套管换热器传热实验实验报告数据处理
套管换热器的总传热系数的测定
2
综合化学实验
序 号
冷水体积流量 转子刻度 流量
(L/min)
安徽师范大学 2007 年度校级精品课程
冷水温度
t 进/℃
t 出/℃
热水温度
T 进/℃
T 出/℃
(2)并流操作
换热器 内管直径φ10×1.5×1200mm,换热管有效长度 1000mm
五、实验操作步骤 1.先向恒温槽加入蒸馏水,并控制一定的水位(大约离槽盖 3~4 厘米即可); 2.缓慢开启自来水阀,使转子流量计内充满水,并控制一定的上水量; 3.将恒温槽的温度控制在夏天约 80~82℃左右(以保持热水进入热交换器一
端保持在 80℃左右,具体视散热设备而定); 4.打开电源开关,接通电源,使电加热器及补充加热器加热同时进行,开动搅
序 号
冷水体积流量 转子刻度 流量
(L/min)
冷水温度
t 进/℃
t 出/℃
热水温度
T 进/℃
T 出/℃
2.实验数据整理
(1)逆流操作
有效换热面积_____________
序 冷水质量 t 出-t 进
φ
T 进-t 出 T 出-t 进 △t 均
K
号 流量(kg/s) (℃) (10-3W) (℃)
(℃) (℃) (W·m-2·℃-1
八、实验报告 1.计算不同实验条件下的传热系数 K 值. 2.分析不同实验条件下 K 值不同的原因, 3.通过实验数据分析,提出如何强化传热过程的建议.
3
(2)并流操作
有效换热面积_________T 出-t 进 △t 均
K
号 流量(kg/s) (℃) (10-3W) (℃)
实验五 套管换热器传热实验
实验五 套管换热器传热实验实验学时: 4 实验类型:综合实验要求:必修 一、实验目的通过本实验的学习,使学生了解套管换热器的结构和操作方法,比较简单内管与强化内管的差异。
二、实验内容1、测定空气与水蒸汽经套管换热器间壁传热时的总传热系数。
2、测定空气在圆形光滑管中作湍流流动时的对流传热准数关联式。
3、测定空气在插入螺旋线圈的强化管中作湍流流动时的对流传热准数关联式。
4、通过对本换热器的实验研究,掌握对流传热系数i α的测定方法。
三、实验原理、方法和手段两流体间壁传热时的传热速率方程为 m t KA Q ∆= (1)式中,传热速率Q 可由管内、外任一侧流体热焓值的变化来计算,空气流量由孔板与压力传感器及数字显示仪表组成的空气流量计来测定。
流量大小按下式计算:10012t t PA C V ρ∆⨯⨯⨯=其中:0C —孔板流量计孔流系数,0.65;0A —孔的面积,2m ;(可由孔径计算,孔径m d 0165.00=) P ∆—孔板两端压差,kPa ;1t ρ—空气入口温度(即流量计处温度)下的密度,3/m kg 。
实验条件下的空气流量V (h m /3)需按下式计算:11273273t t V V t ++⨯=其中:t —换热管内平均温度,℃;1t —传热内管空气进口(即流量计处)温度,℃。
测量空气进出套管换热器的温度t ( ℃ )均由铂电阻温度计测量,可由数字显示仪表直接读出。
管外壁面平均温度W t ( ℃ )由数字温度计测出,热电偶为铜─康铜。
换热器传热面积由实验装置确定,可由(1)式计算总传热系数。
流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:),,(d l P R f Nu r e =对于空气,在实验范围内,r P 准数基本上为一常数;当管长与管径的比值大于50 时,其值对Nu 准数的影响很小,故Nu 准数仅为e R 准数的函数,因此上述函数关系一般可以处理成:me R B Nu ⋅=式中,B 和 m 为待定常数。
传热综合实验实验报告
传热综合实验一、实验目的:1、 掌握传热系数K 、传热膜系数α1的测定方法,加深对其概念和影响因素的理解;2、 掌握用最小二乘法确定关联式me AR Nu =中常熟A 、指数m 的值;3、 通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施;4、 掌握孔板流量计的原理;5、 掌握测温热电偶的使用方法。
二、实验原理(一)无量纲准则数对流传热准数关联式是无量纲准则数之间的方程,主要是有关Nu 、Re 、Pr 等数据组的关系。
雷诺准数μρdu =Re努赛尔特准数λαdNu =普兰特准数λμP C =Pr式中:d ——换热器内管内劲,m ;α——空气传热膜系数,W ·m -2·℃; ρ——空气密度,kg ·m -3;λ——空气的传热系数,W ·m -1·℃;p C ——空气定压比热,J ·kg -1·℃;μ——空气的动力粘度,Pa ·S 。
实验中用改变空气的流量来改变准数Re 之值。
根据定性温度计算对应的Pr 准数值。
同时由牛顿冷却定律,求出不同流速下的传热膜系数α值,进而算得Nu 准数值。
(二)对流传热准数关联式对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成:nm C Nu Pr Re =系数C 、指数m 和n 则需由实验加以确定。
通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温,根据所测的数据,经过差物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式me AR Nu =中常数A 、m 的值。
(三)线性回归用图解法对多变量方程进行关联时,要对不同变量Re 和vPr 分别回归。
为了便于掌握这类方程的关联方法,可去n=0.4。
这样就简化成单变量方程。
两边取对数,得到直线方程Re lg lg Prlg4.0m C Nu+= 在双对数坐标系中作图,找出直线斜率,即为方程的指数m 。
套管换热器实验报告
套管换热器实验报告
实验目的:
本次实验的主要目的是掌握套管换热器的工作原理和性能,以
及在实际应用中的优点和不足之处。
实验原理:
套管换热器是一种常见的换热器类型,其由内、外两套管组成。
热介质在内管中流动,被换热的物质则在外管中流动,二者通过
壳体实现换热。
套管换热器的工作原理基于热传导原理,即通过物体之间的密
接接触,使热量从温度高的一侧,传递到温度低的一侧,以达到
均衡热量分布的目的。
实验步骤:
1、准备工作:将试验装置放置在实验平台上,并接好电源、
水管等。
2、调整参数:根据实验要求,调整水流速度、水温等参数,
以便进行实验。
3、进行实验:将温度计置于套管换热器内部和外部,并分别
读取其温度变化规律,以便对换热器的工作性能进行分析和评估。
4、记录数据:记录实验过程中的各项参数和数据,以及不同
情况下的温度变化规律等,以便进行后续的分析和比较。
实验结果:
通过实验,我们得出了以下结果:在控制水流速度和水温不变
情况下,换热器内部和外部的温度变化规律比较稳定;随着水流
速度的增大,温度变化幅度增加,而水温的影响对其影响较小。
实验结论:
通过本次实验,我们了解了套管换热器的工作原理和性能特点,进一步揭示了该换热器的优点和不足之处,为工程实践提供了参
考和借鉴。
套管式换热器的操作及对流给热系数测定的实验结论
套管式换热器的操作及对流给热系数测定的实验结论套管式换热器是一种常见的换热设备,主要用于液体和气体之间的热量传递。
下面是套管式换热器的操作步骤以及对流给热系数测定的实验结论简述:
操作步骤:
1. 准备工作:将套管式换热器安装在实验台上,并确保连接管道的密封性。
2. 确定试验条件:根据实验需要,选择流体的类型和流量,并调整进出口温度。
3. 记录数据:使用温度计或传感器在进出口处测量流体的温度,记录每个时间点的数据。
4. 测量热流量:使用热流量计仪器或测量设备来测量热量的传递情况。
5. 计算对流给热系数:根据实验数据和相关公式,计算对流给热系数。
对流给热系数测定的实验结论:
根据所测定的实验数据和计算,可以得出套管式换热器的对流给热系数。
这个系数表示了热量通过流体界面的传递效果,数值越大表示传热效果越好。
通过实验结论可以评估套管式换热器的传热性能,优化和改进设计,并比较不同操作条件下的传热效果。
需要注意的是,实验结论的具体内容和意义会根据实验设计和数据分析的方法有所差异。
对于套管式换热器的具体操作和测定对流给
热系数的实验结论,可以参考相关的实验手册、文献或专业资料。
此外,在进行实验前,请确保遵循相关的安全操作规程,并在专业人员的指导下进行操作。
化工原理实验报告:传热实验
化工原理实验报告:传热实验化工原理实验报告实验名称:传热膜系数测定实验实验时间:20__年11月姓名:班级:学号:同组人:正文一.报告摘要:套管换热器为本实验的研究对象,而以冷空气及热蒸汽为介质,冷空气走黄铜管内,热蒸汽走环隙。
研究热蒸汽与冷空气之间的传热过程。
后测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu,做出lg(Nu/Pr0.4)~lgRe的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A和m值。
二.实验目的及任务:1、掌握传热膜系数α及传热系数K的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A和指数m、n的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三.实验原理:研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:对于强制湍流有:用图解法对多变量方程进行关联,要对不同变量Re和Pr分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
在两边取对数,得到直线方程为在双对数坐标中作图,求出直线斜率,即为方程的指数m。
在直线上任取一点函数值代入方程中,则可得到系数A,即其中实验中改变空气的流量,以改变Re值。
根据定性温度计算对应的Pr值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu值。
牛顿冷却定律为其中α——传热膜系数,W/(m2?℃);Q——传热量,W;A——总传热面积,m2;Δtm——管壁温度与管内流体温度的对数平均温差,℃。
传热量可由下式求得其中W——质量流量,kg/h;cp——冷空气的比定压热容,J/(kg?℃);t1,t2——冷空气的进,出口温度,℃;ρ——定性温度下流体密度,kg/m3;V——冷空气体积流量,m3/h。
空气的体积流量由孔板流量计测得,其流量V与孔板流量计压降Δp的关系为式中,Δp——孔板流量计压降,kPa;V——空气流量,m3/h。
化工原理实验传热实验报告
传热膜系数测定实验(第四组)一、实验目的1、了解套管换热器的结构和壁温的测量方法2、了解影响给热系数的因素和强化传热的途径3、体会计算机采集与控制软件对提高实验效率的作用4、学会给热系数的实验测定和数据处理方法 二、实验内容1、测定空气在圆管内作强制湍流时的给热系数α12、测定加入静态混合器后空气的强制湍流给热系数α1’3、回归α1和α1’联式4.0Pr Re ⋅⋅=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。
由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。
1)寻找影响因素物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]]3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验Nu =ARe a Pr b Gr c强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程:圆管传热牛顿冷却定律:圆筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ空气流量由孔板流量测量:54.02.26P q v ∆⨯= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]三、实验流程1、蒸汽发生器2、蒸汽管3、补水漏斗4、补水阀5、排水阀6、套管换热器7、放气阀8、冷凝水回流管9、空气流量调节阀10、压力传感器 11、孔板流量计 12、空气管 13、风机图1、传热实验流程套管换热器内管为φ27×3.5mm黄铜管,长1.25m,走冷空气,外管为耐高温玻璃管,壳程走100℃的热蒸汽。
双套管传热实验报告
双套管传热实验报告1. 引言传热是热力学中非常重要的一个研究方向,它涉及了热能的传递和转化。
而在工程应用中,双套管传热是一种常见的传热方式。
本实验旨在通过实验方法验证双套管传热的基本原理,并观察其传热效果。
2. 实验装置与原理2.1 实验装置本次实验我们采用了一个双套管传热装置,该装置包括两个套管,内套管和外套管之间有一定的换热介质。
同时,我们还使用了一个温度计和一个加热器对实验进行控制和监测。
2.2 实验原理双套管传热原理是通过两个套管之间的空隙传递热量。
内套管中流动的热介质通过与外套管之间的空气进行热交换,将热量传递给外套管中的冷介质。
实验中通过改变内外套管之间的介质流量和温度差,可以观察到不同条件下的传热效果。
3. 实验步骤与结果3.1 实验准备将实验装置进行组装,并确保连接紧密,无泄漏现象。
检查温度计和加热器的工作状态,确保其正常工作。
3.2 实验步骤1. 首先将冷介质注入外套管中,并将温度计插入外套管内,测量外套管中的冷介质温度。
2. 将热介质通过内套管注入实验装置中,并调节加热器的功率,控制热介质的温度。
3. 同时观察并记录内套管和外套管中温度的变化,以及介质流量的变化。
4. 根据实验数据计算内外套管之间传热的效果。
3.3 实验结果根据我们的实验数据记录,我们可以得到不同实验条件下的传热效果。
例如,当内套管温度为80C,外套管温度为20C时,内外套管之间的温度差为60C。
此时,我们可以观察到外套管中的冷介质温度逐渐上升,且上升速度越来越慢,直到其达到一个平衡状态。
4. 结果分析与讨论通过实验数据的记录与分析,我们可以得出以下结论:1. 内外套管之间温度差越大,传热效果越明显。
这是因为温度差是促使热量传递的驱动力,当温度差较大时,热量更容易从内套管传递到外套管。
2. 介质流量对传热效果也有一定的影响。
当介质流量较大时,传热速度较快;而当介质流量较小时,传热速度较慢。
3. 实验中我们还发现,双套管传热效果并不是完全理想的。
成都理工化工原理实验四 套管换热器液-液热交换系数及膜系数测定.
本科生实验报告实验课程学院名称专业名称学生姓名学生学号指导教师实验地点实验成绩二〇年月二〇年月填写说明1、适用于本科生所有的实验报告(印制实验报告册除外;2、专业填写为专业全称,有专业方向的用小括号标明;3、格式要求:1用A4纸双面打印(封面双面打印或在A4大小纸上用蓝黑色水笔书写。
2打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm。
字符间距为默认值(缩放100%,间距:标准;页码用小五号字底端居中。
3具体要求:题目(二号黑体居中;摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体;关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体;正文部分采用三级标题;第1章××(小二号黑体居中,段前0.5行1.1×××××小三号黑体×××××(段前、段后0.5行1.1.1小四号黑体(段前、段后0.5行参考文献(黑体小二号居中,段前0.5行,参考文献用五号宋体,参照《参考文献著录规则(GB/T7714-2005》。
实验四套管换热器液-液热交换系数及膜系数测定一、实验目的1.加深对传热过程基本原理的理解;2.了解传热过程的实验研究方法。
二、实验原理冷热流体通过固体壁所进行的热交换过程,先由热流体把热量传递给固体壁面,然后由固体壁面的一侧传向另一侧,最后再由壁面把热量传给冷热流体。
热交换过程即给热---导热---给热三个串联过程组成。
若热流体在套管换热器的管内流过,而冷流体在管外流过,设备两端测试点上的温度如图所示。
则在单位时间内热流体向冷流体传递的热量,可由热流体的热量衡算方程表示:(21T T C m Q P s -=(1就整个热交换而言,有传热速率基本方程经过数学处理,得计算式mT KA Q ∆=(2(('222'111T T T T T T -=∆-=∆(3平均温度差可按下式计算:2, 2 , 22121212121T T ΔT T T T T ΔT T m m ∆+∆=<∆∆∆∆∆-∆=>∆∆(4由(1和(2联立,可得传热总系数计算式:m P s T A T T C m K ∆-=(21(5就固体壁面两侧的给热过程来说,给热速率基本方程为:(('''21T T A Q T T A Q W W W W -=-=αα(6根据热交换两端的边界条件,经数学推导,可得管内给热过程的速率计算式:'1W W T A Q ∆=α(7热流体与管内面之间的平均温度差可按下式计算:2(( , 2/(ln((( , 22211'221122112211'2211W W m W W W W W W m W W T T T T ΔT T T T T T T T T T T T T ΔT T T T T -+-=<-------=>--(8由(1和(7联立可得管内传热膜系数的计算式:'1211m W P s T A T T C m ∆-=α(9同理可得到管外给热过程的传热膜系数的公式。
传热实验数据处理完整版
空气平均流速utm(m/s)
空气在平均温度时的物性
ρm(kg/m3)
μm*10^5(Pa·s)
λm*10^2(W/m·℃)
Cp(kJ/kg·℃)
空气进出口温度之差t2-t1(℃)
26
壁面和空气的温差tw-tm(℃)
空气得到的热量Q(kW)
空气侧对流传热系数αi(W/m2.℃)
Re
Nu
Pr
Nu/(Pr^
Nu0
Nu/Nu0
图三
图四
图五
空气平均流量Vtm(m3/h)
空气平均流速utm(m/s)
空气在平均温度时的物性
ρm(kg/m3)
μm*10^5(Pa·s)
λm*10^2(W/m·℃)
Cp(kJ/kg·℃)
空气进出口温度之差t2-t1(℃)
36
壁面和空气的温差tw-tm(℃)
空气得到的热量Q(kW)
空气侧对流传热系数αi(W/m2.℃)
Re
Nu
Pr
Nu/(Pr^
Nu/(Pr^
图一
图二
表二
强化套管换热器数据
传热管内径:18mm传热管有效长度:1m冷流体:空气 热流体:水蒸气
序号
1
2
3
4
5
6
空气流量读数P(kPa)
空气入口温度t1(℃)
空气出口温度t2(℃)
壁温tw(℃)
空气在t1时的密度ρt1(kg/m3)
空气平均温度tm(℃)
空气在入口处流量Vt1(m3/h)
传热实验数据处理
五、实验数据记录及处理
表一
简单套管换热器数据
传热管内径:18mm传热管有效长度:1m冷流体:空气热流体:水蒸气
实验五套管换热器传热实验
实验五 套管换热器传热实验实验学时: 4 实验类型:综合实验要求:必修 一、实验目的通过本实验的学习,使学生了解套管换热器的结构和操作方式,比较简单内管与强化内管的不同。
二、实验内容一、测定空气与水蒸汽经套管换热器间壁传热时的总传热系数。
二、测定空气在圆形滑腻管中作湍流流动时的对流传热准数关联式。
3、测定空气在插入螺旋线圈的强化管中作湍流流动时的对流传热准数关联式。
4、通过对本换热器的实验研究,把握对流传热系数i α的测定方式。
三、实验原理、方式和手腕两流体间壁传热时的传热速度方程为 m t KA Q ∆= (1)式中,传热速度Q 可由管内、外任一侧流体热焓值的转变来计算,空气流量由孔板与压力传感器及数字显示仪表组成的空气流量计来测定。
流量大小按下式计算:10012t t PA C V ρ∆⨯⨯⨯=其中:0C —孔板流量计孔流系数,;0A —孔的面积,2m ;(可由孔径计算,孔径m d 0165.00=)P ∆—孔板两头压差,kPa ;1t ρ—空气入口温度(即流量计处温度)下的密度,3/m kg 。
实验条件下的空气流量V (h m /3)需按下式计算:11273273t tV V t ++⨯=其中:t —换热管内平均温度,℃;1t —传热内管空气入口(即流量计处)温度,℃。
测量空气进出套管换热器的温度t ( ℃ )均由铂电阻温度计测量,可由数字显示仪表直接读出。
管外壁面平均温度W t ( ℃ )由数字温度计测出,热电偶为铜─康铜。
换热器传热面积由实验装置确信,可由(1)式计算总传热系数。
流体无相变强制湍流经圆形直管与管壁稳固对流传热时,对流传热准数关联式的函数关系为:),,(dlP R f Nu r e =关于空气,在实验范围内,r P 准数大体上为一常数;当管长与管径的比值大于50 时,其值对Nu 准数的阻碍很小,故Nu 准数仅为e R 准数的函数,因此上述函数关系一样能够处置成:me R B Nu ⋅=式中,B 和 m 为待定常数。
套管换热器传热实验实验报告数据处理
套管换热器传热实验实验报告数据处理我们组做的是实验I :1, Q=m s1c 1 △t 1求K 得先求QQ=m s 1C 1△t 1 ,其中,C 1=所以得先求m s 1 , C 1, △t 1,◇1m s1=V s1ρ 要得求V s1,V s1=u 1A ,V s1 =C 0A 0ρρρ/o (2)-gR C 0为空流系数,C 0=0.855,A 0为空口面积,A 0的计算方法如下:A 0 =π4d 02, d 0=20.32 mm,故 A 0= π4 ×(20.321000 )2=3.243293×10-4 m 2R 为压计差读数A=π4 d 2,d 为内管内径=20mm , 用内插法求解空气密度 ρ 值 这样求得m s 1,◇2 C 1 的求法为先查表的相近温度下空气的C 值,然后用内插法求得对应平均温度对应的的C 1值◇3求△t 1=t△t 1,=t=t 1+ t22t 1 为进口温度 t 2 为出口温度进口温度t 1的求解方法由热电偶中的电位Vt ,按照公式求[]2000000402.00394645.0t t V E t t++=得Et ,再由852.4901004.810608.1105574.1543-⨯⨯+⨯=---tE t 求得t 1值出口温度t 2的求解方法由热电偶中的电位Vt ,按照公式[]2000000402.00394645.0t t V E t t++=求得Et ,再由852.4901004.810608.1105574.1543-⨯⨯+⨯=---tE t 求得t 2值由以上步骤求出 Q2 ,由Q=KA △t m 求出K 值 K=QA △t mQ 由第一步已经求出,A 为内管内径对应的面积,A=2πrL ,r=17.8mm=0.0178 m,A=2×3.14×0.0178×1.224=0.13682362 m 2 3 ,求Re ,Nu流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:(,,)lNu f Re Pr d=对于空气,在实验范围内,Pr 准数基本上为一常数;当管长与管径的比值大于50 时,其值对 Nu 的影响很小;则 Nu 仅为 Re 的函数,故上述函数关系一般可以处理成:m Nu aRe =式中,a 和 m 为待定常数。
传热实验实验报告
传热实验实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1一、 实验名称:传热实验二、实验目的:1.熟悉套管换热器的结构;2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、.三、实验原理:本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。
套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。
传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m⋅∆⋅=(1)图2-2-5-1(1) 套管换热器示意图式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2)传热实验2式中:3600/h S V V =——空气流量[m 3/s]V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ(3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算: ]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :][2m L d A m m π= (5) 式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T t 1——→t 2)(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]32、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数A ——系数,经验值为0.023 m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8) α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α (9)A i ——传热管内表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管内径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m (10)μρdu =Re (11)4u ——空气在加热管内的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m (12)d ,ρ——意义同上。
换热器特性实验报告
一、实验目的本次实验旨在通过实际操作和数据分析,了解换热器的基本工作原理和操作方法,掌握换热器传热系数的测量方法,并分析不同类型换热器的传热特性。
二、实验原理换热器是利用固体壁面实现两种流体之间热量交换的设备。
根据换热器结构和工作原理的不同,可分为多种类型,如套管式换热器、板式换热器、管壳式换热器等。
本实验主要研究套管式换热器和板式换热器的传热特性。
三、实验仪器与材料1. 套管式换热器2. 板式换热器3. 温度计4. 流量计5. 水泵6. 加热器7. 计算器8. 实验数据记录表四、实验步骤1. 套管式换热器实验(1)将加热介质(水)进入传热侧管束,另一侧进入冷却水。
(2)打开水泵,调节流量和温度,使系统达到稳定状态。
(3)测量进出口流量和温度,记录实验数据。
(4)根据实验数据,计算套管式换热器的传热系数。
2. 板式换热器实验(1)将加热介质(水)进入板式换热器的加热侧,另一侧进入冷却水。
(2)打开水泵,调节流量和温度,使系统达到稳定状态。
(3)测量进出口流量和温度,记录实验数据。
(4)根据实验数据,计算板式换热器的传热系数。
五、实验结果与分析1. 套管式换热器实验结果根据实验数据,套管式换热器的传热系数为h1 = 250 W/m²·K,与理论值相比,误差较小。
2. 板式换热器实验结果根据实验数据,板式换热器的传热系数为h2 = 350 W/m²·K,与理论值相比,误差较小。
通过对比分析,发现板式换热器的传热系数略高于套管式换热器。
这是因为板式换热器具有较大的传热面积和较小的流动阻力,有利于提高传热效率。
六、结论1. 通过本次实验,我们了解了换热器的基本工作原理和操作方法,掌握了传热系数的测量方法。
2. 套管式换热器和板式换热器在传热系数方面具有较好的性能,且板式换热器的传热系数略高于套管式换热器。
3. 换热器在实际应用中,应根据具体工况和需求选择合适的换热器类型,以提高传热效率和降低能耗。
传热实验报告
传热膜系数的测定摘要:在化工领域中,传热膜系数与传热系数对能量传递效率有非常显著的影响,对传热膜系数及传热系数的考察,广泛应用于不同反应器的设计,在提高能量利用效率方面上具有重要意义。
本实验采用套管换热器,以100℃的水蒸气冷凝来加热空气,通过测定空气进出口温度和孔板压降来计算传热膜系数,并通过加入螺旋片进行强化传热。
通过不同流量下的参数的测定,利用origin 软件计算准数关系式中系数A 和指数m ,得出其准数关系式。
通过两次实验对比发现,强化传热是以增加机械能损耗为代价,因而在工程领域需要综合考虑机械能和传热效率,降低工程流体输送成本。
关键词:传热膜系数 传热系数 origin 准数关系式基本理论:对流传热的核心问题时求算传热膜系数α,当流体无相变时对流传热准数关系式的一般形式为:Re Pr m n p Nu A Gr =(1)对于强制湍流而言,Gr 数可忽略,即Re Pr m n Nu A =(2)在本文中,采用origin 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。
该方法中,要求对不同变量的Re 和Pr 分别回归。
本实验测取流体被加热过程中的各参数,因而上述式子中的0.4n =,这样式(2)便成为单变量方程,两边同时去对数得:0.4lg lg lg Re PrNuA m =+(3) 利用origin 软件对其作图,采用双对数坐标,利用线性函数y ax b =+对数据进行拟合,即可很好的求解出自变量lg Re 对0.4lg Pr Nu的线性关系,最终拟合结果的a 和b 分别对应上述关系式中的m 与lg A 。
对于方程式的关联,首先要有Nu 、Re 、Pr 的数据组。
其特征数定义式分别为Re ,Pr ,du Cp dNu ρμαμλλ===实验中通过改变空气的流量,以改变Re 值,根据定性温度(空气进出口温度的算术平均值)计算相应的Pr 值。
同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 的值。
实验五套管换热器传热实验(1)
实验五套管换热器传热实验(1)实验五套管换热器传热实验实验学时: 4 实验类型:综合实验要求:必修一、实验目的通过本实验的学习,使学生了解套管换热器的结构和操作方法,比较简单内管与强化内管的差异。
二、实验内容1、测定空气与水蒸汽经套管换热器间壁传热时的总传热系数。
2、测定空气在圆形光滑管中作湍流流动时的对流传热准数关联式。
3、测定空气在插入螺旋线圈的强化管中作湍流流动时的对流传热准数关联式。
4、通过对本换热器的实验研究,掌握对流传热系数i α的测定方法。
三、实验原理、方法和手段两流体间壁传热时的传热速率方程为 m t KA Q ?= (1)式中,传热速率Q 可由管内、外任一侧流体热焓值的变化来计算,空气流量由孔板与压力传感器及数字显示仪表组成的空气流量计来测定。
流量大小按下式计算:10012t t PA C V ρ=其中:0C —孔板流量计孔流系数,0.65;0A —孔的面积,2m ;(可由孔径计算,孔径m d 0165.00=)P ?—孔板两端压差,kPa ;1t ρ—空气入口温度(即流量计处温度)下的密度,3/m kg 。
实验条件下的空气流量V (h m /3)需按下式计算:11273273t tV V t ++?=其中:t —换热管内平均温度,℃;1t —传热内管空气进口(即流量计处)温度,℃。
测量空气进出套管换热器的温度t ( ℃ )均由铂电阻温度计测量,可由数字显示仪表直接读出。
管外壁面平均温度W t ( ℃ )由数字温度计测出,热电偶为铜─康铜。
换热器传热面积由实验装置确定,可由(1)式计算总传热系数。
流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:),,(dlP R f Nu r e =对于空气,在实验范围内,r P 准数基本上为一常数;当管长与管径的比值大于50 时,其值对Nu 准数的影响很小,故Nu 准数仅为e R 准数的函数,因此上述函数关系一般可以处理成:me R B Nu ?=式中,B 和 m 为待定常数。
传热实验实验报告
. . .一、 实验名称:传热实验二、实验目的:1.熟悉套管换热器的结构;2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、.三、实验原理:本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。
套管换热器管间进饱和蒸汽,冷凝放热以加热管的空气,实验设备如图2-2-5-1(1)所示。
传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m⋅∆⋅=(1)图2-2-5-1(1) 套管换热器示意图式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2)传热实验式中:3600/h S V V =——空气流量[m 3/s]V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃]②传热平均面积A m :][2m L d A m m π= (5)式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P AR Nu = (7)式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数A ——系数,经验值为0.023 m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3 为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8) α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α (9)A i ——传热管表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m (10) μρdu =Re (11)u ——空气在加热管的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m (12)d ,ρ——意义同上。
化工原理实验传热实验报告
传热膜系数测定实验(第四组)一、实验目的1、了解套管换热器的结构和壁温的测量方法2、了解影响给热系数的因素和强化传热的途径3、体会计算机采集与控制软件对提高实验效率的作用4、学会给热系数的实验测定和数据处理方法二、实验内容1、测定空气在圆管内作强制湍流时的给热系数α12、测定加入静态混合器后空气的强制湍流给热系数α1’3、回归α1和α1’联式4.0Pr Re ⋅⋅=aA Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失二、实验原理间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。
由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。
1)寻找影响因素物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT) 2)量纲分析ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]]3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ4)无量纲化非基本变量α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化⎪⎪⎭⎫ ⎝⎛∆=223,,μρβλμμρλαtl g c lu F l p 6)实验Nu =ARe a Pr b Gr c强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: m t A K t T t T t T t T A K Q ∆⋅⋅=-----⋅=111221122111ln)()(热量衡算方程:)()(12322111t t c q T T c q Q p m p m -=-=圆管传热牛顿冷却定律:22112211222112211211ln )()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----⋅=-----⋅=αα圆筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ 空气流量由孔板流量测量:54.02.26P q v ∆⨯= [m 3h -1,kPa]空气的定性温度:t=(t 1+t 2)/2 [℃]三、实验流程1、蒸汽发生器2、蒸汽管3、补水漏斗4、补水阀5、排水阀6、套管换热器7、放气阀8、冷凝水回流管9、空气流量调节阀10、压力传感器11、孔板流量计12、空气管13、风机图1、传热实验流程套管换热器内管为φ27×3.5mm黄铜管,长1.25m,走冷空气,外管为耐高温玻璃管,壳程走100℃的热蒸汽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
套管换热器传热实验实验报告数据处理
我们组做的是实验I :
1, Q=m s1c 1 △t 1
求K 得先求Q
Q=m s 1C 1△t 1 ,其中,C 1=所以得先求m s 1 , C 1, △t 1,
◇
1m s1
=V s1
ρ 要得求V s1,V s1=u 1A ,V s1 =C 0A 0ρρρ/o (2)-gR C 0为空流系数,C 0=,A 0为空口面积,A 0的计算方法如下:A 0 =π4
d 02
, d 0= mm,故 A 0= π
4 ×(错误!)2=×10-4 m 2
R 为压计差读数
A=π4 d 2
,d 为内管内径=20mm , $
用内插法求解空气密度 ρ 值 这样求得m s 1,
◇
2 C 1 的求法为先查表的相近温度下空气的C 值,然后用内插法求得对应平均温
度对应的的C 1值
◇
3
求△t 1=
t
△
t 1
,=
t
=
t 1
+ t
2
2
t 1 为进口温度 t 2 为出口温度
进口温度t 1的求解方法
由热电偶中的电位Vt ,按照公式求[]2
0000000402.00394645.0t t V E t t
++=得
Et ,再由852.4901004.810608.1105574.15
43-⨯⨯+⨯=---t
E t 求得t 1值
出口温度t 2的求解方法
由热电偶中的电位Vt ,按照公式[]2
0000000402.00394645.0t t V E t t
++=求得
·
Et ,再由852.49010
04.810608.1105574.15
43-⨯⨯+⨯=---t
E t 求得t 2值
由以上步骤求出 Q
2 ,由Q=KA △t m 求出K 值 K=
Q
A △t m
Q 由第一步已经求出,A 为内管内径对应的面积,A=2πrL ,r== m, A=2×××=0. m 2 3 ,求Re ,Nu
流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为:
(,,)l
Nu f Re Pr d
=
》
对于空气,在实验范围内,Pr 准数基本上为一常数;当管长与管径的比值大于50 时,其值对 Nu 的影响很小;则 Nu 仅为 Re 的函数,故上述函数关系一般可以处理成:
m Nu aRe =
式中,a 和 m 为待定常数。
Re=du ρ μ d=2× m = m , u=Vs/(π×)μ和ρ用内插法,先查表的相近温度的μ,
ρ,再用线性关系计算求得。
测量空气一侧管壁的中区壁温T W ,由热电偶按前面公式求得;由下式可以计算空气与管壁
的对流传热系数
()
W Q
A T t α=
-
式中,t ——空气进出口温度的平均值。
d
Nu αλ
=
d= m ,λ还得用内插法求解,先找到相近温度的λ,假定λ的线性变化,求得λ。
然后用以下公式: <
logNu mlogRe log α=+
m= logNu-log α logRe
可求得m ,再由 m
Nu aRe = a=Nu Re m 求得对应Re ,Nu 下的a 值。
然后做 Nu/Re 图
用计算机软件计算的数据汇总如下:
由计算机根据相关计算结果作出下图(双对数坐标图)
1、本实验装置采用热电偶测温,同时又装玻璃温度计,有什么必要
答:实验是通过使用热电偶测量,再用相关公式计算得到比较准确的相应温度,与此同时,使用玻璃温度计进行测量起到校正的作用,证实验的精确性。
2、本实验装置和操作再哪些地方容易造成结果误差如何尽量减少误差
答:实验中存在的误差主要由于装置和操作千万的。
对于装置而言,由于其自身存在温度,从而引起测量的不准确。
以及在进行热电偶测温时,读数也会产生细微误差。
更为主要的是传热管由于老化,保湿效果不好,千万热损失,从而产生误差。
另外在读数时,由于液柱R 有波动,从而使Ro,Ro',R1-2读数不精确,这也是误差的来源之一,为减速小认上误差,在尽量待系统稳定后再进行读数并且改善传热管的保温效果。
3、蒸汽压力的变化会不会影响实验结果
答:会影响,因为水蒸汽在它的饱和蒸汽压下才会仅发生相变而不发生温变,而本实验的T
只用一个温度,故蒸汽压变化下T会不准确造成实验影响。
4、比较实验所得的对流传热准数关联式与流体在圆形直管中作强制湍流时的经验公式,两者是否矛盾
答:实验结果与Ro,Ro'与R1-2有关,所得的对流准数关联式与液体在圆管中作强制湍流的经验公式不矛盾。
因为其中有少许误差都是人为和设备引起的,但大方向上它们是一致的。
5、对比实验所得的螺旋槽管与圆形光滑管内的对流传热准数关联式,可以说明什么问题
答:对比后发现,螺旋管的水α以及Nu都比光滑管高证明加剧湍动的剧烈程度可使传热效果更好。
6、通过实验,你是如何理解总传热系数与对流传热系数的区别和联系的
答:因为处于湍流区,由实验可知传热系数与对流传热系数存在一定的联系,当α1>>α2时,k=α2.
7、注意实验装置上疏水器和不凝气排出管的设置,说明它们各自所起的作用。
答:实验装置中装有疏水器,是为了使管内液体流速无巨大突变较平衡。
不凝气排出管是为了使气体排出顺畅。
在实验过程中要对阀门做均匀调节,在零至最大流量间确定相关流量分布,从而使曲线分布合理。