对称、悬臂) 3)合理选择齿宽; 4)↑制造安装精度;
5)采用鼓形齿; 6)齿轮位于远离转矩输入端。
38
0.01-0.025mm
§5 直齿圆柱齿轮传动的强度计算
(一)、齿根弯曲疲劳强度计算(目的:防止齿折断)
进行齿根弯曲强度计算时,将轮齿视为悬臂梁,齿 根危险剖面处,弯矩最大时的齿根弯曲应力也最大。
练习: n1
Fr1
Ft1
Ft2
Fr2
n2
Ft1⊙○FF×rr1F2 t2n1 n2
30
二、计算载荷
根据齿轮传动的额定功率和转速,可得齿轮传递的名义扭矩和轮齿上的名 义法向力。实际传动中,会受各种因素的影响,使名义法向载荷增大。
外部影响:原动机、工作机影响 实际情况:
内部影响:制造、安装误差;受载变形(齿轮、轴等)

轮系传动比计算(机械基础)教案

轮系传动比计算(机械基础)教案

轮系传动比计算(机械基础)教案第一章:轮系传动简介1.1 轮系的定义和分类定义:轮系是由两个或多个相互啮合的齿轮组成的传动系统。

分类:定传动比轮系、变传动比轮系、混合传动比轮系。

1.2 轮系的应用和特点应用:轮系广泛应用于机械传动、汽车传动、船舶传动等领域。

特点:传动平稳、噪声小、效率高、传动比精确。

第二章:传动比的计算方法2.1 定传动比轮系的传动比计算计算公式:传动比= 驱动齿轮齿数/ 从动齿轮齿数。

2.2 变传动比轮系的传动比计算计算方法:根据变传动比轮系的传动比曲线,确定所需的传动比值。

2.3 混合传动比轮系的传动比计算计算方法:分别计算定传动比轮系和变传动比轮系的传动比,相乘或相除得到混合传动比。

第三章:轮系传动比的实验测量3.1 实验目的和原理目的:验证轮系传动比的计算结果,提高实验技能。

原理:通过测量驱动齿轮和从动齿轮的转速,计算传动比。

3.2 实验设备和步骤设备:计时器、转速计、齿轮组。

步骤:安装齿轮组,调整转速,测量并记录驱动齿轮和从动齿轮的转速,计算传动比。

3.3 实验数据的处理和分析处理:计算实验测得的传动比与理论计算值的误差。

分析:讨论误差产生的原因,改进实验方法,提高实验精度。

第四章:轮系传动比的优化设计4.1 优化设计的目的和方法目的:提高轮系传动比的性能,降低成本。

方法:选择合适的齿轮材料、齿形和齿数。

4.2 齿轮材料的选择材料:钢、铸铁、塑料、陶瓷等。

选择原则:根据工作条件和要求选择合适的齿轮材料。

4.3 齿轮齿形的设计齿形:直齿、斜齿、螺旋齿等。

设计原则:根据传动比和负载要求选择合适的齿轮齿形。

4.4 齿轮齿数的选择齿数:根据传动比和齿轮尺寸选择合适的齿数。

选择原则:齿数越多,传动比越大,但尺寸和成本也增加。

第五章:轮系传动比的实际应用案例分析5.1 汽车传动系统中的应用案例案例:分析汽车变速箱中齿轮传动比的计算和设计。

5.2 机械传动系统中的应用案例案例:分析机械设备中齿轮传动比的计算和优化设计。

机械原理第十章

机械原理第十章
齿槽:相邻两轮齿之间的空间
齿槽一宽个:齿在槽任两意侧半齿径廓rK圆间周弧上长,。eK
齿距:在任意半径rK圆周上,相
邻两齿同侧齿廓间弧长。pK
在同一圆周上:pK sK eK
法向齿距:相邻两齿同侧齿 廓间法线长度,pn=pb
分度圆:为了计算齿轮的各部分尺寸, 在齿顶圆和齿根圆之间人为规定了 一个直径为d,半径为r,用作计算 基准的圆。 分度圆上齿距、齿厚、齿槽宽分别 用p、s、e表示。 p=s+e
已知传动比、中心距、 齿轮1的齿廓曲线K1,用 包络线法求与齿廓K1共 轭的齿廓曲线K2。
3.齿廓曲线的选择 理论上,满足齿廓啮合定律的曲线有无穷多,但考
虑到便于制造和检测等因素,工程上只有极少数几种 曲线可作为齿廓曲线,如渐开线、其中应用最广的是 渐开线,其次是摆线(仅用于钟表)和变态摆线 (摆线针 轮减速器),近年来提出了圆弧和抛物线。
o1
点P 称为两轮的啮合节点(简称节点)。 r’1 节圆:
ω1
节圆
n
两个圆分别为轮1和轮2的节圆
k
两节圆相切于P点,且两轮节点处速 度相同,故两节圆作纯滚动。
P n
ω 2 r’2
o2
根据这一定律, 可求得齿廓曲线与齿廓传动比的关系;
也可按给定的传动比来求得两轮齿廓的共轭曲线。
2.共轭齿廓
所谓共轭齿廓是指两轮相互连续接触并能实现预 定传动比规律的一对齿廓。
rK
k
=
rb/ cosK inv K = tan K
K

三、 渐开线齿廓的啮合特性
O1
ω1
1.渐开线齿廓满足定传动比要求
N1
两齿廓在任意点K啮合时,过K作两 齿廓的法线N1N2,是基圆的切线,为 N2

传动系统的传动简图

传动系统的传动简图
传动系统的传动简图
目录
• 传动系统概述 • 传动简图的绘制方法 • 传动简图的应用场景 • 常见传动简图示例 • 传动简图的优缺点分析 • 未来传动系统的发展趋势
01 传动系统概述
传动系统的定义与作用
定义
传动系统是机械系统中的重要组 成部分,负责将动力从输入端传 递到输出端,同时改变动力的方 向、速度或扭矩。
环保材料
采用环保材料和工艺,如可降解润滑油、无铅齿轮等, 减少对环境的污染。
THANKS FOR WATCHING
感谢您的观看
高效能化
提高传动效率
通过优化齿轮、轴承等关键部件的设计,减少摩擦和能量 损失,提高传动效率。
轻量化设计
采用新型材料和先进的制造工艺,实现传动系统的轻量化, 降低转动惯量和动力需求。
多模式传动
开发多种传动模式,如电动、液压、气压等,根据不同工 况选择最佳的传动模式,提高传动效能。
智能化
智能控制
通过传感器和控制器实现传动系统的智能控制,根据实际需求自动调整传动参数和性能。
确定传动顺序和布局
根据系统的工作流程和要求,合理安排各部件的传动顺序和布局, 确保系统的稳定性和可靠性。
选择恰当的视图
主视图的选择
选择能够清晰反映传动系统主要部件和工作原理的视图作为 主视图。
其他视图的补充
根据需要,选择其他视图以补充说明传动系统的细节和复杂 部分。
绘制简图
使用标准符号和图例
标注必要的尺寸和参数
维护保养
01
02
03
故障诊断
在维护保养过程中,传动 简图可以辅助技术人员快 速诊断故障原因,确定问 题所在。
预防性维护
通过传动简图,可以预测 潜在的故障和问题,制定 相应的预防性维护计划。

传动比的公式及定义

传动比的公式及定义

传动比公式是:传动比=主动轮转速除以从动轮转速的值=其分度圆直径比值的倒数。

具体含义如下:
1. 在机械传动系统中,其始端主动轮与末端从动轮的角速度或转速的比值,被称为传动比。

2. 传动比(i)=主动轮转速(n1)与从动轮转速(n2)的比值=齿轮分度圆直径的反比=从动齿轮齿数(Z2)与主动齿轮齿数(Z1)的比值。

即i=n1/n2=D2/D1 i=n1/n2=z2/z1。

3. 对于多级齿轮传动,每两轴之间的传动比按照上面的公式计算。

从第一轴到第n轴的总传动比等于各级传动比之积。

4. 传动比是机构中两转动构件角速度的比值,也称速比。

构件a和构件b的传动比为i=ωa/ωb=na/nb,式中ωa和ωb分别为构件a和b的角速度(弧度/秒);na和nb分别为构件a和b的转速(转/分)。

当式中的角速度为瞬时值时,则求得的传动比为瞬时传动比。

当式中的角速度为平均值时,则求得的传动比为平均传动比。

理论上对于大多数渐开线齿廓正确的齿轮传动,瞬时传动比是不变的;对于链传动和摩擦轮传动,瞬时传动比是变化的。

对于啮合传动,传动比可用a和b轮的齿数Za和Zb表示,i=Zb/Za;对于摩擦传动,传动比可用a和b轮的直径Da和Db表示,i=Db/Da。

希望以上信息对您有所帮助,如果您还有其他问题,欢迎告诉我。

机械传动

机械传动
8
三、电动机起动转矩校核
当机器的转动惯量较大;或满载起动;或频繁起 动;或虽然空载起动,但是要求起动时间短时,还应校 核电动机的起动转矩。特别是鼠笼式电动机的起动转矩 较小,该项校核就更加必要。 校核起动力矩就是让电动机的起动转矩应大于机器 在规定时间内完成起动所需要的转矩。否则,过大的启 动电流会使线路电压急剧下降,使邻近电动机出力不足, 甚至被迫停机。
二、电动机过载能力校核
电动机都有一定的过载能力。但是当机器的载荷(生产阻力矩)变 化时,在按(7-1)式粗略的确定电动机功率后,还应较核电动机的过载 能力,即在机器过载时,电动机的最大输出转矩应大于电动机的最大负 载转矩,即满足(7-3)式。否则,电动机会发生闷车现象,电流增大 6~7倍,电动机过热甚至烧坏。
12
五、机械速度波动的调节 1 起动阶段(0 m)
特点:Wd>Wr =m

制动
2 稳定运转阶段(m)
特点:Wd=Wr =m


起动 稳定运转 停车
m
T
T
t
匀速稳定运转: m =C 变速稳定运转:周期性的速度 波动, mC
非周期性波动: mC
3 停车阶段(m 0)
5
二、实现单向间歇运动的机构(自学)
三、实现往复移动和往复摆动的机构(自学)
四、机构组合方案的拟定
1、应尽量简化和缩短运动链 2、应使机器有较高的机械效率 3、合理安排传动机构的顺序
4、合理分配传动比
5、保证机器的安全运转
6Байду номын сангаас
Pn
Fv 1000
第四节 机器的功率计算与转矩校核
一、电动机功率的确定
[]
[ ]

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比

机械设计第10章机械传动系统及其传动比机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。

本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。

第一节定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。

这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。

一、轮系的分类轮系有两种基本类型:(1)定轴轮系。

如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。

(2)行星轮系。

如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。

图10-1 定轴轮系二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i表示。

因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。

2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为nzi12 1 2 n2z1式中:“±”为输出轮的转动方向符号,图10-2行星轮系第十章机械传动系统及其传动比当输入轮和输出轮的转动方向相同时取“+”号、相反时取“-”号。

如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:i=n1=n2z2 z1如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:n1z2 i= =n2z1如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。

应该注意到齿轮2和2'是固定在同一根轴上的,即有n2=n2′。

此轮系的传图10-3定轴轮系传动比的计算动比i14可写为:nnn ni14 1 123 i12i2 3i***** z2z3z4 312上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即m从1轮到k轮之间所有从动轮齿数n的连乘积i1k 1 1 (10-1) nk从1轮到k轮之间所有从主轮齿数的连乘积式中:m为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。

机械传动系统的设计与分析

机械传动系统的设计与分析

机械传动系统的设计与分析导言:机械传动系统是现代工程中常见的一种能够通过电动机、发动机等原动机的能量输出来驱动各种机械装置运动的装置。

它在各个行业中都扮演着重要的角色,汽车、机床、船舶等都离不开这一关键技术。

本文将对机械传动系统的设计与分析进行探讨,以期为读者提供一些有关这一领域的基础知识和实践经验。

第一部分:机械传动系统的基本原理机械传动系统是通过传递原动机的转矩和功率来实现装置运动的一种技术。

其基本原理是利用齿轮、链条、皮带等传动元件将原动机的转速和扭矩传递给负载。

在设计机械传动系统时,需要考虑到传动效率、可靠性、噪音和寿命等因素。

第二部分:机械传动系统的设计机械传动系统的设计包括选择传动元件、计算传动比、确定主传动轴和挑选传动方式等步骤。

首先需要根据负载特性和转矩要求来选择合适的传动元件,例如齿轮、链条或皮带。

然后根据输入轴和输出轴的转速要求计算传动比,确保系统能够满足负载的运行要求。

同时,还需要根据转矩传递路径和负载类型来确定主传动轴的位置,以及选择合适的传动方式,如直接传动、间接传动或多级传动等。

第三部分:机械传动系统的分析机械传动系统的分析是评估系统的性能和行为的过程,常见的分析手段包括传动效率计算、转矩和功率分析、动力学分析和可靠性评估等。

首先,通过对传动元件的几何尺寸和摩擦特性进行分析,可以计算传动效率,并评估系统对能源的利用效率。

其次,根据系统的输入和输出转矩,可以分析系统的动力平衡和传动效果,为系统的性能优化提供依据。

同时,也可以进行动力学分析,研究系统的振动特性和响应,以及设计和安装防震措施。

最后,通过对各个传动元件的可靠性分析和寿命评估,可以预测系统的使用寿命和故障概率,为维护和保养提供指导。

结论:机械传动系统的设计与分析是一项重要的工程任务,它关乎着装置的工作效率和可靠性。

在设计过程中,需要综合考虑负载特性、转矩要求和传动效率等因素,选择合适的传动元件和传动方式。

在分析过程中,则需要通过计算传动效率、分析转矩和功率、研究动力学特性以及评估可靠性来评估系统的性能。

机械传动机构 (2)

机械传动机构 (2)

机械传动机构1. 引言机械传动机构是由各种机械元件组成的,用于将输入的运动和力量传递到输出的装置。

它可以将旋转运动转换为线性运动,也可以将高速运动减缓成低速运动。

机械传动机构在各个行业中都得到了广泛的应用,例如工厂中的生产线、汽车中的传动系统以及家电中的各种机械结构等。

本文将介绍机械传动机构的基本概念、分类以及在实际应用中的一些常见案例。

2. 机械传动机构的基本概念机械传动机构是指由一组机械元件组成的装置,用于将输入的运动和力量传递到输出的装置。

它由传动齿轮、传动带、传动链、传动轴等组成。

机械传动机构的基本概念包括:2.1 传动比传动比是指输入轴和输出轴的转速之比或转矩之比。

它决定了输入和输出运动之间的关系。

根据传动比的不同,机械传动机构可以实现不同的运动效果,例如减速、匀速或增速等。

2.2 键和键槽键和键槽是用于连接传动轴和机械元件的一种常见连接方式。

它通过键嵌槽的形式使得传动轴和机械元件能够紧密连接在一起,以便于力量的传递和运动的转换。

2.3 传动齿轮传动齿轮是机械传动机构中常见的一种元件,它由齿轮和齿轮之间的啮合来实现力量和运动的传递。

根据齿轮的直径、齿数及齿轮的排列方式等不同特点,传动齿轮可以实现不同的传动效果,例如改变转矩、方向或速度等。

3. 机械传动机构的分类机械传动机构可以根据传动方式、传动元件以及传动目的的不同进行分类。

以下是几种常见的分类方式:3.1 基本传动方式•齿轮传动:利用啮合的齿轮来实现运动和力量的传递,分为直接啮合和间接啮合两种方式。

•带传动:利用传动带来实现运动和力量的传递,分为平行轴带传动和交叉轴带传动两种方式。

•链传动:利用传动链来实现运动和力量的传递,通常用于长距离传动和高速传动。

3.2 传动元件•平行轴传动:输入轴和输出轴平行,适用于需要将运动传递到相邻的装置。

•交叉轴传动:输入轴和输出轴交叉,适用于需要将运动传递到远离的装置。

•V型传动:通过V带实现运动和力量的传递,通常用于汽车发动机的传动系统。

传动比扭矩的关系

传动比扭矩的关系

传动比扭矩的关系1.引言1.1 概述概述部分将对本文的主题进行简要介绍,并提供一些背景信息,以帮助读者了解传动比与扭矩之间的关系。

传动比和扭矩是机械工程领域中两个重要的概念。

传动比是指机械系统中输入和输出之间的角度或速度比例关系,用来描述驱动力在系统中的传递方式。

而扭矩是指作用在物体上的力和旋转的交叉效应,通常用于描述驱动系统中的力矩或转矩。

在许多机械系统中,传动比和扭矩直接相关。

传动比的大小决定了输出转速与输入转速的比例关系,而这个比例关系又会对输出的扭矩产生影响。

因此,了解传动比与扭矩之间的关系对于设计和优化机械系统非常重要。

本文将深入探讨传动比与扭矩之间的关系,介绍传动比和扭矩的定义和作用,并分析影响传动比与扭矩关系的因素。

通过理解这些关键概念和原理,读者将能够更好地应用于实际工程设计中,并能够提高机械系统的性能和效率。

接下来,本文将首先介绍传动比的定义和作用,然后对扭矩的定义和作用进行详细解释。

随后,将通过举例和实际案例来说明传动比与扭矩之间的关系,并探讨影响它们关系的因素。

最后,本文将总结结论,并对未来可能的研究方向提出展望。

通过对传动比与扭矩关系的深入研究,我们可以更好地理解机械系统的运作原理,为机械工程领域的设计和优化提供更多的指导和启示。

此外,通过优化传动比与扭矩之间的关系,我们还可以提高机械系统的效率和性能,实现更好的工程应用。

1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将分为三个主要部分来探讨传动比与扭矩之间的关系。

在引言部分,我们将提供一个概述,介绍本文将要解决的问题以及研究的目的。

在正文部分,我们首先会定义和解释传动比的概念,并阐述它在机械传动中的作用。

接着,我们会对扭矩的定义进行说明,并探讨它在机械系统中的重要性。

在结论部分,我们将总结传动比与扭矩之间的关系,并讨论影响这种关系的因素。

通过全面了解传动比与扭矩之间的相互作用,我们可以更好地理解机械运动和力的传递过程。

转轮

转轮
一、各种传动形式的选择原则 1.大功率、高速和长期使用的机械,应选用承载能力大、效率 高、传动平稳的齿轮传动等传动形式 2.中、小功率、速度较低、传动比较大的机械,可采用蜗杆传 动。齿轮传动,带、链与齿轮组合传动等。 3.工作环境恶劣或要求保持环境整洁时宜采用闭式传动。
二、轮系在各种机械设备中的主要功能 1.传递相距较远的两轴之间的运动和动力;
2.实现变速、变向传动
3.获得大的传动比: 一对外啮合圆柱齿轮传动,其传动比一般可为i<=5-7。但是
行星轮系传动比可达i=1000,而且结构紧凑。
举例:图示为一大传动比的减速器, Z1=100,Z2=101,Z2'=100,Z3=99 求:输入件H对输出件1的传动比iH1
iH1

1 i1H

iGHK

()
齿轮G和K之间所有从动轮齿数的乘积 齿轮G和K之间所有主动轮齿数的乘积
注意: 1.公式只适用于G,K,H平行的场合。 2.转化轮系传动比的计算遵循定轴轮系的计算准则。
3.代入已知转速时,必须带入符号, 求得的转速与哪个已知量的 符号相同就与谁的转向相同。
z2 z1 z2
两齿数差越大,传动比越大,通常z1 z2 1 4
当z1 z2 1时 iHV z2
特点:传动比大,结构紧凑,加工容易
同时啮合齿数少,承载能力低,计算复杂(变位)
2.摆线针轮行星传动 摆线针轮行星传动的工作原理、输出机构与渐开线少齿差行星
传动基本相同,其结构上的差别在于固定太阳轮的内齿是带套筒的 圆柱形针齿(称为针轮),行星轮2改为短幅外摆线的等距曲线作 齿廓称为摆线轮。
i1k
1 k
n1 nk

(1) m

河海大学机械设计习题——第十章齿轮传动

河海大学机械设计习题——第十章齿轮传动
才合理?
12.3.30作为动力传动的齿轮,其模数一般不小于多少?为什么?
12.3.31对于作双向传动的齿轮来说,它的齿面接触应力和齿根弯曲应力都属于什么循环特性?在作强度计
算时应如何考虑?
12.3.32图示两级圆柱齿轮减速器的两种布置方案,试问哪种方案较为合理?为什么?
12.3.33图示直齿圆锥齿轮减速器的两种布置方案,若传递功率相同,传动比相同,试分析哪种方案更为合
12.3.9开式,闭式齿轮材料的选择各有什么特点?
12.3.10软齿面和硬齿面的界限是如何划分的?设计中如何选择软硬齿面?
12.3.11为对软齿面的大,小齿轮在其材料选择和热处理方法上常常不同?
12.3.12什么叫计算载荷?载荷系数由几部分组成?各考虑什么因素影响?
12.3.13齿轮传动中,为何引入动载荷系数KV?减小动载荷的方法有哪些?
c)提高润滑油粘度d)降低齿面粗糙度
12.1.15在不逆转的齿轮上,由于齿轮的弯曲疲劳强度不够所产生的疲劳裂纹,一般容易在轮齿的
首先出现和扩展。
a)受压侧的节线部分b)受压侧的齿根部分
c)受拉侧的节线部分d)受拉侧的齿根部分
12.1.16在齿宽b相同的前提下,齿面接触强度取决于。
a)齿数的多少b)模数的大小c)齿数和模数的乘积
此时,它们的齿形系数。
a )YFa1<YFa2b)YFa1>YFa2c)YFa1= YFa2
12.1.25对于标准的直齿圆柱齿轮,减小其齿轮齿形系数 可采用的方法有。
a )齿廓修形b)增加齿数c)增大模数
d)提高齿轮制造精度
12.1.26有A、B、C三个齿轮,它们的压力角,模数和齿数均相同,但A齿轮是标准齿轮,B是正变位齿轮,
⑤从图表中查取动载荷系数。

《机械设计基础》第十章 带传动

《机械设计基础》第十章 带传动

10.2.2 带传动工作时的应力分析
带是在变应力下工作,当应力较大,应力变化频率较高时,带将很快产生疲劳 断裂而失效,从而限制了带的使用寿命。带传动工作时,带所受应力有如下几种:
机械设计基础
1.由紧边拉力和松边产生的拉应力
紧边拉应力 松边拉应力
2.由离心力产生的拉应力
∵F1> F2
∴ σ 1> σ 2
FQ=2ZFo
机械设计基础
10.带轮结构的设计
带轮结构的设计根据带轮槽型、槽数、基准直径和轴的尺寸确定。参 见本章10.4节部分或有关机械设计手册。
【例 10-1】 设计一带式输送机的普通 V 带传动。原动机为 Y112M-4 异步电动机, 其额定功率 P =4kW, 满载转速 n1 =1440 r/min, 从动轮转速 n 2 =470 r/min, 单班制工作, 载荷变动较小,要求中心距 a ≤550 mm。 解.(1)确定计算功率 Pc 由表 10-7 查的 K 1.1 ,故
机械设计基础
6、验算小带轮包角
对于V带,一般要求α1≥120°,否则,应增大中心距或加 张紧轮。 7、确定V带的根数
为了使每根V带受力均匀,带的根数不宜太多,通常取带的 根数小于10根。 机械设计基础
8、计算初拉力F0 初拉力F0的大小对带传动的正常工作及寿命影响很大。初拉 力不足,易出现打滑;初拉力过大,则V带寿命降低,压轴力增 大。
式中PC——计算功率,kW; Z——V带的根数; v——V带速度,m/s; Kα——包角修正系; q——v带每米长质量,kg/m。 由于新带易松弛,所以对于非自动张紧的带传动,安装新 带时的初拉力应为上述初拉力的1.5倍。 机械设计基础
9、计算轴压力 V带作用在轴上的压力FQ一般可近似按两边的初拉力F0的合 力来计算。

机械原理(第七版)优秀课件—第十章 齿轮机构及其设计

机械原理(第七版)优秀课件—第十章 齿轮机构及其设计
第十章 齿轮机构及其设计
Gears and its Design
• 10.1 齿轮机构的特点及分类
• 10.1.1 概述 • 1.什么是齿轮?
• 2.特点:适应范围广(v、p、r);效率
高(0.99);速比稳定、传动精度高;工 作可靠;可实现任意轴间的传动。制造 和安装精度要求高,成本较高;不适于 远距离传动。
• 刀具不标准
2.变位齿轮问题的提出
1)z<zmin时又要不根切; 2)a’≠a;
3)ρ小<ρ大, σ小>σ大, u小>u大,
• 3.刀具的变位 1)正变位 2)负变位 • 4. 变位传动
1)零变位齿轮传动:∑x=0,α’=α, a’=a • x1=x2=0 标准齿轮传动 x1=-x2 等移距变位齿轮传动 • 2)非零变位齿轮传动:∑x≠0,α’≠α, a’≠a
曲齿
交错轴斜齿轮传动
• 3.按齿廓曲线分:渐开线、摆线、圆弧 • 4.按工作条件分: • 1)开式:2)闭式:
• 5.按运动速度分:
• 低速:<1m/s
• 中速:1~25
• 高速:>25m/s • 超高:>100m/s
• 10.1.3 对齿轮传动的基本要求
– 1.传动准确平稳
i 1 d1
2 d 2
α
r
α N1
xm ha m
p
Q
• 2. 变位齿轮的几何计算
• m、a由强度计算确定,α、z、d、db不变化 • h高a和、齿h厚f 、的d变a化、 df、s 、e 、α’都将变化,而关键是齿
• 1)齿顶高、齿根高
hai (ha* xi y)m
hfi (ha* c* xi)m
x的选择:无侧隙、不根
2
c os '
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 机械传动系统及其传动比案例导入:在实际的机械工程中,为了满足各种不同的工作需要,仅仅使用一对齿轮是不够的。

本章通过带式输送机、牛头刨床、汽车变速箱和差速器、自动进刀读数装置、滚齿机行星轮系等例子,介绍轮系的概念、分类、传动比的分析计算方法。

第一节 定轴轮系的传动比计算在实际应用的机械中,为了满足各种需要,例如需要较大的传动比或作远距离传动等,常采用一系列互相啮合的齿轮来组成传动装置。

这种由一系列齿轮组成的传动装置称为齿轮系统,简称轮系。

一、轮系的分类轮系有两种基本类型:(1)定轴轮系。

如图10-1所示,在轮系运转时各齿轮几何轴线都是固定不变的,这种轮系称为定轴轮系。

(2)行星轮系。

如图10-2所示,在轮系运转时至少有一个齿轮的几何轴线绕另一几何轴线转动,这种轮系称为行星轮系。

二、轮系的传动比1.轮系的传动比轮系中,输入轴(轮)与输出轴(轮)的转速或角速度之比,称为轮系的传动比,通常用i 表示。

因为角速度或转速是矢量,所以,计算轮系传动比时,不仅要计算它的大小,而且还要确定输出轴(轮)的转动方向。

2.定轴轮系传动比的计算根据轮系传动比的定义,一对圆柱齿轮的传动比为i 12«Skip Record If...»式中:“±”为输出轮的转动方向符号,当输入轮和输出轮的转动方向相同图 10-1 定轴轮系时取“+”号、相反时取“-”号。

如图10-1a) 所示的一对外啮合直齿圆柱齿轮传动,两齿轮旋转方向相反,其传动比规定为负值,表示为:«Skip Record If...»如图10-1b)所示为一对内啮合直齿圆柱齿轮传动,两齿轮的旋转方向相同,其传动比规定为正值,表示为:«Skip Record If...»如图10-3所示的定轴轮系,齿轮1为输入轮,齿轮4为输出轮。

应该注意到齿轮2和2'是固定在同一根轴上的,即有n 2=n 2′。

此轮系的传动比i 14可写为:«Skip Record If...» 上式表明,定轴轮系的总传动比等于各对啮合齿轮传动比的连乘积,其大小等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即«Skip Record If...» (10-1)式中:m 为平行轴外啮合圆柱齿轮的对数,用于确定全部由圆柱齿轮组成的定轴轮系中输出轮的转向。

齿轮的转向也可在图中画箭头表示。

特别是圆锥齿轮传动、蜗杆蜗轮传动,其轴线不平行,不存在转向相同或相反的问题,这类轮系的转向只能在图中用画箭头的方法表示,见图10-1c )所示。

在图10-3中,齿轮3同时与齿轮2'、4相啮合,既为主动轮又为从动轮,z 3在i 14计算式中可以消掉,它对轮系传动比的大小没有影响,但增加了外啮合次数,改变了传动比的符号。

这种仅影响输出轮转向的齿轮称为惰轮或过桥齿轮。

例10-1 如图10-4所示为提升装置。

其中各轮齿数为:z 1=20,z 2=80,z 3=25,z 4=30,z 5=1,z 6=40。

试求传动比i 16。

并判断蜗轮6的转向。

解:因该轮系为定轴轮系,而且存在非平行轴传动,故应按式(10-1)计算轮系传动比的大小然后再按画箭头的方法确定蜗轮的转向如图所示。

第二节 行星轮系的传动比计算 图10-3定轴轮系传动比的计算图10-4提升装置«Skip Record If...»一、行星轮系的组成如图10-5a) 所示的行星轮系,主要由行星齿轮,行星架和太阳轮组成。

图10-5b) 所示的齿轮2由构件H 支承,运转时除绕自身几何轴线O '自转外,还随构件H 上的轴线O '绕固定的几何轴线O 公转,故称其为行星轮。

支承行星轮的构件H 称为行星架,与行星轮相啮合且几何轴线固定不动的齿轮1、3(内齿轮)称为太阳轮。

二、行星轮系的传动比计算因为行星轮除绕本身轴线自转外,还随行星架绕固定轴线公转,所以行星轮系的传动比计算不能直接采用定轴轮系传动比计算公式。

最常用的方法是转化机构法,也称反转法。

定轴轮系和行星轮系的根本区别在于行星轮的公转。

实际上,我们完全可以认为定轴轮系是行星轮系中公转速度等于零的特例。

换言之,当行星轮的公转速度等于零时,该行星轮系就变成了定轴轮系。

现假想给图10-6a)所示的整个行星轮系,加上一个与行星架的转速n H 大小相等方向相反的公共转速“-n H ”,则行星架H 的转速从n H 变为n H +(-n H ),即变为静止,而各构件间的相对运动关系并不变化,此时行星轮的公转速度等于零,得到了假想的定轴轮系(图10-6b )。

这种假想的定轴轮系称为原行星轮系的转化轮系。

转化轮系中,各构件的转速见表10-1所示:表10-1 转化轮系中各构件的转速a)b)图10-5行星轮系图10-6行星轮系及其传动比的计算转化轮系中1、3两轮的传动比可根据定轴轮系传动比的计算方法得«Skip Record If...»将以上分析归纳为一般情况,可得转化轮系传动比的计算公式为«Skip Record If...» (10-2)式中:G 为主动轮,K 为从动轮。

应用上式求行星轮系传动比时须注意:(1)将n G 、n K 、n H 的值代入上式时,必须连同转速的正负号代入。

若假设某一转向为正,则与其反向为负。

(2)公式右边的正负号按转化轮系中G 轮与K 轮的转向关系确定。

(3)在n G 、n K 、n H 三个参数中,已知任意两个,就可确定第三个,从而求出该行星轮系中任意两轮的传动比。

«Skip Record If...»;«Skip Record If...»为转化轮系中G 轮与K 轮转速之比,其大小及正负号按定轴轮系传动比的计算方法确定。

«Skip Record If...» 是行星轮系中G 轮与K 轮的绝对速度之比,其大小及正负号由计算结果确定。

例10-2 在图10-6a )所示的行星轮系中,已知 n 1=100 r/min ,假设轮3固定不动,各轮齿数为z 1=40,z 2=20,z 3=80。

求①«Skip Record If...»和«Skip Record If...»;②«Skip Record If...»和«Skip Record If...»。

解:由式(10-2)得 «Skip Record If...»取n 1的转向为正,将n 1=100 r/min ,n 3=0代入上式得:n H =min求得的n H 为正,表示n H 与n 1的转向相同。

由式(10-2)«Skip Record If...»仍取«Skip Record If...»的转向为正,将n 1=100 r/min 代入上式得: n 2=-100r/min求得的 n 2为负值,表示n 2与n 1 的转向相反。

注意: «Skip Record If...» ; «Skip Record If...»。

例10-3图10-7所示为圆锥齿轮组成的轮系,已知各轮齿数z 1 = 45,z 2 = 30,z 3 = z 4 = 20 ;n 1=60r/min,n H =100r/min,若n 1与n H 转向相同,求n 4、i 14。

解:由式(10-2)得«Skip Record If...»用画箭头的方法可知转化轮系中«Skip Record If...»与«Skip Record If...»的转向相同,故«Skip Record If...»应为正值。

即构 件行星齿轮系中的转速 转化齿轮系中的转速 太阳轮1n 1 n 1H =n 1-n H 行星轮2n 2 n 2H =n 2-n H 太阳轮3n 3 n 3H =n 3-n H 行星架Hn H n H H =n H -n H =0 机 架4 n 4=0 n 4H =-n H11001002112-=-==n n i«Skip Record If...»将n1= 60r/min ,n H =100r/min 代入上式得«Skip Record If...»解得n4 = 40 r/min,。

由此得«Skip Record If...»正号表明1、4两齿轮的实际转向相同。

第三节典型机械传动系统及其传动比计算一、机械传动系统的一般组成及各种传动形式的选择如图10-8 所示带式输送机,由电动机(原动机)经减速器及链传动(传动系统)将运动和动力传给带轮,用皮带传动(执行机构)完成货物的输送。

由此可见,机械传动系统是将原动机的动力传给工作机的中间装置,原动机通过传动系统驱动工作机工作。

显然,传动系统是机器三大组成部分中的重要组成部分,是机械设计中关键的一环。

为了满足生产过程的各种运动要求,机器并不只是由某一种机构或传动件组成的,而是由多种机构和传动件组合成机械系统。

其中,传动系统占的比重最大。

传动系统的设计,主要是传动类型的选择及其组合设计。

如第一章中叙述的牛头刨床(图10-9),要把原动机的运动转换为执行机构(滑枕、工作台)所需要的运动,单靠某一种机构或传动件是很难实现的,需要根据各执行构件协调动作的要求,将带传动、齿轮传动和连杆机构等一些传动件和机构组合起来,构成一个传动系统,才能完成这一工作。

为了将多种机构和传动件组合应用,使机器能完成某一生产过程的各种运动要求,必须合理地解决传动类型的选择及组合设计问题。

为此,应了解前面所学各种传动形式的特点、性能,如表10-2所示。

表10-2 各种传动形式的选择传动形式主要优点主要缺点效率η速度功率P(kW)图10-8带式输送机图10-9牛头刨床带传动中心距变化范围大,可用于较远距离的传动,传动平稳,噪音小,能缓冲吸振,摩擦带传动有过载保护作用,结构简单,成本低,安装要求不高有弹性滑动,传动比不能保持恒定,外廓尺寸大,带的寿命较短(通常为3500~5000h),由于带的摩擦起电不宜用于易燃,易爆的地方,轴和轴承上作用力大平行带~三角带~同步齿形带~受带的截面尺寸和带的根数的限制,三角带P max=500,通常P≤40齿轮传动外廓尺寸小,效率高,传动比恒定,圆周速度、功率范围广,应用最广制造和安装精度要求较高,不能缓冲,无过载保护作用,有噪音闭式~开式~功率范围广,直齿P max≤750,斜齿、人字齿P max≤50000蜗杆传动结构紧凑,外廓尺寸小,传动比大,传动比恒定,传动平稳,无噪音,可做成自锁机构效率低,传递功率不宜过大,中高速需用价贵的青铜,制造精度要求高,刀具费用高闭式~开式~自锁蜗杆~受发热限制P max=750通常P≤50链传动中心距变化范围大可用于较远距离传动,在高温、油、酸等恶劣条件下能可靠工作,轴和轴承上的作用力小运转时瞬时速度不均匀,有冲击、振动和噪音、寿命较低(一般为5000~15000h )闭式~开式~受链条截面尺寸和列数的限制P max=3500,通常P≤100螺旋传动能将旋转运动变成直线运动,并能以较小的转矩得到很大的轴向力,传动平稳,无噪音,运动精度高,传动比大,可用于微调,可做成自锁机构,滚动螺旋还可将直线运动变成旋转运动工作速度一般都很低,滑动螺旋效率低,磨损较快滑动螺旋可自锁时~ ,滚动螺旋可达以上考虑机械的工作条件,参照各种传动形式的特点、性能,选择几个传动类型进行组合设计,然后通过技术分析和经济评比等,确定最优方案。

相关文档
最新文档