高效率和超宽输入电压范围DC-DC变换器的设计方法.
DC-DC变换器设计毕业设计
绪论一.开关电源概述开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。
半个世纪以来,开关电源大致经历了四个阶段。
早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。
在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。
随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。
稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。
等对供电电压都有一定的要求。
至于精密的电子仪器,对供电电压的要求更为严格。
所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。
目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。
单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。
尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。
单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。
二. 开关电源的技术追求1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。
在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。
因此高频化是开关电源的主要发展方向。
2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。
从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电源的寿命。
高频PWMDC_DC转换器的设计_应建华
⾼频PWMDC_DC转换器的设计_应建华26卷第1期2009年1⽉微电⼦学与计算机M ICROELECTRONICS&COM PUTERVol.26No.1January2009收稿⽇期:2008-02-21⾼频PWM DC/DC转换器的设计应建华,张俊,肖靖帆(华中科技⼤学电⼦科学与技术系,湖北武汉430074)摘要:设计了⼀种基于0.6L m CM OS⼯艺的⾼频PWM升压型DC/DC转换芯⽚.采⽤恒定频率、电流模式的控制结构以提供稳定的电压.本芯⽚在XFAB公司流⽚成功,测试结果表明,芯⽚的开关频率⾼达为1.2MHz,在输⼊电压分别为3.3V、5V的情况下能稳定地分别驱动4个、6个⽩光L ED,输出电压分别为12.8V、18.6V.关键词:DC/DC转换器;电流型;脉宽调制中图分类号:T N4⽂献标识码:A⽂章编号:1000-7180(2009)1-0197-04Design of High Frequency PWM DC/DC ConverterYING Jian-hua,ZHANG Jun,XIAO Jing-fan(Department of Electro nics Science and T echnology,Huazhong U niversit y of Science and Technology,Wuhan430074,China)Abstract:A hig h frequency PWM step-up DC/DC converter w ith low power dissipation w as designed by using0.6L m CM OS process.T he chip uses a constant frequency,cur rent-mode control scheme to provide steady voltag e.T he chip taped out successfully in XFA B Company.T he testing results showed that the frequency was1.2MHz,output v oltage w as12.8V and18.6V,when driving4and6white L ED in3.3V and5V input voltag e.Key words:DC/DC converter;cur rent-mode;pulse w idth modulation(PWM)1引⾔随着⼿机、mp3、PDA等便携式消费电⼦产品的⼴泛应⽤,对供电电源提出了新的要求.为保证系统稳定、可靠地⼯作,通常采⽤DC/DC开关变换器提供⼯作电压.⽂中设计了⼀种开关频率⾼达1.2MH z、电流控制型PWM升压DC/DC开关变换器,采⽤XFAB 公司的0.6L m CM OS⼯艺流⽚成功.测试结果表明,该转换器可稳定驱动串联的4到6个⽩光LED,满⾜系统设计要求.2PWM DC/DC转换器原理分析⽂中设计采⽤⼀种恒定频率、电流模式的控制结构[1],并把功率开关管和控制电路集成到⼀起.芯⽚结构如图1所⽰.SW为开关引脚;FB为输出电压的采样反馈端;SHDN为停机引脚.芯⽚内部主要模块包括基准电压源、误差放⼤器、PWM⽐较器、振荡器、电流采样电路、RS锁存器以及驱动.图1芯⽚电路框图该芯⽚的⼯作原理:在每个振荡周期的开始时, RS锁存器被置位,导通功率管,输出电压的采样值反馈到PWM⽐较器的正向端.当采样电压超过⽐较器的负输⼊端的⽔平时,RS锁存器被复位关闭功率管.通过开关功率管占空⽐的变化,调节输出电压使其稳定.3 主要电路模块设计分析3.1 电压基准源电路在DC -DC 转换器芯⽚中,因为芯⽚的输出功率⽐较⼤,要求带隙基准源在较宽的温度范围内参考源电压波动不⼤;同时由于⼯作电源电压的范围较宽,为了保证输出电压对⼯作电源电压的不敏感性,要设计⾼电源电压抑制⽐(PSRR)的带隙基准源.⽂中设计的带隙基准源电路如图2所⽰,由启动电路、带隙核、放⼤器A 和输出级组成.图2 带隙电路图其信号结构图如图3所⽰.图3 电压基准源信号结构图其中A 1(s )是V cc 到放⼤器A 输出的传函;A 2(s)是V cc 到电压基准源输出V re f 的传函;A 3(s )是放⼤器A 的输出到电压基准源输出V ref 的传函;A 4(s)是电压基准源的输出V re f 到放⼤器A 输⼊的传函;A 5(s)是放⼤器A 的开环传函.分析可知:V ref V cc =[A 1(s)+A 2(s )A 3(S )]@A 3(S )1+A 3(s )A 4(s )A 5(s)(1)通过参数的优化可以得到在低频范围内A 2(0)约等于0,A 3(0)约等于1,A 4(0)约等于1,A 1(0)和A 5(0)的值是与放⼤器A 结构相关的.化简式(1)可得低频电压抑制⽐为PSRR (0)=V ref V cc =1+A 5(0)A 1(0)U A 5(0)A 1(0)(2)为了获得⾼电源抑制⽐,采⽤了⼀种⾃偏置有源负载运算放⼤器A,利⽤⾃偏置电流源闭环反馈改变开环电阻的特性,实现⾼开环增益.晶体管M0、M 1、M2、M 6、M7、M 8构成⾃偏置电流源,M0由n 个(W /L )的MOS 管并联组成,M 1由1个(W /L )的MOS 管组成,M2是n -1个(W /L )的MOS 管并联组成,由电路⼩信号分析可得输出电阻R out =n @r oM0.电压基准源A 5(0)和A 1(0)的表达式分别为A 5(0)=n @g mQ4@r oM0(3)A 1(0)=r oQ4/(1/g -1mM0+r o Q4)U 1(4)电压基准源的低频电压抑制⽐:PSRR (0)U ng m Q4@r oM0(5)在XFAB 公司的X C 06⼯艺下,通过优化g m Q4和r oM 0,对基准源进⾏温度特性、电压调整率和电源抑制⽐仿真,仿真曲线如图4、图5所⽰.从图中可以看到,电压基准源的温度系数是11ppm/e ;低频电压抑制⽐达到92dB .图4 电压基准源温度系数仿真曲线图5 电压基准源PSRR 仿真曲线3.2 振荡器和斜波发⽣器振荡器产⽣恒稳的、周期性时变的输出波形,作为控制功率管开关的时钟.⽂中采⽤基本的充放电振荡器电路[3],⼜称为窗⼝⽐较式振荡器[4],提供⾼达1.2MH z 的开关频率,电路结构如图6所⽰.其⼯作原理:定时电容C 在两个门限电压V A 、V B 之间来回充放电,当定时电容上的电位达到两个门限电平中的某⼀个值时,RS 触发器输出Q 发⽣翻转;然后定时电容上的电位向相反⽅向变化,当其到达另⼀个门限电平时,Q 再次翻转.如此循环,产⽣振荡.198微电⼦学与计算机2009年图6 振荡器和斜波发⽣器电路结构图斜波发⽣器利⽤电流对定时电容的充放电,在电容C 上产⽣所需的斜波信号.产⽣斜波信号的⽬的是对电路进⾏斜波补偿,防⽌在占空⽐⼤于50%的情况下出现次谐波振荡,保证系统稳定性[2].设电容充电电流为I 1,放电电流为I 2,则电容C 的充电时间t 1=V 1-V 2I 1C,电容的放电时间t 2=V 1-V 2I 2,则振荡周期C 为t =t 1+t 2=(V 1-V 2)1I 1+1I 2C (6)由于充放电电流由电压基准源的PTAT 电流产⽣,振荡周期和斜升波的斜率基本保持不变.3.3 误差放⼤器误差放⼤器的作⽤是把反馈信号V FB 与内部基准电压进⾏⽐较,把电压之差放⼤,产⽣电压环误差信号,控制PWM ⽐较器正向输⼊端的电压信号.误差放⼤器的电路如图7所⽰.图7 误差放⼤器电路图由图7可知:M1、M2、M3、M4、M 17、M0、M 8组成误差放⼤器的第⼀放⼤级;M5、M7、M 9和M 10组成误差放⼤器第⼆级放⼤器,第⼆级电路是推挽输出结构,从⽽可以增加输⼊电压跟随能⼒.NMOS 管M 11⽤于对输出电压进⾏钳位,保证了芯⽚刚上电时不会产⽣电感上电流浪涌现象.M 3和M 4构成的交叉耦合结构,引⼊了⼀个局部正反馈,提⾼了第⼀级的放⼤增益,可以计算出从M2的漏级向下看到的等效电阻为:R eq =1/(g m2-g m4)-1,当g m 2>g m4,R eq >0,等效电阻增⼤,提⾼了开环增益:A v1=gm17/(g m2-g m4).第⼆级为推挽输出结构,可计算其增益为A v2=g m7(r 07+r o10).所以整个误差放⼤器的开环增益为A v =A v1A v2=g m17g m 7(r o7+r o10)/(g m2-g m4)(7)输出级的电阻R 1和电容C 1组成系统的补偿⽹络,⽤于保证系统环路的稳定性,其产⽣了极点和零点如下:s p1=1/2P (r o7+r o10)C 1s z1=1/2P R 1C 1其中产⽣的零点s z1⽤于补偿DC -DC 转换器输出负载电阻和滤波电容形成的极点;极点s p1⽤于对开关噪声进⾏衰减[1].误差放⼤器的频率特性的仿真曲线如图8所⽰.图8 误差放⼤器频率特性仿真曲线图8是误差放⼤器的频率特性曲线,由图可见:误差放⼤器的低频增益是48dB,⾸先经历⼀个低频极点,然后出现⼀个低频零点,零点对极点进⾏相位补偿,从⽽保证了DC -DC 转换器电路在单位增益带宽内等效只有⼀个主极点,使整个环路系统稳定.3.4 功率管由于功率管是整个驱动电路的核⼼器件,因此对于功率管的版图设计直接影响到了电路的整体性能.⽂中采⽤了蛇形栅结构的功率管,蛇形栅的结构优点是:(1)结构紧凑,等效宽度⼤,占⽤⾯积⼩;(2)由于多晶硅栅在拐弯处使⽤了135度的⾛向,有效避免了90度情况下局部雪崩击穿现象的发⽣;(3)源漏⾦属接触孔呈对⾓线分布,这使得MOS 器件的击穿特性,尤其是ESD 性能得到了提⾼.4 测试结果本电路已通过流⽚验证,对芯⽚在输⼊电压为199第1期应建华,等:⾼频PWM DC/DC 转换器的设计3.3V,驱动4个LED 和输⼊电压为5V,驱动6个LED 的情况下进⾏了测试,⽤Tektronix 公司的T DS2024B 数字存储⽰波器读取了输出电压波形和SW 开关电压波形,如图9、图10所⽰.图9 V in =3.3V,驱动4个LED图10 V in =5V ,驱动6个LED从图9、图10可以看出,芯⽚的开关频率在1.2MH z 左右,输出电压稳定.在3.3V 的输⼊电压、20~50e 的环境温度下对输出电压和开关频率的温度特性做了测试,并利⽤matlab 对测试数据进⾏了曲线拟合,如图11、图12所⽰.图11 输出电压温度特性图12 开关频率温度特性测试结果表明,当温度从21e 变化到50e 时,输出电压从12.662V 下降到12.436V,开关频率从1.211MH z 上升到1.289MH z.5 结束语⽂中设计了⼀种开关频率为1.2MHz 的DC/DC 转换器,采⽤恒定频率、电流模式的控制结构以提供稳定的电压.最终的测试结果表明,该芯⽚在输⼊电压分别为3.3V 、5V 的情况下能稳定地驱动4个、6个⽩光LED,开关频率在1.2MH z 左右,输出电压分别为12.7V 、18.6V,达到系统设计要求.参考⽂献:[1]Cheung Fai Lee,Philip K T M ok.A monolithic current-mode CM OS DC-DC converter wit h o n-chip cur rent -sensing technique[J].IEEE Journal of Solid-State Cir -cuits,2004,39(1):3-14.[2]韦枫,吴⾦.基于斜波补偿的电流模式PW M DC-DC 系统稳定性分析[J].电⼦器件,2003,26(4):461-463.[3]陈光明,曹家麟,汪西川.峰值电流控制模式BOO ST DC-DC 变换器的斜波发⽣器的设计[J].上海⼤学学报,2004,10(4):357-361.[4]张科峰,林映嫣,张兢,等.具有外同步功能的窗⼝⽐较式CM OS 振荡器的设计[J].微电⼦学与计算机,2007,24(12):183-186.(下转第204页)图1局域世界较⼩的度分布⽐较图图2局域世界稍⼤的度分布⽐较图图3 局域世界不同的度分布⽐较图5 结束语⽂中在BA ⽆标度⽹络模型的基础上分析了该模型的动⼒学机制,为了更接近实际⽹络⽽对新加⼊节点的择优范围作了⼀点修改,提出了⼀个局域世界线性增长的⽹络模型,通过⽤连续介质⽅法对新模型度分布的计算和计算机模拟,得出:随着时间的不断演化,局域世界线性增长的⽹络最终将演化成度分布遵循幂律分布的⽆标度⽹络,幂律指数C =3.这对在现实世界的许多合作⽹络中如何按照不同合作⽹络的动态演化机制,建⽴具体的演化⽹络模型,识别并捕捉影响⽹络拓扑结构形成的主要因素,从⽽加深对⽹络拓扑结构及其动态变化的认识,是⼗分有参考意义的.参考⽂献:[1]张磊,姜弘道.基于校园⽹络的计算[J].微电⼦学与计算机,2007,24(9):1-3.[2]王剑,廖振松.⼀种改进的⽹格作业管理实现能[J].微电⼦学与计算机,2007,24(11):1-2.[3]Barab si A L,Alber t R.Emer gence of scaling in randomnetworks[J].Science,1999,286(5439):509-512.[4]A lbert R,Barab si A L.Statistical mechanics of complexnetworks[J].Reviews of M odern Physics,2002(74):47-97.[5]L i X,Chen G.A local w orld evolving networ k model[J].Physica A ,2003(328):274-286.[6]N ew man M E J.T he structure and function of complexnetworks[J].SIAM Review ,2003(45):167-256.[7]李守伟,钱省三.⽆标度⽹络的指数增长与动态局域世界[J].复杂系统与复杂性科学,2005(1):1-3.[8]郭进利.有向复杂⽹络的Poisson 模型[J].上海理⼯⼤学学报,2006(3):2-3.[9]刘美玲,王仲君.择优选择节点构成的复杂⽹络模型研究[J].系统⼯程与电⼦技术,2006(4):2-3.[10]Deng K E,T ang Y.G rowing netwo rks based on themechanism of addition and deletion[J].Chin.phys.L ett.,2004(21):1858-1860.[11]Bianconi G ,Barabasi A L.Bose -Einstein condensationin complex netw orks[J].Phys.Rev.L ett.,2001(86):5632-5635.作者简介:刘浩⼴男,(1975-),硕⼠研究⽣.研究⽅向为复杂⽹络.蔡绍洪男,(1958-),教授,博⼠⽣导师.研究⽅向为介观量⼦涨落、⾮线性物理、复杂性理论、⾃组织理论.(上接第200页)作者简介:应建华男,(1954-),硕⼠,副教授.研究⽅向为数模混合集成电路.张俊男,(1981-),硕⼠研究⽣.研究⽅向为数模混合集成电路.肖靖帆男,(1983-),硕⼠研究⽣.研究⽅向为数模混合集成电路.。
DCDC变换器的设计方案
DC-DC变换器的设计方案一种模块化高效DC-DC变换器的开发与研制设计方案一、设计任务:设计一个将220VDC升高到600VDC 的DC-DC变换器。
在电阻负载下,要求如下:1、输入电压U=220VDC,输出电压u=600VDC。
2、输出额定电流|;:=2.5A,最大输出电流Iomax=3Ao3、当输入山在小范围内变化时,电压调整率SV W2%(在匕=2.5A时)。
4、当|<在小范围你变化时,负载调整率SI W5%(在||=220VDC时)。
5、要求该变换器的在满载时的效率n±90%o6、输出噪声纹波电压峰-峰值U t)pp<1V(在Ui=220VDC,u=600VDC,[(=2・5A条件下)。
7、要求该变换器具有过流保护功能,动作电流设定在3A o8、设计相关均流电路,实现多个模块之间的并联输出。
二、设计方案分析1、DC-DC升压变换器的整体设计方案主电路图1DC-DC变换器整体电路图如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。
控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。
2、DC-DC升压变换器主电路的工作原理DC-DC功率变换器的种类很多。
按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。
非隔离型的DC-DC变换器又可分为DC600V降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。
下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。
图2(a )DC-DC变换器主电路图2(b )DC-DC 变换器主电路图2(a )是升压式DC-DC 变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b )是用matlab 模拟主电路 DC220V出的升压式DC-DC变换器的主电路图。
宽压高效DCDC设计(DOC)
宽压高效DC/DC变换方案报告1 概述本报告根据《宽压高效DC/DC变换技术开发技术协议》,对宽压高效DC/DC变换模块的技术要求、设计方案、工作原理等方面进行了相应阐述和分析。
此次研发涉及4种DC/DC模块,分别为15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种,也就是共设计四种类型的电源。
其主要难点:(1) 宽输入电压范围12.5~50V;(2)宽工作温度范围-45~85°;(3) 外形尺寸较小,这样对功率密度、效率和散热三方面提出挑战(4)低功耗,效率高。
15W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于85%,15V模块满载输出时效率不低于88%;全输入电压范围内,常温条件下,5W输出时效率不低于75%,争取达到80%。
30W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于86%,15V模块满载输出时效率不低于90%;全输入电压范围内,常温条件下,15W输出时效率不低于86%。
因此本项目提出的三个新课题:全输入范围高效;低温启动;高温散热;高功率密度。
2 技术要求2.1 模块类别涉及4种DC/DC模块,分15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种。
以下如非特指,均为对各模块的统一要求。
2.2 工作温度范围-45℃~+85℃,无需额外散热措施。
2.3 隔离要求输入地、输出地及二者与外壳间加500V,绝缘电阻不低于100MΩ。
输入、输出地间不加电容器。
2.4 结构各模块均采取封闭式结构,金属外壳封装。
外形尺寸(暂定)及点定义分别见图1.1和图1.2,控制端低电平禁止。
图 1.1 15W模块外形尺寸及点定义图 1.2 30W模块外形尺寸及点定义2.5 输入2.5.1 输入电压范围输入电压范围12.5V~50V,标称28V。
2.5.2 最大输入电流阻性负载满载启动时,最大输入电流不超过稳态输入电流的2倍。
超宽输入电压范围电源设计方案
超宽输入电压范围电源设计方案关键词摘要:非隔离 宽电压输入范围 高耐压降压 蓄电池降压 超宽电压输入 DC-DC 转换器 AC-DC变换器 仪器仪表电源 工业控制辅助电源 宽电压电源模块设计特色:• 超宽输入电压范围(10-265 VAC 或13-400VDC))• 极高能效• 效率高达65%• 极低的功耗:典型待机功耗小于6mW(@带载100uA时)应用领域:• 输入电压范围变化极宽的蓄电池供电场合(动力车系统、光伏系统、UPS不间断电源、EPS应急电源、光伏逆变器、风光互补控制器、动力电池保护板、BMS电池管理系统等的DC-DC转换供电模块);• 工业电器的供电控制(特别是宽电压输入范围的工业控制所用的辅助电源,比如仪器仪表,智能电表,自动化仪表,定时器,工控设备等);• 家用电器的供电控制(比如WIFI插座、电饭煲、洗碗机及其它白色家电)。
• 其它非隔离供电的应用,比如夜间照明灯、LED驱动、电表及住宅加热控制器等。
设计概述:在某些特殊的应用场合里,需要电源系统在很宽的电压范围内都能正常工作,如光伏系统、UPS等,尤其在工业现场,电网的电压往往受用电负载的变化而变动,特别是负载较大时情况尤其严重,另外现场环境的干扰尖峰也会叠加在输入电压上一起进入电源电路,致使在恶劣环境下正常供电的电源芯片或其它的元件极其容易损坏。
本文所设计的超宽范围输入电压的转换器电源可在输入10~265VAC(或13-400VDC)的范围内正常工作(有较宽的输入电压,对外部电压有较大的容限,以保证外部供电电源出现较大波动时不会损坏系统,同时要有稳定的输出电压以及一定带负载能力,以保证整个系统能够稳定的工作),适用于全球电压范围的交流市电又可使用蓄电池(24V,36V,48V,96V,240V,360V....等等)供电。
同时也为产品任意采用110V电压或220电压,还是使用蓄电池电压均可直接使用提供了方便,能够适用于世界各国的供电电压,包括日本的100VAC、欧洲的230VAC甚至美国的120/208VAC, 以及蓄电池供电电压(24V,36V,48V,96V,240V,360V....等等)。
DC/DC变换器的设计
DC/DC变换器的设计DC/DC变换器是一种电力电子设备,用于将一个直流电源的电压转换为另一个直流电压。
它在电子设备中广泛应用,例如电气车辆、太阳能发电系统和电视机等。
DC/DC变换器的设计需要考虑以下几个方面:1.输入电压范围:根据应用需要,确定所需的输入电压范围。
这有助于选取合适的输入滤波电容和保护电路。
2.输出电压和电流:确定所需的输出电压和电流,并计算所需的功率。
这有助于确定合适的变压器、开关管和输出滤波电容。
3.开关频率:选择适当的开关频率,以平衡系统效率和元件尺寸。
通常,高开关频率可以减小元件的尺寸,但也会增加开关损耗。
4.控制策略:选择合适的控制策略,例如脉宽调制(PWM)或脉冲频率调制(PFM)。
PWM控制可实现快速响应和精确的输出电压稳定性,而PFM控制则可实现高效和高功率因素。
5.过压保护和过流保护:设计合适的过压保护和过流保护电路,以确保系统在故障情况下可靠工作。
6.效率和温度管理:优化设计,以提高系统的能量转换效率,并采取措施来控制元件的温度,以保证长期可靠性。
7.噪声和EMI控制:设计合适的滤波电路和接地布局,以降低系统的输出噪声和电磁干扰。
8.反馈控制:设计适当的反馈控制回路,以实现输出电压的稳定性和动态响应。
9.元件选型和参数计算:根据应用需求,选择适当的开关管、变压器、电感和电容,并计算它们的参数,以满足设计要求。
一般而言,DC/DC变换器的设计可以分为几个主要步骤:确定电路拓扑,选择工作模式,计算各个元件的参数,进行电路仿真和稳定性分析,制作原型并进行实验验证,最后进行性能优化和可靠性测试。
总的来说,DC/DC变换器的设计需要综合考虑输入输出电压、电流、开关频率、控制策略、保护电路、效率、温度管理、EMI控制和反馈控制等因素。
通过系统性的设计和优化,可以实现高效、稳定和可靠的DC/DC变换器。
DC-DC电源变换器的设计与制作
DC-DC 电源变换器的设计与制作综合实训技术报告姓名:学号:班级:指导老师:提交日期:目录第一章:概要 (3)第二章: 技术要求、技术参数 (4)第三章: 原理图设制 (6)第四章: 元器件的选择 (7)第五章: 封装、PCB板 (17)第六章:应用范围、发展趋势 (21)第七章:致谢 (22)第八章:参考文献 (23)第九章:附录 (25)第一章:概要DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于无轨电车,地铁列车,电动车的无级变速和控制,同时使上述控制获得加速平稳,快速响应的性能,并能同时收到节约电能的效果。
开关电源以其效率高、功率密度高而在电源领域中占主要地位,为了以更低的功耗获得更高的速度和更加的性能,半导体器件正在向1V 工作电压发展,这也对DC/DC变换器提出了更高的要求。
除了需要增添更多的功能外,还需要延长电池的寿命,并缩小系统体积。
目前仍以PWM型DC/DC产品为主流产品。
DC-DC变换器是通信设备中最常用的功能电路之一,其质量和效率直接影响通信设备的正常运行。
本设计采用功能完善的MC34063控制芯片,设计了DC-DC变换电路,完成从40V~3V的电压变换,为载波机提供了较为理想的直流电源。
具有电路简单,调试方便的优点。
本设计对一种新颖的DC/DC变换器的设计和实现进行了论述,设计实现了输出为±12V/0.1A和3.6V/0.5A的集成DC/DC变换器MC34063。
第二章:技术要求,技术参数DC-DC电源变更换器技术要求:12V/2A 开关切换开关电源28V/0.2A5V/0.8A线性电源5V/1A3.3V/0.5A2V·9V DC-DC电源变更换器技术参数:1.纹波2.Vpp3.电压调整率4.负载调整率5.效率设计技术指标要求:在输入电压为3~40V的条件下:本设计输入电压选择3V。
a.输出电压为±12V时,输出电流为100mA ;输出电压为3.6V时,输出电流为500mA。
dcdc电路设计
dcdc电路设计
dcdc电路设计,指的是直流/直流变换器的电路设计。
它是一种利用半导体器件来实现电压转换的电路,其中由放大器、滤波器、开关元件等组成的复杂电路结构,能够完成将输入输出之间的电压和电流,从而满足应用需要。
DC-DC变换器是一种经典的多用途电子设备,在工业、航空航天、医疗、安防等领域都有广泛的应用。
它们可以在不同的电压和功率范围内进行输入和输出转换,保证系统正常工作,满足设备的需求。
dcdc电路设计的主要目的是通过控制输入和输出电压来实现电压的转换,从而使系统能够正常运行,并达到理想的效果。
DC-DC变换器的电路设计主要包括以下几个方面:
1. 选择合适的电路元件,如开关元件、放大器、滤波器等;
2. 选择合适的变换器结构,如单端输入、双端输入、三端输入等;
3. 确定电路的额定电压、额定功率、频率等参数;
4. 分析和优化电路的纹波、噪声、谐振、负载特性等性能参数;
5. 选择合适的电路板材料,确定电路的布局及尺寸。
DC-DC变换器的电路设计是一个非常复杂的系统工程,需要综合考虑多个因素,才能实现理想的效果。
在设计电路时,必须根据应用场景选择合适的电路元件,同时明确额定参数,确保电路性能稳定可靠,满足系统应用需求。
《DCDC变换器》课件
提高电源系统的稳定性和 可靠性
降低电源系统的成本和维 护费用
提高电源系统的效率和性 能
提高电源系统的灵活性和 适应性
卫星电源系统:为 卫星提供稳定的电 源
航天器电源系统: 为航天器提供稳定 的电源
航空电子设备:为 航空电子设备提供 稳定的电源
导弹武器系统:为 导弹武器系统提供 稳定的电源
用于控制系统的电源供应 电机驱动和控制 传感器信号处理 工厂自动化设备的能源管理
数字化控制技术在DCDC变 换器中的应用
数字化控制技术的发展趋 势和挑战
软开关技术的概念:通过控制开关的导通和关断时间,实现开关的软切换,降低开关损耗。 软开关技术的分类:包括零电压开关(ZVS)、零电流开关(ZCS)和零电压零电流开关 (ZVZCS)。
软开关技术的应用:在DCDC变换器中,软开关技术可以提高变换器的效率和稳定性。
DCDC变换器广泛应用于各种 电子设备和电源系统中
它具有效率高、体积小、重 量轻等优点
实现直流电压的转换
为负载提供稳定的直流电压
添加标题
添加标题
用于分布式电源系统
添加标题
添加标题
提高电源利用效率和可靠性
按工作原理分类: 升压型、降压型 和升降压型
按输入输出电压 关系分类:隔离 式和非隔离式
按控制方式分类: 脉宽调制(PWM) 和脉冲频率调制 (PFM)
DCDC变换器的技 术发展
提高转换 效率:采 用新型拓 扑结构、 控制策略 等
降低损耗: 优化电路 设计、材 料选择等
提高稳定 性:采用 先进的控 制算法、 保护措施 等
提高可靠 性:采用 冗余设计、 故障诊断 等
提高集成 度:采用 模块化设 计、集成 电路等
高效率和超宽输入电压范围DC-DC变换器的设计方法
高效率和超宽输入电压范围DC-DC变换器的设计方法
一个隔离DC/DC 变换器的参数之一是该变换器能够正常工作的输入电压
范围。
对于那些应用于48V 输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。
但是有很多的
应用期望变换器能够处理更宽的输入电压范围。
比如,在一些系统应用中分布
式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。
表1:几种铁路标准中输入电压范围的规范要求。
图1:SynQor 两级DC/DC 变换器拓扑,其中非隔离调整级在非调整隔离级
之前。
图2:SynQor 半砖新产品系列IQ64,坚固耐用,输入电压范围高达8:1。
图2 显示了SynQor 新系列产品IQ64 系列8:1 超宽输入半砖DC/DC 变换器。
表2 显示了SynQor 新系列产品的不同输入电压范围。
从表中可以看出,除了
正常的2:1 输入范围,还有4:1 输入范围的产品,甚至8:1 输入范围的产品。
对于3.3V 输出电压的最大功率等级和典型效率也显示在此表中。
尽管随着输
入电压范围变宽,其功率等级和效率存在一些降低,但是并不非常明显。
这就
是两级拓扑方案对功率电路设计的结果。
除了能够满足不同输入电压范围的需求,SynQor 工业级DC/DC 变换器InQor 系列是全密封设计,非常坚固,能够应用于苛刻的环境,而这种环境时
常伴随着有如此挑战性技术要求的系统。
tips:感谢大家的阅读,本文由我司收
集整编。
仅供参阅!。
宽压高效DCDC设计
宽压高效DC/DC变换方案报告1 概述本报告根据《宽压高效DC/DC变换技术开发技术协议》,对宽压高效DC/DC 变换模块的技术要求、设计方案、工作原理等方面进行了相应阐述和分析。
此次研发涉及4种DC/DC模块,分别为15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种,也就是共设计四种类型的电源。
其主要难点:(1) 宽输入电压范围12.5~50V;(2)宽工作温度范围-45~85°;(3) 外形尺寸较小,这样对功率密度、效率和散热三方面提出挑战(4)低功耗,效率高。
15W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于85%,15V模块满载输出时效率不低于88%;全输入电压范围内,常温条件下,5W 输出时效率不低于75%,争取达到80%。
30W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于86%,15V模块满载输出时效率不低于90%;全输入电压范围内,常温条件下,15W 输出时效率不低于86%。
因此本项目提出的三个新课题:全输入范围高效;低温启动;高温散热;高功率密度。
2 技术要求2.1 模块类别涉及4种DC/DC模块,分15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种。
以下如非特指,均为对各模块的统一要求。
2.2 工作温度范围-45℃~+85℃,无需额外散热措施。
2.3 隔离要求输入地、输出地及二者与外壳间加500V,绝缘电阻不低于100MΩ。
输入、输出地间不加电容器。
2.4 结构各模块均采取封闭式结构,金属外壳封装。
外形尺寸(暂定)及点定义分别见图1.1和图1.2,控制端低电平禁止。
图 1.1 15W模块外形尺寸及点定义图 1.2 30W模块外形尺寸及点定义2.5 输入2.5.1 输入电压范围输入电压范围12.5V~50V,标称28V。
2.5.2 最大输入电流阻性负载满载启动时,最大输入电流不超过稳态输入电流的2倍。
高电压宽范围输入DC-DC变换器的研究
高电压宽范围输入DC-DC变换器的研究摘要:从二次电源角度来说,在诸多应用场所中,都需要使用高电压宽范围输入DC-DC变换器,特别是近几年来,随着我国城市发展脚步的较快,电动汽车数量不断增多,并且成为了人们日常出行的主要工具。
与此同时,国防军队等特种充电车辆,车辆充电过程中采用的DC-DC电路主要以高压输入低压输出为主。
基于此,本文就结合实际应用情况,重点对高电压宽范围输入DC-DC变换器进行全面探究,具体如下。
关键词:高电压宽输入;DC-DC变换器;设计现阶段,直流变换器一般为恒压或者恒流型为主,但是在部分场合中,DC/DC 转换装置一般需要在适应宽范畴内输入电压中进行,这也预示着该种类型的变压器具备较强的宽电压转换功能。
结合调查得知,宽范畴转换器中,具有适用于高压宽范畴输入交错串并联正激变换器,即便其创新点比较多,但是在已有的拓扑结构电路上,结构分布比较繁琐,且成本投放高,市场应用普及度不高,实用性不强。
所以,相关部门应加强对高电压宽范围输入DC-DC变换器探究,特别是在输入高压过程中可以获取低输出电压,从而获取理想市场效益。
一、高电压宽范围输入DC-DC变换器背景介绍结合相关定义得知,在高频变压器变比为1:1的情况下,输出和输入增益洗漱设定为Av,能够把隔离型DC-DC变换器划分为三种类型,第一种是在Av小于1的情况下,为隔离型Buck变换器;第二种是在Av大于1的情况下,给隔离型Boost变换器;第三种是Av在大于1或者小于1的情况下,为隔离型Buck-Boost变换器[1]。
其中,隔离型Buck变换器作为最为典型的移向全桥拓扑结构变换器;隔离型Boost变换器受到自身功率因素影响,在功率因数校正器中实现了广泛应用;隔离型Buck-Boost变换器中包含了LLC谐振变换器,其中反激变换器作为典型变换器,得到了广泛应用。
正激变换器拓扑结构见图1:二、高电压宽范围输入DC-DC变换器设计思路1.功率管选择在变换器设计过程中,主要工作流程在于主开关管功率选择,IAEA包含了 MOSFET 电压应力 V(BR)DSS、工作结温 Tj、电流等级 IDSS等诸多参数的选择。
DCDC变换器设计总结
DCDC变换器设计总结DC-DC变换器是一种将直流电压转换为不同直流电压的电力电子装置。
它具有高效率、小体积、可靠性好等优点,在现代电子产品中得到了广泛应用。
本文主要总结了DC-DC变换器的设计过程,并对其中的几个关键要素进行了详细介绍。
首先,DC-DC变换器的设计过程可以分为以下几个步骤:1)确定输入和输出电压要求;2)选择合适的拓扑结构;3)计算元器件的参数;4)进行开关器件和传感器的选取;5)进行稳定性和效率的分析;6)进行仿真验证;7)进行电路板设计和布局;8)制造和测试。
在整个设计过程中,需要充分考虑电路的稳定性、效率、线性度和响应速度等方面的要求。
在选择拓扑结构时,可以根据输入输出电压比例和负载特性来选择。
常见的拓扑结构有降压、升压、降升压、反升压和反降压等。
每种拓扑结构具有不同的工作原理和适用范围。
例如,降压拓扑结构适用于输入电压更高、输出电压更低的情况,而升压拓扑结构则适用于输入电压更低、输出电压更高的情况。
元器件的选择和参数计算是设计过程中的关键环节。
主要的元器件包括开关器件、电感和电容。
开关器件的选择主要考虑其导通和断开的速度、导通和断开时的损耗和热耗散等因素。
电感和电容的选择主要考虑其电流和电压的承受能力、损耗和尺寸等因素。
对于开关频率较高的应用,还需要考虑元器件的电磁兼容性和热耗散问题。
稳定性和效率的分析是设计过程中需要重点考虑的问题。
稳定性主要指的是系统的输出电压和电流在负载变化或输入电压扰动下的稳定性。
效率是指输入和输出之间的能量转换效率。
在进行稳定性和效率分析时,需要考虑电路的反馈控制系统、输出滤波电感和电容的设计以及输入电压和负载的变化。
通过合理选择元器件和参数,可以提高DC-DC变换器的稳定性和效率。
最后,进行仿真验证、电路板设计和制造测试是将设计转化为实际产品的最后几个步骤。
通过仿真验证,可以验证和优化设计方案,减少实际制造过程中的错误和成本。
电路板设计和布局需要考虑信号传输的可靠性和防止电磁干扰。
一种高效率AC-DC变换器的实现方案
一种高效率AC/DC变换器的实现方案
提要:本文提出一种高效率AC-DC 变换器的实现思路,对实现高效率的各环节的效率分析,提出实现的方案,最后,给出实验数据。
输入电压为85V 输出24V 的电源效率约为93%。
在一般开关电源的设计方案中,开关损耗和器件的导通损耗(特别是整流器件的导通损耗)是困扰开关电源设计者的一大难题。
当效率达到一定程度后,再进一步提高效率深感困难,甚至无从下手。
尽管采用了有源箝位、移相零电压开关、同步整流器等先进的,使电源效率得到一些提高,但是所付出的代价也是很大的。
能在用常规的电路拓扑基础上加以改进,得到所希望的高效率,是当今电源设计的热点和最经济的方案。
为实现这一目标通常的设计手段很难达到的,欲实现并超过这一目标必须明确各部分的损耗,并设法减小甚至消除其中的某些损耗。
1 损耗及效率分析
开关电源的损耗基本上有以下几个构成:输入电路损耗、主开关的导通损耗和开关损耗、控制电路损耗、变压器损耗、输出整流器损耗。
1.1 输入电路损耗
主要有电源滤波器的寄生电阻上的损耗,通常在输入功率的百分之零点几,实际上几乎没有温升,故可以忽略不计;限制浪涌电流的负温度系数热敏电阻上的损耗,通常不到输入功率的1%;输入整流器损耗,约输入功率的1%。
整个输入电路损耗约输入功率的1%-1.5%。
以上损耗一般无法进一步减小。
1.2 主开关上的损耗
主开关上的损耗可分为导通损耗和开关损耗,交流输入电压范围在
85V~264V 时,以85V 的开关管导通损耗最高,在264V 时开关损耗最高。
在。
宽压高效DC-DC模块电源设计
宽压高效DC-DC模块电源设计宽压高效DC/DC模块电源设计随着电子设备的不断发展,对于电源模块的要求也越来越高。
宽压高效DC/DC模块电源设计是一种能够在不同输入和输出电压条件下保持高效率工作的设计方案。
本文将介绍宽压高效DC/DC 模块电源设计的原理和应用。
宽压高效DC/DC模块电源设计的核心是采用了先进的开关电源技术和高效率的功率转换器。
通过将输入电压转换为所需的输出电压,可以实现更好的能量利用和功率转换效率。
同时,宽压设计还允许电源模块在输入电压范围内自适应调整,以适应不同的工作环境和负载条件。
在电源模块设计中,选择合适的功率转换器对于实现高效率至关重要。
一般来说,开关电源技术具有较高的转换效率和较低的功耗,因此被广泛应用于宽压高效DC/DC模块电源设计中。
此外,高效率的功率转换器还能减少能量损耗,降低热量产生,提高电源模块的可靠性和寿命。
在实际应用中,宽压高效DC/DC模块电源设计具有广泛的应用前景。
首先,它可以应用于电子设备的供电系统中,如计算机、通信设备、工业控制系统等。
通过提供稳定可靠的电源输出,可以保证设备的正常运行和性能。
其次,宽压高效DC/DC模块电源设计还可以应用于新能源领域,如太阳能、风能等。
通过将不稳定的新能源转换为稳定的电源输出,可以实现对电力系统的有效利用。
总之,宽压高效DC/DC模块电源设计是一种能够满足不同输入和输出电压条件下高效工作的设计方案。
采用先进的开关电源技术和高效率的功率转换器,可以实现能量利用和功率转换的最大化。
宽压高效DC/DC模块电源设计在电子设备和新能源领域具有广泛的应用前景,将为未来的电源技术发展带来更多的可能性。
一种四开关buck-boost变换器的控制电路及控制方法-概述说明以及解释
一种四开关buck-boost变换器的控制电路及控制方法-概述说明以及解释1.引言1.1 概述概述:四开关buck-boost变换器是一种常用的电力电子变换器,具有宽电压输入范围和高效率的特点。
本文旨在介绍一种针对四开关buck-boost 变换器的控制电路及控制方法,以优化其性能和稳定性。
通过对该变换器的介绍、控制电路设计和控制方法分析,我们将展示该变换器在电能转换和控制方面的重要性和潜力。
通过本文的阐述,读者将对四开关buck-boost变换器有更深入的了解,并对其在实际应用中具有的优势有更清晰的认识。
1.2 文章结构文章结构部分是对整篇文章的内容进行简要介绍,提供读者一个整体的框架和概念。
在这篇文章中,我们首先介绍了引言部分,其中包括概述、文章结构和目的。
接着我们将详细讲解正文部分,包括四开关buck-boost 变换器的介绍、控制电路设计和控制方法分析。
最后我们将总结这篇文章,展望其创新性,探讨其应用前景。
整篇文章将从理论到实践,全面介绍一种四开关buck-boost变换器的控制电路及控制方法。
1.3 目的:本文旨在研究一种四开关buck-boost变换器的控制电路及控制方法,通过对该变换器的性能进行分析和优化,提高其效率和稳定性。
通过对控制电路的设计和控制方法的分析,我们将深入探讨该变换器在不同工况下的工作原理,为其在实际应用中提供更好的指导和参考。
同时,通过这项研究,我们也希望能够为电力电子领域的技术发展和应用提供一定的借鉴和启示,推动相关技术的进步和发展。
最终,我们的目的是通过这篇文章对四开关buck-boost变换器的控制进行深入研究,为相关领域的研究人员和工程师提供有益的参考和启示,推动电力电子技术的不断创新和进步。
2.正文2.1 四开关buck-boost变换器介绍四开关buck-boost变换器是一种高效率、高性能的DC-DC变换器,可以实现输入电压向上或向下转换为稳定的输出电压。
DCDC变换器的设计方案
DCDC变换器的设计方案DC-DC变换器是一种将直流电压转换成不同电压级别的直流电压的电子装置。
它是许多电子设备中不可或缺的一部分,其设计方案非常重要。
下面将介绍一种基本的DC-DC变换器设计方案。
首先,设计者需要明确变换器的目标和需求。
例如,确定输入电压范围、输出电压范围、输出电流要求和效率要求等。
这些指标将帮助确定所需的拓扑结构和器件选择。
接下来是选择合适的拓扑结构。
常见的DC-DC变换器拓扑包括降压和升压拓扑,如降压型Buck变换器、升压型Boost变换器和升降压型Buck-Boost变换器等。
根据具体的需求选择合适的拓扑结构。
然后,选择合适的主控元件。
主控元件通常是功率MOSFET或功率BJT晶体管。
它需要能够处理所需的输入电压和输出电流,并能够实现所需的开关频率。
同时,选择合适的主控元件还需要考虑其开关损耗和导通损耗,以提高效率。
在接下来的设计过程中,需要选择合适的输出滤波元件,以滤除开关电压的高频噪声并提供稳定的输出电压。
常见的输出滤波元件包括电感和滤波电容。
合理选择滤波元件的参数可以减小输出电压的纹波和提高稳定性。
此外,设计中还需要考虑保护电路。
保护电路可以防止过电流、过温和短路等故障情况的发生。
这些保护机制通常包括过电流保护、过温保护和短路保护。
最后,设计者需要进行仿真和测试。
使用专业的电子电路仿真软件可以模拟电路性能,包括输入输出电压、电流波形和效率等。
在仿真过程中,设计者可以优化电路参数以满足要求。
完成仿真后,需要进行测试以验证设计的正确性和可靠性。
总之,DC-DC变换器的设计方案需要明确目标和需求,选择合适的拓扑结构和主控元件,设计适当的输出滤波元件和保护电路,并经过仿真和测试验证其性能。
合理的设计方案可以实现高效、稳定和可靠的DC-DC变换器。
DCDC变换器的设计与制作
第2讲 DC/DC变换电路
一、基本概念
直流变换—将直流电能(DC)转换成另一固 定电压或电压可调的直流电能。 基本的直流变换电路:降压斩波电路、升压 斩波电路、升降压斩波电路、库克变换电路 重点:电路结构、工作原理及主要数量关系
(2)开关管T断开时, R两端电压 uo=0
基本的直流变换电路
iS
T
io
uo R
US
开关管T断开等效电路
开关管IGBT断开控制: UG=0
1.直流变换的基本原理及PWM概念
iS
T
io
uo R
US
基本的直流变换电路
开关管IGBT控制电压
R两端平均电压:
ton Uo U S Ts
控制一周期中导通时间比 例可控制输出平均电压
③混合脉冲宽度调制
u
TS
ton1 t
脉冲周期TS与宽度ton 均改变。
u
ton2 t TS2
广义的脉冲宽度 调制技术包含上 述三种控制方式
三、DC-DC变换技术的设计与应用
1.直流变换的基本原理及PWM概念
iS
T
io
uo R
US
开关管仅两种工作状态: 导通与断开
(1)开关管T导通时, R两端电压 uo=US 开关管IGBT导通条件: UG>0
基本的直流变换电路
iS
T
io
uo R
US
开关管T导通等效电路
宽压高效DCDC设计
宽压高效DC/DC变换方案报告1 概述本报告根据《宽压高效DC/DC变换技术开发技术协议》,对宽压高效DC/DC变换模块的技术要求、设计方案、工作原理等方面进行了相应阐述和分析。
此次研发涉及4种DC/DC模块,分别为15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种,也就是共设计四种类型的电源。
其主要难点:(1) 宽输入电压范围12.5~50V;(2)宽工作温度范围-45~85°;(3) 外形尺寸较小,这样对功率密度、效率和散热三方面提出挑战(4)低功耗,效率高。
15W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于85%,15V模块满载输出时效率不低于88%;全输入电压范围内,常温条件下,5W输出时效率不低于75%,争取达到80%。
30W模块:全输入电压范围内,常温条件下,5V模块满载输出时效率不低于86%,15V模块满载输出时效率不低于90%;全输入电压范围内,常温条件下,15W输出时效率不低于86%。
因此本项目提出的三个新课题:全输入范围高效;低温启动;高温散热;高功率密度。
2 技术要求2.1 模块类别涉及4种DC/DC模块,分15W和30W两个额定输出功率等级,每个功率等级包括单路5V输出、单路15V输出模块各1种。
以下如非特指,均为对各模块的统一要求。
2.2 工作温度范围-45℃~+85℃,无需额外散热措施。
2.3 隔离要求输入地、输出地及二者与外壳间加500V,绝缘电阻不低于100MΩ。
输入、输出地间不加电容器。
2.4 结构各模块均采取封闭式结构,金属外壳封装。
外形尺寸(暂定)及点定义分别见图1.1和图1.2,控制端低电平禁止。
图 1.1 15W模块外形尺寸及点定义图 1.2 30W模块外形尺寸及点定义2.5 输入2.5.1 输入电压范围输入电压范围12.5V~50V,标称28V。
2.5.2 最大输入电流阻性负载满载启动时,最大输入电流不超过稳态输入电流的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效率和超宽输入电压范围DC-DC变换器的设计方法
一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。
对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。
但是有很多的应用期望变换器能够处理更宽的输入电压范围。
比如,在一些系统应用中分布式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。
作为一个例子,表1显示在不同铁路系统标准中分布式电压的稳态和瞬态范围。
军
一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。
对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压范围通常是36V~75V,或输入电压的最高值和最低值之比为2:1。
但是有很多的应用期望变换器能够处理更宽的输入电压范围。
比如,在一些系统应用中分布式输入电压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。
作为一个例子,表1显示在不同铁路系统标准中分布式电压的稳态和瞬态范围。
军用车辆设计规范也需要类似的宽输入电压范围,这样可以满足其分布式电压的变化。
使用宽输入电压范围DC/DC变换器的另外一个原因是建立一个可以被用于不同直流系统的“通用”产品,对于标称值为12V, 24V和48V的电池系统,一般需要提供三个不同的输入电压版本,作为替代,一个能够在9V到75V工作的变换器提供了单一解决方案。
这种单一方案可以节省生产成本和降低库存。
尽管人们期望有一款宽输入变换器,但存在一个主要问题:在传统产品中,模块工作的输入电压范围越宽,变换器的性能越差。
一般来讲,在给定的尺寸,比如1/4砖,变换器的效率和能够处理的功率会随输入电压范围变宽而降低。
这是一种自然结果,因为在设计最高输入电压的同时,还必须处理在输入电压最低时所带来的非常大的输入电流。
对于2:1输入范围的变化器,其最大输入电压和最大输入电流的积是需要处理功率的两倍,这种结果作为一个合理的折中是可以接受的。
但是,当一个变换器设计用来处理8:1输入范围时,其最大输入电压和最大输入电流的积是需要处理功率的8倍,这种结果是非常极端的。
对与变换器隔离变压器相关的功率电路来讲是非常严重的。
由于上述的限制,在商业上没有很多DC/DC变换器能够处理很宽的输入电压范围,但少数“超宽”4:1输入的变换器在给定的物理尺寸下典型处理不到1/2的功率,这是与只有2:1输入电压输入范围的变换器在相同尺寸下所处理的功率相比。
另外,宽输入变换器的转换效率一般比2:1输入变换器低10%-25%。
在宽输入范围变换器中减少这种损失的一种方法是将变换器的调整功能从其隔离功能中分离出来,如图1所示。
在此图中,变换器的第一级是非隔离降压变换器,同时通过改变占空比进行电压调整功能。
变换器的第二级提供没有任何电压调整的电气隔离功能,而且一般还可以根据变压器的变比进行进一步的降压。
这就是SynQor作为高效DC/DC变换器的领先者如何设计其所有的产品。
前。
这种两级设计的优势是只有第一级看到了输入电压的宽范围。
当宽输入电压带来的损失必须要这个第一级承担时,但这种损失并不严重,因为第一级不需要隔离变压器。
对于含有变压器的隔离级,则无需面对宽输入电压范围。
在这种两级设计中,其输入电压作为两级方案中的中间总线电压一直是不变的。
这就允许隔离级被优化为单一工作条件,而且使得隔离级非常容易实现基于同步整流的设计,这种同步整流设计可以极大地降低功耗。
在隔离级效率地提升弥补在调整级发生的任何附加损失都大有帮助。
SynQor半砖新产品系列IQ64,坚固耐用,输入电压范围高达8:1。
图2显示了SynQor新系列产品IQ64系列8:1超宽输入半砖DC/DC变换器。
表2显示了SynQor新系列产品的不同输入电压范围。
从表中可以看出,除了正常的2:1 输入范围,还有4:1 输入范围的产品,甚至8:1输入范围的产品。
对于3.3V输出电压的最大功率等级和典型效率也显示在此表中。
尽管随着输入电压范围变宽,其功率等级和效率存在一些降低,但是并不非常明显。
这就是两级拓扑方案对功率电路设计的结果。
除了能够满足不同输入电压范围的需求,SynQor工业级DC/DC变换器InQor系列是全密封设计,非常坚固,能够应用于苛刻的环境,而这种环境时常伴随着有如此挑战性技术要求的系统。