八年级数学下册正方形知识点及同步练习、含答案(含答案)
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案(学生专用)
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4B.3C.2D.12、顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是()A.矩形B.菱形C.正方形D.不确定3、已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是()A.矩形B.菱形C.等腰梯形D.正方形4、平行四边形ABCD的两条对角线相等,则平行四边形ABCD一定是().A.菱形B.矩形C.正方形D.等腰梯形5、如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.6cmB.8cmC.10cmD.12cm6、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是()A.7B.8C.9D.107、下列性质中,矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角8、学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁9、用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是( )A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5).10、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形11、如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE 折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或512、如图,是△EBD以正方形ABCD的对角线BD为边的正三角形,EF⊥DF,垂足为F,则∠AEF的度数是()A.15°B.30°C.45°D.60°13、平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是()A.90°B.180°C.270°D.360°14、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.1.2B.1.3C.1.4D.2.415、下列条件中,能判定一个四边形为矩形的条件是( )A.对角线互相平分的四边形B.对角线相等且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形二、填空题(共10题,共计30分)16、已知矩形的面积是,其中一边长为,则对角线长为________.17、如图,矩形中,,,是边上一点,将沿翻折,点恰好落在对角线上的点处,则的长为________.18、如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为________.19、如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于________度20、已知菱形的边长为4,∠A=60°,则菱形的面积为________.21、如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为________ .22、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)23、如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________24、如图,在中,,点的坐标为,点在轴上,轴.将沿翻折得到,直线过点,则四边形的面积为________.25、如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B 在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,科博会上某公司展示了研发的绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线EL且AE=25 cm,手臂AB=BC =60 cm,末端操作器CD=35 cm,AF∥直线EL.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD=60°,求末端操作器节点D到地面直线EL的距离.(结果保留根号)28、如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.29、如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)30、在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点.猜想:如图①,当点在边上时,写出线段与的大小关系。
2021-2022学年鲁教版八年级数学下册《6-3正方形的性质与判定》同步达标测试题(附答案)
2021-2022学年鲁教版八年级数学下册《6-3正方形的性质与判定》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列关于▱ABCD的叙述,正确的是()A.若AC=BD,则▱ABCD是矩形B.若AB=AD,则▱ABCD是正方形C.若AB⊥BC,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是正方形2.如图,正方形ABCD的面积为4,菱形AECF的面积为2,则EF的长是()A.1B.C.2D.23.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°4.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=6,F 为DE的中点.若OF的长为1,则△CEF的周长为()A.14B.16C.18D.125.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.6.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣2,0),B (2,b),则正方形ABCD的面积是()A.34B.25C.20D.167.如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.38.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分35分)9.用4张全等的直角三角形纸片拼接成如图所示的图案,得到两个大小不同的正方形.若正方形ABCD的面积为10,AH=3,则正方形EFGH的面积为.10.已知:如图,正方形ABCD和EFGH的边长都等于1,点E恰好是AC、BD的交点,则两个正方形的重叠部分(阴影部分)的面积是.11.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=.12.如图,点O是正方形ABCD的中心,过点O的直线与AD、BC交于点M、点N,DE ⊥MN,交AB于点E,若AM=1,DM=3,则DE的长为.13.如图,E,F,M,N分别是边长为4的正方形ABCD四条边上的点,且AE=BF=CM =DN.那么四边形EFMN的面积的最小值是.14.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.15.如图,在矩形ABCD中,AB=6,BC=8.(1)如果E、F分别是AD、BC的中点,G是对角线AC上的点,∠EGF=90°,则AG 的长为;(2)如果E、F分别是AD、BC上的点,G,H是对角线AC上的点.下列判断正确的是.①在AC上存在无数组G,H,使得四边形EGFH是平行四边形;②在AC上存在无数组G,H,使得四边形EGFH是矩形;③在AC上存在无数组G,H,使得四边形EGFH是菱形;④当AG=时,存在E、F、H,使得四边形EGFH是正方形.三.解答题(共5小题,满分45分)16.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.17.如图,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的长度.18.在正方形ABCD中,F是线段BC上一动点(不与点B,C重合)连接AF,AC,分别过点F,C作AF、AC的垂线交于点Q.(1)依题意补全图1,并证明AF=FQ;(2)过点Q作NQ∥BC,交AC于点N,连接FN.若正方形ABCD的边长为1,写出一个BF的值,使四边形FCQN为平行四边形,并证明.19.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.20.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项A符合题意;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项B不符合题意;∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项C不符合题意;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,选项D不符合题意;故选:A.2.解:连接AC,∵正方形ABCD的面积为4,∴AC2=4,解得AC=,∵菱形AECF的面积为2,∴AC•EF=2,即×EF=2,解得EF=,故选:B.3.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.4.解:在正方形ABCD中,BO=DO,BC=CD,∠BCD=90°,∵F为DE的中点,∴OF为△DBE的中位线,ED=2CF=2EF,∴△CEF的周长为EF+EC+FC=ED+EC,∵OF=1,∴BE=2OF=2,∵CE=6,∴BC=BE+CE=2+6=8,∴CD=BC=8,在Rt△CED中,∠ECD=90°,CD=8,CE=6,∴ED=,∴△CEF的周长为EF+EC+FC=ED+EC=10+6=16,故选:B.5.解:过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(ASA),则BE=BF,S四边形ABCD=S正方形BEDF=8,∴BE==.故选:C.6.解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,∴在△DAO和△ABM中,,∴△DAO≌△ABM(AAS),∴OA=BM,AM=OD,∵A(﹣2,0),B(2,b),∴OA=2,OM=2,∴OD=AM=4,∴AD===2,∴正方形ABCD的面积=2×2=20,故选:C.7.解:如图,连接BB',连接BD,∵四边形ABCD是正方形,∴BD=AB=2,BD平分∠ABC,∵E为AB边的中点,∴AE=BE=1,∵四边形BEB'F是正方形,∴BB'=BE=,BB'平分∠ABC,∴点B,点B',点D三点共线,∴B'D=BD﹣BB'=,故选:A.8.解:作PH⊥AB于H,∴∠PHB=90°,∵PE⊥BC,PF⊥CD,∴∠PEB=∠PEC=∠PFC=90°.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠1=∠2=∠BDC=45°,∠ABC=∠C=90°,∴四边形BEPH和四边形PECF是矩形,PE=BE,DF=PF,∴四边形BEPH为正方形,∴BH=BE=PE=HP,∴AH=CE,∴△AHP≌△FPE,∴AP=EF,∠PFE=∠BAP,故①、②正确,在Rt△PDF中,由勾股定理,得PD=PF,∴PD=CE.故③正确.∵点P在BD上,∴当AP=AD、P A=PD或DA=DP时△APD是等腰三角形.∴△APD是等腰三角形只有三种情况.故④错误,∴正确的个数有3个.故选:C.二.填空题(共7小题,满分35分)9.解:∵正方形ABCD的面积为10,∴AD2=10,∴DH===1,∵△AHD≌△DGC,∴AH=DG=3,∴HG=DG﹣DH=2,∴正方形EFGH的面积=HG2=4,故答案为:4.10.解:∵四边形ABCD是正方形,∴EC=ED,∠DEC=90°,∵四边形EFGH是正方形,∴∠FEH=90°,∴∠OEC=∠MED,在△OEC和△MED中,,∴△OEC≌△MED(ASA)∴两个正方形的重叠部分(阴影部分)的面积=△DEC的面积=×正方形ABCD的面积=0.25,故答案为:0.25.11.解:连接BD、BF,∵四边形ABCD,BEFG是正方形,且边长分别为3和4,∴∠DBC=∠GBF=45°,BD=3,BF=4,∴∠DBF=90°,由勾股定理得:DF==5,∵H为线段DF的中点,∴BH=DF=.故答案为:.12.解:如图,连接AC,过点A作AF∥MN,交BC于F,∵AM=1,DM=3,∴AD=4,∵点O是正方形ABCD的中心,∴AO=CO,AB=AD=BC=4,∠ABC=∠BAD=90°,AD∥BC,∴∠MAO=∠NCO,又∵∠AOM=∠CON,AO=CO,∴△AMO≌△CNO(ASA),∴AM=CN=1,∵AD∥BC,AF∥MN,∴四边形AMNF是平行四边形,∴AM=FN=1,∴BF=2,∵DE⊥MN,AF∥MN,∴DE⊥AF,∴∠AED+∠EAF=90°,又∵∠EAF+∠AFB=90°,∴∠AED=∠AFB,又∵∠EAD=∠ABF=90°,AD=AB,∴△ADE≌△BAF(AAS),∴AE=BF=2,∴DE===2,故答案为2.13.解:∵AE=BF=CM=DN,∴AN=DM=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEN≌△DMN≌△CFM≌△BEF.∴EF=EN=NM=MF,∠ENA=∠DMN.∴四边形EFMN是菱形.∵∠ENA=∠DMN,∠DMN+∠DNM=90°,∴∠ENA+∠DNM=90°.∴∠ENM=90°.∴四边形EFMN是正方形,∴EN最小时,正方形EFMN的面积最小,设AE=DN=x,则EN==,∴x=2时,EN的值最小,最小值=,∴正方形EFMN的面积=()2=8.14.解:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠DCF=90°,在△ADE和△DCF中,,∴△ADE≌△DCF(SAS),∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO﹣OP=﹣1.故答案为:90°,﹣1.15.解:(1)如图,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,AD=BC,∴AC===10,∵AD∥BC,∴∠EAO=∠FCO,∵E、F分别是AD、BC的中点,∴AE=CF=BF=DE,∴四边形ABFE是平行四边形,∴EF=AB=6,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO=3,AO=CO=5,当点G在点O上方时,∵∠EGF=90°,EO=FO,∴GO=EO=3,∴AG=AO﹣GO=5﹣3=2,当点G'在点O下方时,∵∠EG'F=90°,EO=FO,∴G'O=EO=3,∴AG'=AO+G'O=5+3=8,综上所述:AG=2或8;(2)①在AC上存在无数组G,H,使得四边形EGFH是平行四边形,故该说法正确;②在AC上存在无数组G,H,使得四边形EGFH是矩形,故该说法正确;③在AC上存在无数组G,H,使得四边形EGFH是菱形,故该说法正确;④当AG=时,存在E、F、H,使得四边形EGFH是正方形,故答案为①②③④.三.解答题(共5小题,满分45分)16.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)判断∠PED=45°.证明:∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.17.解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,易知四边形BCDM是正方形,则△BEC与△BGM中,,∴△BEC≌△BMG(SAS),∴∠MBG=∠CBE,BE=BG,∵∠ABE=45°,∴∠CBE+∠ABM=∠MBG+∠ABM=45°,即∠ABE=∠ABG=45°,在△ABE与△ABG中,,∴△ABE≌△ABG(SAS),∴AG=AE=10,设CE=x,则AM=10﹣x,AD=12﹣(10﹣x)=2+x,DE=12﹣x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12﹣x)2,即x2﹣10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.18.解:(1)根据题意,作图如下:证明:在AB上截取BM=BF,如下图,∵∠CFQ+∠AFB=90°,∠BAF+∠AFB=90°,∴∠BAF=∠CFQ,∵BF=BM,∴CF=AM,又∵∠AMF=180°﹣45°=135°,∠FCQ=90°+45°=135°,∴∠AMF=∠FCQ,在△AMF和△FCQ中,,∴△AMF≌△FCQ(ASA),∴AF=FQ;(2)当BF=时,四边形FCQN为平行四边形,证明:如图,在AB上截取BM=BF,连接MF,∵BF=,BC=1,∴FC=,由(1)可得△BMF为等腰三角形,且△AMF≌△FCQ,∴CQ=MF=,∵NQ∥BC,∴∠FCQ+∠NQC=180°,∵∠FCQ=135°,∴∠NQC=45°,∵∠NCQ=90°,∴∠NQC=45°=∠NQC,∴,,∴NQ=FC且NQ∥FC,∴四边形FCQN为平行四边形.19.证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,∴四边形MANP是正方形;(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),∴EM=BN.20.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.。
2020-2021学年人教版八年级下册数学 18.2.3正方形 同步测试 (含解析)
18.2.3正方形同步测试一.选择题1.如图,四边形ABCD中,AC、BD交于点O,则根据下列条件能判定它是正方形的是()A.∠DAB=90°且AD=BC B.AB=BC且AC=BDC.∠DAB=90°且AC⊥BD D.AC⊥BD且AO=BO=CO=DO2.已知正方形ABCD中,对角线AC=4,这个正方形的面积是()A.8B.16C.8D.163.如图,G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,已知GD=5,则FG为()A.3B.3.2C.4D.4.84.如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有()个等腰直角三角形.A.2B.4C.8D.165.如图,正方形ABCD的对角线AC,BD交于点O,P为边BC上一点,且BP=OB,则∠COP 的度数为()A.15°B.22.5°C.25°D.17.5°6.如图,正方形ABCD中,∠DAF=35°,AF交BD于点E,则∠BEC的度数为()A.65°B.70°C.75°D.80°7.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB 的度数等于()A.60°B.65°C.75°D.80°8.如图,正方形ABCD的边长为12,E,F分别为BC,AD边上的点,且BE=DF=5,M,N 分别为AB,CD边上的点,且MN⊥AE交AE,CF于点G,H,则GH的长为()A.6B.C.D.9.如图,以边长为4的正方形ABCD的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于E、F两点,则线段EF的最小值为()A.2B.4C.D.210.如图,已知边长为4的正方形ABCD中,点E、F分别为AB、CD的中点,连接AC,点G、H在AC上,且AC=4AG=4CH,则四边形EHFG的面积为()A.8B.4C.D.二.填空题11.在正方形ABCD中,AC、BD交于点O,OE⊥DC于点E,若OE=2cm,则正方形ABCD 的面积为cm2.12.已知正方形ABCD对角线AC,BD相交于点O,且AC=16cm,则DO=cm,BO=cm,∠OCD=度.13.如图,正方形ABCD的边长为8,E为边AD上一点.若BE=10,则CE=.14.如图,P是正方形ABCD内任意一点,△APD与△BPC的面积之和为8cm2,则AB=cm.15.如图,P为边长为1的正方形ABCD内的一点,△P AB为等边三角形,则S△ADP+S△BPC =.三.解答题16.如图,在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于F,试说明BE=CF+AE.17.如图,在正方形ABCD中,H是DC边上一点,E是CB延长线上的一点,且DH=BE,请判断△AEH的形状,并说明你的理由.18.如图所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.参考答案一.选择题1.解:A,不能判定它是正方形;B,不能判定它是正方形;C,不能判定它是正方形;D,能,因为对角线相等且互相垂直平分;故选:D.2.解:由勾股定理得,AB2+BC2=AC2,2AB2=42,AB2=8.故选:A.3.解:∵G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,GD=5,∴∠C=∠E=90°,∠EDG=∠ADC=90°,ED=FG,AD=CD=4,∴∠EDA=∠CDG,∴△EDA∽△CDG,∴,即,解得,ED=3.2,∴FG=3.2,故选:B.4.解:∵四边形ABCD是正方形,∴OA=OD=OC=OB,AC⊥BD,AB=BC=CD=AD,∠ABC=∠BCD=∠CDA=∠DAB=90°,∴△AOB,△BOC,△COD,△AOD,△ABC,△BCD,△ADC,△DAB是等腰直角三角形,故选:C.5.解:∵四边形ABCD是正方形,∴∠BOC=90°,∠OBC=45°,∵BP=OB,∴∠BOP=∠BPO=(180°﹣45°)=67.5°,∴∠COP=90°﹣67.5°=22.5°.故选:B.6.解:∵四边形ABCD为正方形,∴DA=DC,∠ADE=∠CDE=45°,又∵DE=DE,∴△ADE≌△CDF(SAS).∴∠DCE=∠DAF=35°,∴∠BEC=∠CDE+∠DCE=45°+35°=80°.故选:D.7.解:∵四边形ABCD为正方形,∴∠B=∠D=90°,AB=AD,∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠BAE+∠DAF=90°﹣60°=30°,∴∠BAE=15°,∴∠AEB=90°﹣15°=75°.故选:C.8.解:∵正方形ABCD的边长为12,∴AB=CD=AD=BC=12,AD∥EC,∵BE=DF=5,∴AF=CE=7,∴四边形AFCE是平行四边形,∵AB=12,BE=5,∴AE===13,∵S平行四边形AFCE=AF×AB=AE×GH,∴7×12=13×GH,∴GH=,故选:C.9.解:如图,连接EF,∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,∴∠AOE=∠DOF;在△AOE与△DOF中,,∴△AOE≌△DOF(ASA),∴OE=OF(设为λ);∴△EOF是等腰直角三角形,由勾股定理得:EF2=OE2+OF2=2λ2;∴EF=OE=λ,∵正方形ABCD的边长是4,∴OA=2,O到AB的距离等于2(O到AB的垂线段的长度),由题意可得:2≤λ≤2,∴2≤EF≤4.所以线段EF的最小值为2.故选:D.10.解:如图,连接BD交AC于点O,连接EF.∵四边形ABCD是正方形,∴AB∥CD,AB=CD,∴∠EAG=∠FCH,∵点E、F分别为AB、CD的中点,∴AE=CF,∵AC=4AG=4CH,∴AG=OG=OH=CH,∴△EAG≌△FCH(SAS),∴EG=FH,∠AGE=∠CHF,∴∠EGH=∠FHG,∴EG∥FH,∴四边形EGFH是平行四边形,∴GH与EF互相平分,∴EF经过点O,∵S△AEO=S正方形ABCD=×16=2,又∵AG=OG,∴S△EOG=S△AEO=1,∴S平行四边形EGFH=4S△EOG=4.故选:B.二.填空题11.解:AC、BD为正方形ABCD的对角线,所以AC、BD相等且互相垂直平分,∵OE=2cm,且O为AC的中点,OE⊥CD,AD⊥DC∴E为CD的中点,∴==,即AD=4cm,∴正方形ABCD的面积为42cm2=16cm2,故答案为16.12.解:∵正方形ABCD,AC=16cm∴DO=AC=8=BO∠OCD=45°.故答案为8,8,45.13.解:∵四边形ABCD是正方形,∴∠A=∠D=90°,AB=CD=AD=8,∴AE===6,∴DE=AD﹣AE=2,∴CE===2;故答案为:2.14.解:如图,过点P作EF∥AB,MN∥BC,则正方形ABCD被分成四个小矩形,所以,S△APE=S△APM,S△BPM=S△BPF,S△CPF=S△CPN,S△DPE=S△DPN,∴S△APD+S△BPC=S正方形ABCD,∵△APD与△BPC的面积之和为8cm2,∴正方形ABCD的面积为16cm2,∴AB=4cm.故答案为:4.15.解:设△ADP的高为h1,△BPC的高为h2,根据题意列方程得:S△ADP+S△BPC=AD×h1+BC×h2=BC(h1+h2)=×1×1=.故答案为.三.解答题16.解:延长DA至点G使AG=CF,连接BG,在△ABG和△CBF中,∵,∴△ABG≌△CBF,∴∠BFC=∠BGA,∠CBF=∠ABG,∵BF平分∠CBE交CD于F,∴∠CBF=∠EBF,∴∠ABG=∠EBF,∵AB∥CD,∴∠ABF=∠BFC,∴∠EBG=∠BFC,∴∠EBG=∠BGA,∴BE=GE,∴BE=CF+AE.17.解:△AEH为等腰直角三角形.∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABE=90°∴在Rt△ADH和Rt△ABE中,,∴Rt△ADH≌Rt△ABE(SAS),∴AH=AE,∠DAH=∠BAE.∴∠HAE=∠DAB=90°则△AEH为等腰直角三角形.18.证明:∵四边形ABCD是正方形,DE=AD,∴DE∥BC,DE=BC,∴四边形BCED为平行四边形,∴∠1=∠4.又∵BD=FD,∴∠1=∠2=∠3=×45°,∠3=∠4=×45°,∴BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,∴∠CDG=(180°﹣45°)=,又∵∠GHD=90°﹣∠3=90°﹣=,∴∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.。
苏科版数学八年级下册 9.4矩形菱形正方形大题综合练习(含答案解析)
苏科版数学八年级下册9.4矩形菱形正方形大题综合练习1.如图菱形ABCD中,∠ADC=60°,M、N分别为线段AB,BC上两点,且BM=CN,且AN,CM所在直线相交于E.(1)证明△BCM≌△CAN;(2)∠AEM=________°;(3)求证DE平分∠AEC;(4)试猜想AE,CE,DE之间的数量关系并证明.【答案】(1)证明:如图1中,连接AC.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠ADC=60°,∴△ACD,△ABC是等边三角形,∴BC=AC,∠B=∠ACN=60°,在△BCM和△CAN中,{BC=AC∠B=∠ACNBM=CN,∴△BCM≌△CAN(2)60(3)证明:如图2中,作DG⊥AN于G.DH⊥MC交MC的延长线于H.∵∠AEM=60°,∴∠AEC=120°,∵∠DGE=∠H=90°,∴∠GEH+∠GDH=180°,∴∠GDH=∠ADC=60°,∴∠ADG=∠CDH ,在△DGA 和△DHC 中,{∠DGA =∠H =90∘∠ADG =∠CDH DA =DC,∴△DGA ≌△DHC ,∴DG=DH ,∵DG ⊥AN ,DH ⊥MC ,∴∠DEG=∠DEH .∴DE 平分∠AEC .(4)证明:结论:EA+EC=ED .理由如下:如图2中,由(3)可知,∠GED=60°,在Rt △DEG 中,∵∠EDG=30°,∴DE=2EG ,易知△DEG ≌△DEH ,∴EG=EH ,∴EA+EC=EG+AG+EH-CH ,∵△DGA ≌△DHC ,∴GA=CH ,∴EA+EC=2EG=DE ,∴EA+EC=ED.【解析】【解答】解:(2)如图1中,∵△BCM ≌△CAN ,∴∠BCM=∠CAN ,∴AEM=∠ACE+∠EAC=∠ACE+∠BCM=60°.故答案为60.【分析】(1)连接AC,因为∠ADC=60°,利用菱形四边相等的性质,可知△ADC为等边三角形,所以AC=BC ,又因为菱形的对角线平分一组对角,所以∠ACN=60°=∠B,因为BM=CN,所以△BCM≌△CAN;(2)因为∠AEM=∠CEN,对顶角相等,由全等可知∠AEM=∠CEN=∠B=60°;(3)过点D做AE、CM两边的垂线,利用角角边可得到△DHC≌△DGA,可得DH=DG,再用角平分线的性质,到一个角两边距离相等的点在这个角的角平分线上;(4)由全等可知EA+EC=2EG,又因为在Rt△中30°的角所对的边等于斜边的一半,所以EA +EC=DE.2.综合:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为A. 平行四边形B. 菱形C. 矩形D. 正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.【答案】(1)C(2)解:如图2中,①证明:∵AD=5,S□ABCD=15,∴AE=3.又∵在图2中,EF=4,∴在Rt△AEF中,AF═5.∴AF=AD=5,又∵AF∥DF',AF=DF,∴四边形AFF'D是平行四边形.∴四边形AFF'D是菱形.②解:连接AF',DF,在Rt△DE'F中,∵E'F=E'E﹣EF=5﹣4=1,DE'=3,∴DF═√E′D2+E′F2= √10.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'═√AE2+EF′2= √32+92=3 √10【解析】【解答】(1)解:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,∵BE=CE′,∴AD∥EE′,AD=EE′,∴四边形AEE′D是平行四边形,∵∠AEE′=90°,∴四边形AEE′D是矩形,故选C.【分析】(1)根据矩形的判定方法即可判定;(2)①通过计算证明AF=AD=5,证明四边形AFF′D是平行四边形即可;②连接AF',DF,分别利用勾股定理计算即可;3.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF 的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= 12(4+x)•x﹣12•(4﹣x)•x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= 4√3,3∴S1﹣S2=x2= 16.3②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= √2x,∴√2x+x=4,∴x=4 √2﹣4,∴S1﹣S2=(4 √2﹣4)2=48﹣32 √2.【解析】【分析】(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC 的长,最后再利用(2)中结论进行计算即可.4.如图,在矩形ABCD 中,BC >AB ,∠BAD 的平分线AF 与BD ,BC 分别交于点E ,F ,点O 是BD 的中点,直线OK ∥AF ,交AD 于点K ,交BC 于点G .(1)求证:△DOK ≌△BOG ;(2)探究线段AB 、AK 、BG 三者之间的关系,并证明你的结论;(3)若KD=KG ,BC=2 √2 ﹣1,求KD 的长度.【答案】(1)证明:∵在矩形ABCD 中,AD ∥BC ,∴∠KDO=∠GBO ,∠DKO=BGO .∵点O 是BD 的中点;∴DO=BO .在△DOK 和△BOG 中, {∠KDO =∠GBO∠DKO =∠BGO DO =BO∴△DOK ≌△BOG (AAS ).(2)解:AB+AK=BG ;证明如下:∵四边形ABCD 是矩形;∴∠BAD=∠ABC=90°,AD ∥BC .又∵AF 平分∠BAD ,∴∠BAF=∠BFA=45°.∴AB=BF .∵OK ∥AF ,AK ∥FG ,∴四边形AFGK 是平行四边形.∴AK=FG .∵BG=BF+FG ;∴BG=AB+AK .(3)解:∵四边形AFGK 是平行四边形.∴AK=FG ,AF=KG又∵△DOK ≌△BOG ,且KD=KG ,∴AF=KG=KD=BG .设AB=a ,则AF=KG=KD=BG= √2 a .∴AK=2 √2 ﹣1﹣ √2 a ,FG=BG ﹣BF= √2 a ﹣a .∴2 √2﹣1﹣√2a= √2a﹣a.解得a=1.∴KD= √2a= √2.【解析】【分析】(1)在矩形ABCD中,AD∥BC,得到∠KDO=∠GBO,∠DKO=BGO,DO=BO,得到△DOK≌△BOG(AAS);(2)四边形ABCD是矩形,得到∠BAD=∠ABC=90°,AD∥BC,又AF平分∠BAD,得到∠BAF=∠BFA=45°,AB=BF,由OK∥AF,AK∥FG,得到四边形AFGK 是平行四边形,得到AK=FG,BG=BF+FG,即BG=AB+AK;(3)四边形AFGK是平行四边形,得到AK=FG,AF=KG,又△DOK≌△BOG,且KD=KG,得到AF=KG=KD=BG,设AB=a,则AF=KG=KD=BG=√2a,得到AK=2√2﹣1-√2a,FG=BG﹣BF=√2a﹣a,解得a=1,得到KD=√2a=√2.5.综合题(1)感知:如图①,四边形ABCD、CEFG均为正方形.易知BE=DG.(2)探究:如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(3)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD的延长线上.若AE=3ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为________ .【答案】(1)证明:∵四边形ABCD、四边形CEFG均为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,在△BCE和△DCG中,{CB=CD∠BCE=∠DCGCE=CG,∴△BCE≌△DCG,∴BE=DG.(2)∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,∵∠A=∠F,∴∠BCD=∠ECG,∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG,∴△BCE≌△DCG.,∴BE=DG.(3)20【解析】【解答】解:应用:∵四边形ABCD是菱形,S△EBC=8,∴S△AEB+S△EDC=8,∵AE=3DE,∴S△AEB=3S△EDC,∴S△EDC=6,S△EDC=2,∵△BCE≌△DCG,∴S△DGC=S△EBC=8,∴S△ECG=8+2=10,∴菱形CEFG的面积=2•S△EGC=20,故答案为20.【分析】感知:根据正方形的性质,得到BC=CD,CE=CG,∠BCD=∠ECG=90°,得到∠BCE=∠DCG,得到△BCE≌△DCG,BE=DG;探究:由四边形ABCD、四边形CEFG均为菱形,得到BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F,由∠A=∠F,得到∠BCE=∠DCG,△BCE≌△DCG,BE=DG;应用:由四边形ABCD是菱形,△EBC的面积为8,AE=3DE,得到S△AEB=3S△EDC,得到S△EDC=6,S△EDC=2,由△BCE≌△DCG,得到S△DGC=S△EBC=8,S△ECG=8+2=10,所以菱形CEFG的面积=2•S△EGC=20.6.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函x+b的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE 数y=23上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N 的坐标.【答案】(1)解:y=23x+b中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(3,4﹣b),把E的坐标代入y=23x+b得4﹣b=﹣2+b,解得:b=3(2)解:S四边形OAED= 12(OD+AE)•OA= 12×(3+1)×3=6,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴S△ODM=1.5.设M的横坐标是a,则12×3a=1.5,解得:a=1,把x=a=1代入y=﹣23x+3得y=﹣23× 43+3= 73.则M的坐标是(1,73)(3)解:当四边形OMDN是菱形时,如图(1),M的纵坐标是32,把y= 32代入y=﹣23x+3,得﹣23x+3= 32,解得:x= 94,则M的坐标是(94,32),则N的坐标是(﹣94,32);当四边形OMND是菱形时,如图(2)OM=OD=3,设M的横坐标是m,则纵坐标是﹣23m+3,则m2+(﹣23m+3)2=9,解得:m= 3613或0(舍去).则M的坐标是(3613,1513).则DM的中点是(1813,2713).则N的坐标是(3613,5413).故N的坐标是(﹣94,32)或(3613,5413).【解析】【分析】(1)首先在一次函数的解析式中令x=0,即可求得D的坐标,则OD的长度即可求得,OD=b,则E的坐标即可利用b表示出来,然后代入一次函数解析式即可得到关于b的方程,求得b的值;(2)首先求得四边形OAED的面积,则△ODM的面积即可求得,设出M的横坐标,根据三角形的面积公式即可求得M的横坐标,进而求得M的坐标;(3)分成四边形OMDN是菱形和四边形OMND是菱形两种情况进行讨论,四边形OMDN 是菱形时,M是OD的中垂线与DE的交点,M关于OD的对称点就是N;四边形OMND是菱形,OM=OD,M在直角DE上,设出M的坐标,根据OM=OD即可求得M的坐标,则根据ON和DM的中点重合,即可求得N的坐标.7.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2.(1)若DG=6,求AE的长;(2)若DG=2,求证:四边形EFGH是正方形.【答案】(1)解:∵AD=6,AH=2∴DH=AD﹣AH=4∵四边形ABCD是矩形∴∠A=∠D=90°∴在Rt△DHG中,HG2=DH2+DG2在Rt△AEH中,HE2=AH2+AE2∵四边形EFGH是菱形∴HG=HE∴DH2+DG2=AH2+AE2即42+62=22+AE2∴AE= =4(2)证明:∵AH=2,DG=2,∴AH=DG,∵四边形EFGH是菱形,∴HG=HE,在Rt△DHG和Rt△AEH中,,∴Rt△DHG≌Rt△AEH(HL),∴∠DHG=∠AEH,∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形【解析】【分析】(1)先根据矩形的性质,利用勾股定理列出表达式:HG2=DH2+DG2,HE2=AH2+AE2,再根据菱形的性质,得到等式DH2+DG2=AH2+AE2,最后计算AE的长;(2)先根据已知条件,用HL判定Rt△DHG≌Rt△AEH,得到∠DHG=∠AEH,因为∠AEH+∠AHE=90°,∠DHG+∠AHE=90°,可得菱形的一个角为90°,进而判定该菱形为正方形.8.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD 于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=________,AP=________.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC等于.【答案】(1)8﹣2t;2+t(2)解:∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2(3)解:①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8 √2.【解析】【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3)①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.9.已知▱OABC的顶点A、C分别在直线x=2和x=4上,O为坐标原点,直线x=2分别与x轴和OC边交于D、E,直线x=4分别与x轴和AB边的交于点F、G.(1)如图,在点A、C移动的过程中,若点B在x轴上,①直线AC是否会经过一个定点,若是,请直接写出定点的坐标;若否,请说明理由.②▱OABC是否可以形成矩形?如果可以,请求出矩形OABC的面积;若否,请说明理由.③四边形AECG是否可以形成菱形?如果可以,请求出菱形AECG的面积;若否,请说明理由.(2)在点A 、C 移动的过程中,若点B 不在x 轴上,且当▱OABC 为正方形时,直接写出点C 的坐标.【答案】(1)解:①是,经过定点(3,0).理由如下:如图1中,连接AC 交OB 于K .∵四边形OABC 是平行四边形,∴OK=KB ,BC ∥OA ,BC=OA ,∴∠CBF=∠AOD ,在△DOA 和△FBC 中,{∠ODA =∠CFB =90°∠AOD =∠CBF OA =BC,∴△DOA ≌△FBC ,∴OD=FB=2,∴OB=6,∵OK=KB ,∴OK=3,∴K (3,0),∴直线AC 经过定点K (3,0).②可以.利用如下:当∠OCB=90°时,四边形OABC 是矩形,由(1)可知△DOA ≌△FBC ,∴OD=BF=2,∵∠OCF+∠FCB=90°,∠FCB+∠CBF=90°,∴∠OCF=∠CBF,∵∠CFO=∠CFB,∴△CFO∽△BFC,∴CFBF = OFCF,∴CF2= 4CF,∴CF=2 √2,∴S矩形OABC=2•S△OBC=2× 12× 6×2√2=12 √2.③可以.理由如下:如图3中,易知当OE=EC=AE时,四边形AECG是菱形.由(1)可知,△DOA≌△FBC,∴AD=CF,∵DE= 12CF,设DE=x,则AD=CF=2x,OE=AE=3x,在Rt△ADE中,∵OE2=OD2+DE2,∴9x2=x2+4,∴x= √22,∴AE= 3√22,∴S菱形AECG=AE•DF= 3√22×2=3 √2(2)解:如图4中,当四边形OABC是正方形时,易证△DOA≌△FCO,∴OD=CF=2,∴点C坐标(4,2),根据对称性C′(4,﹣2)时,也满足条件.综上所述,点C坐标为(4,2)或(4,﹣2)【解析】【分析】(1)①是,经过定点(3,0).如图1中,连接AC交OB于K,只要证明OD=FB=2,推出OB=6,即可解决问题.②当∠OCB=90°时,四边形OABC是矩形,由(1)可知△DOA≌△FBC,推出OD=BF=2,由△CFO∽△BFC,可得CFBF = OFCF,由此即可解决问题.③可以.如图3中,易知当OE=EC=AE时,四边形AECG是菱形.由(1)可知,△DOA≌△FBC,推出AD=CF,易知DE= 12CF,设DE=x,则AD=CF=2x,OE=AE=3x,在Rt△ADE中,根据OE2=OD2+DE2,列出方程即可解决问题.(2)如图4中,当四边形OABC是正方形时,易证△DOA≌△FCO,推出OD=CF=2,推出点C坐标(4,2),根据对称性C′(4,﹣2)时,也满足条件.10.如图1,在平面直角坐标系中,正方形ABCO的顶点C、A分别在x、y轴上,A(0,6)、E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH(1)当H(﹣2,6)时,求证:四边形EFGH为正方形(2)若F(﹣5,0),求点G的坐标(3)如图2,点Q为对角线BO上一动点,D为边OA上一点,DQ⊥CQ,点Q从点B出发,沿BO方向移动.若移动的路径长为3,直接写出CD的中点M移动的路径长为________.【答案】(1)证明:如图1中,∵E(0,2),H(﹣2,6),∴OE=AH=2,∵四边形ABCO是正方形,∴∠HAE=∠EOF=90°,∵四边形EFGH是菱形,∴EH=EF,在Rt△AHE和Rt△OEF中,{AH=EOHE=EF,∴Rt△AHE≌△Rt△OEF,∴∠AEH=∠EFO,∵∠EFO+∠FEO=90°,∴∠AEH+∠FEO=90°,∴∠HEF=90°,∴四边形EFGH是正方形(2)解:如图1中,连接GE、FH交于点K.∵F(﹣5,0),E(0,2),∴OF=5,OE=2,EA=4,∵HE=EF,∴52+22=42+AH2,∴AH= √13,∴H(﹣√13,6),∵四边形EFGH是菱形,∴HK=KF,KE=KG,设G(m,n),则有m+02= −5−√132,n+22= 6+02,∴m=﹣5﹣√13,n=4,∴G(﹣5﹣√13,4)(3)3√22【解析】【解答】(3)解:如图2中,如图2中,作MN⊥CO于M.∵MN∥OD,CM=MD,∴CN=ON,∴MN垂直平分线段CO,∴点M在线段OC的垂直平分线上运动,如图3中,易知当点Q与B重合时,点M与BD的中点N重合,当BQ=3时,作EQ⊥BC于E,延长EQ交OA于F,延长OM交BC于H,连接NM(线段MN的长即为点M的运动轨迹的长),∵QC=QD,∠CEQ=∠QFD,易证∠ECQ=∠FQD,∴△EQC≌△FDQ,∴EQ=DF=BE= 3√22,CE=OF=6﹣3√22,∴DO=6﹣3 √2,∵CM=DM,∠CMH=∠OMD,∠CHM=∠DOM,∴△HMC≌△OMD,∴OM=HM,CH=OD=6﹣3 √2,BH=3 √2,∵ON=NB,∴MN= 12BH= 3√22,∴点M的运动的路径的长为3√22.故答案为3√2.2【分析】(1)只要证明Rt△AHE≌△Rt△OEF,推出∠AEH=∠EFO,由∠EFO+∠FEO=90°,推出∠AEH+∠FEO=90°,推出∠HEF=90°,即可解决问题.(2)如图1中,连接GE、FH交于点K.首先求出点H的坐标,设G(m,n),根据中点坐标公式,列出方程组即可解决问题.(3)如图2中,作MN⊥CO于M.由MN∥OD,CM=MD,推出CN=ON,推出MN 垂直平分线段CO,推出点M在线段OC的垂直平分线上运动,如图3中,易知当点Q与B 重合时,点M与BD的中点N重合,当BQ=3时,作EQ⊥BC于E,延长EQ交OA于F,延长OM交BC于H,连接NM(线段MN的长即为点M的运动轨迹的长),想办法求出BH 的长,即可利用三角形的中位线定理解决问题.11.如图,△ABC是等腰直角三角形,∠A=90°,点P,Q分别是AB, AC上的一动点,且满足BP=AQ,D 是BC的中点.(1)求证:△PDQ是等腰直角三角形.(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.【答案】(1)证明:连接AD.∵△ABC是等腰直角三角形,D是BC的中点,∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,又∵BP=AQ,∴△BPD≌△AQD,∴PD=QD,∠BDP=∠ADQ,∵∠BDP+∠ADP=90°,∴∠ADP+∠ADQ=∠PDQ=90°,∴△PDQ为等腰直角三角形(2)解:当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:由(1)知△ABD为等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠BAC=90°,∠PDQ=90°,∴四边形APDQ为矩形,AB,∴四边形APDQ为正方形又∵DP=AP= 12【解析】【分析】连接AD,根据直角三角形的性质可得AD=BD=DC,从而证明△BPD≌△AQD,得到PD=QD,∠ADQ=∠BDP,则△PDQ是等腰三角形;由∠BDP+∠ADP=90°,得出∠ADP+∠ADQ=90°,得到△PDQ是直角三角形,从而证出△PDQ是等腰直角三角形;若四边形APDQ是正方形,则DP⊥AB,得到P点是AB的中点.12.如图,在等边三角形ABC中,点D是BC边的中点,以AD为边作等边三角形ADE.(1)求∠CAE的度数;(2)取AB边的中点F,连结CF、CE,试证明四边形AFCE是矩形.【答案】(1)解:在等边三角形ABC中,∵点D是BC边的中点,∴∠DAC=30°.又∵△ADE为等边三角形,∴∠DAE=60°.∴∠CAE=∠DAE-∠DAC=30°(2)解:由(1)知,∠EAF=90°,由F为AB的中点知,∠CFA=90°,∴CF∥EA.在等边三角形ABC中,CF=AD.在等边三角形ADE中,AD=EA.∴CF=EA.∴四边形AFCE为平行四边形.又∵∠CFA=90°,∴四边形AFCE为矩形.【解析】【分析】根据等边三角形三线合一的特点,易求得∠DAC=30°,则∠CAE=∠DAE-∠DAC.先证明四边形AECF是平行四边形,然后根据∠CFA=∠FAE=90°,由矩形的定义判定四边形AFCE是矩形.13.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【答案】(1)解:四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形(2)解:∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形(3)解:当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在【解析】【分析】可先证明△DBE≌△ABC ,又∵△ACF是等边三角形,∴AC=AF.∴DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;若四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,A,D,E,F为顶点的四边形就不存在.14.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)证明:如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)证明:如图2中,∵AM=ME.AD=DB,∴DM∥BE,∴∠GDN+∠DNE=180°,∵∠GDN=∠AEB,∴∠AEB+∠DNE=180°,∴AE∥DN,∴四边形DMEN是平行四边形,∵DM== BE,EM== AE,AE=BE,∴DM=EM,∴四边形DMEN是菱形(2)证明:如图1中,取BE的中点F,连接DM、DF.由(1)可知四边形EMDF是菱形,∴∠AEB=∠MDF,DM=DF,∴∠GDN=∠AEB,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN【解析】【分析】(1)如图2中,首先证明四边形DMEN是平行四边形,再证明ME=MD 即可证明.(2)如图1中,取BE的中点F,连接DM、DF.只要证明△DMG≌△DFN即可.15.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,分别延长OB,OD到点E,F,使BE=DF,顺次连接A、E、C、F各点.(1)求证:∠FAD=∠EAB.(2)若∠ADC=130°,要使四边形AECF是正方形,求∠FAD的度数.【答案】(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AD=AB,∠ADB=∠ABD,∴∠ADF=∠ABE,在△FAD与△EAB中,∴△FAD≌△EAB(SAS),∴∠FAD=∠EAB;(2)解:∵四边形AECF对角线互相垂直平分,∴只要∠EAF=90°即得四边形BFDE是正方形,∵∠ADC=130°,∴∠DAB=180°﹣130°=50°∴∠FAD+∠EAB=40°,∵∠FAD=∠EAB,∴∠FAD= ×40°=20°【解析】【分析】(1)由题意易证∠ADF=∠ABE,又因为DF=EB,AD=AB,于是可△FAD≌△EAB,;(2)由已知可得四边形AECF对角线互相垂直平分,只要∠EAF=90°即得四边形AECF是正方形,由∠FAD=∠EAB,再证得∠DAB=50°,可得∠FAD+∠EAB=40°,于是∠FAD= 1×40°=20°.216.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD 为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:________,②BC,DC,CF之间的数量关系为:________;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,(1)中的①,②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请直接写出GE的长.【答案】(1)垂直;BC=CF+CD(2)解:CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.理由如下:∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,{AD=AF∠BAD=∠CAFAB=AC,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC .(3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,如图3所示:∵∠BAC=90°,AB=AC ,∴BC= √2 AB=2 √2 ,AH= 12 BC= √2 ,∴CD= 14 BC= √22 ,CH= 12 BC= √2 ,∴DH= 3√22 ,由(2)证得BC ⊥CF ,CF=BD= 5√22 ,∵四边形ADEF 是正方形,∴AD=DE ,∠ADE=90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE=CM ,EM=CN ,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM ,在△ADH 与△DEM 中, {∠ADH =∠DEM∠AHD =∠DMEAD =DE, ∴△ADH ≌△DEM (AAS ),∴EM=DH= 3√22 ,DM=AH= √2 ,∴CN=EM= 3√22 ,EN=CM= 3√22 ,∵∠ABC=45°,∴∠BGC=45°,∴△BCG 是等腰直角三角形,∴CG=BC=2 √2 ,∴GN=CG ﹣CN= √22 , ∴EG= √GN 2+EN 2 = (√22)(3√22)= √5 . 【解析】【解答】解:(1)①正方形ADEF 中,AD=AF ,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF ,在△DAB 与△FAC 中, {AD =AF∠BAD =∠CAFAB =AC,∴△DAB ≌△FAC (SAS ),∴∠B=∠ACF ,∴∠ACB+∠ACF=90°,即BC ⊥CF ;故答案为:垂直;②△DAB ≌△FAC ,∴CF=BD ,∵BC=BD+CD ,∴BC=CF+CD ;故答案为:BC=CF+CD ;【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB ≌△FAC ,根据全等三角形的性质即可得到结论;②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质得到CF=BD ,∠ACF=∠ABD ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC= √2 AB=2 √2 ,AH= 12 BC= √2 ,求得DH= 3√22 ,根据正方形的性质得到AD=DE ,∠ADE=90°,根据矩形的性质得到NE=CM ,EM=CN ,由角的性质得到∠ADH=∠DEM ,根据全等三角形的性质得到EM=DH= 3√22 ,DM=AH= √2 ,等量代换得到CN=EM= 3√22 ,EN=CM= 3√22,根据等腰直角三角形的性质得到CG=BC=2 √2 ,根据勾股定理即可得到结论.17.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO=CO ,BO=DO ,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD 是矩形.(2)DF ⊥AC ,若∠ADF :∠FDC=3:2,则∠BDF 的度数是多少?【答案】(1)证明:∵AO=CO ,BO=DO ,∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,【解析】根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.18.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=________度.【答案】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,{AB=BC∠ABP=∠CBPPB=PB,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∵PA=PE,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°,∵∠ABC=90°,∴∠EPC=90°(3)115°【解析】【解答】(3)∠EPC=115°,理由:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,{AB=BC∠ABP=∠CBPPB=PB,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP,∵PA=PE,∴∠DAP=∠DCP,∴∠PAE=∠PEA,∴∠CPB=∠AEP,∵∠AEP+∠PEB=180°,∴∠PEB+∠PCB=180°,∴∠ABC+∠EPC=180°.∴∠CPE=180°-∠ABC=180°-65°=115°【分析】(1)根据正方形的性质得到△ABP≌△CBP,得到对应边相等,得到PC=PE;(2)由(1)知△ABP≌△CBP,得到对应边对应角相等,根据等边对等角和两直线平行同旁内角互补,求出∠CPE的度数;(3)根据菱形的性质,得到△ABP≌△CBP,得到得到对应边对应角相等,根据等边对等角和两直线平行同旁内角互补,求出∠CPE的度数.19.实践探究,解决问题如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ACD.(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,且AB=4,AD=8,则S阴影=________;(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S阴影和S平行四边形ABCD 之间满足的关系式为________;(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S阴影和S四边形ABCD之间还满足(2)中的关系式吗?若满足,请予以证明,若不满足,说明理由.解决问题:(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和(即S1+S2+S3+S4的值).【答案】(1)16(2)S阴影=12S平行四边形ABCD(3)解:满足(2)中的关系式,理由如下:连接BD,由图1得S△EBD= 12 S△ABD同理S△BDF= 12S△BDC∴S四边形EBFD=S△EBD+S△BDF= 12S四边形ABCD(4)解:设四边形的空白区域分别为a,b,c,d 由上述性质可以得出:a+S2+S3= 12S△ACD①,c+S1+S4= 12S△ACB②,b+S2+S1= 12S△ABD③,d+S4+S3= 12S△ACD④,①+②+③+④得,a+S2+S3+c+S1+S4+b+S2+S1+d+S4+S3=S四边形ABCD⑤而S四边形ABCD=a+b+c+d+S1+S2+S3+S4+S阴影⑥所以联立⑤⑥得S1+S2+S3+S4=S阴影=20平方米.【解析】【解答】解:(1)∵E、F分别为矩形ABCD的边AD、BC的中点,且AB=4,AD=8,∴S阴影= 12×8×4=16,故答案为:16;(2)∵E、F分别为平行四边形ABCD的边AD、BC的中点,∴S阴影= 12S平行四边形ABCD;故答案为:S阴影= 12S平行四边形ABCD;【分析】(1)由矩形的性质容易得出结果;(2)由平行四边形的性质容易得出结果;(3)连接BD,由题意得出S△EBD= 12 S△ABD同理S△BDF= 12S△BDC,即可得出结论;(4)设四边形的空白区域分别为a,b,c,d,由(3)可以得出:a+S2+S3= 12S△ACD①,c+S1+S4= 12S△ACB②,b+S2+S1= 12S△ABD③,d+S4+S3= 12S△ACD④,进一步得出结论即可.20.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)解:∵四边形AECF是菱形,如图所示:∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE= 12BC=5.【解析】【分析】(1)利用平行四边形的性质得出对边平行且相等,结合已知,可证出AECF是平行四边形;(2)利用菱形的邻边相等的性质,可证出BE=AE=CE= 12BC=5.。
浙教版八年级数学下册《5.3正方形(2)》同步练习(含答案)
5.3正方形(2)A练就好基础基础达标1.正方形具有而菱形不一定具有的特征是(D)A.对边互相平行B.对角线互相垂直平分C.是中心对称图形D.有4条对称轴2.如图所示,在正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有(C) A.4个B.6个C.8个D.10个第2题图第3题图3.如图所示,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为(C)A.14B.15C.16D.174.如图所示,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.若∠BEC=80°,则∠EFD的度数为(C)A.20°B.25°C.35°4题图第5题图5.如图所示,正方形ABCD的对角线相交于点O,E是BC上任意一点,EG⊥BD于点G,EF⊥AC于点F.若AC=10,则EG+EF的值为(C)A.10 B.8 C.5 D.46.如图所示,正方形ABCD=FC=1 cm,那么EF的长是__10_cm__.6题图第7题图7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(2,3).8.如图所示,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF.(2)若∠ABE=55°,求∠EGC的大小.解:(1)证明:∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC . ∵BE ⊥BF ,∴∠FBE =90°.∵∠ABE +∠EBC =90°,∠CBF +∠EBC =90°, ∴∠ABE =∠CBF .在△AEB 和△CFB 中,∵AB =BC ,∠ABE =∠CBF ,BE =BF , ∴△AEB ≌△CFB (SAS ),∴AE =CF .(2)∠EGC =∠EBG +∠BEF =35°+45°=80°.9.如图所示,在正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于点E ,DF ⊥AG 于点F ,连结DE .(1)求证:△ABE ≌△DAF .(2)若AF =1,四边形ABED 的面积为解:(1)证明:∵四边形ABCD 是正方形, ∴AB =AD .∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF =90°,∠DAF +∠ADF =90°, ∴∠BAE =∠ADF .在△ABE 和△DAF 中, ∵⎩⎪⎨⎪⎧∠BAE =∠ADF ,∠AEB =∠DF A ,AB =AD ,∴△ABE ≌△DAF (AAS ).(2)设EF =x ,则AE =DF =x +1,由题意得2×12×(x +1)×1+12×x ×(x +1)=6,解得x =2或-5(舍去),∴EF =2.B 更上一层楼 能力提升10.·嘉兴将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( A )A B C D11.如图所示,E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为( D )A.22B.12C.32D.2 12.·青岛已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为__1234__.13.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连结BE ,DF ,DF 交对角线AC 于点G ,且DE =DG . 求证:(1)AE =CG ; (2)BE ∥DF .证明:(1)∵DE =DG , ∴∠DEG =∠DGE , ∴∠AED =∠CGD .∵四边形ABCD 是正方形,∴AD =CD =BC ,∠DAC =∠BCE =∠DCA =45°. 在△ADE 和△CDG 中, ∵⎩⎪⎨⎪⎧∠AED =∠CGD ,∠DAC =∠DCA ,AD =CD ,∴△ADE ≌△CDG (AAS ), ∴AE =CG ;(2)在△BCE 和△DCE 中, ∵⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCE ,CE =CE ,∴△BCE ≌△DCE (SAS ),∴∠BEC =∠DEG ,又∵∠DGE =∠DEG , ∴∠BEC =∠DGE , ∴BE ∥DF .C 开拓新思路 拓展创新14.如图,在正方形ABCD 中,P 是对角线BD 上的一点,过点P 作PE ⊥BC 于点E, PF ⊥CD 于点F .(1)猜想线段P A ,PE ,PF 之间的数量关系,并给出证明; (2)猜想线段P A ,EF 之间的位置关系,并给出证明. 解:(1)P A 2=PE 2+PF 2 证明:连结AC ,PC ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,∠BCD =90°, ∴AP =CP .∵PE ⊥BC ,PF ⊥CD , ∴∠PEC =∠PFC =90°, ∴四边形PECF 是矩形, ∴PC =EF ,∠EPF =90°, ∴AP =EF .∵EF 2=PE 2+PF 2, ∴P A 2=PE 2+PF 2. (2)AP ⊥EF .证明:过点P 作PN ⊥AB ,垂足为点N ,延长AP ,交EF 于点M , ∵四边形ABCD 是正方形,∴∠ABP =∠CBD =45°, ∴△DFP 为等腰直角三角形, ∴DF =PF ,又AN =DF , ∴AN =FP .又∵NP ⊥AB ,PE ⊥BC ,∴四边形BNPE 是正方形,∴NP =EP . ∵AP =PC ,四边形PECF 为矩形, ∴EF =PC ,∴AP =EF . 在△ANP 与△FPE 中, ∵⎩⎪⎨⎪⎧AN =FP ,NP =EP ,AP =EF ,∴△ANP ≌△FPE (SSS ), ∴∠NAP =∠PFE .∵在△APN 与△FPM 中,∠APN =∠FPM ,∠NAP =∠PFM , ∴∠PMF =∠ANP =90°,∴AP ⊥EF .15.如图所示,在△ABC 中,∠ACB =90°,AC =6,BC =8,以斜边AB 为边向外作正方形ABDE ,求CE 的长.第15题图第15题答图解:过点E作EF⊥CA于点F,易证△ABC≌△EAF,∴EF=AC=6,AF=BC=8,∴CF=14.∴CE=62+142=258.。
2020-2021学年浙教版八年级数学下册《5.3正方形》同步提升训练(附答案)
2020-2021学年浙教版八年级数学下册《5.3正方形》同步提升训练(附答案)1.如图,正方形ABCD和正方形DEFG的边长分别为5和3,点E,G分别为AD,CD边上的点,H为BF的中点,连接HG,则HG的长为()A.2B.4C.D.2.如图,矩形ABCD中,AB=10,AD=4,点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,经过()秒时,直线MN和正方形AEFG开始有公共点.A.2B.2.5C.3D.3.53.如图,在正方形ABCD中,AB=4,E是BC上的一点且CE=3,连接DE,动点M从点A以每秒2个单位长度的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点M的运动时间为t秒,当△ABM和△DCE全等时,t的值是()A.3.5B.5.5C.6.5D.3.5或6.54.长度相等的三根铁丝,分别做成一个长方形、正方形和圆,()面积最大.A.长方形B.正方形C.圆5.如图,三个边长均为的正方形重叠在一起,M、N是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A.1B.2C.D.46.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形7.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是()A.①③B.②③C.①②③D.①②③④8.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD=BC,∠BAD=∠BCDC.AO=CO,BO=DO,AB=BC D.AO=BO=CO=DO,AC⊥BD9.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线相等且垂直的四边形是正方形10.如图,点P的坐标为(4,4),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°,连接AB,OP,下列结论:①P A=PB;②若OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形;③四边形OAPB的面积与周长为定值;④AB>OP.其中正确的结论是()A.①②B.①②③C.①③④D.①②④11.如图,两个边长均为6的正方形重叠在一起,O是正方形ABCD的中心,则阴影部分的面积是.12.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.13.在▱ABCD中,AC、BD为对角线,如果AB=BC,AC=BD,那么▱ABCD一定是.14.平行四边形ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得平行四边形ABCD为正方形.15.已知在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=6,点E在线段DC上,且∠ABE=45°,若AE=5,则CE的长为.16.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.17.如图,若在正方形ABCD中,点E为CD边上一点,点F为AD延长线上一点,且DE =DF,则AE与CF之间有怎样的数量关系和位置关系?请说明理由.18.如图,长方形OABC的顶点A、C的坐标分别为(2a+2,0)、(0,2a﹣2)(a>2),正方形ADEF的顶点D在边AB上,且点F的坐标为(2a+4,0).(1)长方形OABC的面积为;(用含a的式子表示)(2)正方形ADEF的边长为;(3)求阴影部分的面积.(用含a的式子表示)19.如图,△ABC中,点E,F分别是AB,AC的中点,点P为△ABC内一点,点G,H 是PB,PC的中点,顺次连接点E,F,H,G.(1)求证:四边形EFHG是平行四边形;(2)若AP=6,BC=10,求四边形EFHG的周长;(3)当线段AP,BC满足什么条件时,四边形EFHG是正方形?请说明理由.20.已知:如图,点D是△ABC中BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是点EF,且BF=CE.(1)求证:Rt△BDF≌Rt△CDE(2)问:△ABC满足什么条件时,四边形AEDF是正方形,并说明理由.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)判断AF与CD的数量关系,并证明之.(2)当△ABC满足什么条件时,四边形ADCF为正方形,并证明你的猜想.22.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案1.解:延长GF交AB于P,过H作MN⊥CD于M,交AB于N,∵四边形ABCD是正方形,∴AB∥CD,BC⊥CD,∴MN⊥AB,∵四边形DEFG是正方形,∴FG⊥CD,∴FG∥HM∥BC,∵H是BF的中点,∴PN=BN=CM=GM=CG==1,∴HN是△BFP的中位线,∴HN=FP=1,∴MH=5﹣1=4,Rt△GHM中,由勾股定理得:GH===,故选:D.2.解:过点F作FQ⊥CD于点Q,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠AED+∠FEQ=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEQ,在△ADE和△EQF中,,∴△ADE≌△EQF(AAS),∴AD=EQ=4,当直线MN和正方形AEFG开始有公共点时:DQ+CM≥10,∴t+4+2t≥10,解得:t≥2,故当经过2秒时.直线MN和正方形AEFG开始有公共点.故选:A.3.解:如图,当点M在BC上时,∵△ABM′和△DCE全等,∴BM=CE,由题意得:BM′=2t﹣4=3,所以t=3.5(秒);当点M在AD上时,∵△ABM″和△CDE全等,∴AM″=CE,由题意得:AM″=16﹣2t=3,解得t=6.5(秒).所以,当t的值为3.5秒或6.5秒时.△ABM和△DCE全等.故选:D.4.解:设长度为L的三根铁丝,图形的面积用S表示,长方形:设一边为x,S1=x(﹣x)=﹣x2+x,那么当x=时,S1最大,此时S1=;正方形:S2=()2=;圆:2πr=L,r=,S3=π•r2=;∴S3>S2≥S1.故选:C.5.解:连接AN,DN,如图所示:∵三个边长均为的正方形重叠在一起,M、N是其中两个正方形对角线的交点,∴∠ANE+∠END=90°,∠DNF+∠END=90°,∴∠ANE=∠DNF,∵四边形ABCD是正方形,∴∠EAN=∠FDN=45°,AN=DN在△ANE和△DNF中∴△ANE≌△DNF(ASA),∴两个正方形阴影部分ENFD的面积=S正方形ABCD,同理另外两个正方形阴影部分的面积也是S正方形ABCD,∴S阴影部分=S正方形=××=1.故选:A.6.解:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.7.解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,∴OA=OB=OC=OD,AB∥CD,AD∥BC,∴∠OBM=∠ODP,∠OAQ=∠OCN,过点O的直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,∴∠BOM=∠DOP,∠AOQ=∠CON,所以△BOM≌△DOP(ASA),△AOQ≌△CON(ASA),所以OM=OP,OQ=ON,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;故正确结论的序号是①②③.故选:C.8.解:A.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形;B.AD=BC,∠BAD=∠BCD,四边形ABCD不一定是平行四边形,∴不能判定四边形ABCD是正方形;C.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形;D.∵AO=BO=CO=DO,∴四边形ABCD是矩形,∵AC⊥BD,∴四边形ABCD是正方形;故选:D.9.解:①由平行四边形的判定可知A正确;②由矩形的判定可知B正确;③因为对角线互相平分的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形,故C正确;④D选项中再加上一个条件:对角线互相平分,可证其是正方形,故D错误;故选:D.10.解:过P作PM⊥y轴于M,PN⊥x轴于N,AB与OP交于点C,如图所示:∵P(4,4),∴PN=PM=4,∵x轴⊥y轴,∴∠MON=∠PNO=∠PMO=90°,∴∠MPN=360°﹣90°﹣90°﹣90°=90°,则四边形MONP是正方形,∴OM=ON=PN=PM=4,∵∠MPN=∠APB=90°,∴∠MPB=∠NP A,在△MPB和△NP A中,,∴△MPB≌△NP A(ASA),∴P A=PB,故①正确;∵OP与AB的交点恰好是AB的中点,∴BC=AC,在Rt△APB中,PC是斜边AB的中线,∴PC=BC,在Rt△AOB中,OC是斜边AB的中线,∴OC=BC,∴BC=AC=PC=OC,∴四边形OAPB是矩形,∵P A=PB,∴四边形OAPB是正方形,故②正确;∵△MPB≌△NP A,∴四边形OAPB的面积=四边形BONP的面积+△PNA的面积=四边形BONP的面积+△PMB的面积=正方形PMON的面积=4×4=16,∵△MPB≌△NP A,∴BM=AN,∴OA+OB=ON+AN+OB=ON+OM=4+4=8,P A=PB,且P A和PB的长度会不断的变化,故周长不是定值,故③错误;∵OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形,∴AB=OP,故④错误;故选:A.11.解:如图,过点O作OE⊥AD于点E,OF⊥DC于点F,设两个正方形的边的交点分别为点G和点H,如图所示:则有∠OEG=∠OFD=∠D=90°,∵O是正方形ABCD的中心,∴OE=OF,∠EOF=90°,∴四边形OEDF为正方形.∵∠GOH=90°,∠EOF=90°,∴∠EOG=∠FOH,在△EOG和△FOH中,,∴△EOG≌△FOH(ASA).∴阴影部分的面积等于正方形OEDF的面积,∵两个边长均为6的正方形重叠在一起,∴正方形OEDF的面积为:3×3=9.∴阴影部分的面积为9.故答案为:9.12.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.13.解:∵四边形ABCD是平行四边形,AB=BC,∴▱ABCD是菱形,又∵AC=BD,∴▱ABCD是矩形,∴▱ABCD是正方形;故答案为:正方形.14.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形;当AC=BD时,▱ABCD为正方形;故答案为:∠BAD=90°或AC=BD.15.解:如图,过点B作BF⊥AD交DA的延长线于F,∵AD∥BC,∠D=90°,BC=CD,∴四边形BCDF是正方形,把△BCE绕点B顺时针旋转90°得到△BFG,则CE=FG,BE=BG,∠CBE=∠FBG,∵∠ABE=45°,∴∠ABG=∠ABF+∠FBG=∠ABF+∠CBE=90°﹣∠ABE=90°﹣45°=45°,∴∠ABE=∠ABG,在△ABE和△ABG中,,∴△ABE≌△ABG(SAS),∴AE=AG,∴AF+CE=AF+FG=AG=AE,设CE=x,则DE=6﹣x,AF=5﹣x,∴AD=6﹣(5﹣x)=x+1,在Rt△ADE中,AD2+DE2=AE2,即(x+1)2+(6﹣x)2=52,整理得,x2﹣5x+6=0,解得x1=2,x2=3,即CE的长度是2或3;故答案为:2或3.16.证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.17.解:AE=CF,AE⊥CF,理由如下:如图,延长AE交CF于点G,∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠CDE=90°,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴AE=CF,∠DAE=∠DCF,∵∠DCF+∠F=90°,∴∠DAE+∠F=90°,∴AG⊥CF,即AE⊥CF.∴AE=CF,AE⊥CF.18.解:(1)∵长方形OABC的顶点A、C的坐标分别为(2a+2,0)、(0,2a﹣2)(a>2),∴OA=2a+2,OC=2a﹣2,长方形OABC的面积=OA•OC=(2a+2)(2a﹣2)=4a2﹣4,故答案为:4a2﹣4;(2)∵A的坐标为(2a+2),点F的坐标为(2a+4,0),∴AF=OF﹣OA=2a+4﹣(2a+2)=2,故答案为:2;(3)解:S=S长方形OABC+S正方形ADEF﹣S△COF=(2a+2)(2a﹣2)+22﹣(2a﹣2)(2a+4)=4a2﹣4+4﹣(2a2+2a﹣4)=2a2﹣2a+4.19.(1)证明:∵E、F分别是边AB、AC的中点,∴EF∥BC,EF=BC,同理,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四边形EFHG是平行四边形;(2)解:∵E、F、G分别是边AB、AC、PB的中点,∴EF=BC,EG=AP,∴EF=5,EG=3,由(1)知:四边形EFHG是平行四边形,∴四边形EFHG的周长=2(EF+EG)=2×(5+3)=16;(3)解:当线段AP,BC满足AP=BC且AP⊥BC时,四边形EFHG是正方形;理由如下:∵AP=BC,EF=BC,EG=AP,∴EF=EG,∴平行四边形EFHG是菱形,∵E、F、G分别是边AB、AC、PB的中点,∴EF∥BC,EG∥AP,∵AP⊥BC,∴EF⊥EG,∴菱形EFHG是正方形.20.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BDF=∠CED=90°∵点D是△ABC中BC边上的中点,∴BD=CD,在Rt△BDF和Rt△CDF中,,∴Rt△BDF≌Rt△CDE(HL);(2)解:当△ABC满足∠A=90°(答案不唯一)时,四边形AEDF是正方形;理由如下:∵∠BDF=∠CED=90°,∠A=90°,∴四边形AEDF是矩形,∵Rt△BDF≌Rt△CDE,∴DE=DF,∴四边形AEDF是正方形.21.解:(1)AF=CD,理由如下:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB∵AD是BC边上的中线,∴DB=CD∴AF=CD;(2)当△ABC是等腰直角三角形(∠BAC=90°,AB=AC)时,四边形ADCF为正方形;理由如下:∵AF=CD,AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AB=AC,AD是斜边BC的中线,∴AD⊥BC,AD=BC=DC,∴平行四边形ADCF是矩形,也是菱形,∴四边形ADCF为正方形.22.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
2021-2022学年湘教版八年级数学下册《2-7正方形》同步练习题(附答案)
2021-2022学年湘教版八年级数学下册《2-7正方形》同步练习题(附答案)一.选择题1.正方形具有而菱形不一定有的性质是()A.对角线互相垂直B.对角线相等C.对边相等D.邻边相等2.已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有()A.1个B.2个C.3个D.4个3.如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC4.如图,在正方形ABCD中,E、F是对角线BD上的点,AB=BF=DE,则∠EAF的度数为()A.22.5°B.30°C.45°D.67.5°5.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的面积为()A.8B.12C.16D.206.正方形ABCD的一条对角线长为6,则这个正方形的面积是()A.9B.18C.24D.367.如图,正方形ABCD的对角线相交于点O,以点O为顶点的正方形OEGF的两边OE,OF分别交正方形ABCD的两边AB,BC于点M,N,记△AOM的面积为S1,△CON的面积为S2,若正方形的边长AB=10,S1=16,则S2的大小为()A.6B.7C.8D.98.如图,E是正方形ABCD的边DC上一点,过点A作F A=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算9.如图,已知在正方形ABCD中,AB=BC=CD=AD=10厘米,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B 点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动时间为t秒.当△BPE与△CQP全等时,t的值为()A.2B.2或1.5C.2.5D.2.5或210.如图,在正方形ABCD中,动点E在BC边上(点E与点B不重合),∠DAE的平分线AF与CD边交于点M,与BC边的延长线交于点F,连接EM.对于下列四个结论:①AE=EF;②若CM=CE,则AF=2BC;③若EM⊥AF,则CM=DM;④存在点E,使点E与点D关于直线AF对称.其中正确结论的个数为()A.1个B.2个C.3个D.4个二.填空题11.如图,在正方形ABCD的外侧,作等边△DCE,则∠AEC的度数是.12.如图,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,AB=10,则EF的长为.13.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.14.如图,正方形ABCD的对角线相交于点O,正方形A'B'C'O与正方形ABCD的边长相等,若两个正方形的重叠部分(阴影部分)的面积为,则正方形A'B'C'O的面积为.15.如图,在正方形ABCD中,点E、F分别在对角线BD上,请你添加一个条件,使四边形AECF是菱形.16.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=.三.解答题17.如图,四边形ACMF、BCNE是两个正方形.求证:AN=BM.18.如图,正方形ABCD中,点F是CD边上一点,DF=2.连接AF并延长,交BC边延长线于点E,∠EFC=3∠E,连接AC.(1)求证:AC=EC;(2)求正方形的边长.19.如图,已知正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD交于点G.(1)求证:CG=CE;(2)若BE=4,DG=2,求BG的长.20.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.(1)如图①,在正方形ABCD中,E、F分别是BC、DC上的点,且∠EAF=45°,连接EF,探究BE、DF、EF之间的数量关系,并说明理由;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、DC 上的点,且∠EAF=∠BAD,此时(1)中的结论是否仍然成立?请说明理由.22.如图,点E,F分别是正方形ABCD的对角线AC上的两个动点,∠EBF=45°.求证:EF2=AE2+CF2.参考答案一.选择题1.解:正方形具有而菱形不一定有的性质是:对角线相等.故选:B.2.解:∵四边形ABCD是平行四边形,∴当AB=BC时,它是菱形,故①正确,当AC⊥BD时,它是菱形,故②正确,当∠ABC=90°时,它是矩形,故③正确,当AC=BD时,它是矩形,不是正方形,故④错误,故选:A.3.解:因为矩形的四个角是直角,故A正确,因为菱形的对角线互相垂直,故B正确,因为正方形的对角线相等,故C正确,菱形的对角线和边长不一定相等,例如:∠ABC=80°,因为AB=BC,所以∠BAC=∠ACB=50°,此时AC>AB,故选:D.4.解:在正方形ABCD中,AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∵AB=BF=DE,∴∠BAF=∠BF A=∠DAE=∠DEA=(180°﹣45°)÷2=67.5°,∴AE=AF,∴∠EAF=180°﹣2×67.5°=45°.故选:C.5.解:在菱形ABCD中,AB=BC=4,∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的边长为4,∴正方形ACEF的面积为16,故选:C.6.解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为6,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×6×6=18,故选:B.7.解:∵四边形ABCD和四边形OA'B'C'都是正方形,∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠A'OC'=90°,∴∠A'OB=∠COC'.在△OBM与△OCN中,,∴△OBM≌△OCN(ASA),∴S1+S2=S△OAB=×10×10=25,∴S2=25﹣16=9,故选:D.8.解:∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AB=AD,即∠ABF=∠D=90°,在Rt△ABF和Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴S Rt△ABF=S Rt△ADE,∴S Rt△ABF+S四边形ABCE=S Rt△ADE+S四边形ABCE,∴S四边形AFCE=S正方形ABCD=16.故选:C.9.解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10﹣6=4厘米,∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t==(秒),故选:D.10.解:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是正方形,∴AD∥BC,∴∠DAF=∠EF A,∴∠EF A=∠EAF,∴AE=EF,故①正确;若CM=CE,则DM=BE,∵∠B=∠D=90°,AB=AD,在△ABE和△ADM中,,∴△ABE≌△ADM(SAS),∴∠BAE=∠DAM=∠EAF=30°,∴∠F=30°,∴AF=2AB,∴AF=2BC,故②正确;若EM⊥AF,∴M是AF的中点,∴AM=FM,在△ADM和△FMC中,,∴△ADM≌△FMC(AAS),∴CM=DM,故③正确;只有当点E和点D重合时,才有点E与点D关于直线AF对称.与题意不符,故④错误.综上所述:其中正确结论有①②③,共3个,故选:C.二.填空题11.解:∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°.∵△CDE是等边三角形,∴∠CDE=∠DEC=60°.∴∠ADE=90°+60°=150°,∵AD=DE,∴∠DAE=∠DEA=(180°﹣∠ADE)÷2=15°,∴∠AEC=∠DEC﹣∠AED=60°﹣15°=45°.故答案为:45°.12.解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAD+∠DAE=90°,∵BF⊥a于点F,DE⊥a于点E,∴∠AFB=∠AFD=90°,∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AF=DE=8,BF=AE,在Rt△ABF中,BF==6,∴AE=6,∴EF=AE+AF=6+8=14.故答案为14.13.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE==2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.14.解:∵四边形ABCD和四边形OA'B'C'都是正方形,∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠A'OC'=90°,∴∠A'OB=∠COC'.在△OBM与△OCN中,,∴△OBM≌△OCN(ASA),∴四边形OMBN的面积等于三角形BOC的面积,即重叠阴影部分面积不变,总是等于正方形ABCD和正方形A'B'C'O面积的,∴正方形A'B'C'O的面积为4.故答案为:4..15.解:添加的条件为:BE=DF,理由:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF,∴△ABE≌△CBE≌△DCF≌△DAF(SAS).∴AE=CE=CF=AF,∴四边形AECF是菱形;故答案为:BE=DF.∴∠ABD=90°,AB=DB,∴∠ABC+∠DBE=90°,∵∠ABC+∠CAB=90°,∴∠CAB=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S3+S4=3,∴S1+S2+S3+S4=1+3=4.故答案为4.三.解答题17.解:∵四边形ACMF和四边形CBEN都是正方形,∴AC=CM,NC=BC,∠ACM=∠BCN=90°,∵∠MCN=∠NCM,∴∠ACN=∠BCM,在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),∴AN=BM.∴∠DCE=90°,∵∠EFC=3∠E,∠EFC+∠E=90°,∴4∠E=90°,∴∠E=22.5°,•又∵AC是正方形对角线,∠ACB=45°,∵∠ACB=∠E+∠EAC,∴∠EAC=22.5°,∴∠EAC=∠E,∴AC=EC;(2)解:设正方形的边长为x,则AC=EC=x,∵AD∥BC,∴∠DAF=∠E,∵∠ADC=∠FDE=90°,∴x=2+2,∴正方形的边长为2+2.19.(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCE=90°,BC=CD,∵BF⊥DE,∴∠DFG=∠BCG=90°,∵∠BGC=∠DGF,∴∠CBG=∠CDE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),∴CG=CE;(2)解:由(1)△BCG≌△DCE得CG=CE,又∵BE=BC+CE=4,DG=CD﹣CG=2,∴BC=3CG=,在Rt△BCG中,BG===2.20.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.21.解:(1)如图1,EF=BE+DF,理由如下:延长CB到M,使得BM=DF,连接AM,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABM=90°,又∵BM=DF,∴△ADF≌△ABM(SAS),∴AF=AM,∠1=∠2,∵∠EAF=45°,∴∠1+∠3=45°,∴∠2+∠3=∠MAE=45°=∠EAF,又∵AE=AE,∴△EAM≌△EAF(SAS),∴EF=EM=BE+BM,又∵BM=DF,∴EF=EB+DF,(2)如图2,EF=BE+DF,仍然成立,理由如下:延长CB到M,使得BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠4=180°,∴∠D=∠4,又∵AB=AD,BM=DF,∴△ADF≌△ABM(SAS),∴AF=AM,∠1=∠2,∵,∴∠1+∠3=∠EAF,∴∠MAE=∠2+∠3=∠EAF,又∵AE=AE,∴△EAM≌△EAF(SAS),∴EF=EM=BE+BM,又∵BM=DF,∴EF=EB+DF.22.证明:如图,将△CBF绕点B逆时针旋转90°,可得△ABN,连接EN,由旋转的性质可得BN=BF,AN=CF,∠BAN=∠BCF=45°,∠CBF=∠ABN,∴∠CAN=∠CAB+∠BAN=90°,∴EN2=AE2+AN2,∵∠EBF=45°,∴∠CBF+∠ABE=45°,∴∠ABE+∠ABN=45°=∠NBE=∠EBF,在△EBF和△EBN中,,∴△EBF≌△EBN(SAS),∴EF=EN,∴EF2=AE2+CF2.。
2021-2022学年湘教版八年级数学下册《2-7正方形》同步练习题(附答案)
2021-2022学年湘教版八年级数学下册《2-7正方形》同步练习题(附答案)一.选择题1.如图,在正方形ABCD中,AB=4,点E在对角线AC上,若S△ABE=5,则△CDE的面积为()A.3B.4C.5D.62.如图,在正方形ABCD中,E、F是对角线BD上的点,AB=BF=DE,则∠EAF的度数为()A.22.5°B.30°C.45°D.67.5°3.如图,在正方形ABCD中,点E、点F分别在AD、CD上,且AE=DF,若四边形OEDF 的面积是1,OA的长为1,则正方形的边长AB为()A.1B.2C.D.24.如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是AC延长线上一点,且OE=2CO,则BE的长度是()A.B.C.D.5.如图,正方形ABCD中,E为对角线BD上一点,∠BEC=70°,那么∠DAE=()A.10°B.15°C.25°D.30°6.已知四边形ABCD是平行四边形,下列说法正确的有()①当AB=BC时,它是矩形②AC⊥BD时,它是菱形③当∠ABC=90°时,它是菱形④当AC=BD时,它是正方形A.①②B.②C.②④D.③④7.下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形8.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是菱形C.三个角都是直角的四边形是矩形D.一组邻边相等的平行四边形是正方形9.下列说法正确的是()A.对角线相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形二.填空题10.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的角平分线BF交CD 于点E,交AC于点F,OF=1,则AB=.11.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB =135°,则正方形ABCD的面积为.12.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上点,满足CF⊥CP,AC=3,3DP=AB,则FP=.三.解答题13.已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF∥DC交AD边于点F,连接BD.(1)求证:四边形EFDC是正方形;(2)若BE=1,ED=2,求BD的长.14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.15.观察下列图形的变化过程,解答以下问题:如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB 于E点,DF∥AB交AC于F点.(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?16.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DF AE是正方形.17.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥A C,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.18.如图,点E是正方形ABCD的边BC上的一点,∠DAE的平分线AF交BC的延长线于点F,交CD于点G.(1)若AB=4,BF=8,求CE的长;(2)求证:AE=BE+DG.19.在正方形ABCD中,点E、F分别在边BC,CD上,连结AE、AF.(1)如图1,过点E作EM⊥AF交AD于点M,求证:AF=EM;(2)如图2,若AE平分∠BAF,求证:AF=BE+DF.20.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.21.如图,在正方形ABCD中,点F是BC延长线上一点,BE⊥DF,垂足为E,BE交CD 于点G.(1)求证:BG=DF;(2)求证:EF+EG=CE.参考答案一.选择题1.解:过点E作MN∥AD,交AB于点M,CD于点N,∵四边形ABCD是正方形,∴AD⊥AB,AD⊥CD,AB=BC=CD=DA=4,∵MN∥AD,∴MN⊥AB,MN⊥CD,∵S△ABE=AB•EM=×4×EM=2EM=5,∴EM=,∴EN=AD﹣EM=AB﹣EM=4﹣=,∴S△CDE=CD•EN=×4×=3,故选:A.2.解:在正方形ABCD中,AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∵AB=BF=DE,∴∠BAF=∠BF A=∠DAE=∠DEA=(180°﹣45°)÷2=67.5°,∴AE=AF,∴∠EAF=180°﹣2×67.5°=45°.故选:C.3.解:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∴∠ABE+∠BAO=∠DAF+∠BAO=90°,∴∠AOB=90°,∵△ABE≌△DAF,∴S△ABE=S△DAF,∴S△ABE﹣S△AOE=S△DAF﹣S△AOE,即S△ABO=S四边形OEDF=1,∵OA=1,∴BO=2,∴AB===,故选:C.4.解:∵四边形ABCD是正方形,∴AC⊥BD,AO=BO=CO=DO,∵正方形ABCD的边长为2,∴BC=2,在Rt△BOC中,BO2+CO2=BC2,即2BO2=22,解得BO=,∵OE=2CO,∴OE=2,在Rt△BOE中,BE=.故选:A.5.解:∵四边形ABCD是正方形,∴∠ADE=∠CDE=∠EBC=45°,AD=CD,∠BCD=90°,在△AED和△CED中,,∴△AED≌△CED(SAS),∴∠DAE=∠ECD,又∵∠BEC=70°,∴∠BCE=180°﹣∠BEC﹣∠EBC=180°﹣70°﹣45°=65°,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD=90°﹣65°=25°,∴∠DAE=25°,故选:C.6.解:①若AB=BC,则▱ABCD是菱形,选项说法错误;②若AC⊥BD,则▱ABCD是菱形,选项说法正确;③若∠ABC=90°,则▱ABCD是矩形,选项说法错误;④若AC=BD,则▱ABCD是矩形,选项说法错误;故选:B.7.解:A.一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,不符合题意;B.对角线相等的四边形不一定是矩形,故原命题错误,不符合题意;C.有一组邻边相等的矩形是正方形,正确,故原命题正确,符合题意;D.对角线互相垂直的平行四边形是菱形,故原命题错误,不符合题意;故选:C.8.解:A、一组对边平行,另一组对边也平行的四边形是平行四边形,所以A选项错误,不符合题意;B、对角线相等的平行四边形是矩形,所以B选项错误,不符合题意;C、三个角都是直角的四边形是矩形,所以C选正确;符合题意;D、一组邻边相等的平行四边形是正方形,所以D选项错误,不符合题意.故选:C.9.解:A、对角线相等的四边形是平行四边形,说法错误,B、对角线互相平分且垂直的四边形是菱形,说法错误,C、对角线互相平分且相等的四边形是矩形,说法错误,D、对角线互相垂直平分且相等的四边形是正方形,正确;故选:D.二.填空题10.解:如图,作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH=,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴AB=BC=OB=2+.故答案为:2+.11.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH 交DH的延长线于E,∴△APB≌△AHD,∠P AH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.12.解:∵四边形ABCD是正方形,∴AB=CB=CD=AD,∠CBF=∠CDP=∠BCF+∠FCD=90°,又∵CF⊥CP,∴∠DCP+∠FCD=90°,∴∠BCF=∠DCP,在△BCF和△DCP中,∴△BCF≌△DCP(AAS),∴BF=DP,∵AC=3,∠ABC=90°,AB=BC,∴2AB2=AC2=32=9∴AB=,∴AD=,∵3DP=AB,∴DP=,∴BF=DP=,∴AF=AB﹣BF=﹣=,AP=AD+DP=+=2,在Rt△AFP中,FP===.故答案为:.三.解答题13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠C=90°,∵EF∥DC,∴四边形FEDC为平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠DEC,∴∠CDE=∠DEC,∴CD=CE,∴四边形FEDC是菱形,又∵∠C=90°,∴平行四边形FEDC是正方形;(2)∵四边形FEDC是正方形,∴∠CDE=45°,∵,∴CE=CD=ED•sin45°=2×=2,∴BC=BE+EC=1+2=3,∴BD2=BC2+CD2=32+22=13,∴BD=.14.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().15.解:(1)当AD平分∠EAF时,四边形AEDF为菱形,∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴∠EAD=∠FDA,∵AD平分∠EAF,∴∠EAD=∠F AD,∴∠F AD=∠FDA,∴AF=DF,∴四边形AEDF为菱形;(2)当△ABC为直角三角形,∠BAC=90°时,四边形AEDF为正方形,理由:由(1)知,四边形AEDF为菱形,∵∠BAC=90°,∴四边形AEDF为正方形.16.证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DF AE为矩形.∵△BED≌△CFD,∴DE=DF.∴四边形DF AE为正方形.17.(1)证明:∵AB是CD的垂直平分线,∴AC=AD,又∵AB⊥CD∴∠CAB=∠DAB(等腰三角形的三线合一);(2)证明:∵ME⊥A C,MF⊥AD,∠CAD=90°,即∠CAD=∠AEM=∠AFM=90°,∴四边形AEMF是矩形,又∵∠CAB=∠DAB,ME⊥A C,MF⊥AD,∴ME=MF,∴矩形AEMF是正方形.18.解:(1)∵四边形ABCD是正方形,∴AD=BC=4,∠B=90°,AD∥BC,∴∠DAG=∠F,∵AF平分∠DAE,∴∠DAG=∠EAF,∴∠EAF=∠F,∴AE=EF,设CE=x,则BE=4﹣x,AE=EF=8﹣4+x=4+x,在Rt△ABE中,AE2=AB2+BE2,∴42+(4﹣x)2=(4+x)2,解得:x=1,∴CE=1;(2)如图,延长CB到点M,使BM=DG,连接AM,∵四边形ABCD是正方形,∴∠D=∠ABM=90°,AD=AB,AB∥CD,∴∠AGD=∠EAF+∠BAE,∵AF平分∠DAE,∴∠EAF=∠F AD,∠AGD=∠F AD+∠BAE,在△ABM和△ADG中,,∴△ABM≌△ADG(SAS),∴∠M=∠AGD=∠F AD+∠EAB,∠MAB=∠F AD,∴∠M=∠MAB+∠EAB=∠MAE,∴AE=ME=BE+MB=BE+DG.19.(1)证明:如图1,过M作MN⊥BC于N,∴∠MNC=90°,∵四边形ABCD是正方形,∴∠D=∠C=90°,∴∠MNC=∠C=∠D=90°,∴四边形MNCD是矩形,∴MN=CD,∠AMN=∠DMN=90°,∵AD=CD,∴MN=AD,∵ME⊥AF,∴∠MAF+∠AME=∠AME+∠NME=90°,∴∠DAF=∠EMN,在△DAF与△NME中,,∴△DAF≌△NME(ASA),∴AF=EM;(2)证明:如图2,延长CB到G,使BG=DF,连接AG,∵四边形ABCD是正方形,∴∠D=∠ABC=∠ABG=90°,AD=AB,在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴∠GAB=∠DAF,AG=AF,∵AE平分∠BAF,∴∠BAE=∠F AE,∴∠GAB+∠BAE=∠DAF+∠EAF,即∠GAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠GAE=∠AEB,∴AG=GE,∴AF=GE,∵GE=BG+BE=DF+BE,∴AF=DF+BE.20.证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.21.解:(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90°,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,,∴△CBG≌△CDF(ASA),∴BG=DF;(2)如图,过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90°,∴∠MCG=∠ECF,在△MCG和△ECF中,,∴△MCG≌△ECF(ASA),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=CE,又∵ME=MG+EG=EF+EG,∴EF+EG=CE.。
2020届人教版八年级数学下册 18.2.3 正方形(2)同步练习(含解析)
18.2.3正方形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线互相垂直的矩形是正方形;(4)对角线相等的菱形是正方形.2.判定一个四边形是正方形,一般有两种思路:一种是先证四边形是菱形,再证明它有一个角是直角或对角线相等;另一种是先证明四边形是矩形,再证它有一组邻边相等或对角线互相垂直.基础知识和能力拓展训练一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.810.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 时,四边形MENF是正方形.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个(填代号).16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?答案与试题解析一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.解:A、正确,一组邻边相等的平行四边形是菱形;B、正确,对角线互相垂直的平行四边形是菱形;C、正确,有一个角为90°的平行四边形是矩形;D、不正确,对角线相等的平行四边形是矩形而不是正方形;故选D.2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个【分析】根据中心对称的概念以及平行四边形、正方形、菱形的判定定理进行判断即可.解:(1)因为正奇边形不是中心对称图形,故等边三角形不是中心对称图形,此选项错误;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,因为等腰梯形也符合此条件,此选项错误;(3)两条对角线互相垂直的矩形是正方形,此选项正确;(4)两条对角线互相垂直平分的四边形是菱形,此选项错误.故选:A.3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A、不能,只能判定为矩形;B、不能,只能判定为平行四边形;C、能;D、不能,只能判定为菱形.故选:C.4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定【分析】利用矩形的性质与判定方法得出四边形EMFN是矩形,进而利用等腰直角三角形的性质得出AM=ME,BM=MF=AM,则ME=MF,进而求出即可.解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∠EAB=∠ABF=∠BCD=∠CDA=90°,又∵E,F分别为AD,BC中点,AD=2AB,∴AE∥BF,ED∥CF,AE=BF=DE=CF=AB=DC,∴∠ABE=∠AEB=∠DEC=∠DCE=∠DFC=45°,∴∠BEN=90°,又∵DE BF,AE FC,∴四边形EMFN是矩形,∴AM⊥BE,BM⊥AF,∴AM=ME,BM=MF=AM,∴ME=MF,∴四边形EMFN是正方形.故选:A.6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:A、正确.∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形.故正确.B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.故选B.7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④【分析】根据正方形的判定定理即可得到结论.解:与左边图形拼成一个正方形,正确的选择为③,故选C.8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°【分析】由题意可得四边形AECF为一矩形,要使四边形AECF是正方形,只需添加一条件,使其邻边相等即可.解:过点E,F作EH⊥BD,FG⊥BD,∵CE,CF为∠ACB,∠ACD的角平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECH,∵∠ECH=∠ECO,∴∠FEC=∠ECO,∴OE=OC.同理OC=OF,∴OE=OF,∵点O运动到AC的中点,∴OA=OC,∴四边形AECF为一矩形,若∠ACB=90°,则CE=CF,∴四边形AECF为正方形.故选:D.9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.8【分析】如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.10.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为8,AE=BF=CG=DH=5,可得AH=3,由勾股定理得EH,得正方形EFGH的面积.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选B.二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 1:2 时,四边形MENF是正方形.【分析】首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是①②③.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当①BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项①正确;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项②正确;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项③正确;当AC=BF时,无法得出菱形BECF是正方形,故选项④错误.故答案为:①②③.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个①②或①④(填代号).【分析】因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.解:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,若AB=AD,则四边形ABCD为正方形;若AC⊥BD,则四边形ABCD是正方形.故填:①②或①④.16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为2.【分析】作辅助线,构建正方形AHGF,则AF=GH=GF,设GC=x,则FG=AF=HG=x+2,DG=x﹣1,在Rt△DGC中,利用勾股定理列方程可求得x的值,最后利用勾股定理计算AC的长即可.解:过A作AE⊥DC于E,将△AEC沿AC翻折得△AFC,将△ADE沿AD翻折得△ADH,延长FC、HD交于G,则∠EAC=∠CAF,∠EAD=∠HAD,∠H=∠F=90°,∴∠EAC+∠EAD=∠CAF+∠HAD,∵∠DAC=45°,即∠EAC+∠EAD=45°,∴∠HAF=90°,∴四边形AHGF是矩形,∵AH=AE,AE=AF,∴AH=AF,∴四边形AHGF是正方形,∴AF=GH=GF,∵AB=AC,AE⊥BC,∴BE=EC=2,由折叠得:FC=EC=2,HD=DE=3,设GC=x,则FG=AF=HG=x+2,∴DG=x﹣1,在Rt△DGC中,DC2=DG2+GC2,52=(x﹣1)2+x2,解得:x1=4,x2=﹣3(舍),∴AF=x+2=4+2=6,Rt△ACF中,AC==2.故答案为:2.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是57.75 .【分析】运用拼图的方法,构造一个正方形,用大正方形的面积﹣小正方形的面积,即可得出所求多边形的面积.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:57.75.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBA=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)【分析】过D作DG垂直AB于点G,由三个角为直角的四边形为矩形得到四边形CEDF为矩形,由AD为角平分线,利用角平分线定理得到DG=DF,同理得到DE=DG,等量代换得到DE=DF,利用邻边相等的矩形为正方形即可得证.证明:如图,过D作DG⊥AB,交AB于点G,∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形,∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG;∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG,∴DE=DF,∴四边形CEDF为正方形.20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是正方形;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)【分析】(1)根据正方形性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,求出AH=DG=CF=BE=5,证△AEH≌△DHG≌△CGF≌△BFE,推出EH=EF=FG=HG,∠AHE=∠DGH,证出∠EHG=90°,即可得出答案.(2)在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可.(3)四边形EFGH的周长是×4,求出即可.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.【分析】(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=AE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?【分析】(1)已知AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC;(2)要使得平行四边形ACEF为菱形,则AC=CE,又∵CE=AB,∴使得AB=2AC即可,根据AB、AC即可求得∠B的值;(3)通过已知在△ABC中,∠ACB=90°,推出∠ACE<90°,不能为直角,进行说明.解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;(3)四边形ACEF不可能是正方形,∵∠ACB=90°,∴∠ACE<∠ACB,即∠ACE<90°,不能为直角,所以四边形ACEF不可能是正方形.。
人教版八年级数学下册正方形知识点及同步练习、含答案
学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
(全优)华师大版八年级下册数学第19章 矩形、菱形与正方形含答案
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG= (BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个2、如图,直角三角形DEF中,∠DFE=90°在直角三角形外面作正方形ABDE,CDFI,EFGH的面积分别为25,9,16.△AEH,△BDC,△GFI的面积分别为S 1, S2, S3,则S1+S2+S3=()A.18B.21C.23.5D.263、如图,在正方形ABCD中,E是BC的中点,△DEF的面积等于2,则此正方形ABCD的面积等于()A.4B.8C.12D.164、如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沼作对折,使得点B落在边AD上的点B处,折痕与边BC交于点E,则CE的长为()A.2cmB.3cmC.4cmD.6cm5、如图,四边形ABCD是平行四边形,则下列结论:①若AB=BC,则四边形ABCD一定是菱形;②若AC⊥BD,则四边形ABCD一定是矩形;③若∠ABC=90°,则四边形ABCD一定是菱形;④若AC=BD,则四边形ABCD一定是正方形.其中正确的有()A.1个B.2个C.3个D.4个6、如图,Rt△ACB中,∠C=90°,AC=6,BC=8,半径为1的⊙O与AC,BC相切,当⊙O沿边CB平移至与AB相切时,则⊙O平移的距离为()A.3B.4C.5D.67、如图,在正方形ABCD中,点O为对角线AC的中点,过点o作射线OG、ON 分别交AB,BC于点E,F,且∠EOF=90°,BO、EF交于点P.则下列结论中:⑴图形中全等的三角形只有两对;⑵正方形ABCD的面积等于四边形OEBF面积的4倍;⑶BE+BF= OA;⑷AE2+CF2=2OP•OB.正确的结论有()个.A.1B.2C.3D.48、如图,有两张形状、大小完全相同的直角三角形纸片(同一个直角三角形的两条直角边不相等),把两个三角形相等的边靠在一起(两张纸片不重叠),可以拼出若干种图形,其中,形状不同的四边形有()A.3种B.4种C.5种D.6种9、如图,在矩形中,按以下步骤作图:①分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于点M和N;②作直线交于点E,若,,则该矩形的周长().A.12B.24C.32D.2210、如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1等于( )A.100°B.110°C.120°D.130°11、如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE·OP;③S△AOD =S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是()A.1B.2C.3D.412、如图,把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是( ).A.12B.8+C.8+D.8+13、如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点B的坐标为()A.(1﹣,+1)B.(﹣,+1)C.(﹣1,+1) D.(﹣1,)14、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,cos∠ABC =,则BD的长为()A.2B.4C.2D.415、下列说法中错误的是()A.有一组邻边相等的矩形是正方形B.在反比例函数中,y随x的增大而减小 C.顺次连接矩形各边中点得到的四边形是菱形 D.如果用反证法证明“三角形中至少有一个内角小于或等于60°”,首先应假设这个三角形中每一个内角都大于60°二、填空题(共10题,共计30分)16、如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.17、如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为________.18、如图,,正方形,正方形,正方形,正方形,…,的顶点,,在射线上,顶点,在射线上,连接交于点,连接交于点,连接交于点,…,连接交于点,连接交于点,…,按照这个规律进行下去,设四边形的面积为,四边形的面积为,四边形的面积为,…,,若,则等于________.(用含有正整数的式子表示).19、如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是________.20、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是________.21、如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为________.22、如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE 沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为________.23、如图,在菱形中,,在上,将沿翻折至,且刚好过的中点P,则________.24、如图,已知四边形ABCD是平行四边形,请你添加一个条件使它成为菱形.这个条件为________.25、若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、N恰好能组成平行四边形?28、如图,在▱ABCD中,E,F分别为AD,BC的中点,连结BE,AF交于点G,连结DF,EC交于点H.求证:四边形EGFH是平行四边形.29、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.30、如图,矩形ABCD中,AB=4,BC=10,E在AD上,连接BE,CE,过点A作AG∥CE,分别交BC,BE于点G,F,连接DG交CE于点H.若AE=2,求证:四边形EFGH是矩形.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、A5、A6、B7、C8、B9、B10、C11、C12、C13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、。
人教版八年级下册数学 18.2.3正方形 同步习题 (含答案)
18.2.3正方形同步习题一.选择题1.下列说法正确的是)A.有一个角是直角的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.有一组邻边相等的菱形是正方形D.各边都相等的四边形是正方形2.如图,正方形ABCD,点E、F分别在BC、CD上,AE=BF,下列结论错误的是()A.BE=CF B.∠AEB+∠BFC=180°C.∠DAE=∠BFC D.AE⊥BF3.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的面积为()A.25B.5C.16D.124.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.4:9B.2:3C.1:2D.1:5.如图,正方形ABCD中,AC与BD相交于点O,DE平分∠BDC交AC于F,交BC于E.若正方形ABCD的边长为2,则OF的值为()A.2B.﹣1C.D.26.如图,四边形ABCD和EFGH都是正方形,点E,H在AD,CD边上,点F,G在对角线AC 上若AB=6,则EFGH的面积是()A.6B.8C.9D.127.如图,在正方形ABCD和正方形CEFG中,点E在边BC上的延长线上,点G在CD上,若AB=2,则线段DF的最小值为()A.1B.C.D.28.如图,在正方形ABCD中,点E,F分别在BC,CD上,EA平分∠BEF,AG⊥EF,垂足为点G.则∠EAF的度数为()A.45°B.30°C.60°D.40°9.如图,在正方形ABCD中,G为CD的中点,连接AG并延长,交BC边的延长线于点E,对角线BD交AG于点F,已知AE=12,则线段FG的长是()A.2B.4C.5D.610.如图,正方形ABCD的边长为4,点E、F分别在边AD、CD上,BE=2,若∠EBF=45°,连接EF,则EF的长为()A.3B.C.D.+2二.填空题11.如图,点E为正方形ABCD对角线BD上一点,且BE=BA,则∠DCE的度数为.12.如图,正方形ABCD.延长BC到E,连接AE,若CE=BC,则∠AEB=.13.如图,正方形ABCD中,E是BC边的中点,AE与BD相交于F点,正方形的边长为4,则阴影部分面积为.14.如图,四边形ABCD是正方形,P在CD上,已知△ADP≌△ABP′,AB=6,DP=2,求PP′=.15.如图,正方形ABCD的面积为5,正方形CEFG的面积为2,点G在线段CD上,且B、C、E三点在一条直线上,联结AC、AE,则△ACE的面积是.三.解答题16.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连接AE、AF、EF.求证:△ABE≌△ADF.17.如图,已知正方形ABCD的边长为6,点E在CD边上,以线段CE为边长在正方形ABCD 的外部作正方形CEFG,以线段AD和DE为邻边作矩形ADEH,若S正方形CEFG=S矩形ADEH.(1)求线段CE的长;(2)若点M为BC边的中点,连接MD,求证:MD=MG.18.如图,在正方形ABCD的外侧,作等边三角形ADE,线段BE与AC交于点F.(1)求∠AEB和∠BFC的度数;(2)若AD=6,求BE2的值.参考答案1.B2.B3.A4.A5.C6.B7.B8.A9.A10.B11.22.5°12.22.5°13.14.415.16.证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=90°,∴∠ADF=90°,∴∠B=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS).17.(1)3﹣3;(2)证明:∵点M为BC边的中点,∴MC=3,在Rt△MCD中,DM==3,∵MG=MC+CG=3+3﹣3=3,∴MD=MG.18.解:(1)∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.(2)过E作EG⊥AD,并与AB交于H,∵△ADE是等边三角形,EG⊥AD,∴AG=GD=3,∴GE=3,∵四边形ABCD是正方形,∴BH=3,∵HE=HG+GE=6+3,在Rt△BHE中,BE2=.。
鲁教版2019八年级数学下册第六章第三节正方形的性质与判定假期预习自主测试题一(基础部分含答案)
鲁教版2019八年级数学下册第六章第三节正方形的性质与判定假期预习自主测试题一(基础部分含答案)1.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④2.如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A.B.C.D.3.在四边形中,能判定这个四边形是正方形的条件是A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分4.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )A.1B.1.5C.2D.2.55.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且平分的四边形是菱形D.邻边相等的矩形是正方形6.下列说法正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线平分且相等的四边形是正方形7.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.308.下列说法正确的是()A.有一个角是直角的四边形是正方形B.有一组邻边相等的四边形是正方形C.有一组邻边相等的矩形是正方形D.四条边都相等的四边形是正方形9.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).10.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH 翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=,AE=8,则S四边形EFMG=________.11.已知正方形的边长为,则该正方形的边长与对角线之比为________.12.是正方形的对角线上一点,,,垂足分别是、.若,,则的长为________.13.如图,在直线上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形面积依次是、、、,则______.14.如图,在中,点是边上一动点,,,对及线段添加条件________使得四边形是正方形.15.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.以的各边,在边的同侧分别作三个正方形.他们分别是正方形,,,试探究:如图中四边形是什么四边形?并说明理由.当满足什么条件时,四边形是矩形?当满足什么条件时,四边形是正方形?18.综合与实践问题情境在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.操作发现(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是.(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.拓展探索(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.19.如图,在平行四边形ABCD中,点M、N分别在线段DA、BA的延长线上,且BD=BN=DM,连接BM、DN并延长交于点P.(1)求证:∠P=90°﹣∠C;(2)当∠C=90°,ND=NP时,判断线段MP与AM的数量关系,并给予证明.20.如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.(1)直接写出线段OE与OF的数量关系;(2)如图2,若点E在AC的延长线上,过点A作AM⊥BE ,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;(3)如图3,当BC=CE时,求∠EAF的度数.21.如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.22.如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.答案1.C2.D3.C4.C5.B6.C7.C8.C9.24+24解:观察图形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.故答案为:24+24.10.806 15解:过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°,∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°,∵∠EGB=∠CGB,BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP,∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=12∠ABC=45°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形,∵BM=,∴BN=NM==,∴BE=,∵AE=8,∴DE=12﹣8=4,由勾股定理得:AB=12,设BF=x,则EF=x,AF=12﹣x,由勾股定理得:x2=82+(12﹣x)2,x=263,∴BF=EF=263,∵△ABE≌△PBE,∴EP=AE=8,BP=AB=12,同理可得:PG =125,Rt △EFN 中,FN = =3,∴S 四边形EFMG =S △EFN +S △EBG ﹣S △BNM =12FN •EN +12EG •BP ﹣12BN •NM =12××+12(8+125)×12﹣12×80615.故答案为: 80615.11.解:对角线长为:cm ,则边长与对角线之比为1:.12. 解:如图,连接CE ,∵BD 是正方形的对角线,∴∠BCD=90°,∠ABE=∠CBE=45°,AB=BC在△ABE 和△CBE 中,∴△ABE ≌△CBE ,∴AE=CE ,∵EF ⊥BC ,EG ⊥CD ,∴∠EGC=∠∠CFE=90°,∴∠EGC=∠CFE=∠BCD=90°,∴四边形EFCG 是矩形,∴EF=CG=6,根据勾股定理得,CE=.13.4解:由题意可得:∠ACB=∠ABD=∠BED=90°,AB=BD,∴∠CAB+∠ABC=90°,∠ABC+∠DBE=90°,∴∠CAB=∠DBE,∴△ABC≌△BDE,∴AC=BE,∵在△BDE中,BE2+DE2=BD2,∴AC2+DE2=BD2,又∵S3=AC2,S4=DE2,BD2=3,∴S3+S4=3,同理可得:S1+S2=1,∴S1+S2+S3+S4=4.故答案为:4.14.是等腰直角三角形,是角平分线解:首先,四边形AEDF是平行四边形,当∠BAC=90°时,四边形AEDF为矩形,只需令边相等即可.当AB=AC时成立,所以增加的条件是是等腰直角三角形,是角平分线. 15.6解:设BE与AC交于点P,连接BD,∵点B与D关于AC对称,∴PD=PB,∴PD +PE =PB +PE =BE 最小.即P 在AC 与BE 的交点上时,PD +PE 最小,为BE 的长度; ∵正方形ABCD 的边长为6,∴AB =6.又∵△ABE 是等边三角形,∴BE =AB =6.故所求最小值为6.故答案为:6.16.16924解:过点F 作FG ⊥AD ,垂足为G ,连接AA ′.在Rt △EFG 中,EG5==,∵轴对称的性质可知AA ′⊥EF ,∴∠EAH +∠AEH =90∘.∵FG ⊥AD ,∴∠GEF +∠EFG =90∘.∴∠DAA ′=∠GFE .在△GEF 和△DA ′A 中, 90{ 'EGF D FG AD DAA GFE∠=∠=︒=∠=∠ ,∴△GEF ≌△DA ′A .∴DA ′=EG =5.设AE =x ,由翻折的性质可知EA ′=x ,则DE =12−x .在Rt △EDA ′中,由勾股定理得:A ′E 2=DE 2+A ′D 2,即x 2=(12−x )2+52.解得:x=16924. 故答案为:16924.17.四边形是平行四边形,理由;当时,平行四边形是矩形;当且时,四边形是正方形.解:图中四边形是平行四边形.理由如下:∵四边形、四边形、四边形都是正方形,∴,,,.∴(同为的余角).在和中,,∴,∴,.∵是正方形的对角线,∴.∵,∴∴,∴四边形是平行四边形(一组对边平行且相等).当四边形是矩形时,.则,即当时,平行四边形是矩形;当四边形是正方形时,,且.由知,当时,.∵四边形是正方形,∴.又∵四边形是正方形,∴,∴.∴当且时,四边形是正方形.18.(1)平行四边形;(2)证明(3)四边形AEDG是平行四边形.(1)证明:∵△DBE是由△ABC绕点B逆时针旋转90°得到的,△AFG是由△ABC绕点A顺时针旋转90°得到的.∴DE=AC=AF,∠BAF=α,∠DBE=∠ABC=α,∠DEB=∠C=α,∴∠DEB=∠BAF,∴DE∥AF,∵DE=AF,∴四边形AFDE是平行四边形,故答案为:平行四边形;(2)证明:∵△DBE是由△ABC绕点B逆时针旋转90°得到的,△AFG是由△ABC绕点A顺时针旋转90°得到的,∴∠DBA=∠FAB=90°,DB=AB=AF,∴∠DBA+∠FAB=180°,∴DB∥AF,∵DB=AF,∴四边形DBAF是平行四边形,∵∠DBA=90°∴平行四边形DBAF是正方形.(3)四边形AEDG是平行四边形.证明:∵四边形ABDF是正方形,∴∠DFA=∠DBA=90°,AB=DF,又∵∠DBE=∠AFG=α,∴∠EBA=∠GFD.在△ABE和△DFG中,,∴△ABE≌△DFG,∴AE=DG,又∵DE=AG=AB,∴四边形DEAG是平行四边形.19.(1)证明;(2)(1)证明:过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,∴∠FHG+∠P=180°,∴∠DHB+∠P=180°,∴∠DHB=180°﹣∠P,∵BD=BN=DM,∴BF与DG是∠DBN、∠MDB的平分线,∴由四边形内角和为360°,可得∠P+∠FHG=180°,∵∠DHB=180°﹣(∠GDB+∠FBD)=180°﹣(180°﹣∠DAB)=90°﹣∠DAB,∵四边形ABCD是平行四边形,∴∠DAB=∠C,∴∠DHB=90°﹣∠C,∵∠DHB=180°﹣∠P,∴180°﹣∠P=90°+∠C,∴∠P=90°﹣∠C;(2)MP:AM=:2.理由:过点P作PS⊥CD于点S,PR⊥BC于点R,当∠C=90°时,则∠DPB=45°,∵BN∥CD,∴∠BND=∠BDN=∠SDN,同理:∠PBD=∠PBR,作PK⊥BD于点K,在△PKD和△PSD中,∴△PKD≌△PSD(AAS),同理:△PKB≌△PRB,∴PS=PR,∴四边形PSCR是正方形,延长BN交QS于点Q,则Q为PS的中点,设QS=PQ=x,则PS=CS=RC=2x,RB=KB=x,设SD=m,BD=x+m,则(x+m)2=x2+(2x﹣m)2,∴m:x=2:3,∴DK=SD=x,BD=x,∴AM=DM﹣AD=BD﹣AD=x,根据勾股定理得,AB==x,在Rt△ABM中,BM=,∴PB=,∴PM=,∴MP:AM=:2.20.(1)OE=OF; (2)OE=OF仍然成立,理由;(3)67.5°.解:(1)OE=OF;(2)OE=OF仍然成立,理由是:由正方形ABCD对角线垂直得,∠BOC=90°,∵AM⊥BE ∴∠BMF=90°,∴∠BOC=∠BMF.∵∠MBF=∠OBE,∴∠F=∠E,又∵AO=BO,∴△AOF≌△BOE,∴OE=OF;(3)由(2)得OE=OF,且OB=OC,则BF=CE,∵BC=CE,∴AB=BF,∴∠F=∠FAB=∠ABD=22.5°,又∵∠BAO=45°,∴∠EAF=∠FAB+∠BAO=22.5°+45°=67.5°.21.(1)5;(2)证明.解:(1)如图,∵BF⊥AC,∠ACB=45°,BC=12,∴等腰Rt△BCF中,BF=sin45°×BC=12,又∵AB=13,∴Rt△ABF中,AF==5;(2)如图,连接GE,过A作AF⊥AG,交BG于P,连接PE,∵BE=BA,BF⊥AC,∴AF=FE,∴BG是AE的垂直平分线,∴AG=EG,AP=EP,∵∠GAE=∠ACB=45°,∴△AGE是等腰直角三角形,即∠AGE=90°,△APE是等腰直角三角形,即∠APE=90°,∴∠APE=∠PAG=∠AGE=90°,又∵AG=EG,∴四边形APEG是正方形,∴PF=EF,AP=AG=CH,又∵BF=CF,∴BP=CE,∵∠APG=45°=∠BCF,∴∠APB=∠HCE=135°,∴△APB≌△HCE(SAS),∴AB=EH,又∵AB=BE,∴BE=EH.22.解:∵ABCD是正方形,∴AD=AB,∠BAD=90°,∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=BAF.∵BF∥DE,∴∠AFB=∠DEG=∠AED.在△ABF与△DAE中,AD=AB,∴△ABF≌△DAE(AAS).∴BF=AE.DE=AF,∵AF=AE+EF,∴DE=BF+EF.。
2021年人教版数学八年级下册18.2.3 《正方形》同步练习(含答案)
人教版数学八年级下册18.2.3 《正方形》同步练习一、选择题1.菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b4.下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的菱形是正方形5.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④6.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为( )A.1;B.2;C.3;D.;7.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕C点顺时针方向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1)D.(7,0)8.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则∠AMD度数是()A.75°B.60°C.54°D.67.5°9.顶点为A(6,6),B(-4,3),C(-1,-7),D(9,-4)的正方形在第一象限的面积是()A.25B.36C.49D.3010.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线BD上有一点P,使PC+PE的和最小,则这个最小值为()A.4B.2C.2D.2二、填空题11.若正方形的面积是9,则它的对角线长是 .12.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为和 .(只写一组)13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.14.如图所示,正方形ABCD的周长为8cm,顺次连结正方形ABCD各边的中点,得到正方形EFGH,则EFGH的周长等于_____cm,面积等于______cm2.15.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为.三、解答题16.如图,已知在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.17.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.18.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.19.如图,在正方形ABCD中,BC=2,E是对角线BD上的一点,且BE=AB.求△EBC的面积.20.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.参考答案1.C2.A3.A4.D5.B6.C;7.D8.B9.B10.A11.答案为:312.答案为:(1,0)和(1,1);13.答案为:6514.答案为:;215.答案为.16.17.证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠FAB=∠DAE,∵∠AB=AD,∠ABF=∠ADE,∴△AFB≌△ADE,∴DE=BF.18.(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.19.解:作EF⊥BC于F,如图所示:则∠EFB=90°,∵四边形ABCD是正方形,∴AB=BC=2,∠DAB=∠ABC=90°,∴∠ABD=∠DBC=0.5∠ABC=45°,∴△BEF是等腰直角三角形,∴EF=BF,∵BE=AB,∴BE=BC=2,∴EF=BF=BE=,∴△EBC的面积=0.5BC•EF=0.5×2×=.20.解:。
华师大版八年级数学下册:19.3.2《正方形的判定与性质》同步训练(含答案)
19.3.2正方形的判定与性质农安县合隆中学徐亚惠一.选择题(共5小题)1.下列说法错误的是()A.有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且互相垂直的四边形是正方形2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()A.1个B.2个C.4个D.无穷多个3.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.84.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D.2cm,3cm,5cm5.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25 C.26 D.36二.填空题(共4小题)6.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是_________(填写图形的形状)(如图),它的一边长是_________.7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为_________.8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_________.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④三.解答题(共11小题)10.如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′、B′、C′、D′.求证:四边形A′B′C′D′是正方形.11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC 上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF﹣BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.19.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.19.3.2正方形的判定与性质参考答案与试题解析一.选择题(共5小题)1.下列说法错误的是()A.有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且互相垂直的四边形是正方形考点:正方形的判定.分析:正方形:四个角都是直角,四条边都相等,对角线相等,且互相垂直平分的平行四边形;菱形:四条边都相等,对角线互相垂直平分的平行四边形;矩形:四个角都相等,对角线相等的平行四边形.解答:解:A、有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故本选项说法正确;B、有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故本选项说法正确;C、对角线相等的菱形的特征是:四条边都相等,对角线相等的平行四边形,即该菱形为正方形.故本选项说法正确;D、对角线相等且互相垂直的平行四边形是正方形.故本选项说法错误;故选D.点评:本题考查了正方形的判定.正方形集矩形、菱形的性质于一身,是特殊的平行四边形.2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()A.1个B.2个C.4个D.无穷多个考点:正方形的判定与性质;全等三角形的判定.专题:计算题.分析:在正方形四边上任意取点E、F、G、H,若能证明四边形EFGH为正方形,则说明可以得到无穷个正方形.解答:解:无穷多个.如图正方形ABCD:AH=DG=CF=BE,HD=CG=FB=EA,∠A=∠B=∠C=∠D,有△AEH≌△DHG≌△CGF≌△BFE,则EH=HG=GF=FE,另外很容易得四个角均为90°则四边形EHGF为正方形.故选D.点评:本题考查了正方形的判定与性质,难度适中,利用三角形全等的判定证明EH=HG=GF=FE.3.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A. 3 B.2 C.4 D.8考点:正方形的判定与性质.专题:证明题.分析:如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解答:解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∠CDF+∠EDC=90°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.点评:本题运用割补法,或者旋转法将四边形ABCD转化为正方形,根据面积保持不变,来求正方形的边长.4.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D. 2cm,3cm,5cm考点:正方形的判定与性质.分析:连接OA,OB,OC,利用角的平分线上的点到角的两边的距离相等可知△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,∴BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,∴AB=8﹣CD+6﹣CD=10,解得CD=2,所以点O到三边AB、AC、BC的距离为2.解答:解:连接OA,OB,OC,则△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,∴BD=BF,CD=CE,AE=AF,又∵∠C=90,OD⊥BC于D,OE⊥AC于E,且O为△ABC三条角平分线的交点∴四边形OECD是正方形,则点O到三边AB、AC、BC的距离=CD,∴AB=8﹣CD+6﹣CD=﹣2CD+14,又根据勾股定理可得:AB=10,即﹣2CD+14=10∴CD=2,即点O到三边AB、AC、BC的距离为2cm.故选A点评:本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系.5.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25 C.26 D.36考点:正方形的判定与性质.专题:计算题.分析:设小正方形的边长为a,大正方形的边长为b,由正方形的面积公式,根据题意列出方程组解方程组得出大正方形的边长,则可求出面积.解答:解:设小正方形的边长为a,大正方形的边长为b,由这三张纸片盖住的总面积是24平方厘米,可得ab+a(b﹣a)=24 ①,由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b﹣a)2=a2﹣3,②将①②联立解方程组可得:a=4,b=5,∴大正方形的边长为5,∴面积是25.故选B.点评:本题考查了正方形的性质及面积公式,难度较大,关键根据题意列出方程.二.填空题(共4小题)6.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是正方形(填写图形的形状)(如图),它的一边长是cm.考点:正方形的判定与性质.专题:压轴题.分析:延长小正方形的一边交大正方形于一点,连接此点与距大正方形顶点8cm处的点,构造直角边长为8的等腰直角三角形,将小正方形的边长转化为等腰直角三角形的斜边长来求解即可.解答:解:如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,∴△ABC为直角边长为8cm的等腰直角三角形,∴AB=AC=8,∴阴影正方形的边长=AB=8 cm.故答案为:正方形,cm.点评:本题考查了正方形的性质与勾股定理的知识,题目同时也渗透了转化思想.7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为10.考点:正方形的判定与性质;全等三角形的判定与性质;勾股定理.分析:首先过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,易得四边形EMON是正方形,点A,O,D,E共圆,则可得△OEN是等腰直角三角形,求得EN的长,继而证得Rt△AOM≌Rt△DON,得到AM=DN,继而求得答案.解答:解:过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,∵∠AED=90°,∴四边形EMON是矩形,∵正方形ABCD的对角线交于点O,∴∠AOD=90°,OA=OD,∴∠AOD+∠AED=180°,∴点A,O,D,E共圆,∴=,∴∠AEO=∠DEO=∠AED=45°,∴OM=ON,∴四边形EMON是正方形,∴EM=EN=ON,∴△OEN是等腰直角三角形,∵OE=8,∴EN=8,∴EM=EN=8,在Rt△AOM和Rt△DON中,,∴Rt△AOM≌Rt△DON(HL),∴AM=DN=EN﹣ED=8﹣6=2,∴AE=AM+EM=2+8=10.故答案为:10.点评:此题考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是3.考点:正方形的判定与性质;全等三角形的判定与性质.分析:过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解答:解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.点评:本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.三.解答题(共11小题)10.如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′、B′、C′、D′.求证:四边形A′B′C′D′是正方形.考点:正方形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:依据三角形的内角和定理可以判定四边形A′B′C′D′的三个角是直角,则四边形是矩形,然后证明一组邻边相等,可以证得四边形是正方形.解答:证明:在正方形ABCD中,∵在△ABF和△BCG中,∴△ABF≌△BCG(SAS)∴∠BAF=∠GBC,∵∠BAF+∠AFB=90°,∴∠GBC+∠AFB=90°,∴∠BB′F=90°,∴∠A′B′C′=90°.∴同理可得∠B′C′D′=∠C′D′A′=90°,∴四边形A′B′C′D′是矩形.∵在△AB′B和△BC′C中,∴△AB′B≌△BC′C(AAS),∴AB′=BC′∵在△AA′E和△BB′F中,∴△AA′E≌△BB′F(AAS),∴AA′=BB′∴A′B′=B′C′∴矩形A′B′C′D′是正方形.点评:本题考查了正方形的判定,判定的方法是证明是矩形同时是菱形.11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:探究型.分析:猜想:线段DF垂直平分线段AC,且DF=AC,过点M作MG∥AD,与DF的延长线相交于点G,作GH⊥BC,垂足为H,连接AG、CG.根据正方形的性质和全等三角形的证明方法证明△AMG≌△CHG即可.解答:猜想:线段DF垂直平分线段AC,且DF=AC,证明:过点M作MG∥AD,与DF的延长线相交于点G.则∠EMG=∠N,∠BMG=∠BAD,∵∠MEG=∠NED,ME=NE,∴△MEG≌△NED,∴MG=DN.∵BM=DN,∴MG=BM.作GH⊥BC,垂足为H,连接AG、CG.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAD=∠B=∠ADC=90°,∵∠GMB=∠B=∠GHB=90°,∴四边形MBHG是矩形.∵MG=MB,∴四边形MBHG是正方形,∴MG=GH=BH=MB,∠AMG=∠CHG=90°,∴AM=CH,∴△AMG≌△CHG.∴GA=GC.又∵DA=DC,∵∠ADC=90°,DA=DC,∴DF=AC即线段DF垂直平分线段AC,且DF=AC.点评:本题综合考查了矩形的判定和性质、正方形的判定和性质,垂直平分线的判定和性质,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题以及敢于猜想的能力.12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.考点:正方形的判定与性质;全等三角形的判定与性质;菱形的性质.分析:(1)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得.解答:(1)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,∵DG=AH=2,∴Rt△HDG≌△AEH,∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(2)解:过F作FM⊥CD,垂足为M,连接GE∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM,∵,∴Rt△AHE≌Rt△GFM,∴MF=2,∵DG=x,∴CG=6﹣x.∴S△FCG=CG•FM=6﹣x.点评:本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F 作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四边形AFBE为正方形即可.解答:(1)证明:∵正方形ABCD,∴AB=AD,∠BAD=90°,∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD,在△ADE和△ABF中∴△ADE≌△ABF(SAS),∴BF=DE;(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=AC,∴BE=AF=AE,又∵BE⊥AC,∠FAE=∠BEC=90°,∴BE∥AF,∵BE=AF,∴得平行四边形AFBE,∵∠FAE=90°,AF=AE,∴四边形AFBE是正方形.点评:本题考查了正方形的判定和性质,解题的关键是正确的利用正方形的性质.14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.考点:正方形的判定与性质;全等三角形的判定与性质;菱形的性质;矩形的性质.专题:计算题;压轴题.分析:(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG 中,再利用勾股定理可得x2+16≤53,进而可求x≤,从而可得当x=时,△GCF的面积最小.解答:解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().点评:本题考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC 上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)解答:(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.点评:此题考查了正方形,角平分线的性质,以及全等三角形判定与性质.此题综合性较强,注意数形结合思想.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.考点:正方形的判定与性质.专题:证明题;压轴题.分析:可由Rt△ABM≌Rt△DAN,AM=DN同理可得AN=NP,所以MN=PN,进而可得其为正方形.解答:证明:l1∥l2,BM⊥l1,DN⊥l2,∴∠QMN=∠P=∠N=90°,∵AB=AD,∠M=∠N=90°∠ADN+∠NAD=90°,∠NAD+∠BAM=90°,∴∠ADN=∠BAM,又∵AD=BA,∴Rt△ABM≌Rt△DAN(AAS),∴AM=DN同理AN=DP,∴AM+AN=DN+DP,即MN=PN.∴四边形PQMN是正方形.点评:本题考查了矩形的判定和性质、全等三角形的判定和性质以及正方形的判定,解题的关键是熟练掌握各种几何图形的性质和判定方法.17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?考点:正方形的判定与性质.分析:根据正方形的性质可得AB=BC=CD=AD,∠A=∠B=∠C=∠D,然后求出BE=CF=DG=AH,再利用“边角边”证明△AHE和△BEF和△CFG和△DGH全等,根据全等三角形对应边相等可得EF=FG=GH=EH,全等三角形对应角相等可得∠AHE=∠BEF=∠CFG=∠DGH,再求出∠EFG=∠FGH=∠GHE=∠FEH=90°,从而得到四边形EFGH是正方形.解答:解:四边形EFGH是正方形.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D,∵AE=BF=CG=DH,∴AB﹣AE=BC﹣BF=CD﹣CG=AD﹣DH,即BE=CF=DG=AH,∴△AHE≌△BEF≌△CFG≌△DGH,∴EF=FG=GH=EH,∠AHE=∠BEF=∠CFG=∠DGH,∴∠EFG=∠FGH=∠GHE=∠FEH=90°,∴四边形EFGH是正方形.点评:本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并求出被截取的四个小直角三角形全等是解题的关键.18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(2)四边形EFGH是什么四边形?并证明;考点:正方形的判定与性质;全等三角形的判定与性质;分析:(1)利用全等三角形的判定首先得出△AED≌△BFA,进而得出AE=BF,即可证明结论;(2)首先得出四边形EFGH是矩形,再利用△AED≌△BFA,同理可得:△AED≌△DHC,进而得出EF=EH,即可得出答案;解答:(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°,∴∠ADE+∠DAE=90°,又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BFA中,,∴△AED≌△BFA,∴AE=BF,∴AF﹣AE=EF,即AF﹣BF=EF;(2)证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形,∵△AED≌△BFA,同理可得:△AED≌△DHC,∴△AED≌△BFA≌△DHC,∴DH=AE=BF,AF=DE=CH,∴DE﹣DH=AF﹣AE,∴EF=EH,∴矩形EFGH是正方形;19.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.分析:首先利用垂直的定义证得四边形CFDE是矩形,然后利用角平分线的性质得到DE=DF,从而判定该四边形是正方形.解答:证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形DECF为矩形,∵∠A、∠B的平分线交于点D,∴DF=DE,∴四边形CFDE是正方形.点评:本题主要考查了角平分线的性质,三角形的内切圆与内心,解题的关键是利用正方形的判定方法证得四边形CFDE是正方形.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:由题意先证明□AEDF是矩形,再根据两角及其一角的对边对应相等来证△BDE≌△CDF,根据有一组对边相等的矩形证明□AEDF是正方形.解答:证明:∵DE⊥AB,DF⊥AC∴∠AED=90°,∠AFD=90°∵∠BAC=90°∴∠EDF=90°∴□AEDF是矩形在△BDE和△CDF中∵AB=AC∴∠ABC=∠ACB∵DE⊥AB,DF⊥AC∴∠DEB=∠DFC又∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF∴□AEDF是正方形点评:本题考查的是正方形的判定方法,考查了矩形、全等三角形等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质.初中数学试卷。
部编数学八年级下册专题26正方形的折叠(解析版)含答案
专题26 正方形的折叠1.如图,有一正方形的纸片ABCD,边长为6,点E是DC边上一点且DC=3DE,把V ADE沿AE 折叠使V ADE落在V AFE的位置,延长EF交BC边于点G,连接BF有以下四个结论:①∠GAE=45°;②BG+DE=GE;③点G是BC的中点;④连接FC,则BF⊥FC;其中正确的结论序号是( )A.①②③④B.①②③C.①②D.②③2.如图,先将正方形纸片对着,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的个数为()①AE垂直平分HB;②∠HBN=15°;③DH=DC;④△ADH是一个等边三角形.A.1个B.2个C.3个D.4个故选D.【点睛】本题主要考查了正方形的性质、线段垂直平分线的性质、折叠的性质以及等边三角形的判定及性质,熟练掌握正方形的性质是解题的关键.3.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=8,则折痕GH 的长度为()A.B.C.D.【答案】D【分析】连接EC,作GJ⊥CD于J,EF交GH于点Q,证明四边形BCJG是矩形,求出∠CEF=∠HGJ,然后证明△EFC≌△GJH(ASA),可得GH=EC,然后根据勾股定理即可解决问题.【详解】解:如图,连接EC,作GJ⊥CD于J,EF交GH于点Q,∵∠BCD=∠ABC=90°,∴四边形BCJG是矩形,∴GJ∥BC,GJ=BC,由题意得:EF⊥BC,BC=CD=EF,∴EF⊥GJ,GJ=EF,∵E,C关于GH对称,∴EC⊥GH,4.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,若五边形MCNGF的面积是正方形EFGH面积的2倍,则FMGF的值是()A B C D【答案】A【分析】根据题意连接HF,直线HF与AD交于点P,根据五边形MCNGF的面积是正方形EFGH面积的2倍,设正方形EFGH与五边形MCNGF的面积为222x x,,可得GF x=,根据折叠可得正方形ABCD 的面积为29x,进而求出FM即可.【详解】解:如图,连接HF,直线HF与AD交于点P,∵五边形MCNGF 的面积是正方形5.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD Ð=°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上点B ¢处,则BE 的长度为( )A .1B C D .2【答案】D 【分析】由CD ∥AB 得到∠EFD =∠FEB =60°,由折叠得到60FEB FEB ¢Ð=Ð=°,进而得到60AEB ¢Ð=°,然后在Rt AEB ¢V 中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD =∠FEB =60°,由折叠前后对应角相等可知:60FEB FEB ¢Ð=Ð=°,∴18060AEB FEB FEB ¢¢Ð=°-Ð-Ð=°,∴30AB E ¢Ð=°,设AE =x ,则2BE B E x ¢==,∴AB =AE +BE =3x =3,∴x =1,∴BE =2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边的一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题6.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为_____.7.折叠矩形纸片:第一步,如图1,在纸片一端折出一个正方形MBCN,再把纸片展开;第二步,如图2,把这个正方形对折,再把纸片展开,得矩形MAEN和ABCE;第三步,如图3,折出矩形ABCE的对角线EB,并把EB折到图中所示的ED处;第四步,如图4,展平纸片,按所得点D折出DF,得矩形BFDC.(1)若MN=2时,CM=________;(2)CDBC的值为________.8.如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.9.在边长为6的正方形ABCD 中,点E 是射线BC 上的动点(不与B C ,重合),连接 AE ,将ABE V 沿AE 向右翻折得AFE △,连接CF 和DF ,若DFC △为等腰三角形,则BE 的长为___________.①点F 在以A 为圆心AB 为半径的圆上,满足条件的点F 在线段CD 作FH AD ^于H ,在Rt AFH V 中,由题意可得:2AF FH =,∴30FAH Ð=°,∵90BAD Ð=°,∴60BAF Ð=°,∴6AF DF ==,3AM BN ==,设BE x =,∴EF BE x ==,3EN x =-,由一线三直角易证:AMF FNE V :V ,∴AF AM EF FN =,∴63x FN=,∴x FN =,10.如图,在正方形ABCD中,已知AB=2,点E,G分别是边AD,CD的中点,点F是边BC上的动点,连接EF,将正方形ABCD沿EF折叠,A,B的对应点分别为A',B',则线段GB'的最小值是__________________.AD CD的中点,点F是边BC上的11.如图,在正方形ABCD中,已知2AB=,点,E G分别是边,¢¢,则线段GB¢的最小值是动点,连接EF,将正方形ABCD沿EF折叠,,A B的对应点分别为,A B_____.三、解答题12.如图,正方形ABCD 中,6CD =,点E 在边CD 上,且3CD DE =.将ADE V 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:ABG AFG △△≌;(2)求FGC △的面积;(3)在3CD DE ¹的条件下,求CEF △周长的最小值.13.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于点G,连接DG.(1)填空,∠EDG=_________°.(2)如图2,若正方形边长为6,点E为BC的中点,连接BF.①求线段AG的长;②求△BEF的面积;(3)填空:当DE=DG时,若令CE=a,则BF=_________(用含a的式子表示).【答案】(1)45(2)①由(1)知:Rt△DGA≌Rt△DGF ∴AG=FG,∵E为BC的中点,∴CE=EF=BE=3,设AG=x,则BG=6﹣x,在Rt△BEG中,由勾股定理得:【点睛】四边形综合题,主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,翻折变换的性质,熟记各性质是解题的关键.14.已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N ,AH ⊥MN 于点H .(1)如图①,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:____;(2)如图②,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)【答案】(1)AH =AB ;(2)成立,理由见解析;(3)6【分析】(1)先证明ABM ADN D @D ,可得AM AN =,BAM DAN Ð=Ð,再证明ABM AHM D @D 即可;(2)延长CB 至E ,使BE DN =,证明AEM ANM D @D ,能得到AH AB =;(3)分别沿AM 、AN 翻折AMH D 和ANH D ,得到ABM D 和AND D ,然后分别延长BM 和DN 交于点C ,得正方形ABCE ,设AH x =,则2MC x =-,3NC x =-,在Rt MCN △中,由勾股定理,解得x .【详解】解:(1)如图①,AH AB =.理由如下:Q 四边形ABCD 是正方形,90B BAD D \Ð=Ð=Ð=°,AB AD =,45DAN BAM Ð+Ð=°Q ,45EAB BAM \Ð+Ð=°,90EAN \Ð=°,45EAM NAM \Ð=Ð=°,在AEM D 和ANM D 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,()AEM ANM SAS \D @D .AEM ANM S S D D \=,EM MN =,AB Q 、AH 是AEM D 和ANM D 对应边上的高,AB AH \=.(3)如图③分别沿AM 、AN 翻折AMH D 和ANH D ,得到ABM D 和AND D ,2BM \=,3DN =,90B D BAD Ð=Ð=Ð=°.分别延长BM 和DN 交于点C ,得正方形ABCD ,由(2)可知,AH AB BC CD AD ====.设AH x =,则2MC x =-,3NC x =-,在Rt MCN △中,由勾股定理,得222MN MC NC =+,2225(2)(3)x x \=-+-,解得16x =,21x =-.(不符合题意,舍去),6AH \=.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定与性质、翻折变换的性质以及勾股定理等知识;正确作出辅助线,熟练掌握翻折变换的性质,构造全等三角形是解题的关键.15.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点AOC=,点E在边BC上,点N的坐标为(3,0),过点N且平行于y轴在x轴上,点C在y轴上,5的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上,并与MN上的点G重合,折痕为OE.(1)求点G的坐标,并求直线OG的解析式;=+平行于直线OG,且与长方形ABMN有公共点,请直接写出n的取值范(2)若直线:l y mx n围.P O G为顶点的三角形为等腰三角形?(3)设点P为x轴上的点,是否存在这样的点P,使得以,,若存在,请求出点P的坐标;若不存在,请说明理由.B C¢=.将纸片沿某条直16.如图,四边形ABCD是边长为9的正方形纸片,B¢为CD边上的点,3线折叠,使点B落在点B¢处,点A的对应点为A¢,折痕分别与AD,BC边交于点M,N.求BN的长.【答案】5【分析】设BN x =,根据折叠的性质得¢=B N x ,结合勾股定理,列出方程,即可求解.【详解】设BN x =,∵四边形ABCD 是边长为9的正方形纸片,将纸片沿某条直线折叠,使点B 落在点B ¢处,∴9=-CN x ,¢==B N BN x ,∵在¢D Rt B NC 中,222¢¢+=NC B C B N ,∴()22293x x -+=,解得:5x =,∴BN 的长为5.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识.解题的关键是熟练掌握勾股定理和方程思想,学会利用参数构建方程解决问题.17.如图,将一张边长为8的正方形纸片OABC 放在直角坐标系中,使得OA 与y 轴重合,OC 与x 轴重合,点P 为正方形AB 边上的一点(不与点A 、点B 重合).将正方形纸片折叠,使点O 落在P 处,点C 落在G 处,PG 交BC 于H ,折痕为EF .连接OP 、OH .初步探究(1)当AP =4时①直接写出点E 的坐标 ;②求直线EF 的函数表达式.深入探究(2)当点P 在边AB 上移动时,∠APO 与∠OPH 的度数总是相等,请说明理由.拓展应用(3)当点P 在边AB 上移动时,△PBH 的周长是否发生变化?并证明你的结论.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16.故答案为:16.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.18.如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.(1)试探究AP与BQ的数量与位置关系,并证明你的结论;(2)当E是FQ的中点时,求BP的长.19.如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.20.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A恰好落在AE上的G处,得到折痕BF,与AD交于点F.(1)当E是CD的中点时,求AF的长;DE=,求GE的长.(2)若521.如图,P为正方形ABCD的边BC上的一动点(P不与B、C重合),连接AP,过点B作BQ⊥AP交CD 于点Q ,将BCQ △沿着BQ 所在直线翻折得到BQE △,延长QE 交BA 的延长线于点M .(1)探求AP 与BQ 的数量关系;(2)若3AB =,2BP PC =,求QM 的长.22.如图,正方形纸片ABCD的边长为8,E是CD上一点,连接AE,把正方形纸片折叠,使点A 落在AE上的一点G,折痕为BF,且BF与AE交于点H.(1)求证:AF=DE;(2)当E为CD的中点时,求AG的长.。
人教版八年级数学 下册 第十八章 18.2.3 正方形 课时练(含答案)
第十八章平行四边形18.2.3 正方形一、选择题1、正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2、四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形3、下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A.3:4B.5:8C.9:16D.1:25、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF∠AB,垂足为F,则EF的长为()A.1B.C. D.二、填空题6、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________.第6题图第7题图7、如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.8、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.9、正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.10、如图,在Rt△ABC中,△C=90°,DE垂直平分AC,DF△BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题11、如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。
12、如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)13、已知:如图,△ABC中,△ABC=90°,BD是△ABC的平分线,DE△AB于点E,DF△BC于点F.求证:四边形DEBF是正方形.14、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.15、如右图,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.16、如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:∠CBG∠∠CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由; (3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.参考答案:一、1、C 2、D 3、B 4、B 5、C 二、6、7、10、 8、1ab 49、2a10、考点: 正方形的判定. 专题: 计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF 是正方形推出.解答:解:设AC=BC ,即△ABC 为等腰直角三角形,△△C=90°,DE 垂直平分AC ,DF △BC , △△C=△CED=△EDF=△DFC=90°, DF=AC=CE ,DE=BC=CF ,11A1A 图3-21△DF=CE=DE=CF,△四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、11、∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=°°°12、(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)13、考点:正方形的判定.专题:证明题.分析:由DE△AB,DF△BC,△ABC=90°,先证明四边形DEBF是矩形,再由BD是△ABC 的平分线,DE△AB于点E,DF△BC于点F得出DE=DF判定四边形DEBF是正方形.解答:解:△DE△AB,DF△BC,△△DEB=△DFB=90°,又△△ABC=90°,△四边形BEDF为矩形,△BD是△ABC的平分线,且DE△AB,DF△BC,△DE=DF,△矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.14、(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.15、提示:AA1 = BB1 = CC1 = DD1 =13(或=23).16、(1)∠正方形ABCO绕点C旋转得到正方形CDEF,∠CD=CB,∠CDG=∠CBG=90°.在Rt∠CDG和Rt∠CBG中,,∠∠CDG∠∠CBG(HL)1 (180 2120-)30=(2)解:∠∠CDG∠∠CBG,∠∠DCG=∠BCG,DG=BG.在Rt∠CHO和Rt∠CHD中,∠ ,∠∠CHO∠∠CHD(HL),∠∠OCH=∠DCH,OH=DH,∠∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,∠HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB 中点的时候.∠DG=BG,∠DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∠当G点为AB中点时,四边形AEBD为矩形.∠四边形DAEB为矩形,∠AG=EG=BG=DG.∠AB=6,∠AG=BG=3.设H点的坐标为(x,0),则HO=x∠OH=DH,BG=DG,∠HD=x,DG=3.在Rt∠HGA中,∠HG=x+3,GA=3,HA=6﹣x,∠(x+3)2=32+(6﹣x)2,解得x=2.∠H点的坐标为(2,0).。
2021-2022学年鲁教版八年级数学下册《6-3正方形的性质与判定》同步练习题(附答案)
2021-2022学年鲁教版八年级数学下册《6-3正方形的性质与判定》同步练习题(附答案)1.正方形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对角线互相垂直2.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B (2,b),则正方形ABCD的面积是()A.20B.16C.34D.253.对角线互相垂直平分但不相等的四边形是()A.菱形B.矩形C.正方形D.平行四边形4.正方形具有而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线平分一组对角D.对角线相等5.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.()B.(2,﹣1)C.(1,)D.(﹣1,)6.如图,两张对边平行且等宽的纸条交叉叠放在一起,重合部分构成的四边形ABCD是()A.平行四边形B.菱形C.矩形D.正方形7.两条对角线相等且互相垂直平分的四边形是()A.平行四边形B.矩形C.菱形D.正方形8.下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线互相垂直,且相等的四边形是正方形9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,平行四边形ABCD是菱形B.当AC⊥BD时,平行四边形ABCD是菱形C.当AC=BD时,平行四边形ABCD是正方形D.当∠ABC=90°时,平行四边形ABCD是矩形10.下列说法不正确的是()A.平行四边形对角相等B.对角线互相垂直的矩形是正方形C.一组对边相等另一组对边平行的四边形是平行四边形D.菱形的对角线互相垂直平分11.如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个12.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形二.填空题(共12小题)13.如图,以正方形ABCD的一边AD为边向外作等边△ADE,则∠ABE的度数是.14.如图,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,AB=10,则EF的长为.15.正方形ABCD的边BC的延长线上取一点E,使CE=AC,AE与CD交于点F,则∠AFC =度.16.已知正方形的一条对角线长为8cm,则其面积是cm2.17.如图,点E是正方形ABCD的边BC延长线上的一点,且CE=AC,若AE交CD于点F,则∠AFC=°.18.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.19.如图,由四个直角边分别为5和4的全等直角三角形拼成“赵爽弦图”,其中阴影部分面积为.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.21.如图,等边△ABE与正方形ABCD有一条公共边,点E在正方形外,连接DE,则∠BED =°.22.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.23.如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为.24.如图,已知点P为正方形ABCD内一点,且P A=PB=5cm,点P到边CD的距离也为5cm,则正方形ABCD的面积为cm2.三.解答题(共2小题)25.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.26.如图,在平面直角坐标系中,正方形ABCD的顶点C、A分别在x、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH.(1)当H(﹣2,6)时,求证:四边形EFGH是正方形;(2)若F(﹣5,0),求点G的坐标.27.如图,在▱ABCD中,G、H分别是AD、BC的中点,E、O、F是对角线AC的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)若AC=2AB,则四边形GEHF是形;(3)当AC、AB满足时,四边形GEHF是正方形.28.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,四边形BCED为平行四边形,DE、AC相交于F,连接DC、AE.(1)试确定四边形ADCE的形状,并说明理由;(2)若AB=8,AC=6,求四边形ADCE的面积;(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.参考答案1.解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:D.2.解:作BM⊥x轴于M.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,∴∠DAO=∠ABM,∵∠AOD=∠AMB=90°,∴在△DAO和△ABM中,∴△DAO≌△ABM(AAS),∴OA=BM,AM=OD,∵A(﹣3,0),B(2,b),∴OA=3,OM=2,∴OD=AM=5,∴AD==,∴正方形ABCD的面积=34,故选:C.3.解:A、菱形的对角线互相垂直平分,且不相等,故本选项正确;B、矩形的对角线互相平分,且相等,故本选项错误;C、正方形的对角线互相垂直平分,且相等,故本选项错误;D、平行四边形的对角线互相平分,故本选项错误.故选:A.4.解:A、对角线互相平分,正方形和菱形都具有,故本选项不符合题意;B、对角线互相垂直,正方形和菱形都具有,故本选项不符合题意;C、对角线平分一组对角,正方形和菱形都具有,故本选项不符合题意;D、正方形对角线相等,菱形对角线不相等,故本选项符合题意.故选:D.5.解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴AD=1,OD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选:A.6.解:由图可知,过A点作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相等,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S ABCD=BC×AE=CD•AF.又∵AE=AF,∴BC=CD,∴四边形ABCD为菱形.故选:B.7.解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选D.8.解:A错误,如等腰梯形即为一组对边平行,另一组对边相等的四边形,却不是平行四边形;B错误,由矩形的性质可知矩形的对角线互相平分且相等;C正确,由菱形的性质可知菱形的对角线互相垂直且平分;D错误,由正方形的性质及判定可知,对角线互相垂直,平分,且相等的四边形是正方形;故选:C.9.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形,不一定是正方形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.10.解:A、平行四边形对角相等,正确;B、对角线互相垂直的矩形是正方形,正确;C、一组对边相等,且这组对边平行的四边形是平行四边形,错误;D、菱形的对角线互相垂直平分,正确.故选:C.11.解:①AB=BC,∠A=90°;根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定▱ABCD是正方形,故此选项正确;②AC⊥BD,AC=BD;由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;③OA=OD,BC=CD;由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;④∠BOC=90°,∠ABD=∠DCA;由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确.故选:D.12.解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB =BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.13.解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ADE是等边三角形,∴AD=AE,∠DAE=60°,∴∠BAE=∠BAD+DAE=150°,AB=AE,∴∠ABE=∠AEB,∴∠ABE=(180°﹣∠BAE)=15°,故答案为:15°.14.解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAD+∠DAE=90°,∵BF⊥a于点F,DE⊥a于点E,∴∠AFB=∠AFD=90°,∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,∴△ABF≌△DAE,∴AF=DE=8,BF=AE,在Rt△ABF中,BF==6,∴AE=6,∴EF=AE+AF=6+8=14.故答案为14.15.解:∵四边形ABCD是正方形,CE=CA,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFC=90°+22.5°=112.5°.故答案为112.5.16.解:∵正方形的一条对角线长为8cm,∴面积是×8×8=32cm2.故答案为:32.17.解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=×45°=22.5°,在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:112.5.18.解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(﹣,1),故答案为(﹣,1).19.解:∵四个全等的直角三角形的直角边分别是5和4,∴阴影部分的正方形的边长为5﹣4=1,∴阴影部分面积为1×1=1.故答案为:1.20.解:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×=,∴D(2+,1).故答案为:(2+,1).21.解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵等边三角形ABE,∴AB=AE,∠BAE=∠AEB=60°,∠DAE=∠BAD+∠BAE=90°+60°=150°,AD=AE,∴∠AEB=∠ABE=(180°﹣∠DAB)÷2=15°,∴∠BED=∠AEB﹣∠AED=60°﹣15°=45°,故答案为:45°22.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.23.解:∵△ABC是等边三角形,ABDE是正方形,∴AC=AE,∴∠CAB=60°,∠EAB=90°,∴∠CAE=150°,∴∠ACE=∠AEC=15°,∵△AEF和△ABF中,,∴△AEF≌△ABF(SAS),∴∠ABF=∠AEF=15°.故答案为:15°.24.解:过P作EF∥AD,则PE⊥CD,PF⊥AB,设PF=x,则AB=5+x,AF=FB=,在直角△APF中,AP为斜边,AP=5cm,PF=x,F A=,且AF2+PF2=AP2,解得x=3cm,所以AB=3cm+5cm=8cm,故正方形面积为S=AB•AB=64cm2,故答案为64.25.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.26.解:(1)∵四边形ABCD是正方形,∴∠BAO=∠AOC=90°,∵E(0,2),H(﹣2,6),∴AH=OE=2,∵四边形EFGH是菱形,∴EH=EF,在Rt△AHE和Rt△OEF中,,∴Rt△AHE≌Rt△OEF,∴∠AEH=∠EFO,∵∠EFO+∠FEO=90°,∴∠AEH+∠FEO=90°,∴∠HEF=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.(2)连接EG交FH于K.∵HE=EF,∴AH2+AE2=EO2+OF2,∴AH2+16=4+25,∴AH=,∴H(﹣,6),∵KH=KF,∴K(﹣,3),∵GK=KE,∴G(﹣5﹣,4).27.证明:(1)连接BD,如图:∵四边形ABCD是平行四边形,G、H分别是AD、BC的中点,E、O、F是对角线AC 的四等分点,∴点O是对角线AC,BD的交点,∴OB=OD,∵G是AD的中点,∴EG是△AOD的中位线,∴EG∥OD,EG=OD,同理:FH∥OB,FH=OB,∴EG=HF,EG∥HF,∴四边形GEHF是平行四边形;(2)∵四边形GEHF是平行四边形,∴GH=AB,∵AC=2AB,∴AB=AC=EF,∴GH=EF,∴四边形GEHF是矩形;故答案为:矩;(3))∵四边形GEHF是平行四边形,∴GH=AB,∵AC=2AB,∴AB=AC=EF,∴GH=EF,∴四边形GEHF是矩形,∵AC⊥AB,∴EG⊥EH,∴矩形GEFH是正方形.故答案为:AC=2AB,AC⊥AB.28.证明:(1)∵平行四边形BCED,∴CE∥BD,CE=BD,∵D为AB中点,∴AD=BD,∴CE∥AD,CE=AD,∴四边形ADCE为平行四边形,又BC∥DE,∴∠AFD=∠ACB=90°,∴AC⊥DE,故四边形ADCE为菱形;(2)在Rt△ABC中,∵AB=8,AC=6,∴BC=,∵D为AB中点,F也为AC的中点,∴DF=,∴四边形ADCE的面积=AC×DF=6;(3)应添加条件AC=BC.证明:∵AC=BC,D为AB中点,∴CD⊥AB(三线合一的性质),即∠ADC=90°.∵四边形BCED为平行四边形,四边形ADCE为平行四边形,∴DE=BC=AC,∠AFD=∠ACB=90°.∴四边形ADCE为正方形.(对角线互相垂直且相等的四边形是正方形)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科:数学
教学内容:正方形
【学习目标】
1.掌握正方形的定义、性质和判定方法.
2.能正确区别平行四边形、矩形、菱形、正方形之间的关系.
3.能运用正方形的性质和判定方法进行有关的计算和证明.
【主体知识归纳】
1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有:
(1)正方形的四个角都是直角,四条边都相等;
(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.
3.正方形的判定
(1)根据正方形的定义;
(2)有一组邻边相等的矩形是正方形;
(3)有一个角是直角的菱形是正方形;
(4)既是矩形又是菱形的四边形是正方形.
【基础知识精讲】
1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:
正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭
⎬⎫)()2()()1( 正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.
2.正方形的性质可归纳如下:
边:对边平行,四边相等;
角:四个角都是直角;
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.
【例题精讲】
[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .
求证:矩形ABCD 是正方形.
图4—50
剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.
证明:在AE上截取AG=AD,连结FG、FE.
∵四边形ABCD是矩形,∴∠D=∠C=90°.
∵AD=AG,∠DAF=∠GAF,AF=AF
∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.
∵DF=CF,∴GF=CF.
∵∠FGE=∠C=90°,FE=FE,
∴Rt△GFE≌Rt△CFE.
∴GE=CE,∴AD+CE=AE.
又DC+CE=AE,∴AD=DC.
∴矩形ABCD是正方形.
说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.
[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.
图4—51
对上述命题的证明如下:
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO.
∴∠3+∠2=90°,
∵AG⊥BE,∴∠1+∠3=90°.
∴∠1=∠2,
∴△BOE≌△AOF,∴OE=OF
问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,
请给出证明;如果不成立,请说明理由.
图4—52
剖析:可仿上述的证明,证△BOE≌△AOF.
解:结论OE=OF仍然成立,证明如下:
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO,
∴∠OFA+∠FAE=90°
又∵AG⊥EB,∴∠OEB+∠EAF=90°,
∴∠OEB=∠OFA,
∴△BOE≌△AOF,∴OE=OF.
[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.
图4—53
剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.
答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.
【同步达纲练习】
1.选择题
(1)下列命题中,假命题的个数是()
①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形
A.1 B.2 C.3 D.4
(2)正方形具有而菱形不具有的性质是()
A.对角线互相垂直平分B.对角线相等
C.邻边相等D.每条对角线平分一组对角
(3)正方形的对角线与边长之比为()
A.1∶1 B.2∶1 C.1∶2 D.2∶1
(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,
③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()
A.1个 B.2个 C.3个 D.4个
(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()
A.17 B.16 C.15 D.9
(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()
图4—54
A.7 B.5 C.4 D.3
(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()
A.
21
3+
B.
21
3-
C.3 D.2
(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()
图4—55
A.45°B.55°C.65°D.75°
2.填空题
(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.
(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____.
(3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .
(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.
3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .
图4—56
(1)求证:△BCE ≌△DCF ;
(2)若∠BEC =60°,求∠EFD 的度数.
4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =2
1BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.
图4—57
5.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.
(1)求证:EM =FM ;
(2)若使AM =2
1EF ,则△ABC 必须满足什么条件呢?
图4—58
6.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .
7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.
图4—59
求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.
【思路拓展题】
你会设计吗
今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)
图4—60
参考答案
【同步达纲练习】
1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B
2.(1)4 42(2)8 4 (3)4 (4)112.5
3.(1)略(2)15°
4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
.
5.提示:(1)过点E作EG∥AF交AM的延长线于G,连结FG,证△ABC≌△EAG,得EG =AC,从而EG AF,可得AEGF为平行四边形,结论得证;(2)∠BAC=90°.6.提示:证△DFM≌△MBN.
7.提示:证△ACF≌△DCB。
若点C在线段AB外,上述结论仍然成立,证法仿照着前一种情况。
【思路拓展题】
你会设计吗?
提示:实质是对角以正方形中点为中心旋转.。