算法设计与分析学习总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、迭代算法
迭代法是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或方程组)的过程,为实现这一过程所使用的方法统称为迭代法。迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1)选一个方程的近似根,赋给变量x0。
1、穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,bing从中找出那些符合要求的候选解作为问题的解。
穷举算法特点是算法简单,但运行时所花费的时间量大。有些问题所列举书来的情况数目会大得惊人,就是用高速计算机运行,其等待运行结果的时间也将使人无法忍受。我们在用穷举算法解决问题是,应尽可能将明显不符合条件的情况排除在外,以尽快取得问题的解。
如果原问题可分割成k个子问题,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
递归算法解决问题的特点有:
(1)递归就是在过程或函数里调用自身
(2)在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口
(3)递归算法解题通常显得很简洁,但递归算法解题的运行效率较低
(4)在递归调用的过程中系统为每一层的返回点、局部变量等开辟堆栈来存储。
举例如下:
Fibonacci数列
intfib[50];ﻩﻩﻩ//采用数组保存中间结果
voidfibonacci(intn)
{
fib[0] = 1;ﻩ
fib[1]= 1;
for (int i=2; i<=n;i++)
ﻩﻩfib[i]=fib[i-1]+fib[i-2];
}
5、分治算法
分治算法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到最后子问题可以简单地直接求解,原问题的解即子问题解的合并。
设计的算法要具有以下的特征才能有效的完成设计要求,算法的特征有:(1)有穷性。算法在执行有限步后必须终止。(2)确定性。算法的每一个步骤必须有确切的定义。(3)输入。一个算法有0个或多个输入,作为算法开始执行前的初始值,或初始状态。(4)输出。一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。(5)可行性。在有限时间内完成计算过程。
(4)把子问题的局部最优解合成原来问题的一个解
贪心算法的一般流程:
Greedy(A)
{
S={};//初始解集合为空集
while (notsolution(S))//集合S没有构成问题的一个解
{
x=select(A);//在候选集合A中做贪心选择
iffeasible(S, x)//判断集合S中加入x后的解是否可行
分治策略的算法设计模式
Divide_and_Conquer(P)
{
if(|P|<=n0)returnadhoc(P);
ﻩdivide Pintosmaller substances P1,P2,…,Pk;
ﻩfor (i=1; i<=k; k++)
yi=Divide-and-Conquer(Pi)//递归解决Pi
S=S+{x};
A = A-{x};
}
return S;

(1)候选集合A:问题的最终解均取自于候选集合A。
(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0。
(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。
3、递推算法
递推算法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的。
算法设计的整个过程,可以包含对问题需求的说明、数学模型的拟制、算法的详细设计、算法的正确性验证、算法的实现、算法分析、程序测试和文档资料的编制。算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法和并行算法。
经典的算法主要有:
算法分析与设计
学习总结
题目:算法分析与设计学习总结
学院信息科学与工程学院
专业2013级计算机应用技术
届次
学Βιβλιοθήκη Baidu姓名
学号2013110657
二○一三年一月十五日
算法分析与设计学习总结
本学期通过学习算法分析与设计课程,了解到:算法是一系列解决问题的清晰指令,代表着用系统的方法描述解决问题的策略机制。算法能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂性和时间复杂度来衡量。算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。计算机系统中的操作系统、语言编译系统、数据库管理系统以及各种各样的计算机应用系统中的软件,都必须使用具体的算法来实现。算法设计与分析是计算机科学与技术的一个核心问题。
4、递归算法
递归算法是一种直接或间接的调用自身的算法。
能采用递归描述的算法通常有这样的特征:为求解规模为n的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别的,当规模n=0或1时,能直接得解。
Return merge(y1,y2,…,yk)//合并子问题

6、贪心算法
贪心算法也称贪婪算法。它在对问题求解时,总是做出在当前看来是最好的选择。它不从整体最优上考虑,所得出的仅是在某种意义上的局部最优解。
贪心算法的基本思路如下:
(1)建立数学模型来描述问题
(2)把求解的问题分成若干个子问题
(3)对每一子问题求解,得到子问题的局部最优解
相关文档
最新文档