杂散电流的腐蚀及防护讲解

合集下载

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护在燃气管道运行过程中,由于环境条件和管道使用维护等因素的不确定性,会导致管道表面产生一些杂散电流。

这些杂散电流的存在会给燃气管道带来一定的腐蚀风险,因此在燃气管道的设计、施工及运行过程中,需要考虑采取一些有效的措施,防止杂散电流对管道产生腐蚀损害。

本文将从杂散电流的产生机制、腐蚀机理以及防护措施三个方面进行阐述。

1. 杂散电流的产生机制燃气管道的杂散电流产生与周围环境及管道自身电化学池电位有关。

当管道连通另一电化学电位较低的构件或设施时,如果电位差超过一定值,就会产生杂散电流,从而引发管道腐蚀。

杂散电流可由线性和非线性两种方式产生。

1.1 线性杂散电流线性杂散电流主要受电源电位、管道电位和电路电阻的影响。

当电路中存在电位差,管道交流电阻和电位之间的电势差会产生电流,从而产生线性杂散电流。

其他因素如水分析、电解质浓度等也会影响杂散电流的大小。

1.2 非线性杂散电流非线性杂散电流往往是由高压直流线路通过电介质引起的,比如石油和天然气管道经过高压直流输电线路时就可能产生非线性杂散电流。

非线性杂散电流的幅度较大,可以对管道产生较大的腐蚀作用。

2. 腐蚀机理燃气管道在杂散电流的作用下,可能会发生如下几种腐蚀现象:2.1 金属腐蚀金属腐蚀是最为常见的一种腐蚀现象。

电流经过原本无需溶解的金属表面后,会发生电化学反应,并导致金属表面钝化层的破坏,随后金属的一部分物质就会溶解并脱落。

这样就会导致管道内部或外部的金属腐蚀。

2.2 极化腐蚀极化腐蚀是指金属表面在某些特定情况下,电化学反应速度升高而导致腐蚀的过程。

例如,在管道表面形成漏洞时,容易引起极化腐蚀。

2.3 应力腐蚀应力腐蚀是在金属表面承受着应力的情况下依然腐蚀的过程。

燃气管道由于其长期在应力状态下运行,如果存在杂散电流,则可能在管道表面形成多种应力,这就容易引起应力腐蚀。

2.4 脱化腐蚀脱化腐蚀则是指燃气管道表面物质溶解速度在电流作用下加快,这会导致管道内部物质脱落而形成腐蚀。

地铁杂散电流危害及防护

地铁杂散电流危害及防护

地铁杂散电流危害及防护地铁是现代城市交通的重要组成部分,它不仅提供了便捷的出行方式,还减少了交通拥堵,改善了城市环境。

然而,地铁运行过程中会产生杂散电流,若不加以合理的防护措施,可能对乘客和设备造成危害。

本文将详细介绍地铁杂散电流的危害及防护方法。

首先,地铁杂散电流的危害主要表现在以下几个方面:1. 电击危害:地铁杂散电流可能导致触电事故发生。

当乘客接触到带电的金属结构(如扶手、栏杆等)时,可能会发生电击事故,造成人身伤害甚至生命危险。

2. 电磁干扰:地铁杂散电流还可能对周围电子设备产生电磁干扰,影响其正常工作。

例如,手机、电脑等电子设备可能会受到干扰,导致通信中断、系统崩溃等问题。

3. 地下管线腐蚀:地铁杂散电流会在行驶的轨道和输电装置上产生电流,而这些电流会在接触点处引起腐蚀。

长期以来,这种腐蚀可能对地下管道和其他设施造成损坏,进而影响城市的基础设施稳定性。

为了防止地铁杂散电流带来的危害,需要采取相应的防护措施。

以下是一些防护方法:1. 地铁车体接地:地铁车厢与轨道之间的接地是减少杂散电流的关键步骤。

通过确保地铁车厢和轨道之间良好的接地连接,可以将杂散电流有效地引入地下,从而减少对乘客和设备的危害。

2. 绝缘保护:地铁车厢内的金属结构应进行绝缘处理,以避免与乘客直接接触。

此外,地铁设备和设施的金属构件也应进行绝缘处理,以减少对周围管道和设备的腐蚀。

3. 等电位连接:通过建立良好的等电位连接系统,可以将地铁车厢内的各个金属结构保持在相同的电位上,减少杂散电流的产生和传播。

4. 电磁屏蔽:对于设备和设施中的敏感电子设备,可以采用电磁屏蔽技术来减少电磁干扰。

通过在设备周围设置屏蔽层,可以阻隔外界电磁场的干扰。

5. 定期检测和维护:地铁系统应定期进行杂散电流检测和维护工作,及时发现问题并采取措施解决。

在实施防护措施的同时,还需要加强对公众的安全意识教育。

地铁乘客应了解杂散电流的危害,并能够正确应对。

杂散电流腐蚀名词解释

杂散电流腐蚀名词解释

杂散电流腐蚀名词解释杂散电流腐蚀名词解释1. 引言杂散电流腐蚀是一种常见的电化学腐蚀形式,对许多工业设备和结构造成严重的损害。

在本文中,我们将对杂散电流腐蚀进行详细解释,并探讨其原因、影响以及相应的防治方法。

2. 什么是杂散电流腐蚀杂散电流腐蚀(stray current corrosion)是指在电气系统中出现的不受控制的电流,通过某些金属结构或设备导致其腐蚀的现象。

这种电流在未经适当处理的情况下,可能导致严重的金属损耗,甚至引发设备破裂或系统故障。

3. 杂散电流腐蚀的原因杂散电流腐蚀通常由以下几个原因引起:3.1 非均匀电位分布:在电力供应系统或电气设备中,由于电流分布不均匀,导致某些地点的电位比其他地方高,产生电流流向较低电位的金属结构或设备,引发腐蚀。

3.2 地下设施电位差:在地下工程或管道系统中,可能存在不同的电位差,导致电流从一个区域流向另一个区域,引发腐蚀。

4. 杂散电流腐蚀的影响杂散电流腐蚀对金属结构和设备造成的影响主要有以下几个方面:4.1 金属损耗:杂散电流加速了金属的腐蚀速率,导致设备和结构的物质损耗加剧。

4.2 设备破裂风险:腐蚀导致金属断裂,可能引发设备破裂,造成重大事故和人员伤亡。

4.3 金属电位的漂移:杂散电流会改变金属结构或设备的电位,可能导致电气故障甚至系统崩溃。

5. 杂散电流腐蚀的防治方法为了有效预防和控制杂散电流腐蚀,可以采取以下几种方法:5.1 定期监测:通过安装监测设备,及时监测杂散电流的存在和变化,以便及早采取相应的措施。

5.2 电位补偿:通过电源系统的电位调整或使用电位补偿装置,可以减少或消除电位差,降低杂散电流的发生。

5.3 防护涂层:在金属结构表面涂覆保护性涂层,以防止杂散电流对金属的直接接触,减少腐蚀风险。

6. 个人观点和理解杂散电流腐蚀的概念对于电力系统和工程设备非常重要。

在我看来,了解和掌握杂散电流腐蚀的原因、影响及防治方法,对于预防设备腐蚀、保护系统运行稳定至关重要。

杂散电流腐蚀防护措施

杂散电流腐蚀防护措施
杂散电流腐蚀防护措施
1) 杂散电流(“迷流”)的产生
杂散电流对金属结构的腐蚀有四个方面: 钢轨、道床结构钢筋、隧道结构钢筋、地网及地铁外部其它公共设施
堵 排 测
杂散电流腐蚀防护
采取“以堵为主,以排为辅, 防堵结合,加强监测”的设计原则:
•GB50157-2013 •CJJ49-92
Hale Waihona Puke 从源头上减少杂散电流 限制杂散电流扩散
10)应设置完善的杂散电流监测系统。
杂散电流腐蚀防护
加强金属构件腐蚀防护 杂散电流检测
1)走行钢轨和DC1500V设备采用绝缘法安装。
2)利用道床结构钢筋的可靠电气连接,形成杂散电流主收集监测网;
3)利用地下车站、明挖(或矿山法)区间隧道及U型槽、桥梁结构钢筋的可靠电气连接,形成杂散 电流辅助监测网;
4)在盾构区间采用隔离法对盾构管片结构钢筋进行防护。
5)在正线牵引变电所附近设置道床结构钢筋排流端子,以便用排流电缆将杂散电流主收集监测网 连接至牵引变电所内排流柜。
6)在正线牵引变电所内设置排流柜。排流柜应根据运营过程中对杂散电流腐蚀状况的监测结果判 断是否投入运行。 7)在车站两端、地下区间联络通道及高架区间每隔200m左右设置上、下行均流电缆;在设置牵引 变电所的车站一端不再设置均流电缆。在正线同一行的两根钢轨间每隔200m左右也设置一处均流 电缆。 8)车辆段(停车场)应根据接触网供电分段情况确定牵引回流回路,恰当的设置回流点和均流电 缆。 9)车辆段(停车场)线路与正线之间、车辆段(停车场)各电化线路的库内线路与库外线路之间 应设置绝缘轨缝并装设单向导通装置。电化股道和非电化股道之间、电化股道尽头线与车挡设备之 间应设置绝缘轨缝。

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施一、背景介绍在工业生产中,随着科技的进步和发展,涉及到电子器件和各种金属设备的使用越来越广泛。

然而,我们也会遇到一些意想不到的问题,比如杂散电流腐蚀现象。

杂散电流腐蚀是一种电化学腐蚀现象,由于设备中的电子学元件和电线之间的电流路径不完全主导,所以产生了这种现象。

如何减少杂散电流对设备的损害,一直是工程师们尤为关注的问题。

二、腐蚀机理1.发生杂散电流的原因在不同状态下,电子元件和金属装置之间的电位差,导致内部电流的产生,从而出现了杂散电流的产生。

并且中介物质也是电化学反应的催化剂,强化电化学反应,加速了材料的腐蚀,使设备不可避免地出现了腐蚀现象。

2.电化学反应机理杂散电流腐蚀是一种电化学反应,其机理主要有以下几个过程:1)阴阳极反应所致的腐蚀当两种不同金属的材料同时存在于同一电解质中时,其间电位差会引起电流的流动。

金属中氧化物离子的流动,有时被电位差控制,产生了腐蚀现象。

2)金属在电场作用下腐蚀当电场强度超过电解质电势时,电解质中的离子将受到电场的约束,导致发生腐蚀现象。

3)金属在呼吸的过程中腐蚀在受湿气、氧气和空气中的金属构件,经过长时间的反复潮湿和干燥的过程,加剧了腐蚀现象的发生。

三、防护措施1.设计可靠的电路我国工业生产中,设计防护电路是杂散电流腐蚀防范工作的第一步。

同时,加强电子电气设备的设计和制造工艺,防止杂散电流的发生,可以有效避免毁坏设备的情况。

2.资料选择通过电解,构建材料对抗杂散电流腐蚀的能力和耐腐蚀性能强的组合材料。

3.使用低电容端子在电子电气设备的使用中,应尽量使用低电容的端子连接。

如果端子电容过高,会导致设备的工作电压精度下降,加速杂散电流的产生。

4.防止电离击穿在电子电气设备的使用中,必须避免电离击穿的情况发生,通过选择正确的电磁材料和电容电感规格,实现平衡装置的工作状态。

四、总结杂散电流腐蚀是电子电气设备中经常出现的问题,在工业生产中会给人们带来一定的损失。

杂散电流对埋地管道的腐蚀及防护措施

杂散电流对埋地管道的腐蚀及防护措施
宜的防护结构 . 本 文 主 要 针 对 上 述 问题 对 多 年 来 的科 研 成 果 和 工 程 实 例 进 行 概 括 和 总 结 1 . 杂散 电流 的形 成
时. 管道表 面会析 出大量 的氢 . 造 成 防
腐 绝缘层 破损 、 脱落 。 从 而 加 剧 阴极 区 的腐 蚀 破 坏 对 于 长 距 离 带 覆 盖 层 的 金 属 管道 . 杂 散电流 流入管 道很大 . 电 流 只 能从 外 覆 盖 层 的 破 损 处 流 出 . 更 容 易 集 中在 管 道 局 部
混 凝 土 结 构 的破 坏 主 要 由钢 筋 锈 蚀 、 钢 筋 与 混 凝 土 粘 结 强 度 降 低 和 钢 筋 锈 蚀 产 物 造 成 混 凝 土 开 裂 等 因 素 引 起 电 流
通 过钢 筋 混 凝 土 结 构 时 . 由 于混 凝 土 内 在 设 计 和 规 定 回 路 中 意 外 流 动 的 电流 称 为 杂 散 电流 . 杂 散 电流 包 括 直 流 杂 散 电流 和 交 流 杂 散 电 流 直 流 杂 散 电
为该 管 道存 在 直 流 干 扰 : 当管 道 上 任 意 点 管 地 电 位 较 该 点 自然 电 位 正 向 偏 移 1 0 0 m V 或 该 点 管 道 临 近 土 壤 直 流 地 电
的氢 不 能 逸 出 . 则 可 能 使 钢 筋 与 混凝 土 脱开. 电流 流出点 钢筋锈 蚀 . 有 效 面 积
腐 蚀 就 越严 重 , 遵 循 法拉 第 电解 定 律 。 当
杂 散电流为 1 A时 . 一 年 内可 腐 蚀 3 6 k g 铅 、 1 l k g 铜和 1 0 k g铁 。 杂 散 电 流 强 度 评 价 指 标 主 要 为 管 地 电位 和 土 壤 电 位 梯 度 . 当处 于 直 流 电

杂散电流腐蚀与防护

杂散电流腐蚀与防护
杂散电流具有强度高、危害大、范围广、随机性强等特点,对埋地管道等设施造成严重的腐蚀威胁。因此,采取有效的防护措施至关重要。针对直流杂散电流,可以通过最大限度地减少干扰泄漏电流、符合安全距离、增加回路电阻、排流保护等措施来降低其腐蚀影响。具体来说,可以通过优化设备接地设计、采用高电阻率材料、设置排流装置等手段来实现。而对于交流杂散电流的防护,则需要根据具体情况采取相应的保护措施,例如在强电线路、输油管道等附近区域,可以采取屏蔽、接地、滤波等方法来降低交流杂散电流的影响。此外,对于已经受到杂散电流腐蚀的设施,还需要采取修复和加固措施,以确保其安全稳定运行。总之,杂散电流的防护需要综合考虑多种因素,包括电措施,才能有效地降低杂散电流对设施的腐蚀危害。

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护

燃气管道杂散电流腐蚀及防护燃气管道是连接城市与城市之间天然气输送的重要管道,其安全性和可靠性对于人民生命财产安全和经济发展具有重要意义。

然而,在使用燃气管道的过程中,可能会出现一些意想不到的问题,其中之一就是杂散电流造成的腐蚀问题。

本文介绍燃气管道杂散电流腐蚀及防护的相关知识。

一、杂散电流的来源杂散电流(stray current)是指在地下电解质(如土壤、岩石)中产生的电流。

杂散电流是无序流动的,来源于各种电气设备、铁路、工厂等,甚至个人家用电器也会产生杂散电流。

这些电流在地下电解质中形成变化复杂的电磁场和电位分布,可能会导致管道腐蚀。

二、杂散电流腐蚀的危害杂散电流带有一定的电位,当燃气管道与地下物质接触时,可能会发生电解反应。

这种反应具有腐蚀性,会使燃气管道的金属表面逐渐被侵蚀,从而损坏燃气管道。

如果管道被侵蚀得足够厉害,不仅会损坏管道本身,而且还可能导致爆炸、泄漏等严重后果。

三、燃气管道杂散电流的防护为了保证燃气管道的安全和可靠性,需要采取一些措施来防止杂散电流腐蚀。

以下是几种有效的方法:1. 接地保护燃气管道需要进行电气接地,从而将燃气管道与地面的电位接通。

这样可以使燃气管道的电位与地面接近,从而减少管道的腐蚀。

此外,地电位降低也有助于减小管道与地面之间的电势差,降低杂散电流对管道的腐蚀作用。

2. 阴极保护阴极保护是一种通过为管道表面制造负电位,从而减少管道表面腐蚀的方法。

在燃气管道阴极保护中,常使用电流池来为管道表面提供负电位。

这样可以降低管道表面的电位,减小管道表面的腐蚀。

3. 隔离保护隔离保护是指将需要保护的燃气管道与可能产生杂散电流的设备、设施隔离开来,阻止杂散电流流入燃气管道。

这种保护方式需要对可能存在的电气设备、地铁、电缆等进行检测和隔离处理。

4. 路线设计燃气管道的路线设计也是减少杂散电流对燃气管道腐蚀的关键。

为了确保燃气管道的安全运行,应在管道敷设前进行地形勘察,选择地形较平坦的区域,减少管道敷设的长度和弯曲程度。

2024年地铁杂散电流危害及防护(三篇)

2024年地铁杂散电流危害及防护(三篇)

2024年地铁杂散电流危害及防护摘要:杂散电流给地铁设备、设施的安全运行和使用寿命造成影响,甚至会威胁乘客的安全,有必要对其采取防护和治理措施,以确保地铁的安全运营。

文章对地铁杂散电流的危害及防护方面进行了分析。

在地铁系统中,牵引供电系统一般采用直流方式,会产生杂散电流。

目前,地铁的牵引供电方式一般采用直流供电方式。

在理想的状况下,牵引电流由牵引变电所的正极出发,经由接触网、电动列车和走行轨返回牵引变电所的负极。

由于走行轨与大地之间的绝缘不良或不是完全绝缘,流经走行轨的电流不能全部经由走行轨流回牵引变电所的负极,有一部分电流会泄漏进入大地,然后再流回变电所,这部分泄漏到大地中去的电流就是杂散电流,也称作迷流。

走行轨铺设在轨枕、道碴或整体道床上,由于钢轨与轨枕或整体道床之间不是完全绝缘状态,钢轨与大地间存在一定的过渡电阻,其阻值表示了轨道和大地之间的阻性耦合和电导性耦合。

有关研究表明,钢轨与大地之间的过渡电阻与通过走行轨中的电流无关,其阻值取决于轨枕和轨道紧固件的类型、轨枕下面的垫层、污染程度、气象条件。

也就是说,与走行轨流人大地的杂散电流与道床类型、轨枕和轨道紧固类型有关,并还随污染程度、气象条件的变化而变化。

一、杂散电流的危害地铁中的杂散电流是一种有害的电流,会对地铁中的电气设备、设施的正常运行造成不同程度的影响,还会对隧道、道床的结构钢和附近的金属管线造成不同程度的危害。

1.引起地铁附近建筑物结构钢筋、金属管线腐蚀地铁附近的地下金属体埋于地下,周围有电解质存在,在没有杂散电流通过时,这些金属体所承受的渗透压与溶解压通常会保持平衡状态,不会发生电化学腐蚀。

但当这些金属体中流过杂散电流时,这些金属体所承受的渗透压与溶解压的平衡状态就会被打破,就要发生电化学腐蚀。

在这些情况下,会有两种过程同时发生。

如果城轨隧道、道床或其他建筑物的结构钢筋及附近的金属管线(如电缆、金属管件等)长期受到杂散电流的腐蚀,就会严重损坏地铁附近的各种结构钢筋和地下金属管线,破坏结构钢的强度,降低其使用寿命。

船体杂散电流腐蚀与防护

船体杂散电流腐蚀与防护

船体杂散电流腐蚀与防护1、水中杂散电流产生原因作为一种介质,水和土壤一样可视为电解质,其均匀性比土壤好,当有电流流动时,一般可以直线方向流动,如果在电流流动的区域内有金属构筑物存在,和埋地管道>管道一样将遭受到杂散电流腐蚀。

船舶、海上平台、码头等金属构筑物置于海中,当这些构筑物上使用直流用电设备时,便会造成杂散电流干扰,比如电焊、强制电流阴极保护>阴极保护等作为船体,杂散电流主要发生在修造、停泊、维修期间,因为这个时期往往都需要使用电焊或其他电焊通过船体。

因杂散电流腐蚀的事例很多,快者3个月便会腐蚀穿孔,更有甚者,大连某海运大队的1条船,停靠在岸边,利用单线进行轴系的焊接工作,持续时间约为5h,就腐蚀损坏掉一只铸钢螺旋浆。

2、杂散电流腐蚀的验证和检测(1)腐蚀破坏速率相当快,并与船体的钢材好坏关系不大,一般仅半年到一年、几十天、有的甚至在几小时内疚严重的破坏了壳体或零件。

(2)腐蚀的形状为坑装或穿孔,腐蚀坑内有黑色粉末泥状铁锈,相应的阴极部位有白色的阴极沉积物附着。

(3)腐蚀集中产生在电阻小、易放电的部位,如油漆剥落破损的部位、尖角边棱突出处,而且往往是靠码头或电源的一侧腐蚀最严重。

(4)由于杂散电流的数量级一般都很大,所以常规的阴极保护>阴极保护难以阻止杂散电流的腐蚀,此时的牺牲阳极溶解量将大大增加。

(5)交流杂散电流所引起的腐蚀仅为直流的1%。

(6)当有杂散电流存在时,船体的电位值明显偏离船体的正常电位值。

按《船体杂散电流腐蚀的防护方法》GB/T 3712,杂散电流的判断准则为正向偏移大于20mv。

通常船体在海水中的电位值在-0.65V~-1.00V (CSE)之间,若测得的船体电流电位高出或低处这一范围均应怀疑有杂散电流。

当用指针式电压表测试时,指针颤抖或左右摇摆。

3、杂散电流腐蚀的防护(1)直接排流和管道>管道上直接排流道理一样,将被干扰的船体,在焊接作业时,直接用一根长的地线与焊机的负极连接在一起。

杂散电流地腐蚀及防护

杂散电流地腐蚀及防护

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:图10-60 杂散电流干扰示意图1—供电所 2—架空线 3—轨道电流 4—阳极区5—腐蚀电流 6—交变区 7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。

地铁杂散电流腐蚀防护技术规程

地铁杂散电流腐蚀防护技术规程

地铁杂散电流腐蚀防护技术规程
地铁杂散电流腐蚀防护技术规程
一、前言
随着城市轨道交通的快速发展,地铁杂散电流腐蚀问题日益凸显。

为了保障地铁线路的安全运行和延长设备寿命,制定本技术规程,对地铁杂散电流腐蚀防护进行规范和指导。

二、定义
1. 地铁杂散电流:指由于直流牵引系统接地电阻不足或接触不良等原因而在轨道中产生的漏电流。

2. 地铁杂散电流腐蚀:指由于地铁杂散电流引起的金属结构物表面氧化、锈蚀等现象。

三、防护措施
1. 增加接地电阻:通过增加接地电阻来降低地铁杂散电流的大小。

2. 阴极保护:在金属结构物表面涂覆特殊涂料或安装阴极保护装置,使其成为阴极,从而减缓金属结构物表面的氧化、锈蚀等现象。

3. 限制漏电流:加强对地铁线路的检修和维护,及时排除接触不良等问题,从而限制漏电流的大小。

四、防护效果评估
1. 对地铁杂散电流腐蚀防护措施进行定期检测和评估。

2. 根据检测结果,对防护措施进行调整和改进,以达到最佳的防护效果。

五、总结
地铁杂散电流腐蚀是城市轨道交通运营中不可避免的问题。

本技术规程旨在规范和指导地铁杂散电流腐蚀防护工作,提高地铁线路的安全性和设备寿命。

地铁杂散电流腐蚀及其防护措施

地铁杂散电流腐蚀及其防护措施

地铁主体结构钢筋、电气设备、地铁附近的埋地管线经常遭受地铁杂散电流的电化学腐蚀。

这种杂散电流腐蚀减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故;同时造成一定的经济损失。

讨论了地铁杂散电流的危害,并给出了较为详细的减少杂散电流及其防护的方法。

关键词:地铁;杂散电流;防护;监测1 概述地铁具有运量大、安全舒适、运输成本低等优点,且与地面的交通工具互不干涉,因此成为解决城市交通拥挤紧张状态的有效途径。

目前地铁列车牵引动力一般用直流电,由设置在沿线的牵引变电所通过架空线或第三轨向列车馈送电量,并利用走形轨作为回流线路。

直流供电的地铁系统的走形轨本身具有电阻且走形轨对地做不到完全绝缘,所以有一部分电流从走形轨泄漏到大地。

这部分从走形轨漏出的电流被称为杂散电流又叫迷流。

杂散电流从走形轨漏出后,经过地铁的道床流入大地,然后从大地流回钢轨回流点。

若地铁附近有导电性能较好的埋地金属管线(如自来水管、煤气管道、电缆等),则有一部分杂散电流选择电阻率较低的埋地金属管线作为流通路径,在变电所附近从金属管线中流出流回变电所。

对于走形轨杂散电流是在远离变电所的地方流出,对于埋地金属管线杂散电流是从变电所附近的部位流出,由于土壤或其它介质的作用,金属体有电流流出的部位发生电解,使金属体遭受电化学腐蚀。

这种电化学反应易腐蚀地铁钢轨、地铁主体结构钢筋、地铁线路附近的埋地金属管线,减少埋地管线使用寿命,降低地铁主体结构的耐久性和强度,有时甚至造成灾难性的事故。

钢轨埋设在地表面,易于发现损坏状况,且便于更换,所以杂散电流腐蚀对其的危害不是很大;但由于地铁主体结构钢筋和埋地金属管线埋设在地下,其腐蚀情况不易察觉,所以杂散电流腐蚀对地铁主体结构钢筋和埋地金属管线的腐蚀危害是很大的。

例如从20世纪70年代开始运行的北京地铁一期工程的主体机构中的钢筋已发现有严重的杂散电流腐蚀;北京、天津地铁都有水管被侵蚀穿孔的情况;香港也曾因杂散电流腐蚀煤气管道引起煤气泄漏;在一些地铁运行历史较长的发达国家,杂散电流腐蚀同样严重,如英国曾发生过因为杂散电流腐蚀而发生的钢筋混泥土塌方事故。

交流杂散电流 腐蚀 标准

交流杂散电流 腐蚀 标准

交流杂散电流腐蚀引言在电力系统中,交流杂散电流是一种常见的问题。

当两个或多个金属部件通过电介质(如土壤或水)连接时,由于电场的存在,会产生杂散电流。

这些杂散电流可能会导致腐蚀问题,损害金属构件的可靠性和持久性。

交流杂散电流的产生机制交流杂散电流的产生是由于电流在金属构件之间的非预期连接路径上流动。

当两个相距较远的金属部件通过电解质介质连接时,由于电位差的存在,电流将开始流动。

这些电流沿着介质的导电路径传播,形成了交流杂散电流。

主要产生交流杂散电流的原因有以下几点:1.电势差:当不同金属材料之间存在电位差时,电流将从高电位向低电位流动,形成了交流杂散电流。

2.电解质:电解质的存在使金属之间的电流传导变得可能。

土壤、水、湿度等在自然环境中都可能作为电解质存在。

3.电容耦合:当金属构件之间存在电容效应时,交流杂散电流会随着电容的充电和放电而产生。

电容耦合是一种常见的交流杂散电流产生机制。

交流杂散电流的腐蚀问题交流杂散电流对金属构件产生的腐蚀问题主要有以下几个方面:1.金属腐蚀:交流杂散电流会改变金属构件的电位分布,导致金属表面出现局部腐蚀。

长期影响下,金属构件可能出现腐蚀、减小截面积、变薄等问题,降低了结构的强度和耐久性。

2.电化学腐蚀:交流杂散电流产生的电场和电流密度的变化,会导致金属表面的电化学反应发生改变,进而引起电化学腐蚀。

电化学腐蚀是交流杂散电流引起金属腐蚀的主要机制之一。

3.粘结剪切强度降低:当金属构件表面存在腐蚀时,其粘结剪切强度可能会降低。

这可能导致连接不可靠,从而增加故障和失效的风险。

4.系统能效降低:交流杂散电流通过金属部件流动,会造成电的能量损失。

这将导致系统的能效降低,增加能源消耗。

交流杂散电流的防护方法为了避免交流杂散电流引起的腐蚀问题,可以采取以下几种防护方法:1.电位分离:通过控制金属构件之间的电位差,可以减小交流杂散电流的产生。

可以采用电位分离技术,例如使用绝缘垫片或电位分离装置来隔离不同电位的金属构件。

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施

杂散电流腐蚀机理及防护措施地铁或轻轨一般采用直流电力牵引旳供电方式,一般接触网(或第三轨)为正极,而走行轨兼作负回流线。

由于回流线轨存在着电气阻抗,牵引电流在回流轨中产生压降,并且回流轨对地存在着电位差,回流线对道床、周围土壤介质、地下建筑物、埋设管线存在着一定旳泄漏电流,泄漏电流沿地下建筑物、埋设管线等介质至负回馈点附近重新归入钢轨,此泄漏电流即称迷流,又称地铁杂散电流。

地铁迷流重要是对地铁周围旳埋地金属管道、电缆金属铠装外皮以及车站和区间隧道主体构造中旳钢筋发生电化学腐蚀,它不仅能缩短金属管线旳使用寿命,并且还会减少地铁钢筋混凝土主体构造旳强度和耐久性,甚至酿成劫难性旳事故。

如煤气管道旳腐蚀穿孔导致煤气泄漏、隧道内水管腐蚀穿孔而被迫更换等。

此外,地铁迷流同步也对地铁沿线都市公用管线和构造钢筋产生“杂散电流腐蚀”,影响地铁以外沿线公共设施旳安全及寿命。

本文结合我企业参与旳多条地铁线施工和运行维护管理旳经验,针对杂散电流腐蚀机理及防护措施方面浅谈管见。

1 杂散电流腐蚀机理1.1 杂散电流腐蚀机理地铁迷流对埋地金属管线和混凝土主体构造中钢筋旳腐蚀在本质上是电化学腐蚀,属于局部腐蚀,其原理与钢铁在大气条件下或在水溶液及土壤电解质中发生旳自然腐蚀同样,都是具有阳极过程和阴极过程旳氧化还原反应。

即电极电位较低旳金属铁失去电子被氧化而变成金属离子,同步金属周围介质中电极电位较高旳去极化剂,如金属离子或非金属离子得到电子被还原。

地铁直流牵引供电方式形成旳迷流及其腐蚀部位如图1所示。

图中,I为牵引电流,Ix、Iy分别为走行轨回流和泄漏旳迷流。

由图1可得地铁迷流所通过旳途径可概括为两个串联旳腐蚀电池,即电池I:A钢轨(阳极区)+B道床、土壤+C金属管线(阴极区);电池II:D金属管线(阳极区)+E土壤、道床+F钢轨(阴极区)。

当地铁迷流由图1中A、D(阳极区)旳钢轨和金属管线部位流出时,该部位旳金属铁便与其周围电解质发生阳极过程旳电解作用,此处旳金属随即遭到腐蚀。

杂散电流的腐蚀及防护

杂散电流的腐蚀及防护

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:图10-60 杂散电流干扰示意图1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。

交流杂散电流 腐蚀 标准

交流杂散电流 腐蚀 标准

交流杂散电流腐蚀标准
交流杂散电流腐蚀是一种常见的电化学腐蚀现象,特别在工业设备和管道中经常出现。

这种腐蚀现象是由于在金属表面存在着交流杂散电流,导致金属表面发生局部腐蚀。

这种腐蚀会导致设备的损坏和影响工业生产的正常进行。

交流杂散电流腐蚀通常发生在金属表面出现微小的腐蚀点,随着时间的推移,这些腐蚀点会扩大并深入金属内部,最终导致金属的失效。

因此,及时有效地防止和控制交流杂散电流腐蚀至关重要。

为了防止交流杂散电流腐蚀,首先需要了解电流的来源和流向。

在工业设备和管道中,可能存在着来自电气设备或外部电源的交流杂散电流。

因此,需要通过合理的接地和绝缘措施,将这些电流引流至地面,避免对金属表面造成腐蚀。

其次,选择合适的金属材料也是防止交流杂散电流腐蚀的重要措施。

一些金属材料对交流电流的耐蚀性更好,可以有效地减少腐蚀的发生。

因此,在设计和选择金属设备和管道材料时,需要考虑到电流腐蚀的因素,选择合适的金属材料来减少腐蚀的风险。

此外,定期对设备和管道进行检查和维护也是防止交流杂散电流腐蚀的重要步骤。

通过定期的腐蚀监测和清洁,可以及时发现腐蚀问题并采取相应的修复措施,避免腐蚀的蔓延和加剧。

同时,加强设备和管道的防腐蚀涂层和防护措施,可以有效地延长设备的使用寿命。

总的来说,交流杂散电流腐蚀是一种常见的腐蚀现象,对工业设备和管道的正常运行和安全性造成了威胁。

通过合理的电流控制、选择合适的金属材料和定期的检查维护,可以有效地防止和控制腐蚀的发生,保障设备的正常运行和安全性。

在工程设计和生产实践中,必须高度重视交流杂散电流腐蚀的防治工作,确保设备和管道的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、杂散电流干扰方式杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。

其中,以城市和矿区电机车为最甚。

它的干扰途径如图10-60所示。

从图中可以划分三种情况:图10-60 杂散电流干扰示意图1—供电所2—架空线3—轨道电流4—阳极区5—腐蚀电流6—交变区7—阴极区1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。

2. 在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能流出。

当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。

以上是一般规律。

实际上杂散电流干扰源是多中心的。

如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。

作用在管道上的杂散电流干扰电位如图10-61所示。

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。

因属电解腐蚀,所以有时也称电蚀。

这是管道腐蚀穿孔的主要原因之一。

例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。

如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。

在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。

其干扰形式如图10-62和图10-63所示。

其干扰范围与阳极排放电流和阴极保护电流密度成正比。

当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。

大部分属腐蚀原电池型。

腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。

在土壤中的杂散电流腐蚀,则是电解电池原理。

即外来的直流电流或电位差,造成了土壤溶液中金属腐蚀。

其腐蚀量与杂散电流强度成正比,服从法拉第电解定律。

也就是说,假如有1A的电流通过钢管表面,流向土壤溶液,那么1a的直流杂散电流1年的时间会溶解钢铁9kg。

实际上,土壤中发生的杂散电流强度是很大的,管道上管地电位可能高达8~9V,通过的电流量最大能达几百安。

因此,壁厚为7~8mm的钢管,在杂散电流作用下,4~5个月即可能发生腐蚀穿孔。

所以,杂散电流的腐蚀强度是一般腐蚀不能与之相比的。

它是管道腐蚀穿孔的主要原因。

2.范围广随机性强杂散电流的作用范围很大,其影响可达几千米、几十千米,这与引起杂散电流的外部电流源密切相关。

杂散电源腐蚀的发生又常常是随机而变的。

无论从电流方向上,还是电流强度上,都是随外界电力设施的负载情况、轨道的连接与绝缘状况、管道的绝缘状况而变化。

因此,常将杂散电流的干扰称为动态干扰。

这也给杂散电流的测量、排除带来了困难。

图10-62 阳极地床周围的杂散电流干扰1—测电位曲线2—测电流(东) 3—被干扰管道4—测电流(西) 5—整流器6—被保护的管道7—被干扰管道电位曲线8—电流干扰区9—电流泄漏直流腐蚀是引起管道泄漏的最大隐患。

近年来,对杂散电流的腐蚀已引起人们的普遍关注。

图10-63 阴极保护管道的干扰a)交叉b)平行三、杂散电流干扰的判断标准地下杂散电流可以根据管一地电位偏移和地电位梯度来判断。

对于此判断。

各国根据国情都有自己的指标。

例如,英国国家标准规定,以管道对地电位正向偏移20mV为判断指标;德国以+100mV为标准;日本的标准是+50mV。

原石油工业部编制的《埋地钢质管道直流排流保护技术标准》。

(SYJ17—1986),把判定标准分为两个台阶:一是确认干扰的存在,二是在确认干扰存在的前提下必须采取措施的临界指标。

这一指标是:处于直流电气化铁路、阴极保护系统及其他直流干扰附近的管道,当管道任意点上管—地电位较自然电位正向偏移20mV时,或管道附近土壤中的电位梯度大于0.5mV/m时,确认为有直流干扰;当管道上任意点管一地电位较自然电位正向偏移lOOmV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应及时采取直流排流保护或其他防护措施。

日本<电蚀土壤腐蚀手册》推荐的地电位梯度与杂散电流干扰关系,见表10-69。

表10-69 地电位梯度与杂散电流干扰四、直流干扰腐蚀的防护(一)减少干扰源电流的泄漏直流干扰腐蚀的产生是源于各种电气设备的电流泄漏。

因此,直流干扰的防护首先应减少这些电气设备的电流的泄漏。

为此,对直流电气化铁路作如下限制:1.铁轨导电性能必须良好通过铁轨的平均电流产生的电位差不得大于3V/km。

2.铁轨接头增加电阻各区段铁轨接头增加的电阻,不得大于该区段铁轨电阻的20%。

3.铁辄与大地绝缘电气化铁轨应采取与大地绝缘的措施。

对于供电方式,应采用减小供电范围,增加足够的供电所的原则,保证在供电范围内接地装置只接地一次等,来减少杂散电流源。

(二)避开干扰源的设计原则由于干扰源的情况错综复杂,在管道设计时又不可能完全避开,为保证管道安全,应遵循下列设计原则:1.管道走向的选择合理选择埋地管道的走向,尽量远离干扰源。

当埋地管道与直流电气化铁路的铁轨接近或交叉时,相互间的距离不得小于1m,且尽量缩短与之平行的管线的长度。

2.被保护管道与非保护管道的间距,应保持足够大的距离。

非联合保护的平行管道,二者间距不宜小于10m。

被保护管道与其他管道交叉时,二者间的净垂直距离不应小于0.3m;当小于0.3m时,中间必须设有坚固的绝缘隔离物,确保其不接触。

双方管道在交叉点两侧10m以上的管段上,应作特加强防腐。

管道与电缆交叉时,相互间净垂直距离不应小于0.5m,交叉点两侧也各延伸10m作加强防腐。

3.对受杂散电流干扰管段的保护措施在受到杂散电流干扰的管段,可增设绝缘法兰,将被干扰管道分成若干段,以减轻干扰,把干扰限制在一定范围内。

4.在被干扰管道与干扰源之间,可埋设金属屏蔽体,以减轻干扰。

(三)增加回路电阻1.对可能受到杂散电流腐蚀的管道,其表面的防腐层等级采用加强级或特加强级。

2.对已遭受杂散电流腐蚀的管道,可通过修补或更换防腐层,来消除或减弱杂散电流的腐蚀。

(四)排流保护技术1.排流方法杂散电流干扰本身是一害,但掌握其本质、因势利导,就可以化害为利。

排流保护就是把杂散电流变为管道阴极保护的电流,所以排流保护也属于阴极保护的方法之一。

排流方式有直接排流、极性排流、强制排流和接地排流,这些排流方法及其优缺点和适用条件,见表10-70。

表10-70 排流方式的选择在同一管道或同一系统的管道中,根据实际情况可以采用一种或几种排流方式。

排流点的选择应以最佳排流效果为标准,往往要通过排流实验确定。

一般情况下,可根据下列原则选定:(1)管道上排流点的选定1)管一地电位为正且管一轨电位差最大的点;2)管一地电位为正且持续时间最长的点;3)管道与铁轨(或管道)间距最小的点;4)便于排流设备安装与维修的地点。

(2)铁轨上排流点的选定1)扼流线圈中点或交叉跨线处;2)直流供电所负极或负回归线。

(3)接地排流的接地地床,应选择在土壤电阻率较低的地方。

2.排流方式的结构(1)直流排流直接排流结构如图10-64所示。

直接排流用于极性不变的阳极区,可调电阻和控制开关及熔断器的使用可用来控制流量的大小和管道的相对电位,以防排流量过大时造成防腐层的老化和剥离。

(2)极性排流极性排流的结构如图10-65所示。

极性排流是目前广泛使用的排流方法之一。

它具有单向导电性,只允许杂散电流管道排出,而不允许杂散电流进入管道,它是比较安全的排流方式。

图10-64 直接排流保护电路1—被保护的金属管道2—铁轨3、4—排流电缆5—可变电阻6—控制开关7—熔断器8—电流表上述两种排流方式都是借助于管道和铁轨之间的电位差来排流,当两个连接点的电位差较小时,所能排除的电流量很小,故保护段落很短,排流效果不佳。

此时,应选择其他形式的排流方式。

(3)接地排流接地排流结构如图10-66所示。

接地排流电缆不连接到铁轨上,而是连接到一个埋在地下的辅助阳极(或牺牲阳极材料)上。

将杂散电流从管道排到阳极上,经过土壤再返回铁轨。

图10-65 极性排流保护电路1—管道2—铁轨3—电缆4—可变电阻5—整流器6—电流表7—控制开关8—熔断器图10-66 接地式排流接地排流保护在国外应用较少,但在我国应用较多。

这是因为我国对于干扰源泄漏入地的杂散电流限制不力,造成干扰范围很大,不利于极性排流的应用;当采用极性排流时,排流连接变得十分困难。

接地排流的效果要比极性排流差,排流量不易调节。

还需定期更换阳极。

但接地排流的适应性强、施工简单,同时又比较安全,可以完全避免将杂散电流导入管道。

因此,接地排流是使用较多的排流方式。

接地排流的地床接地电阻要做得尽可能的小。

采用牺牲阳极时仍需填包料。

(4)强制排流当地下金属管道处于杂散电流干扰极性交变区,用直接或极性排流都无法将杂散电流排出时,需使用强制排流。

强制排流的原理类似于阴极保护,它在管道与接地阳极或铁轨之间,接一可逆的恒电位仪,在外加电位差下强制排流。

其电路结构如图10—67所示。

由于强制排流兼有排流和阴极保护的作用。

同时其设施费用节省一半,故使用此排流方式也较多。

例如,在日本东京的煤气管线上就使用得比较普遍。

图10—67 强制排流电路对同一条管道或一系统中,可根据实际情况的需要采用一种或几种排流方式,选择一点或多点进行排流。

3.排流计算排流电流量可根据欧姆定律的原理来计算:式中I——排除电流量(A);V——管一轨电位差(V);R1——排流线电阻(Ω);R2——排流器内阻(Ω);R3——管道接地过渡电阻(Ω);R4——铁轨接地电阻(Ω)。

其中,式中γ3——管道纵向电阻(Ω);ω3——管道泄漏电阻(Ω);γ4——铁轨纵向电阻(Ω);ω4——铁轨泄漏电阻(Ω)。

当采用接地排流时,R4为接地地床的接地电阻,其值应小于0.5Ω。

排流量过大会造成管~地电位过负。

为保证管道排流处在最佳状态,也就是正电位得到较好的缓解,负电位又不致于过高。

可以在排流电路中中入电阻,限制排流量。

串入的电阻值可按下式计算:式中R——串入电阻(Ω);I——原排流量(A);I′——拟定排流量(A);V——管/轨电压(V)。

电阻器的选择,要注意具有足够的功率,以防排流量大时烧毁。

排流器、排流导线的额定电流应为计算排流量的1.5~2倍。

排流用的接地地床电位梯度,在水中时不大于10V/m,在土壤中不大于5V/m。

4.排流器功能的要求(1)在管轨电位差或管地电位波动的范围内,均能正常工作。

(2)能及时跟随管轨电位差或管地电位的急剧变化。

相关文档
最新文档