初三数学圆的综合的专项培优 易错 难题练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆的综合的专项培优易错难题练习题
一、圆的综合
1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.
(1)若∠B=60°,求证:AP是⊙O的切线;
(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.
【答案】(1)证明见解析;(2)8.
【解析】
(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;
(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.
试题解析:连接AD,OA,
∵∠ADC=∠B,∠B=60°,
∴∠ADC=60°,
∵CD是直径,
∴∠DAC=90°,
∴∠ACO=180°-90°-60°=30°,
∵AP=AC,OA=OC,
∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,
∴∠OAP=180°-30°-30°-30°=90°,
即OA⊥AP,
∵OA为半径,
∴AP是⊙O切线.
(2)连接AD,BD,
∵CD是直径,
∴∠DBC=90°,
∵CD=4,B为弧CD中点,
∴BD=BC=,
∴∠BDC=∠BCD=45°,
∴∠DAB=∠DCB=45°,
即∠BDE=∠DAB,
∵∠DBE=∠DBA,
∴△DBE∽△ABD,
∴,
∴BE•AB=BD•BD=.
考点:1.切线的判定;2.相似三角形的判定与性质.
2.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).
(1)若∠BOH=30°,求点H的坐标;
(2)求证:直线PC是⊙A的切线;
(3)若OD=10,求⊙A的半径.
【答案】(1)(132)详见解析;(3)5 3 .
【解析】
【分析】
(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;
(2)先判断出∠PCD=∠DAE ,进而判断出∠PCD=∠CAE ,即可得出结论;
(3)先求出OE ═3,进而用勾股定理建立方程,r 2-(3-r )2=1,即可得出结论.
【详解】
(1)解:如图,过点H 作HM ⊥y 轴,垂足为M .
∵四边形OBCD 是平行四边形,
∴∠B=∠ODC
∵四边形OHCD 是圆内接四边形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在Rt △OMH 中,
∵∠BOH=30°,
∴MH=1
2
OH=1, ∴
点H 的坐标为(1
(2)连接AC .
∵OA=AD ,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF ,
∴∠PCD=∠DAE
∵OB 与⊙O 相切于点A
∴OB ⊥OF
∵OB ∥CD
∴CD ⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°
∴直线PC 是⊙A 的切线;
(3)解:⊙O 的半径为r .
在Rt △OED 中,DE=
12CD=12OB=1, , ∴OE ═3
∵OA=AD=r ,AE=3﹣r .
在Rt △DEA 中,根据勾股定理得,r 2﹣(3﹣r )2=1
解得r=53
.
【点睛】
此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.
3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.